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We simulate the motion of a commensurate vortex lattice in a periodic lattice of artificial circular pinning8

sites having different diameters, pinning strengths, and spacings using the time-dependent Ginzburg-Landau9

formalism. Above some critical DC current density Jc, the vortices depin, and the resulting steady-state motion10

then induces an oscillatory electric field E (t ) with a defect “hopping” frequency f0, which depends on the applied11

current density and the pinning landscape characteristics. The frequency generated can be locked to an applied12

AC current density over some range of frequencies, which depends on the amplitude of the DC as well as the AC13

current densities. Both synchronous and asynchronous collective hopping behaviors are studied as a function14

of the supercell size of the simulated system and the (asymptotic) synchronization threshold current densities15

determined.16
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I. INTRODUCTION18

Above some magnetic field Hc1, the field penetrates type-II19

superconductors as quantized vortices carrying a flux quan-20

tum, producing the so-called mixed state. An external current21

density, J, subjects each vortex to a Lorentz force in the direc-22

tion perpendicular to the current density and field, FL = J ×23

H. In the absence of some restraining (pinning) force, vortices24

move and dissipation associated with the finite conductivity25

of their moving normal cores results in a finite potential drop26

across the superconductor. However, structural and other ir-27

regularities result in finite pinning forces which in turn result28

in some critical depinning current density Jc for the onset of29

dissipation, above which a finite potential drop appears. (This30

current density is generally much smaller than the depairing31

current density required to break Cooper pairs). For two or32

more decades there has been much interest in incorporating33

artificial defects to increase pinning and with it Jc, particularly34

in films where there is more access to the sample interior to35

introduce the defects; examples include: patterned arrays of36

holes (anti dots) [1,2] or normal [3] or ferromagnetic metallic37

dots [4,5] as well alterations induced by particle beams as38

in heavy ion irradiation. When the applied current density,39

|J|, exceeds the critical current density, vortices break loose40

from their pinning sites and move. In a spatially periodic41

system the resulting motion can generate temporally periodic42

pinning and depinning cycles with some current density-43

dependent frequency, here called the hopping frequency, see44

Sec. III. By introducing an additional AC current density45

into the system with a frequency approximating the unper-46

turbed hopping frequency, the two can be locked within some47

finite, amplitude-dependent, bandwidth, Sec. IV. In what fol-48

lows we will model this behavior by numerically solving the49

time-dependent Ginzburg-Landau equations (TDGL), which50

will be briefly reviewed in Sec. II A. Section II B explains 51

the system that is simulated. While much of the research 52

involving artificial pinning sites focuses on maximizing Jc 53

[6–11], the results obtained here suggest that certain dynamic 54

effects, and possible applications thereof, merit increased 55

attention. 56

II. MODEL 57

The formulation of the TDGL equations utilized here 58

follows that of Sadovskyy et al. [12] which allows the speci- 59

fication of defect positions, sizes and other characteristics, as 60

explained in Sec. II A. The particular systems simulated here 61

are described in Sec. II B. 62

A. Theory 63

The TDGL equations can be written in the following di- 64

mensionless form: 65

u(∂t + ıμ)ψ = ε(r)ψ − |ψ |2ψ + (∇ − ıA)2ψ, (1)

κ2∇ × (∇ × A) = Js + Jn, (2)

Here ψ and A are the order parameter and the vector potential 66

respectively, μ is the scalar potential, Jn and Js are the normal 67

and super current densities, and κ = λ0/ξ0 is the Ginzburg- 68

Landau parameter. Here we consider thin films and therefore 69

use the κ → ∞ limit and the Landau gauge for A. The unit 70

of length is given by the zero-temperature coherence length, 71

ξ0, and the unit of time, t0 = σme/(2e2ψ2
0 ), is determined by 72

the typical relaxation time of the TDGL equation, τψ = 
/ν0, 73

and the relaxation time of the vector potential, τA ∝ σ/ψ2
0 ; 74

here ν0 is the density of states at the Fermi level, σ the normal 75

conductivity, 
 = ν0π h̄
8kBTc

a relaxation parameter, Tc the critical 76
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temperature, e and me the electron charge and mass, and ψ077

