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Snow and ice topography impact and are impacted by fluxes of mass, energy, and momentum in Arctic
sea ice. We measured the topography on approximately a 0.5 km? drifting parcel of Arctic sea ice on
42 separate days from 18 October 2019 to 9 May 2020 via Terrestrial Laser Scanning (TLS). These data
are aligned into an ice-fixed, lagrangian reference frame such that topographic changes (e.g., snow
accumulation) can be observed for time periods of up to six months. Using in-situ measurements, we

- have validated the vertical accuracy of the alignment to £ 0.012 m. This data collection and processing

- workflow is the culmination of several prior measurement campaigns and may be generally applied for
repeat TLS measurements on drifting sea ice. We present a description of the data, a software package

- written to process and align these data, and the philosophy of the data processing. These data can be
used to investigate snow accumulation and redistribution, ice dynamics, surface roughness, and they
can provide valuable context for co-located measurements.

. Background & Summary
- Repeat Terrestrial Laser Scanning (TLS) topography measurements were part of the Multidisciplinary drifting
. Observatory for the Study of Arctic Climate (MOSAIC) expedition, in which researchers aboard R/V Polarstern!
- drifted with and studied the same collection of ice floes in the Central Arctic from October 2019 to May 2020%*.
. Arctic sea ice has grown dramatically younger and thinner in recent decades® and the overall objectives of
- MOSAIC were to understand the causes and consequences of this ‘new Arctic’. To do so, researchers were
divided into teams studying the snow and ice (including on-ice and satellite remote sensing)?, atmosphere?,
- ocean*, ecosystem, and biogeochemistry. We conducted the TLS measurements as part of the ice team, for the
. primary purpose of quantifying snow accumulation and redistribution. Other applications of these data include
observations of ice dynamics; surface roughness for ice-atmosphere interactions; and providing context for
:atmospheric observations, remote sensing instruments (e.g., on-ice radars®), autonomous buoys, snow pit meas-
- urements, and more.
: Snow substantially affects the Arctic sea ice mass balance due to its opposing impacts of insulating in the
- winter (restraining ice growth) and reflecting shortwave radiation in the summer (protecting against ice melt’).
. Three of the four most important uncertainties impacting September sea ice volume in the CICE sea ice model®
- are related to the thermal and optical properties of the snow’. Snow spatial variability due to wind driven snow
- redistribution impacts these properties'!!. However, redistribution is challenging to measure due to this spatial
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variability. Repeat observations of snow changes on a substantial area of the same piece of ice are needed to
observe these redistribution processes and understand their mechanisms. Furthermore, the magnitude of snow
accumulation can be very small. For example, the largest snowfall event on MOSAIC precipitated just 1.6 cm
water equivalent!2. Thus, our observations of changes must be highly accurate. Finally, to observe snow accumu-
lation and redistribution throughout the winter, measurements must be feasible in polar night.

TLS is routinely used to make highly-accurate measurements of snow accumulation on areas of 40 m?* to
0.5km? 117, The instrument is a laser scanner that is mounted on a ~ 2.2 m tall tripod. Due to the generally flat
topography of sea ice and shadowing, the instrument collects topographic information up to 100-200 m from
itself. To observe a larger area, we relocate the tripod and collect measurements from different locations, which
we then co-register into a common reference frame. TLS measurements on Arctic sea ice face unusual challenges
and our procedures for the MOSAIC Expedition were informed by prior experiments, including: the Seasonal Ice
Zone Observing Network project'; the Snow, Wind, and Time project’; and the Sea Ice Dynamics Experiment.
First, the typical temperatures of ~15 to -35 °C are below the operating range of commercially-available TLS
instruments. We addressed this issue with a custom-designed heater case. Second, TLS measurements are typ-
ically aligned in a geodetic reference frame via highly-accurate GNSS measurements. However, on drifting sea
ice, the relevant reference frame for snow processes is a lagrangian reference frame fixed to the surface of the
ice. We developed a custom software package —pydar!’—to align repeat TLS measurements into this lagran-
gian, ice-fixed reference frame. To verify that our alignment achieved the necessary vertical accuracy for snow
accumulation, we statistically validated it through comparison with in-situ measurements®. The quantitative
results from our alignment validation are specific to this dataset. Finally, the TLS data contain potentially-useful
information that are irrelevant to our needs (e.g., sub-cm snow surface roughness in areas near the scanner,
backscatter reflectance, roughness relevant to aerodynamic drag, etc...). We hope that future researchers will
use these data for purposes that we have not imagined. To facilitate this future usage, we have designed pydar to
preserve the full scope of the data and to make our data processing decisions transparent to future researchers.

