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Driven responses of periodically patterned superconducting films

A. Al Luhaibi®,"? A. Glatz®,>* and J. B. Ketterson®'!

' Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
2Physics Department, King Fahd University of Petroleum and Minerals, 31261 Dhahran, Saudi Arabia
3Materials Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA
4Department of Physics, Northern Illinois University, DeKalb, Illinois 60115, USA

M (Received 5 August 2022; revised 3 December 2022; accepted 8 December 2022; published XXXXXXXXXX)

We simulate the motion of a commensurate vortex lattice in a periodic lattice of artificial circular pinning
sites having different diameters, pinning strengths, and spacings using the time-dependent Ginzburg-Landau
formalism. Above some critical DC current density J., the vortices depin, and the resulting steady-state motion
then induces an oscillatory electric field E (¢) with a defect “hopping” frequency fj, which depends on the applied
current density and the pinning landscape characteristics. The frequency generated can be locked to an applied
AC current density over some range of frequencies, which depends on the amplitude of the DC as well as the AC
current densities. Both synchronous and asynchronous collective hopping behaviors are studied as a function
of the supercell size of the simulated system and the (asymptotic) synchronization threshold current densities

determined.

DOI: 10.1103/PhysRevB.00.004500

I. INTRODUCTION

Above some magnetic field H,,, the field penetrates type-II
superconductors as quantized vortices carrying a flux quan-
tum, producing the so-called mixed state. An external current
density, J, subjects each vortex to a Lorentz force in the direc-
tion perpendicular to the current density and field, F;, = J x
H. In the absence of some restraining (pinning) force, vortices
move and dissipation associated with the finite conductivity
of their moving normal cores results in a finite potential drop
across the superconductor. However, structural and other ir-
regularities result in finite pinning forces which in turn result
in some critical depinning current density J, for the onset of
dissipation, above which a finite potential drop appears. (This
current density is generally much smaller than the depairing
current density required to break Cooper pairs). For two or
more decades there has been much interest in incorporating
artificial defects to increase pinning and with it J., particularly
in films where there is more access to the sample interior to
introduce the defects; examples include: patterned arrays of
holes (anti dots) [1,2] or normal [3] or ferromagnetic metallic
dots [4,5] as well alterations induced by particle beams as
in heavy ion irradiation. When the applied current density,
|J|, exceeds the critical current density, vortices break loose
from their pinning sites and move. In a spatially periodic
system the resulting motion can generate temporally periodic
pinning and depinning cycles with some current density-
dependent frequency, here called the hopping frequency, see
Sec. III. By introducing an additional AC current density
into the system with a frequency approximating the unper-
turbed hopping frequency, the two can be locked within some
finite, amplitude-dependent, bandwidth, Sec. IV. In what fol-
lows we will model this behavior by numerically solving the
time-dependent Ginzburg-Landau equations (TDGL), which
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will be briefly reviewed in Sec. II A. Section IIB explains
the system that is simulated. While much of the research
involving artificial pinning sites focuses on maximizing J,
[6-11], the results obtained here suggest that certain dynamic
effects, and possible applications thereof, merit increased
attention.

II. MODEL

The formulation of the TDGL equations utilized here
follows that of Sadovskyy et al. [12] which allows the speci-
fication of defect positions, sizes and other characteristics, as
explained in Sec. Il A. The particular systems simulated here
are described in Sec. II B.

A. Theory

The TDGL equations can be written in the following di-
mensionless form:

u@ + 1)y = ey — Y 1PY +(V —1A)%y, (1)

K2V x (VxA) =T+ 1., ()

Here ¢ and A are the order parameter and the vector potential
respectively, u is the scalar potential, J, and J are the normal
and super current densities, and k = Ay/&p is the Ginzburg-
Landau parameter. Here we consider thin films and therefore
use the k — oo limit and the Landau gauge for A. The unit
of length is given by the zero-temperature coherence length,
&y, and the unit of time, 7ty = om,/ (2e21//§), is determined by
the typical relaxation time of the TDGL equation, 7, = I' /vy,
and the relaxation time of the vector potential, T4 & o/ ¢g§
here vy is the density (;f states at the Fermi level, o the normal
VoIT

conductivity, I' = ST @ relaxation parameter, 7. the critical
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temperature, ¢ and m, the electron charge and mass, and
the equilibrium value of the order parameter, where the latter
is determined by the ratio of linear and nonlinear coefficients
of the dimensionless TDGL equation, or alternatively the
London penetration length A2 = m,c?/(8we*3). These also
define the dimensionless relaxation parameter u = I /(vgtp),
which we set to 1 in our simulations.