the equilibrium value of the order parameter, where the latter78

is determined by the ratio of linear and nonlinear coefficients79

of the dimensionless TDGL equation, or alternatively the80

London penetration length λ2
0 = mec2/(8πe2ψ2

0 ). These also81

define the dimensionless relaxation parameter u = 
/(ν0t0),82

which we set to 1 in our simulations.83

Here we model pinning by so-called δTc pinning [13],84

where the critical temperature is spatially modulated. In85

Eq. (1), this is realized through the coefficient of the linear86

GL term, ε(r) = Tc(r)/T − 1. In the superconductor we use a87

value of ε = 1 and within the pinning site ε < 1, i.e., the local88

critical temperature of the pinning site is less than the bulk Tc.89

For values 0 < ε < 1 one has weakly superconducting defects90

whereas regions with ε < 0 model normal defects.91

The magnetic field and, correspondingly, the vector poten-92

tial are measured in units of the upper critical field Hc2(0) =93

φ0/(2πξ 2
0 ) (φ0 = π h̄c/e is the flux quantum). The total cur-94

rent density can be written as95

J = Js + Jn = Im [ψ∗(∇ − ıA)ψ] − (∇μ + ∂tA), (3)

where the unit of the current density is given by J0 =96

eh̄/(meξ0)ψ2
0 . In these units, the depairing current density has97

the value Jdp = 2/
√
27 ≈ 0.385. At applied current densities98

near the depairing current density above the free-flux flow99

regime, amplitude fluctuations of the superconducting order100

parameter become large such that above some current density101

J ∼= 0.3 the local amplitude could become zero which can102

lead to the creation of fluctuating vortex/antivortex pairs in103

the system.104

Here we apply an external current density in x direction of105

form106

Jext,x(t ) = Jdc + Jac sin(2π fextt ). (4)

Important to note is that the TDGL formalism is valid107

as long as equilibrium excitations are small and the system108

remains in a steady state. Therefore we only consider frequen-109

cies fext 
 τ−1
ψ . Furthermore, we ensure that the peak applied110

current density Jdc + Jac stays well below the depairing cur-111

rent density such that order parameter fluctuations can be112

neglected. For a more detailed discussion of nonequilibrium113

effects we refer to the book by Kopnin [14]. We will discuss114

typical material parameters for current and frequency as well115

as vortex velocities in the discussion section.116

For the numerical solution of equations (1), the system is117

discretized on a regular two-dimensional mesh in space (with118

a typical grid spacing of 0.3ξ0) and the time integration is119

performed by using an implicit Crank-Nicolson scheme (typ-120

ical time discretization 0.1t0). These discretized equations are121

then simulated on GPUs using an iterative Jacobi solver. We122

use periodic boundary conditions in both directions and the123

external current is applied in x direction which is realized by124

ensuring that it matches the average total current following125

Ref. [12].126

B. Simulation127

In most parts of this work, we are interested in the vortex128

dynamics of a superconducting film having a regular square129

FIG. 1. (a) a simple square lattice drawn as centered square lat-
tice with two pinning sites per square. (b) Moving the site centers
along the square diagonal removes those at the corners.