The primary purpose of this manuscript is to describe the TLS data collected at MOSAIC. However, given
the unique challenges of using TLS on drifting sea ice, some discussion of lessons learned and future methodo-
logical developments is warranted. Prior experience on sea ice near Utgiagvik, AK!”8 found that spacing scan
positions between 150 and 200 m apart generally produced acceptable data. However, the ice at MOSAiIC was
rougher than those experiments, and the placement of scan positions was also restricted due to not trespassing
in sensitive measurement sites. Under these constraints, we found that spacing scan positions around 100 m
apart produced better data, although we sometimes prioritized having measurements co-located with comple-
mentary measurements sites (e.g., the snow and ice thickness transects) over achieving the best TLS coverage.
Additionally, the alignment procedures and validation were developed after the expedition, thus the alignment
validation relies on what coincident in-sifu measurements were available and had not experienced blowing snow
events between the in-situ measurement and the TLS acquisition. The statistical validation methods presented
herein are applicable for future campaigns, but the specific quantitative results depend on the measurements.
Therefore, validation should be conducted for any TLS campaign on sea ice. For future campaigns, we strongly
recommend including more in-situ point measurements of snow surface changes coincident with the TLS meas-
urements. One expeditious approach for this would be to include a small array of snow thickness stakes near
each reflector post. This would ensure that the in-situ measurement sites were visible from multiple scan posi-
tions, and the snow surface measurements could be made quickly while distributing the reflectors at the start of
a TLS measurement day.

This manuscript describes the repeat TLS data collected on the MOSAIC expedition from October 2019 to
May 2020%!. We present the philosophy of the data processing, and it’s implementation in pydar. Finally, we
validate the vertical alignment and discuss considerations for reuse of these data.

Methods

Terminology. We use the following terms throughout this manuscript. They are mostly drawn from their
usage in RiSCAN (Riegl's software for acquiring and processing TLS data):

¢+ Scan Position: set-up the tripod at a given location and measure the topography within the scanner’s line of
sight.

J Si%gleScan: the data collected from a single scan position. We use this term to refer to both the point cloud of
topographic measurements from this scan position and ancillary data such as the locations of TLS reflectors
within the scanner’s reference frame at this scan position and the rigid transformations that register and align
this SingleScan with others (see below).

¢+ Project: a collection of SingleScans covering a contiguous area that were collected during a sufficiently short
time interval such that no topographic change occurred between scan positions (sometimes ice deformation
occurred during a Project, these exceptions are described in the Usage Notes). Typically, the set of SingleScans
in a Project were collected in a single day of measurements although on some occasions measurements were
collected over two days.

¢ Registration: the act of computing the rigid transformations that describe the spatial relationships between
the different SingleScans in a Project. Registration places all SingleScans in a Project into a common reference
frame (whose origin and unit vectors are typically defined by an arbitrary SingleScan).

¢+ Scan Area: a region of ice whose topography we measured over time with a succession of Projects.

¢ Alignment: the act of computing the rigid transformations such that SingleScans from different Projects in
the same Scan Area are in a common reference frame. Alignment is necessary to precisely locate topographic
changes (e.g., how much snow accumulation occurred at specific location on the ice from 4 January to 11 March).
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Fig. 1 Photo showing data acquisition of a typical scan position. The Riegl VZ1000 terrestrial laser scanner is
inside the custom heater case (metal cylinder) on top of the tripod. The researcher controls the scanner from
the laptop via WiFi. To the right of the tripod is a Riegl 10 cm cylinder reflector mounted on a post frozen into
the ice. The Polarstern can be seen in the background along with other installations of the ice camp including
Balloon Town® (orange tents) and Ocean City* (blue and white tent). Photo credit: S. Svavarsdottir.

Data collection. We used a Riegl VZ1000, which has an eye-safe, near infrared laser (1550 nm). For each
scan position, we mounted the scanner on a tripod, and the scanner rotated on vertical and horizontal axes to
create a point cloud of its surroundings. The scanner was controlled via WiFi from a field laptop. The angular step-
widths in the azimuthal and vertical directions were each 0.025° and it took approximately 8 minutes to acquire
a point cloud with a Laser Pulse Repitition Rate of 300 kHz. The origin and unit vectors of the point cloud are
defined relative to the scanner and this reference frame is named the Scanner’s Own Coordinate System (SOCS).
Air temperature was typically below the VZ1000’s minimum operating temperature, so we placed the scanner in
a custom-designed heater case (Fig. 1) to maintain its temperature within acceptable bounds. Due to the overall
flat topography, occlusions, and low reflectivity of snow and ice at 1550 nm, the scanner collects useful data up
to 100-200 m from its location. To map a larger area, on each measurement day we relocated the scanner to
additional scan positions and acquired subsequent measurements (i.e., we collected a SingleScan at each scan
position), which we then linked together into a Project. Choosing the locations for scan positions was a trade-off
between maximizing the area covered, co-locating with other measurements, minimizing shadows within the
measured area, and not trespassing in sensitive measurement sites. In order to make a complete map, we regis-
tered the SingleScans measured from each scan position into a common reference frame. We placed Riegl 10 cm
cylinder reflectors on posts frozen into the ice (Figs. 1, 2), and used them to locate and orient each SingleScan in
the Project’s common reference frame (described below in Data Processing in RiSCAN). Typically between 4 and
10 reflectors were visible from each scan position. These reflectors also served as the starting point for aligning
Projects collected in the same Scan Area on different days into a lagrangian, ice-fixed reference frame.