Here we model pinning by so-called 67; pinning [13],
where the critical temperature is spatially modulated. In
Eq. (1), this is realized through the coefficient of the linear
GL term, €(r) = T.(r)/T — 1. In the superconductor we use a
value of € = 1 and within the pinning site € < 1, i.e., the local
critical temperature of the pinning site is less than the bulk 7.
For values 0 < € < 1 one has weakly superconducting defects
whereas regions with € < 0 model normal defects.

The magnetic field and, correspondingly, the vector poten-
tial are measured in units of the upper critical field H(0) =
b0/ (271.?53) (¢po = mhc/e is the flux quantum). The total cur-
rent density can be written as

J=J+ I =Im[y*(V —1A)] - (Vu+3A), 3

where the unit of the current density is given by Jy =
eli/(m.£&y)¥¢. In these units, the depairing current density has
the value Jg, = 2/ V27 ~ 0.385. At applied current densities
near the depairing current density above the free-flux flow
regime, amplitude fluctuations of the superconducting order
parameter become large such that above some current density
J = 0.3 the local amplitude could become zero which can
lead to the creation of fluctuating vortex/antivortex pairs in
the system.

Here we apply an external current density in x direction of
form

Jext,x(t) = Jac + Jac Sin(zﬂfextt)- (4)

Important to note is that the TDGL formalism is valid
as long as equilibrium excitations are small and the system
remains in a steady state. Therefore we only consider frequen-
cies fox K T, !, Furthermore, we ensure that the peak applied
current density Jy. + J,. stays well below the depairing cur-
rent density such that order parameter fluctuations can be
neglected. For a more detailed discussion of nonequilibrium
effects we refer to the book by Kopnin [14]. We will discuss
typical material parameters for current and frequency as well
as vortex velocities in the discussion section.

For the numerical solution of equations (1), the system is
discretized on a regular two-dimensional mesh in space (with
a typical grid spacing of 0.3%p) and the time integration is
performed by using an implicit Crank-Nicolson scheme (typ-
ical time discretization 0.1fy). These discretized equations are
then simulated on GPUs using an iterative Jacobi solver. We
use periodic boundary conditions in both directions and the
external current is applied in x direction which is realized by
ensuring that it matches the average total current following
Ref. [12].

B. Simulation

In most parts of this work, we are interested in the vortex
dynamics of a superconducting film having a regular square

FIG. 1. (a) a simple square lattice drawn as centered square lat-
tice with two pinning sites per square. (b) Moving the site centers
along the square diagonal removes those at the corners.

lattice of (weakly superconducting) circular pinning centers,
where the applied current direction is rotated 45° with respect
to the principle axis of the square array. The reason for study-
ing this rotated configuration is that enlarged systems show
enhanced stability of the moving vortex lattice compared to a
square pinning array.