lattice of (weakly superconducting) circular pinning centers, 130

where the applied current direction is rotated 45◦ with respect 131

to the principle axis of the square array. The reason for study- 132

ing this rotated configuration is that enlarged systems show 133

enhanced stability of the moving vortex lattice compared to a 134

square pinning array. 135

The magnetic field is applied perpendicular (taken as the 136

z direction) to the film with a strength corresponding to the 137

first matching field (see also Ref. [15]), i.e., one vortex per 138

pinning site. Therefore we restrict our simulations mostly to 139

a single unit cell of the pinning array with periodic bound- 140

ary conditions, which implies that the steady-state dynamics 141

of all vortices in the extended system is synchronized. We 142

will also discuss the collective stability in an enlarged unit 143

cell, which we refer to as supercell, in Sec. V). This will 144

remove the (artificial) synchronization enforced by periodic 145

boundary conditions involving a single unit cell. Since we are 146

interested in low-temperature applications of synchronized 147

vortex dynamics, we neglect thermal fluctuations in the TDGL 148

equations. We start our simulations for a simple unit cell of 149

linear size
√
2L having two offset circular pinning sites with 150

diameter D with an in-plane DC current, Jdc, applied in x 151

direction [see Fig. 1(b)]. Here L is the pinning array lattice 152

constant or, in other words, the distance between two nearest 153

neighbor pinning sites. Note that the two unit cells outlined in 154

Figs. 1(a) and 1(b) are equivalent, but we choose (b) for better 155

visualization purposes. Figure 2 shows the squared amplitude 156

of the complex order parameter, |ψ |2, as 3D surface plot and 157

flat projection at the bottom at three different stages of a single 158

oscillation of the electric field. A corresponding time-trace 159

of the electric field with markers of panels (a)–(c) is shown 160

in Fig. 3 and an animation is shown in supplemental movie 161

1 [16]. Panel (a) corresponds to the lowest dissipation state, 162

where the vortex is inside the defect, panel (b) just between 163

the pinning sites in a “free-flow” state with intermediate dis- 164

sipation, and panel (c) just before getting trapped by a defect 165

again. In the latter case, the vortices are pulled into the defect 166

by the pinning force, which accelerates the vortices and there- 167

fore increases the dissipation to its maximum. Furthermore, 168

this panel also illustrates the unit cell geometry in more detail 169

(length
√
2L with circular defect of diameter D and strength 170

ε). Our benchmark system is defined by L = 10, D = 5, and 171

ε = 0.75, i.e., the pinning site is a weakly superconducting 172

defect. 173
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(a) (c)

(b)

FIG. 2. Surface plots of |ψ |2 in the simulated system of size√
2L × √

2L with two circular defects of diameter D (indicated by
the circles) separated by L representing a unit cell of a large pinning
array for different vortex positions in the system corresponding to
different phases of a cycle (see also Fig. 3): (a) vortex is moving
inside the defect, (b) vortex is the farthest from defects, and (c) vortex
is about to enter the defect. The projection at the bottom of (b) indi-
cates regions with different Tc/ε values in dark gray (ε = 1) and light
gray (ε = 0.75). At the center position of the vortex, the direction of
applied current, magnetic field, and resulting Lorentz force (FL) are
indicated.

III. RESPONSE TO A CONSTANT (DC)174

CURRENT DENSITY175

We begin our study of the unit cell dynamics by deter-176

mining the current density-electric field (J-E ) behavior for177

systems with differing unit cell sizes, 2L2, and defects. As it is178

well known, vortices depin and start moving if the applied DC179

current density exceeds the critical value Jc in the direction180

perpendicular to the applied current and field (here the y181

direction). Since we are studying the regime Jdc > Jc, vortices182

show alternating pinning and depinning motion between sec-183

ond nearest neighbor sites which are separated by the unit cell184

size
√
2L.185

Figure 4 shows some J-E characteristics for various val-186

ues of L, D, and ε. Note that the electric field is averaged187

over at least 10 complete oscillation periods of E (t ), i.e.,188

we plot 〈E〉(Jdc). As expected, the critical current density Jc189

decreases with ε for fixed L and D. Note that in our simula-190

tions, no additional pinning due to bulk disorder or edges is191

considered—see Sec. VI.192

Increasing the diameterD from 5 to 7.5 does not change the193

critical current density significantly. However, the dependence194

of the critical current density on the defect diameter and195

area fraction, ν = πD2/(4L2), which defects occupy in the196

FIG. 3. Three periods of the time-dependent electric field E (t )
for L = 10, ε = 0.75, and D = 5 with applied current Jdc = 0.1.
Snapshots of the order parameter and vortex configurations at three
distinct times (a)–(c) of a period are shown in Fig. 2.