Scan areas. Repeat TLS observations on MOSAiC were focused on three primary Scan Areas: Snow1, Snow2,
and ROV (Fig. 2 and Table 1). These Scan Areas were selected to observe a variety of ice topography, to co-locate
with other measurements, and to be logistically accessible. In March, ice dynamics caused the Met City atmos-
pheric measurement site’ and the on-ice Remote Sensing measurement site to be removed from the Snow1 scan
area (where they had been located from October through February). Additional TLS measurements were made
at these sites (which we labelled ‘RS’ for Remote Sensing and ‘MET” for Met City; Table 1). Below are descriptions
of each Scan Area.

Snowl Scan Area. The Snowl1 Scan Area (hereafter we use ‘Snow1’ to refer specifically to the TLS measurement
area) was generally off the bow and port side of Polarstern and composed of residual ice of which only the upper
30 em was solid when we arrived in October?, refrozen melt ponds, first year ice in refrozen leads, and first year
ridges. We first measured Snow1 on 18 October and our final measurement was on 3 May. Ice dynamics caused
frequent (multiple times per month) crack and ridge formation in the Scan Area. These dynamics resulted
in substantial variation in the area of ice measured and the number of SingleScans collected in each Project.
Snow1 was co-located with the SLoop snow and ice thickness transect®, the Snow1 snow sampling area?, the
BGC3 ice coring area, the Met City atmospheric measurement site (18 October to 28 February), the first on-ice
Remote Sensing site? (18 October to 15 November), the second on-ice Remote Sensing site? (6 December to 28
February), the Ocean City oceanic measurement site* (18 October to 6 December), the Bow Stakes mass bal-
ance site?’ (6 December to 28 February), the Met Stakes mass balance site?” (18 January to 3 May), the Stakes3
mass balance site?® (6 December to 26 April), the second Remotely Operated Vehicle site? (1 November to 6
December), and a number of vibrating wire ice stress gauges®. The given dates are the first and last dates that
the installations were present in the TLS data, not necessarily the installation or decommission dates of the
installations.

Snow?2 Scan Area. The Snow2 Scan Area (hereafter we use ‘Snow?2’ to refer specifically to the TLS measurement
area) was generally off the bow and starboard side of Polarstern beyond the logistics area? and was composed
of refrozen melt ponds and an approximately 1 m tall (on average) second year ridge. No ice thickness meas-
urements were made in Snow?2, but the residual ice was likely thicker than that in Snow1. Similar level ice in the
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Fig.2 Map of the three Scan Areas in the MOSAiC Central Observatory? in early February. The Scan Areas are
labelled and roughly outlined in white (the exact extent of the measured areas changed due to ice deformation
and the number of SingleScans conducted). Notable installations are indicated in green (see MOSAiC snow
and ice overview publication® for more installations). Reflector locations are also shown in white. Reflector
heights are provided in Table 2. This map is a rendering of the combined point cloud data from Projects mosaic_
rov_040220.RiSCAN (collected on 4 February) and mosaic_01_060220.RiSCAN (collected on 6-7 February).
The origin for topographic height is the surface of recently frozen lead (so the values approximately correspond
to height above the sea surface).

NLoop transect had a modal thickness of approximately 75 cm in early November?. We first measured Snow?2
on 6 November and our final measurement was on 9 May. Snow2 was the most stable region observed. The core
of the measurement area was not deformed from 6 November 9 May with the exception of a 1-m-wide crack that
formed between 13 November and 6 December. The measurement area progressively shrank due to ice dynam-
ics removing areas in November, March, April, and May. On two occasions —6 December and 6 February —we
made measurements on Snow1 and Snow? as part of the same Project. Snow2 was co-located with the Snow2
snow sampling area?, an atmospheric flux chamber measurement site, a section of the NLoop snow and ice
thickness transect” (6 November to 6 December), the Stakes1 mass balance site?* (only on 6 December, thereaf-
ter this was part of the ROV Scan Area), and the Alli’s ridge measurement site? (only on 6 December, thereafter
this was part of the ROV Scan Area).