The magnetic field is applied perpendicular (taken as the
z direction) to the film with a strength corresponding to the
first matching field (see also Ref. [15]), i.e., one vortex per
pinning site. Therefore we restrict our simulations mostly to
a single unit cell of the pinning array with periodic bound-
ary conditions, which implies that the steady-state dynamics
of all vortices in the extended system is synchronized. We
will also discuss the collective stability in an enlarged unit
cell, which we refer to as supercell, in SeemV): This will
remove the (artificial) synchronization enforced by periodic
boundary conditions involving a single unit cell. Since we are
interested in low-temperature applications of synchronized
vortex dynamics, we neglect thermal fluctuations in the TDGL
equations. We start our simulations for a simple unit cell of
linear size /2L having two offset circular pinning sites with
diameter D with an in-plane DC current, Jy., applied in x
direction [see Fig. 1(b)]. Here L is the pinning array lattice
constant or, in other words, the distance between two nearest
neighbor pinning sites. Note that the two unit cells outlined in
Figs. 1(a) and 1(b) are equivalent, but we choose (b) for better
visualization purposes. Figure 2 shows the squared amplitude
of the complex order parameter, |y|?, as 3D surface plot and
flat projection at the bottom at three different stages of a single
oscillation of the electric field. A corresponding time-trace
of the electric field with markers of panels (a)—(c) is shown
in Fig. 3 and an animation is shown in supplemental movie
1 [16]. Panel (a) corresponds to the lowest dissipation state,
where the vortex is inside the defect, panel (b) just between
the pinning sites in a “free-flow” state with intermediate dis-
sipation, and panel (c) just before getting trapped by a defect
again. In the latter case, the vortices are pulled into the defect
by the pinning force, which accelerates the vortices and there-
fore increases the dissipation to its maximum. Furthermore,
this panel also illustrates the unit cell geometry in more detail
(Iength +/2L with circular defect of diameter D and strength
€). Our benchmark system is defined by L = 10, D = 5, and
€ =0.75, i.e., the pinning site is a weakly superconducting
defect.
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FIG. 2. Surface plots of |/|* in the simulated system of size
V2L x /2L with two circular defects of diameter D (indicated by
the circles) separated by L representing a unit cell of a large pinning
array for different vortex positions in the system corresponding to
different phases of a cycle (see also Fig. 3): (a) vortex is moving
inside the defect, (b) vortex is the farthest from defects, and (c) vortex
is about to enter the defect. The projection at the bottom of (b) indi-
cates regions with different 7;. /€ values in dark gray (¢ = 1) and light
gray (e = 0.75). At the center position of the vortex, the direction of
applied current, magnetic field, and resulting Lorentz force (F;) are
indicated.

III. RESPONSE TO A CONSTANT (DC)
CURRENT DENSITY

We begin our study of the unit cell dynamics by deter-
mining the current density-electric field (J-E) behavior for
systems with differing unit cell sizes, 217, and defects. As it is
well known, vortices depin and start moving if the applied DC
current density exceeds the critical value J; in the direction
perpendicular to the applied current and field (here the y
direction). Since we are studying the regime J4. > J;, vortices
show alternating pinning and depinning motion between sec-
ond nearest neighbor sites which are separated by the unit cell
size v/2L.

Figure 4 shows some J-E characteristics for various val-
ues of L, D, and €. Note that the electric field is averaged
over at least 10 complete oscillation periods of E(¢), i.e.,
we plot (E)(Jge)- As expected, the critical current density J.
decreases with € for fixed L and D. Note that in our simula-
tions, no additional pinning due to bulk disorder or edges is
considered—see Sec. VL.

Increasing the diameter D from 5 to 7.5 does not change the
critical current density significantly. However, the dependence
of the critical current density on the defect diameter and
area fraction, v = 7 D> / (4L?%), which defects occupy in the

E [1073

2.0

15k (©
(B)
1.0k

(A)
0.5}

0.0 I I I I I I I I I
0.0 0.2 04 06 08 1.0 1.2 14 16 1.8

t[107]

FIG. 3. Three periods of the time-dependent electric field E(z)
for L =10, € =0.75, and D =5 with applied current Jg. = 0.1.
Snapshots of the order parameter and vortex configurations at three
distinct times (a)—(c) of a period are shown in Fig. 2.

simulated region, is typically monotonic and has a maximum
for a fixed v and D. A detailed analysis can be found in
Refs. [8,9]. The size of a pinning site defines its curvature
(since we are studying circular defects), which has an optimal
value for largest pinning force. For L = 10 and D =5, the
area fraction is close to 20%, which is close to the optimal area
fraction for largest possible critical current density. Note that
in our case the values of € are positive and therefore still allow
for weak superconductivity inside the defects. This influences
the impact of v for e-values close to 1, which becomes less rel-
evant, while for small or even negative e-values it is important.
In the case of ¢ = 0.1, the D =5 and D = 7.5 curves show
similar critical current, because for D = 5 we are close to the
optimal v of 20%, while for D = 7.5, the curvature is close
to optimal, which results (coincidentally) is the same critical
current (J.). However, for D = 7.5, v > 40%, such that the
voltage increases much more quickly above J.. For larger €,
v becomes less important which is seen for intermediate €
values, where J.(D = 7.5) is larger than J.(D = 5.0) despite
the larger-than-optimal v. For € close to 1, also the curvature