simulated region, is typically monotonic and has a maximum 197

for a fixed ν and D. A detailed analysis can be found in 198

Refs. [8,9]. The size of a pinning site defines its curvature 199

(since we are studying circular defects), which has an optimal 200

value for largest pinning force. For L = 10 and D = 5, the 201

area fraction is close to 20%, which is close to the optimal area 202

fraction for largest possible critical current density. Note that 203

in our case the values of ε are positive and therefore still allow 204

for weak superconductivity inside the defects. This influences 205

the impact of ν for ε-values close to 1, which becomes less rel- 206

evant, while for small or even negative ε-values it is important. 207

In the case of ε = 0.1, the D = 5 and D = 7.5 curves show 208

similar critical current, because for D = 5 we are close to the 209

optimal ν of 20%, while for D = 7.5, the curvature is close 210

to optimal, which results (coincidentally) is the same critical 211

current (Jc). However, for D = 7.5, ν > 40%, such that the 212

voltage increases much more quickly above Jc. For larger ε, 213

ν becomes less important which is seen for intermediate ε 214

values, where Jc(D = 7.5) is larger than Jc(D = 5.0) despite 215

the larger-than-optimal ν. For ε close to 1, also the curvature 216

FIG. 4. J-E characteristics for five different sets of system pa-
rameters with L = 10 given in the legends. The electric field is
averaged over �10 periods of the vortex motion in the steady state
for each current density and parameter set.
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FIG. 5. (Top) Time-dependent electric field curves for the
L= 10, D = 5, and ε = 0.75 system with Jdc = 0.051, 0.06,
0.12, 0.15. (Bottom) The Fourier transforms of the E (t ) curves re-
veal the hopping frequencies f0 = 0.00217, 0.00547, 0.01577, and
0.02080 for each of the applied currents respectively. The Fourier
analysis also shows higher harmonics.

becomes less relevant and Jc is mostly determined by the217

difference 1 − ε.218

Because the pinning sites are periodic, the resulting motion219

and associated electric field E (t ) will then show a regu-220

lar oscillatory behavior with some current density-dependent221

hopping (or nucleation) frequency f0(Jdc). Figure 3 shows222

the accompanying time-dependence of the electric field E (t )223

across the system, where three distinct dynamical states are224

marked as (a)–(c), visualized in Fig. 2.225

Figure 5(top) shows the behavior of E (t ) over a more226

extended time interval for different applied DC current den-227

sities, while Fig. 5(bottom) shows the corresponding Fourier228

transforms. Note that higher harmonics, fn ≡ n f0, are clearly229

visible. This is to be expected since the motion is highly230

inhomogeneous in both space and time.231

It is clear that when Jdc increases, f0 also increases, since232

higher current density can depin and translate the vortices233

faster, which increases the hopping frequency.234

If we plot the hopping frequency as a function of applied235

DC current for various pinning site parameters, shown in236

Fig. 6, we notice almost the same functional dependence237

as the J-E characteristics (Fig. 4): In the critical region for238

Jdc near Jc we find a nonlinear dependence, f0 ∝ Jν
dc, where239

ν < 1, after which it becomes approximately linear for higher240

applied current densities, as shown Fig. 6. However, as in241

FIG. 6. Hopping frequencies as a function of applied DC current
density, f0(Jdc), for various system parameters with L = 10. The
underlying oscillations of the electric field are caused by repeated
periodic pinning and depinning events. The response frequencies are
obtained by using the dominant peak of the Fourier transform of the
electric field (calculated for �65 periods of the vortex motion in the
steady state), see Fig. 5.

the J-E characteristics, f0(Jdc) becomes linear at very large 242

current densities due to fluctuations of the order parameter 243

amplitude. 244

Indeed, if we combine those two results and plot the av- 245

erage voltage, 〈V 〉 = √
2L〈E〉, as function of the hopping 246

frequency f0 all graphs (almost) perfectly collapse on a uni- 247

versal line with slope 4π , see Fig. 7, i.e., 〈V 〉 = 2 · 2π f0. This 248

behavior is expected on the basis of Faraday’s law in which 249

two fluxons pin and depin at the same time within the unit cell 250

in each period of f −1
0 : 251

V = nc−1φ0 f . (5)

In our dimensionless units, c−1φ0 = 2π ; n is the number of 252

vortices in the simulated system, which is 2 for the unit cell. 253

Alternatively, we identify the frequency occurring in Eq. (5) 254

as the Josephson frequency fJ = 2e
h V . This result is consis- 255

tent with the analysis of Martinoli et al. [17] and Van Look 256

et al. [18] of periodic line and hole arrays. Similar oscillatory 257

FIG. 7. The averaged voltage, 〈V 〉 = √
2L〈E〉, for eight different

sets of system parameters with L = 10 given in the legends, the slope
of the line is 2 · 2π . The electric field is averaged over �10 periods
of the vortex motion in the steady state for each current density and
parameter set.
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FIG. 8. Frequency locking for fext = f0 for the system of
Jdc = 0.12, L = 10, D = 5, and ε = 0.75; the applied amplitude is
Jac = 0.02. The plot shows a single-mode oscillation.