ROV Scan Area. The ROV Scan Area (hereafter referred to as ‘ROV’, it was named for the Remotely Operated
Vehicle installation) was generally off the stern and starboard side of Polarstern beyond the logistics area® and
was composed of deformed second year ice, refrozen melt ponds, level first year ice, and first year ridges. We
first measured the ROV Scan Area on 4 January and our final measurement was on 9 May. In early January, the
modal ice thickness on both level first year ice?” and level second year ice?® was approximately 1 m. In March,
ice dynamics displaced the first year ice region out of the ROV Scan Area and demolished the Ft. Ridge meas-
urement site. These dynamics also produced young ice in a 40-m-wide, refrozen lead. The core region of ROV
was connected to Snow?2 from 6 December to 9 May. On two occasions—4 April and 9 May —we made measure-
ments on Snow2 and ROV as part of the same project. ROV was co-located with the third Remotely Operated
Vehicle site?, the NLoop snow and ice thickness transect”, the Ft. Ridge measurement site? (4 January to 18
March), half of the Alli’s Ridge measurement site? (4 January to 22 February), the Ridge Ranch mass balance
site? (19 January to 11 March), the Stakes4 mass balance site?® (4 January to 22 February), the David’s Ridge
measurement site? (14 March to 9 May), the ROV3 broadband albedo transect? (11 April to 9 May), the SYI
broadband albedo transect? (29 April to 9 May), and a number of vibrating wire ice stress gauges?.
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Project Name Date Scan Area(s) # SingleScans | Location
mosaic_01_101819.RiSCAN 2019-10-18 Snow1l 2 84.79°N, 133.09°E
mosaic_01_102019.RiSCAN 2019-10-20 Snow1 5 84.97°N, 132.76°E
mosaic_01_102519.RiSCAN 2019-10-25 Snow1 5 85.44°N, 128.15°E
mosaic_01_110119.RiSCAN 2019-11-01 Snow1l 7 85.80°N, 12297 ° E
mosaic_02_110619.RiSCAN 2019-11-06 Snow?2 7 85.93°N, 117.74°E
mosaic_01_110819.RiSCAN 2019-11-08 Snow1 3 85.92°N, 116.53°E
mosaic_02_111319.RiSCAN 2019-11-13 Snow?2 8 86.10°N, 117.84°E
mosaic_01_111519.RiSCAN 2019-11-15 Snow1l 8 86.16°N, 118.20°E
mosaic_01b_061219.RiSCAN.RiSCAN.RiSCAN 2019-12-06 Snowl, Snow2 12 86.14°N, 122.25°E
mosaic_01_122719.RiSCAN 2019-12-27 Snow1l 5 86.68°N, 115.95°E
mosaic_rov_040120.RiSCAN 2020-01-04 ROV 6 86.99°N, 115.44°E
mosaic_01_040120.RiSCAN 2020-01-04 Snowl 7 87.01°N, 115.35°E
mosaic_rov_110120.RiSCAN 2020-01-11 ROV 5 87.21°N, 111.40°E
mosaic_01_180120.RiSCAN 2020-01-18 Snow1 8 87.41°N, 98.27°E
mosaic_rov_190120.RiSCAN 2020-01-19 ROV 8 87.40°N, 98.36°E
mosaic_rov_250120.RiSCAN 2020-01-25 ROV 1 87.41°N, 92.79°E
mosaic_01_290120.RiSCAN 2020-01-29 Snow1 8 87.47°N, 95.18°E
mosaic_rov_040220.RiSCAN 2020-02-04 ROV 9 87.48°N, 95.30°E
mosaic_01_060220.RiSCAN 2020-02-06 Snow1, Snow?2 16 87.60°N, 94.04°E
mosaic_01_150220.RiSCAN.RiSCAN 2020-02-15 Snow1 8 88.07°N, 79.87°E
mosaic_rov_220220.RiSCAN.RiSCAN 2020-02-22 ROV 9 88.58°N, 64.54°E
mosaic_01_280220.RiSCAN 2020-02-28 Snowl 7 88.34°N, 33.99°E
mosaic_rov_110320.RiSCAN 2020-03-11 ROV 1 88.27°N, 31.95°E
mosaic_rov_140320.RiSCAN.RiSCAN 2020-03-14 ROV 4 87.67°N, 24.59°E
mosaic_rov_180320.RiSCAN 2020-03-18 ROV 4 87.14°N, 17.28°E
mosaic_01_220320.RiSCAN 2020-03-22 Snow1 6 86.23°N, 15.70°E
mosaic_02_260320.RiSCAN 2020-03-26 Snow?2 5 86.00°N, 13.09°E
mosaic_02_300320.RiSCAN.RiSCAN 2020-03-30 Snow?2 5 85.38°N, 13.20°E
mosaic_02_040420.RiSCAN 2020-04-04 Snow2, ROV 11 84.67°N, 12.89°E
mosaic_01_080420.RiSCAN 2020-04-08 Snowl 4 84.48°N, 14.64°E
mosaic_01_080420b.RiSCAN 2020-04-08 Snow1l 3 84.48°N, 14.64°E
mosaic_02_110420_rov.RiSCAN 2020-04-11 ROV 6 84.33°N, 14.75°E
mosaic_02_130420_2.RiSCAN 2020-04-13 Snow?2 6 84.29°N, 14.96°E
mosaic_rov_170420.RiSCAN 2020-04-17 ROV 6 84.41°N, 13.67°E
mosaic_rs_170420.RiSCAN 2020-04-17 RS 1 84.41°N, 13.67°E
mosaic_rov_220420.RiSCAN 2020-04-22 ROV 6 84.13°N, 15.89°E
mosaic_rs_220420.RiSCAN 2020-04-22 RS 1 84.13°N, 15.89°E
mosaic_02_230420.RiSCAN 2020-04-23 Snow?2 6 84.08°N, 16.05°E
mosaic_01_250420.RiSCAN.RiSCAN 2020-04-25 Snow1l 4 84.00°N, 15.59°E
mosaic_01_260420.RiSCAN 2020-04-26 Snow1l 3 83.93°N, 15.51°E
mosaic_rov_290420.RiSCAN 2020-04-29 ROV 7 84.02°N, 17.24°E
mosaic_02_300420.RiSCAN 2020-04-30 Snow?2 6 83.94°N, 17.42°E
mosaic_rs_300420.RiSCAN 2020-04-30 RS 1 83.94°N, 17.42°E
mosaic_01_030520.RiSCAN 2020-05-03 Snow1 4 83.89°N, 17.96°E
mosaic_met_040520.RiSCAN 2020-05-04 MET 2 83.91°N, 18.35°E
mosaic_rov_02_090520.RiSCAN 2020-05-09 Snow2, ROV 12 83.79°N, 14.09°E