(Ey[1077]
6.0 —€=01,D=5 y
e €205D=5
50 _, ¢-0750D=5

a0l —€=09D=5 ',." .
~v. €20.1,D=75 N

3.0F - €=05D=75
- €=0.75,D=7.5 7

20F e-09,0=75 &

1.0

00

0.00 0.0

| | | | Idc

0.10 0.15 0.20 0.25 0.30

FIG. 4. J-E characteristics for five different sets of system pa-
rameters with L = 10 given in the legends. The electric field is
averaged over 210 periods of the vortex motion in the steady state
for each current density and parameter set.
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f
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FIG. 5. (Top) Time-dependent electric field curves for the
L=10, D=5, and € =0.75 system with J4 = 0.051,0.06,
0.12, 0.15. (Bottom) The Fourier transforms of the E(¢) curves re-
veal the hopping frequencies f, = 0.00217, 0.00547, 0.01577, and
0.02080 for each of the applied currents respectively. The Fourier
analysis also shows higher harmonics.

becomes less relevant and J; is mostly determined by the
difference 1 — €.

Because the pinning sites are periodic, the resulting motion
and associated electric field E(t) will then show a regu-
lar oscillatory behavior with some current density-dependent
hopping (or nucleation) frequency fy(Jq.). Figure 3 shows
the accompanying time-dependence of the electric field E(¢)
across the system, where three distinct dynamical states are
marked as (a)—(c), visualized in Fig. 2.

Figure 5(top) shows the behavior of E(¢#) over a more
extended time interval for different applied DC current den-
sities, while Fig. 5(bottom) shows the corresponding Fourier
transforms. Note that higher harmonics, f,, = nfjy, are clearly
visible. This is to be expected since the motion is highly
inhomogeneous in both space and time.

It is clear that when Jy. increases, fy also increases, since
higher current density can depin and translate the vortices
faster, which increases the hopping frequency.

If we plot the hopping frequency as a function of applied
DC current for various pinning site parameters, shown in
Fig. 6, we notice almost the same functional dependence
as the J-E characteristics (Fig. 4): In the critical region for
Jyc near J. we find a nonlinear dependence, fy o Jy., where
v < 1, after which it becomes approximately linear for higher
applied current densities, as shown Fig. 6. However, as in

fo[107%]
70F—-—€=01,D=5 ; .
oL €=05 D=5
[ €=075D=5 . i
50F . €=09,D=5 Sl
v €20.1,D=75
4.0 ’ L
OF . ec0s0-75 “
30F .-
2077
1.0
0.0 - : — Jac
0.00 0.05 0.10 0.15 0.20 0.25 0.30

FIG. 6. Hopping frequencies as a function of applied DC current
density, fo(Jac), for various system parameters with L = 10. The
underlying oscillations of the electric field are caused by repeated
periodic pinning and depinning events. The response frequencies are
obtained by using the dominant peak of the Fourier transform of the
electric field (calculated for 265 periods of the vortex motion in the
steady state), see Fig. 5.

the J-E characteristics, fy(Jq.)(becomesnlinearat very large
current densities due to fluctuations of the order parameter
amplitude.

Indeed, if we combine those two results and plot the av-
erage voltage, (V) = V2L(E), as function of the hopping
frequency fy all graphs (almost) perfectly collapse on a uni-
versal line with slope 47, see Fig. 7, i.e., (V) = 2 - 2x fy. This
behavior is expected on the basis of Faraday’s law in which
two fluxons pin and depin at the same time within the unit cell
in each period of fo_l :

V = nc’lqﬁof. (5)

In our dimensionless units, ¢ ™' ¢y = 27; n is the number of
vortices in the simulated system, which is 2 for the unit cell.
Alternatively, we identify the frequency occurring in Eq. (5)
as the Josephson frequency f; = %V. This result is consis-
tent with the analysis of Martinoli et al. [17] and Van Look
et al. [18] of periodic line and hole arrays. Similar oscillatory