behavior has been seen in simulations of Josephson junction258

arrays [19,20].259

IV. LOCKING TO AN EXTERNAL AC SOURCE260

Next, we examine the effect of an additional AC compo-261

nent to the applied current density, Jac sin(2π fextt ), on the262

system. We find that fext and f0 will synchronize for some263

range of applied frequencies in the vicinity of f0 for a given264

Jac, where, depending on conditions, frequency locking ap-265

pears, as shown in Fig. 8. By comparing Fig. 8 with Fig. 5, we266

see that oscillations have become more sinusoidal due to the267

influence of the applied frequency, fext.268

Figure 9 shows the result of applying a frequency outside,269

but close to, the range of frequencies where locking occurs.270

Note the oscillations acquire a low-frequency modulation seen271

as an envelope to the hopping frequency. These reflect the272

number of cycles over which the system locks, unlocks, and273

then relocks.274

Figure 10 shows the locking regions for three different Jac275

values.276

FIG. 9. Time-dependent electric field behavior of a L = 10, D =
5, and ε = 0.75 system with applied Jdc = 0.12, Jac = 0.02, and
fext = 1.046 f0. the envelope function is fenv = 5.632 × 10−4, i.e.,
about 28 times lower than f0.

FIG. 10. Frequency locking region of the benchmark system
with L = 10, D = 5, and ε = 0.75 for different Jac and fixed Jdc =
0.12. Here, the electric field is averaged over ∼103 periods of the
vortex motion in the steady state.

Note that the locking region increases with increasing Jac. 277

This behavior is due to the fact that f0, strictly speaking, de- 278

pends on Jext, which means that by adding the AC component, 279

f0(Jext ) oscillates as well over an interval determined by Jac. 280

The locking behavior can qualitatively be understood by com- 281

parison to the overdamped motion of a particle in a periodic 282

potential under the influence of a DC plus AC driving force. 283

This basically corresponds to the Langevin dynamics of a 284

particle in a washboard potential, which is commonly used to 285

describe the dynamics of a pancake vortex in 2D in a periodic 286

pinning landscape. Since the dynamics in the locking regime 287

is synchronized, the systems behavior can be compared to 288

that of a single particle. Here the DC part of the current can 289

be interpreted as the tilt of the periodic (pinning) potential 290

resulting in the washboard potential. This simple equation of 291

motion with external AC force results in a similar behavior 292

of the particle velocity as the electric field dependence in the 293

TDGL simulations, where the width of the locking region is 294

indeed proportional to the AC amplitude. 295

Using Josephson’s relation, 〈E〉 is converted to f̃ , which 296

we denote as the response hopping frequency appearing in the 297

Fourier spectrum as the second highest peak, after the external 298

frequency fext. Both merge when the vortex dynamics in the 299

system and the driving frequency are locked. 300

We can locate the locking region using three methods. 301

First, we can observe the splitting of the fundamental peak in 302

the Fourier spectrum, since when the system is synchronized 303

with the applied AC current density, as shown in Fig. 8, the 304

Fourier spectrum will show only a single peak at the applied 305

frequency together with its harmonics. When the system is not 306

locked the applied frequency will split off. 307

Secondly, one can measure the average DC electric field 308

across the sample, which in turn is related to the response 309

hopping frequency. This is done in Fig. 10. In general, this 310

method is experimentally easier to measure than the time 311

resolved field. 312

Finally, we can examine whether locking is present by 313

analyzing the low-frequency modulation of the time-resolved 314

electric field: If the system is locked, the envelope will have 315
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constant amplitude (cf. Fig. 8); if not, we can determine the316