Table 1. Summary of repeat TLS measurements from October 2019 to May 2020 on MOSAIC. *Some
SingleScans were collected on the following day.

Data Processing in RiSCAN. TLS data acquisition and initial post-processing steps were conducted
in RiSCAN PRO (Riegl’s software for TLS data acquisition and processing: http://www.riegl.com/products/
software-packages/riscan-pro/) following standard protocols described in the user manual. The following steps
were conducted for each Project. First, an arbitrary SingleScan was chosen to be the origin of the Project. This
SingleScan was levelled to establish the horizontal axis plane using the VZ1000’s onboard inclination sensors.
Next, another SingleScan was registered to the first by computing the rigid transformation that minimizes
the sum of the least-squares error in the positions of pairs of reflectors (a.k.a. ‘keypoints’) observed in both
SingleScans. We repeated this process until all SingleScans in the Project are registered. Finally, we refined the
registration of each SingleScan except for the origin with RiSCAN’s ‘Multi-Station Adjustment’. In this process,
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Reflector | Pole Height (m) | Terrain Relative Height (m)
101 2.10 1.38
103 2.03 0.99
r05 201 1.10
109 172 1.05
r10 171 113
r1l 1.81 151
12 179 126
r13 2.89 1.67
rl4 2.06 1.60
15 247 173
rl6 1.96 157
117 1.96 1.54
18 193 1.16
r19 2.06 1.56
120 1.90 1.44
121 173 1.38
123 1.9 146
124 1.85 1.55
128 1.80 124
129 177 1.30
130 1.63 121
131 2.36 148
32 1.98 153
133 2.86 1.49
134 2.84 144
135 2.09 153
136 2.30 147

Table 2. Reflector heights both relative to the local snow surface (Terrain Relative Height) and relative to the
approximately the sea surface (Pole Height). Pole Height is in the same reference frame as Fig. 2.

meter-scale planar facets were extracted from each SingleScan. Then, pairs of overlapping facets and pairs of
reflectors between the SingleScans were all used as keypoints and an optimization procedure adjusted the rigid
transformations of each SingleScan (except the origin) in order to minimize the sum of the least-squares error
between all keypoints. Unlike in urban environments where walls, roads, and other human-made objects provide
large planar facets, planar surfaces at MOSAIC were mostly meter-scale or smaller wind-scoured snow surfaces.
When conducting Multi-Station Adjustment, we found that using a search radius (maximum distance between
potential keypoints) between 0.3 and 0.7 m produced the best results. Search radii larger than this tended to match
planar facets that were not truly co-planar (e.g., different faces of a snow dune), which causes misalignment.

The data for each Project was stored in a directory with the same name as the Project. All relevant param-
eters were exported from RiSCAN into open formats. The rigid transformation for each SingleScan is repre-
sented by a 4 x 4 matrix (using homogeneous coordinates®) that is named the Scanner’s Own Position (SOP)
matrix. The SOP matrices for each SingleScan were exported into tab-delimited. DAT files in the Project direc-
tory (e.g., ‘ScanPos001.DAT’). We gave each reflector a unique identifier (e.g., ‘r01’) that was consistent across
all of the Projects. We exported the reflector positions (in the Project’s reference frame) for each Project into
a comma-delimited file (named ‘tiepoints.csv’) in the Project directory. Finally, we exported the point cloud
data itself for each SingleScan in LAS 1.4 format into a subdirectory named ‘lasfiles’. LAS 1.4 (https://github.
com/ASPRSorg/LAS) is an open, community standard for point cloud data that is maintained by the American
Society for Photogrammetry and Remote Sensing.