(V) [1077]
90 | /,»"'
80F ——€=01,D=5 ’__,/’
70+ — €=05D=5

60l — €=075D=5
.~ €=09,D=5

50 .v.. €=01,D=75
40 - .. €=05D=75
30 .- €=0.75,D=7.5
20 - €=09,D=75
10 - ceaee (V) = 24277 £
0 . L L L L ' L— £, [107]

0.0 1.0 20 30 40 50 6.0 7.0

FIG. 7. The averaged voltage, (V) = +/2L(E), for eight different
sets of system parameters with L = 10 given in the legends, the slope
of the line is 2 - 27r. The electric field is averaged over 210 periods
of the vortex motion in the steady state for each current density and
parameter set.
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A
T

fot

FIG. 8. Frequency locking for f. = fo for the system of
Jie =0.12, L =10, D = 5, and € = 0.75; the applied amplitude is
Jac =0.02. The plot shows a single-mode oscillation.

behavior has been seen in simulations of Josephson junction
arrays [19,20].

IV. LOCKING TO AN EXTERNAL AC SOURCE

Next, we examine the effect of an additional AC compo-
nent to the applied current density, J,. Sin(27 fexct), on the
system. We find that f. and fy will synchronize for some
range of applied frequencies in the vicinity of f; for a given
Jac, where, depending on conditions, frequency locking ap-
pears, as shown in Fig. 8. By comparing Fig. 8 with Fig. 5, we
see that oscillations have become more sinusoidal due to the
influence of the applied frequency, fex:-

Figure 9 shows the result of applying a frequency outside,
but close to, the range of frequencies where locking occurs.
Note the oscillations acquire a low-frequency modulation seen
as an envelope to the hopping frequency. These reflect the
number of cycles over which the system locks, unlocks, and
then relocks.

Figure 10 shows the locking regions for three different J,.
values.

0.0k . . . .
0 20 40 60 80
fot

100

FIG. 9. Time-dependent electric field behavior of a L = 10, D =
5, and € = 0.75 system with applied Jg. = 0.12, J,. = 0.02, and
for = 1.046f,. the envelope function is fi,, = 5.632 x 1074, i.e.,
about 28 times lower than fj.

fext [107]
1.501.521.541.561.581.60 1.62 1.64 1.66
1.48r 4, =0.03 Les
l46r . j,.=0.02 '
— 144t ., 4,.=0.01
o 1.42F ... J,c=0.00 1160
= o s SOUUUU =
o 1.40F =
1.38f 11.55
1.36f
1.34p . . 150
1.50 1.55 1.60 1.65
fext [107]

FIG. 10. Frequency locking region of the benchmark system
with L = 10, D = 5, and € = 0.75 for different J,. and fixed J4. =
0.12. Here, the electric field is averaged over ~10* periods of the
vortex motion in the steady state.

Note that the locking region increases with increasing J,c.
This behavior is due to the fact that f, strictly speaking, de-
pends on Jex, which means that by adding the AC component,
Jo(Jext) oscillates as well over an interval determined by J,c.
The locking behavior can qualitatively be understood by com-
parison to the overdamped motion of a particle in a periodic
potential under the influence of a DC plus AC driving force.
This basically corresponds to the Langevin dynamics of a
particle in a washboard potential, which is commonly used to
describe the dynamics of a pancake vortex in 2D in a periodic
pinning landscape. Since the dynamics in the locking regime
is synchronized, the systems behavior can be compared to
that of a single particle. Here the DC part of the current can
be interpreted as the tilt of the periodic (pinning) potential
resulting in the washboard potential. This simple equation of
motion with external AC force results in a similar behavior
of the particle velocity as the electric field dependence in the
TDGL simulations, where the width of the locking region is
indeed proportional to the AC amplitude.

Using Josephson’s relation, (E) is converted to f , which
we denote as the response hopping frequency appearing in the
Fourier spectrum as the second highest peak, after the external
frequency fex. Both merge when the vortex dynamics in the
system and the driving frequency are locked.

We can locate the locking region using three methods.
First, we can observe the splitting of the fundamental peak in
the Fourier spectrum, since when the system is synchronized
with the applied AC current density, as shown in Fig. 8, the
Fourier spectrum will show only a single peak at the applied
frequency together with its harmonics. When the system is not
locked the applied frequency will split off.