period of the envelope (see Fig. 9) and calculate the difference317

frequency.318

Experimentally this frequency might be determined by319

rectifying the AC frequency and directly measuring the fre-320

quency of the modulation envelope.321

We note that the locking phenomena simulated here are322

analogues to Shapiro steps observed in Josephson junctions323

when an external oscillator is applied with a frequency that324

has an integer relation to the Josephson frequency as verified325

by the experiments of Martinoli et al. [17] and Van Look326

et al. [18]; the configuration used by the latter group has been327

modeled by Reichhardt et al. [21].328

V. GLOBAL STABILITY IN LARGER SYSTEMS329

Quite generally the voltage drop across a current driven330

strip containing an array of vortices moving in some pin-331

ning landscape will consist of a superposition of contributions332

produced by their individually pinning and depinning from333

successive sites. In a spatially periodic lattice of pinning sites334

of the kind considered here there is the potential for a col-335

lective motion wherein all vortices hop synchronously from336

site to site. However, this is not necessarily the case and337

various instabilities can develop in which such a synchronous338

motion is lacking or breaks down; i.e., the hopping occurs at339

different times in different unit cells (see supplemental movie340

2 [16]). In the simulations discussed in Sec. II B, the periodic341

boundary conditions utilized in our code were imposed on the342

unit cell of our pinning landscape, thereby forcing vortices343

in all unit cells in the periodically continued system to hop344

at the same time. To test for stability more generally, we345

enlarged the size of the simulated system to form a super346

cell that includes successively larger numbers of unit cells:347

2 × 2, 3 × 3, 4 × 4, . . . The number of unit cells which fit348

horizontally, i.e., in the direction of the applied current, into349

the super cell is denoted as Nsc. The simulated super cells then350

consist of Nsc × Nsc unit cells. Again the unit cell used so far,351

is shown in Fig. 1.352

As before, the applied magnetic field is the matching field353

corresponding to 2N2
sc vortices. After relaxing the system from354

a random initial configuration in the super cell, we obtain a355

static state with one vortex pinned to each defect to which356

we then start to apply an external current. On increasing the357

applied current, one again reaches a critical value where,358

at least initially, the vortices de-pin and move as parallel359

columns perpendicular to the current. Note that the vortices360

within each column always move synchronously for our weak361

pinning sites and currents below the amplitude fluctuation362

regime. Here we refer to synchronous motion in a super cell363

as the simultaneous motion of adjacent vortex columns, which364

means all vortices in the super cell move at the same time,365

alternately pinning and depinning in unison. This synchronous366

motion typically breaks down when the current is increased367

to some threshold current, Jth, when some adjacent vortex368

columns loose their synchronization. Here, we calculate the369

value of Jth by starting with Jdc in the asynchronous regime370

and decreasing it to the point where synchronized hopping371

is recovered. Its dependence on the super cell size Nsc is372

shown in Fig. 11. As seen in the plot, it decreases as the373

FIG. 11. The current difference, Jth − Jc, for the onset of asyn-
chronous hopping with increasing super cell size, Nsc for two systems
of L = 10 andD = 5 using different defect strength. The value of the
critical currents Jc = 0.05 for the blue line, and Jc = 0.022.