Data processing in pydar. Ouverview of pydar. The overall objective of pydar is to align SingleScans from
different Projects in the same Scan Area into a lagrangian, ice-fixed reference frame such that one can observe
topographic changes (e.g., snow deposition and erosion) over time. Furthermore, we sought to facilitate re-use of
these data by preserving features of the data even when they are unimportant for our use case (e.g., cm-scale point
density near the scanner, backscatter reflectance data, etc...) and enabling future researchers to revise our align-
ment of SingleScans (e.g,, if they design a superior alignment procedure). This section provides a brief description
of key features of pydar" and the steps taken to process the repeat TLS data from MOSAIC. Additional function-
ality and implementation details can be found in the code documentation. To achieve these goals, pydar has an
object-oriented design that mimics the hierarchical structure of the TLS data. And, pydar distinguishes between
the spatial relationships of TLS points measured from the same scan position (i.e., within a SingleScan) and the
spatial relationships of TLS points measured from different scan positions (i.e., different SingleScans in a Project).
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pydar is implemented primarily in Python®, with substantial use of the Numpy?, Scipy®, and VTK? libraries.
Some functionality is implemented in Cython™.

The core of pydar consists of four related classes: SingleScan, Project, ScanArea, and
TiePointList (in this manuscript we use teletype font to reference classes and methods in code).
SingleScan objects store the point cloud data for that SingleScan in the Scanner’s Own Coordinate System (as
a vtkPolyData object: SingleScan.polydata raw)and the rigid transformation to transform that point
cloud into the desired reference frame (as a vtkTransform object: SingleScan. transform). Separating the
spatial information for the point cloud of an entire Project into SingleScans enables us to adjust the spatial rela-
tionships between points from different SingleScans (as we do below) without altering the spatial relationships
within each SingleScan. SingleScan also contains methods for filtering the point cloud data (e.g., FlakeOut®)
and reading and writing the data. When we filter TLS points, we set flags in the ‘Classification” data field (follow-
ing LAS 1.4 conventions: https://github.com/ASPRSorg/LAS), rather than deleting points. A Project object
contains the set of SingleScan objects for this Project (as a dictionary: Project.scan dict)and an object
representing the reflector positions (an instance of TiePointList). Project also contains methods for
visualizing the data (e.g., Project.display project), writing data output (e.g., Project.write
las_pdal), and converting the point cloud into a surface representation (e.g., Project.point to
grid average image). Finally, a ScanArea object contains a set of Project objects for this Scan Area (as
a dictionary: ScanArea.project_dict)and methods for aligning the SingleScans within those Projects
(e.g., ScanArea.z tilt alignment_ss, see below).

Filtering of TLS data. Wind-blown snow particles were filtered using FlakeOut®! with the standard param-
eters (z_max = 3, radial precision = 0.005, z_std mult = 3.5, and leafsize = 100) and
assigned the classification flag ‘65’ (the LAS 1.4 standard prescribes that user-defined classifications be greater
than 63). Additionally, we manually filtered the logistics area (classification flag 73") from the Snow2 and ROV
data because vehicle traffic there substantially disturbed the snow surface. For TLS data that has been processed
by pydar, we store the processed data in a subdirectory of the Project directory named ‘npyfiles_archive’. Within
the ‘npyfiles_archive’ subdirectories there are subdirectories for each SingleScan (e.g., ‘ScanPos001’). These sub-
directories contain numpy? files for the point locations in the Scanner’s Own Coordinate System (‘Points.npy’)
and each data attribute (e.g., ‘Reflectance.npy’, ‘Classification.npy’, etc...). We decided to store the data in this
manner for three reasons. First, “.npy’ is a space-efficient, open-source format (https://numpy.org/doc/stable/ref-
erence/generated/numpy.lib.format.html) which is easy to open with widely-available tools. Second, separating
the data attributes allows the user to only load the attributes they need into memory, which is useful because the
" las’ file for a SingleScan is approximately 600 MB. Third, reading ‘.npy’ files into memory in Python? is consid-
erably faster than reading ".las’, which speeds up the overall workflow.

Alignment of TLS data. For our purposes of observing snow accumulation and redistribution, the greatest
source of error is bias due to misalignment of SingleScans from measurements on different dates. The stochastic
errors due to measurement uncertainty within a SingleScan are insignificant'®. We developed a three step pro-
cess to align SingleScans from one Project (Project_1) to another Project (Project_0):

1. Coarsely align Project_1 to Project_0 by minimizing the least-squares error between their reflector
positions.

2. Align each SingleScan in Project_1 to the nearest SingleScan in Project_0 using local maxima as keypoints,
which reduces tilt biases (a tilt bias of 0.0001 radian creates a vertical error of 0.01 m at 100 m distance from
the scanner).