Secondly, one can measure the average DC electric field
across the sample, which in turn is related to the response
hopping frequency. This is done in Fig. 10. In general, this
method is experimentally easier to measure than the time
resolved field.

Finally, we can examine whether locking is present by
analyzing the low-frequency modulation of the time-resolved
electric field: If the system is locked, the envelope will have
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constant amplitude (cf. Fig. 8); if not, we can determine the
period of the envelope (see Fig. 9) and calculate the difference
frequency.

Experimentally this frequency might be determined by
rectifying the AC frequency and directly measuring the fre-
quency of the modulation envelope.

We note that the locking phenomena simulated here are
analogues to Shapiro steps observed in Josephson junctions
when an external oscillator is applied with a frequency that
has an integer relation to the Josephson frequency as verified
by the experiments of Martinoli et al. [17] and Van Look
et al. [18]; the configuration used by the latter group has been
modeled by Reichhardt et al. [21].

V. GLOBAL STABILITY IN LARGER SYSTEMS

Quite generally the voltage drop across a current driven
strip containing an array of vortices moving in some pin-
ning landscape will consist of a superposition of contributions
produced by their individually pinning and depinning from
successive sites. In a spatially periodic lattice of pinning sites
of the kind considered here there is the potential for a col-
lective motion wherein all vortices hop synchronously from
site to site. However, this is not necessarily the case and
various instabilities can develop in which such a synchronous
motion is lacking or breaks down; i.e., the hopping occurs at
different times in different unit cells (see supplemental movie
2 [16]). In the simulations discussed in Sec. II B, the periodic
boundary conditions utilized in our code were imposed on the
unit cell of our pinning landscape, thereby forcing vortices
in all unit cells in the periodically continued system to hop
at the same time. To test for stability more generally, we
enlarged the size of the simulated system to form a super
cell that includes successively larger numbers of unit cells:
2x2,3x3,4x%x4,... The number of unit cells which fit
horizontally, i.e., in the direction of the applied current, into
the super cell is denoted as Ny.. The simulated super cells then
consist of Ny, X Ny unit cells. Again the unit cell used so far,
is shown in Fig. 1.

As before, the applied magnetic field is the matching field
corresponding to 2N2 vortices. After relaxing the system from
a random initial configuration in the super cell, we obtain a
static state with one vortex pinned to each defect to which
we then start to apply an external current. On increasing the
applied current, one again reaches a critical value where,
at least initially, the vortices de-pin and move as parallel
columns perpendicular to the current. Note that the vortices
within each column always move synchronously for our weak
pinning sites and currents below the amplitude fluctuation
regime. Here we refer to synchronous motion in a super cell
as the simultaneous motion of adjacent vortex columns, which
means all vortices in the super cell move at the same time,
alternately pinning and depinning in unison. This synchronous
motion typically breaks down when the current is increased
to some threshold current, Ji, when some adjacent vortex
columns loose their synchronization. Here, we calculate the
value of Jy, by starting with Jy. in the asynchronous regime
and decreasing it to the point where synchronized hopping
is recovered. Its dependence on the super cell size Ny is
shown in Fig. 11. As seen in the plot, it decreases as the

/th‘jc
0.15
0.10
0'05 B - E= 0.75
- E= 09
0.00 | | | | | | | | NSC

2 4 6 8 10 12 14 16

FIG. 11. The current difference, Jy, — J., for the onset of asyn-
chronous hopping with increasing super cell size, Ny for two systems
of L = 10 and D = 5 using different defect strength. The value of the
critical currents J. = 0.05 for the blue line, and J. = 0.022.