size of system increases for smaller super cells. However, it is 374

saturating in the asymptotic limit, implying an infinite system 375

would be stable. Stability can be tested by either increasing 376

or decreasing Jdc (in time) relative to Jth and examining the 377

structure of the evolution of the array in time. Note that the 378

Jth values plotted here also depend on the holding time at a 379

fixed current during which the vortex matter reorganizes and 380

eventually synchronizes and therefore represent a lower limit 381

for its true adiabatic value (see supplemental movie 3 [16]). 382

Therefore the apparent monotonic behavior seen in Fig. 11 383

is a result of the procedure we use to obtain this lower limit 384

for Jth. In particular the nature of the asynchronous steady 385

state we start from when lowering the current (in combi- 386

nation with the current step size) will result in variations 387

of the time needed to establish synchronous motion once 388

we reach currents Jdc � Jth. Furthermore, the synchronization 389

time could exponentially depend on the super cell size as the 390

rearrangement of vortices due to inter-vortex interactions fol- 391

lows glassylike dynamics. These timescales are not feasible to 392

reach in a simulation (realistically we can simulate times up to 393

10’s of microseconds). In any case we want to emphasize that 394

once we observe synchronization at a particular current Jdc, 395

the true threshold current is strictly bounded from below by 396

that value. However, we expect that the threshold currents for 397

adiabatically increasing and decreasing applied DC currents 398

will coincide and thus not show any hysteresis. 399

When Jdc exceeds Jth, asynchronous hopping emerges. 400

However, by applying an AC current with frequency com- 401

parable to the natural frequency for the applied DC current, 402

synchronized hopping is recovered (see supplemental movie 403

4 [16]). This behavior can potentially be used as a low- 404

temperature signal amplifier: by applying a small AC current 405

to sample, it will generate a larger signal proportional to the 406

applied Jac. 407

The synchronization of the vortex motion is a result of 408

the competing forces acting on the vortices. Most important 409

are (i) the attractive one-body vortex-pinning site interaction, 410

(ii) the (repulsive) two-body vortex-vortex interaction, and 411

(iii) the Lorentz force resulting from the applied current. At 412

high temperatures, thermal fluctuations can also affect the 413
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TABLE I. Parameters for niobium (Nb) [26–28], molybdenum germanium (MoGe) [29,30], and YBa2Cu3O7−x (YBCO) at x = 0.7
(optimal) for c and ab planes [31,32].

quantity Nb MoGe YBCOc YBCOa,b

ξ0 38nm 5nm 0.4nm 2nm
λ0 39nm 500nm 800nm 150nm
σ 6.6 × 106 S/m 5.8 × 105 S/m ∼106 S/m ∼106 S/m
t0 1.26 × 10−14 s 1.83 × 10−13 s 8.03 × 10−13 s 2.82 × 10−14 s
J0 4.53 × 1012 A/m2 2.10 × 1011 A/m2 1.02 × 1012 A/m2 5.82 × 1012 A/m2