3. Perform a fine-scale vertical alignment for each SingleScan in Project_1 by minimizing modal vertical
differences between it and Project_0.

For reflector alignment, we labeled each reflector with a consistent name (e.g., ‘r01’) in RiSCAN. Ice defor-
mation and errors in the VZ1000’s reflector search process can shift a reflector relative to the other reflectors.
We manually compared the pairwise distances between reflectors and used only the set of reflectors whose
pairwise distances between Projects changed by 0.02 m or less. This aligned the scans horizontally to within
0.02 m. Typically, this set comprised 4 to 8 reflectors. With this set of reflectors as keypoints, we computed
the rigid transformation that minimized the least-squares error between the keypoints® (implemented in
TiePointList.calc transformation). The default version of this rigid transformation calculation
(mode = 'LS' in TiePointList.calc transformation) requires at least 3 pairs of keypoints and
has six degrees of freedom: translations in the 3 spatial directions and rotations around the 3 unit vectors (roll,
pitch, and yaw). However, sometimes when there were just 3 or 4 pairs of keypoints, small vertical errors in the
reflector positions produced unrealistic tilts, assessed manually by looking at the vertical differences between the
aligned Projects. For these cases and when there were only 2 pairs of keypoints, we calculated the rigid transfor-
mation without permitting tilt changes (mode = 'Yaw' in TiePointList.calc_ transformation).
Finally, in two, cases ice dynamics caused there to be no reflectors whose pairwise distance changed by less than
0.02 m. In these cases, we used a single reflector to determine the translational components of the rigid transfor-
mation and manually adjusted the yaw component such that flag posts frozen into the ice (see Fig. 1 for example)
aligned to within 0.02 m at their bases. Manual inspection of the results indicated that reflector alignment brings
vertical biases within 0.05 m and tilt biases within 0.001 radian.

Local maxima alignment for each SingleScan followed the same process as reflector alignment, except that it
used local maxima as keypoints instead of reflectors. Local maxima are mostly the crests of ridges, hummaocks,
or human installations (e.g., poles) and are unlikely to erode or accumulate snow. A pair of local maxima from
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the SingleScans was required to be within a set spatial tolerance of each other to be used as keypoints. We
defined the tolerance in cylindrical coordinates centered on the scanner’s location of the SingleScan that was
being aligned. We used a tolerance of 0.0008 radian yaw, 0.001 radian tilt, and 0.1 m radial difference. Local
maxima were located on 5 x 5 m regions (changing the region size to 2 x 2mor 10 x 10 m had no discernable
impact on the results). These settings produced several hundred keypoints for each pair of SingleScans from the
different Projects. The tilt biases after local maxima alignment were less than 0.0001 radian (i.e., a 1 cm vertical
offset across a 100 m distance), determined by manual inspection. Local maxima alignment is implemented in
ScanArea.max_alignment ss.

Finally, for the fine-scale vertical alignment, we exploited the fact that numerous field observations at
MOSAIC suggested that a plurality of the snow surface did not change on weekly, or even monthly, time-frames.
These observations included: snowmobile tracks did not typically get covered by snow except for isolated, dis-
tinct snow drifts. The indentations made by the feet of the TLS tripod were often visible when we revisited scan
position locations. The circular mark left in the snow by the atmospheric flux chamber measurement could
be identified months after the measurement was made. Cm-scale micro-relief on the snow surface observed
near the TLS scanner (where point density is very high) appears consistent between scans, unless a snow dune
happened to form in that location. Certain distinctive snow features (e.g., barchan dunes) remained unchanged
for months. If the plurality of the snow surface does not change between Projects, then the modal vertical dif-
ference must be zero. For each SingleScan, we computed the distribution of vertical differences between it and
the Project we were aligning it to. We used a raster with 1 m horizontal resolution created by averaging the
z-components of the TLS points within each grid cell’®. We used only grid cells with at least 25 points per square
meter in the SingleScan and the Project it was being aligned to. The vertical component of the transformation
for the SingleScan was set such that the modal difference is zero. Fine-scale vertical alignment is implemented
in ScanArea.z alignment. Manual inspection of the results indicated that vertical biases were reduced to
within about 0.01 m (see below for Technical Validation).

In Snowl1, deformation occurred frequently and throughout the Scan Area, such that there was no core ice
floe with multiple reflectors on it that did not experience ice deformation for an extended period of time (as
there was for Snow2 and ROV). Alignment steps 2 and 3 are predicated on the ice floe itself remaining the same,
and hence could not be applied in this dynamic environment. We include Snow1 for completeness and for use
by future researchers (e.g., these ice dynamics would not prevent another researcher from using the Snow1 data
to compute aerodynamic drag coefficients). However, we did not validate its vertical alignment to cm-scale
accuracy nor do we recommend that the data be used for snow accumulation without further work quantifying
ice deformation (which is beyond the scope of this data processing).