size of system increases for smaller super cells. However, it is
saturating in the asymptotic limit, implying an infinite system
would be stable. Stability can be tested by either increasing
or decreasing Jy. (in time) relative to Jy, and examining the
structure of the evolution of the array in time. Note that the
Jin values plotted here also depend on the holding time at a
fixed current during which the vortex matter reorganizes and
eventually synchronizes and therefore represent a lower limit
for its true adiabatic value (see supplemental movie 3 [16]).
Therefore the apparent monotonic behavior seen in Fig. 11
is a result of the procedure we use to obtain this lower limit
for Ji. In particular the nature of the asynchronous steady
state we start from when lowering the current (in combi-
nation with the current step size) will result in variations
of the time needed to establish synchronous motion once
we reach currents Jq. < Jip. Furthermore, the synchronization
time could exponentially depend on the super cell size as the
rearrangement of vortices due to inter-vortex interactions fol-
lows glassylike dynamics. These timescales are not feasible to
reach in a simulation (realistically we can simulate times up to
10’s of microseconds). In any case we want to emphasize that
once we observe synchronization at a particular current Jyc,
the true threshold current is strictly bounded from below by
that value. However, we expect that the threshold currents for
adiabatically increasing and decreasing applied DC currents
will coincide and thus not show any hysteresis.

When Jy. exceeds Jy, asynchronous hopping emerges.
However, by applying an AC current with frequency com-
parable to the natural frequency for the applied DC current,
synchronized hopping is recovered (see supplemental movie
4 [16]). This behavior can potentially be used as a low-
temperature signal amplifier: by applying a small AC current
to sample, it will generate a larger signal proportional to the
applied Jy.

The synchronization of the vortex motion is a result of
the competing forces acting on the vortices. Most important
are (i) the attractive one-body vortex-pinning site interaction,
(i1) the (repulsive) two-body vortex-vortex interaction, and
(iii) the Lorentz force resulting from the applied current. At
high temperatures, thermal fluctuations can also affect the
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TABLE 1. Parameters for niobium (Nb) [26-28], molybdenum germanium (MoGe) [29,30], and YBa,Cu;O;_, (YBCO) at x = 0.7

(optimal) for ¢ and ab planes [31,32].

quantity Nb MoGe YBCO., YBCO,

& 38nm Snm 0.4nm 2nm

Lo 39nm 500nm 800nm 150nm

o 6.6 x 10° S/m 5.8 x 10° S/m ~10° S/m ~10° S/m

to 1.26 x 10~ s 1.83 x 1073 s 8.03 x 107185 2.82x 1075
Jo 4.53 x 10'2 A/m? 2.10 x 10" A/m? 1.02 x 10 A/m? 5.82 x 102 A/m?

synchronization of vortices. In a homogeneous system with-
out applied current, the inter-vortex force leads to the
formation of the (hexagonal) Abrikosov vortex lattice. Since
we are considering a dynamic situation here, the interplay of
all these forces leads to the complex dynamic behavior we
observe as compared to a static pinned lattice.

In particular, for large applied currents, the effect of pin-
ning is “averaged out” and the system is governed mostly
by the inter-vortex force. If this happens, the natural ten-
dency for the vortex array is to adopt the Abrikosov lattice
structure, as this is energetically the favored symmetry for
a homogeneous film, thereby resulting in a dynamic phase
transition between a square (imposed by the pinning sites) and
a hexagonal vortex lattice above some average drift velocity
(and associated current density). At that point, the oscillatory
response with a single frequency is lost, as the vortex lattice
is not commensurate with the pinning lattice anymore. In the
pinning lattice nearest neighbor columns have a distance of
L/ ﬁ, while a Abrikosov lattice with the same density has a

vortex column distance of L/+/ 2\/5. Opverall, this leads to a
response frequency which is a multiple of the unit cell hop-
ping frequency. At even higher currents beyond the dynamic
phase transition, vortices start to move horizontally as well to
switch between the natural distance and the imposed pinning
site distance, which ultimately leads to completely incoherent
vortex dynamics.

Our system has some similarity to the motion of a system
of coupled oscillators such as in the Kuramoto model [22,23],
but differs in that the one body pinning force is of finite range
and hence bounded.