synchronization of vortices. In a homogeneous system with-414

out applied current, the inter-vortex force leads to the415

formation of the (hexagonal) Abrikosov vortex lattice. Since416

we are considering a dynamic situation here, the interplay of417

all these forces leads to the complex dynamic behavior we418

observe as compared to a static pinned lattice.419

In particular, for large applied currents, the effect of pin-420

ning is “averaged out” and the system is governed mostly421

by the inter-vortex force. If this happens, the natural ten-422

dency for the vortex array is to adopt the Abrikosov lattice423

structure, as this is energetically the favored symmetry for424

a homogeneous film, thereby resulting in a dynamic phase425

transition between a square (imposed by the pinning sites) and426

a hexagonal vortex lattice above some average drift velocity427

(and associated current density). At that point, the oscillatory428

response with a single frequency is lost, as the vortex lattice429

is not commensurate with the pinning lattice anymore. In the430

pinning lattice nearest neighbor columns have a distance of431

L/
√
2, while a Abrikosov lattice with the same density has a432

vortex column distance of L/
√
2
√
3. Overall, this leads to a433

response frequency which is a multiple of the unit cell hop-434

ping frequency. At even higher currents beyond the dynamic435

phase transition, vortices start to move horizontally as well to436

switch between the natural distance and the imposed pinning437

site distance, which ultimately leads to completely incoherent438

vortex dynamics.439

Our system has some similarity to the motion of a system440

of coupled oscillators such as in the Kuramoto model [22,23],441

but differs in that the one body pinning force is of finite range442

and hence bounded.443

VI. MATERIAL PARAMETERS444

To estimate the typical range of frequencies in actual ma-445

terials, one needs to calculate the time scales involved using446

typical material parameters. For some superconductors of in-447

terest such as YBCO, niobium, and molybdenum germanium448

alloys (see Table I), we find that that t0 ∼ 10−13s and J0 ∼449

1012 A/m2. Using the parameters of MoGe, one finds that for450

an applied current density Jdc = 0.12, the frequencies gener-451

ated are of order, f ∼ 86GHz, with corresponding velocities452

〈v〉 ∼ 6 km/s. Note that in practice we expect the velocities453

to be limited by the velocity of sound, which is exceeded454

at such velocities. Such current densities are rather high and455

possibly difficult to obtain experimentally. 86 GHz is a large456

frequency that has not been achieved in previous studies.457

Some reported frequencies are f = 40 MHz [18], f ∼ 500458

KHz–100 MHz [17], f = 100 MHz–1.5 GHz [24]. A recent459

study by Dobrovolskiy et al. [25] achieved vortices with a460

velocity of 10km/s, suggesting it may be possible to achieve 461

higher frequencies. Note that near the critical current density 462

(Jdc = 0.051), f ∼ 12GHz, and 〈v〉 ∼ 0.8 Km/s, which may 463

be more easily achieved. 464

In realistic samples, we should also consider the effect 465

of (bulk) disorder and edges on the dynamic behavior. To 466

this end, we added a polycrystalline pattern with spatially 467

randomized critical temperatures being close to the bulk Tc 468

such that the artificial pinning sites are still much stronger than 469

the disorder. The observed behavior is preserved with slightly 470

reduced threshold current. To estimate the influence of edges, 471

we replaced the periodic boundary condition in y direction 472

(perpendicular to the vortex motion) by no-current conditions 473

(see Ref. [12]) for larger supercells. The resulting edges cause 474

random vortex nucleation at the entrance edge, which disrupts 475

the synchronized motion near the critical current. This effect 476

becomes smaller as we increase the applied current as long 477

as it remains below the threshold current. However, if we 478

remove the option for random vortex nucleation by introduc- 479

ing a row of notches matching the pinning site columns, the 480

synchronization persists. Finally, we note that the estimated 481

vortex velocities will heat the sample. However, we assume 482

that any heat generated by the vortex motion can be effectively 483

removed from the system. Experimentally, one can consider 484

that the system is either immersed in a cryogenic liquid or 485

that the substrate of the superconducting film is thermally 486

anchored. 487

VII. CONCLUSION 488

Using the time dependent Ginzburg-Landau formalism, we 489

have shown that above some critical current, Jc, a commen- 490

surate vortex lattice moving in a periodic pinning landscape 491

of circular holes can generate an oscillating electric field at 492

a certain inter pinning-site vortex hopping frequency. The 493

hopping frequency, f0, itself depends, not only on the system 494

characteristics (lattice constant, hole size, and hole pinning 495

strength), but also on the applied current. Adding an AC 496

component to the applied DC current allows us to lock the 497

hopping frequency to a range of applied frequencies which is 498

near f0. The range of the locking frequency interval depends 499

also on the amplitude of the AC current. 500

In our initial simulations, we considered a square unit cell 501

having a single vortex with a current applied perpendicular to 502

an edge. However, in going over to larger systems comprised 503

of multiple unit cells, called supercells, the synchronization of 504

the vortex motion between neighboring unit cells was quickly 505

lost. We then examined a 45◦ rotated square lattice with two 506

vortices in an enlarged unit cell, with the current still per- 507
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pendicular to an edge. When considering a supercell in this508

system the synchronization of the vortex motion was found509

to be stable below some threshold current density Jth that510

depends on the supercell size; furthermore, Jth approaches a511

limiting value with the increasing supercell size, implying an512

extended system can be stable below this value.513

Since the applied current density can be varied, the systems514

studied here constitute miniature, current-tunable, oscillators515

that operate at cryogenic temperatures. They can be patterned516

directly into a strip-line wave guides with their output trans-517

mitted to other remote devices. The loss of synchronization518

observed at higher currents in larger systems can likely be519

minimized by patterning strips of finite width containing a520

limited number of columns.521

The frequency can be modulated simply by varying the DC522

current density, Jdc, in time. Given that the vortex drift velocity523

responds quickly to a change in the applied current (since524

no narrow-band circuit elements are involved) these devices525

should switch on and off, or between differing frequencies,526

in times comparable to an oscillation period. The range of527

frequencies generated depends on the system parameters (hole528

geometry and separation) together with the superconducting529

materials of which it is made.530

As seen from Fig. 5, the harmonic content of the signals 531

produced can be quite high. For applications where this is 532

undesirable it can be suppressed by engineering a smoother 533

potential landscape; alternatively, one might want to exploit 534

this feature. 535

Finally, there appears to be considerable potential that 536

phenomena of the kind considered can lead to new devices 537

based on the dynamics of vortex arrays moving in engineered 538

artificial defect landscapes. 539
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