VI. MATERIAL PARAMETERS

To estimate the typical range of frequencies in actual ma-
terials, one needs to calculate the time scales involved using
typical material parameters. For some superconductors of in-
terest such as YBCO, niobium, and molybdenum germanium
alloys (see Table I), we find that that fo ~ 10~'%s and Jy ~
10'2 A/m?. Using the parameters of MoGe, one finds that for
an applied current density Jg. = 0.12, the frequencies gener-
ated are of order, f ~ 86 GHz, with corresponding velocities
(v) ~ 6 km/s. Note that in practice we expect the velocities
to be limited by the velocity of sound, which is exceeded
at such velocities. Such current densities are rather high and
possibly difficult to obtain experimentally. 86 GHz is a large
frequency that has not been achieved in previous studies.
Some reported frequencies are f =40 MHz [18], f ~ 500
KHz-100 MHz [17], f = 100 MHz-1.5 GHz [24]. A recent
study by Dobrovolskiy et al. [25] achieved vortices with a

velocity of 10km/s, suggesting it may be possible to achieve
higher frequencies. Note that near the critical current density
(Jac = 0.051), f ~ 12 GHz, and (v) ~ 0.8 Km/s, which may
be more easily achieved.

In realistic samples, we should also consider the effect
of (bulk) disorder and edges on the dynamic behavior. To
this end, we added a polycrystalline pattern with spatially
randomized critical temperatures being close to the bulk 7
such that the artificial pinning sites are still much stronger than
the disorder. The observed behavior is preserved with slightly
reduced threshold current. To estimate the influence of edges,
we replaced the periodic boundary condition in y direction
(perpendicular to the vortex motion) by no-current conditions
(see Ref. [12]) for larger supercells. The resulting edges cause
random vortex nucleation at the entrance edge, which disrupts
the synchronized motion near the critical current. This effect
becomes smaller as we increase the applied current as long
as it remains below the threshold current. However, if we
remove the option for random vortex nucleation by introduc-
ing a row of notches matching the pinning site columns, the
synchronization persists. Finally, we note that the estimated
vortex velocities will heat the sample. However, we assume
that any heat generated by the vortex motion can be effectively
removed from the system. Experimentally, one can consider
that the system is either immersed in a cryogenic liquid or
that the substrate of the superconducting film is thermally
anchored.

VII. CONCLUSION

Using the time dependent Ginzburg-Landau formalism, we
have shown that above some critical current, J., a commen-
surate vortex lattice moving in a periodic pinning landscape
of circular holes can generate an oscillating electric field at
a certain inter pinning-site vortex hopping frequency. The
hopping frequency, fj, itself depends, not only on the system
characteristics (lattice constant, hole size, and hole pinning
strength), but also on the applied current. Adding an AC
component to the applied DC current allows us to lock the
hopping frequency to a range of applied frequencies which is
near fy. The range of the locking frequency interval depends
also on the amplitude of the AC current.

In our initial simulations, we considered a square unit cell
having a single vortex with a current applied perpendicular to
an edge. However, in going over to larger systems comprised
of multiple unit cells, called supercells, the synchronization of
the vortex motion between neighboring unit cells was quickly
lost. We then examined a 45° rotated square lattice with two
vortices in an enlarged unit cell, with the current still per-
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pendicular to an edge. When considering a supercell in this
system the synchronization of the vortex motion was found
to be stable below some threshold current density Jy, that
depends on the supercell size; furthermore, Jy, approaches a
limiting value with the increasing supercell size, implying an
extended system can be stable below this value.

Since the applied current density can be varied, the systems
studied here constitute miniature, current-tunable, oscillators
that operate at cryogenic temperatures. They can be patterned
directly into a strip-line wave guides with their output trans-
mitted to other remote devices. The loss of synchronization
observed at higher currents in larger systems can likely be
minimized by patterning strips of finite width containing a
limited number of columns.

The frequency can be modulated simply by varying the DC
current density, Jq., in time. Given that the vortex drift velocity
responds quickly to a change in the applied current (since
no narrow-band circuit elements are involved) these devices
should switch on and off, or between differing frequencies,
in times comparable to an oscillation period. The range of
frequencies generated depends on the system parameters (hole
geometry and separation) together with the superconducting
materials of which it is made.

As seen from Fig. 5, the harmonic content of the signals
produced can be quite high. For applications where this is
undesirable it can be suppressed by engineering a smoother
potential landscape; alternatively, one might want to exploit
this feature.

Finally, there appears to be considerable potential that
phenomena of the kind considered can lead to new devices
based on the dynamics of vortex arrays moving in engineered
artificial defect landscapes.
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