For convenience and to avoid needing to recompute the transformations, the rigid transformation aligning
each SingleScan has been written out to a “.npy’ file that can be loaded directly in pydar. In the Project’s direc-
tory, there is a subdirectory named ‘transforms’, within which there are subdirectories for each SingleScan (e.g.,
’ScanPos001’). The transformation is in this subdirectory and is named ‘current_transform.npy’. Finally, because
the ROV and Snow?2 Scan Areas were connected, we decided to place them within the same lagrangian, ice-fixed
reference frame (for which the origin happens to be near the Remotely Operated Vehicle tent?).

Surface Reconstruction from Point Clouds. Many applications of topographical data—including
measurement of snow accumulation—require surfaces or gridded data rather than point clouds (the format of
TLS data). To produce gridded surfaces, we used gaussian process regression®. Also known as kriging, gauss-
ian process regression is an interpolation technique that provides the best linear unbiased estimate (minimizes
least-squares error) of a parameter (e.g., surface height) at unsampled locations (e.g., a regular grid of points)
given nearby measurements (e.g., TLS points) and the covariance function (also referred to as the kernel)®*. It
has previously been applied to TLS data on Arctic sea ice®. The vertical uncertainty in an individual TLS data
point increases with distance from the scanner due to the divergence of the laser beam (0.3 mrad for the VZ1000)
and is represented as gaussian noise'>. Because the TLS collects useful data up to 200 m from the scanner, the ver-
tical uncertainties in individual data points varies by an order of magnitude. One advantage of gaussian process
regression, is that it can factor in the vertical uncertainty of each point when interpolating.

We chose to use an exponential covariance function because it is the simplest covariance function that can
represent continuous, non-differentiable (i.e., not-smooth) surfaces*. We chose this because wind-driven spa-
tially variable snow deposition and erosion produce rough snow bedforms on horizontal scales of 10 cm to
several meters®. The exponential covariance function contains two hyperparameters: the ‘range’, defined as
the distance at which the correlation between two points is less than 5%; and the “sill’, defined as the variance
between two uncorrelated points (i.e., points further apart than the range). We can estimate appropriate values
of the hyperparameters from the data itself, by optimizing the marginal likelihood of the gaussian process®. On
the scale of our scan areas (several hundred meters across) the snow and ice topography varies from rough areas
of pressure ridges and rubble to smooth areas on level ice. To account for this spatial variability, we divided the
domain into a grid of non-overlapping 1.2 m by 1.2 m subdomains. For each subdomain we estimated the sill
from the variance of TLS points within a 5 m radius of the center of the subdomain and the range via marginal
likelihood optimization using GPyTorch® with a KeOps® kernel on an NVIDIA Quaddro P2000 GPU. The size
of the subdomains was chosen such that they were significantly smaller than the spatial scales of the pressure
ridges (which were at least 10 s of meters) and balancing GPU memory limitations with computational time.
After estimating the hyperparameters, we interpolated the gaussian processes on a regular grid with 10 cm spac-
ing. This surface reconstruction process is implemented in Project.merged points to image.
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Data Records

Repeat TLS data in Table 1 are available at the Arctic Data Center?!. The top level of the archive contains a direc-
tory for each Scan Area: Snow1, ROV (which includes the Snow?2 projects since they are in the same reference
frame), RS (April Remote Sensing site), and MET (single Project focused on Met City on 4 May). Within these
directories is a subdirectory for each Project that contains all data records for that Project (as described in the
Methods section). An illustrative directory tree for a Scan Area is shown below.

[Scan Area Name]

| [Project Name 0]

| lasfiles
ScanPos001 - SINGLESCANS - ... .las
ScanPos00zZ - SINGLESCANS - ... .las

| npyfiles_archive

| ScanPos001
Points.npy
Classification.npy
Reflectance.npy

| ScanPos002
Points.npy
Classification.npy
Reflectance.npy

| transforms
ScanPos001
L_Current_transform.npy
ScanPos002
L_current_transform.npy

| tiepoints.csv

| ScanPos001.DAT

|  ScanPos002.DAT

. e e .

| [Project Name 1]

| [Project Name 2]

Technical Validation

Alignment Validation. We qualitatively assessed the alignment results by examining the patterns of snow
accumulation and redistribution in comparison with the locations of the scan positions. In general, after the full
alignment process we did not find artifacts due to either the distance from the nearest scan position or on regions
observed from different scan positions. In contrast such artifacts were readily-apparent when conducting only
reflector alignment, indicating that local maxima and fine-scale vertical alignment steps improved the alignment
for observing snow processes. To quantitatively assess the uncertainty in our alignment procedure, we used a
Bayesian statistical model to compare changes in snow thickness measured by TLS with manual measurements
of snow thickness changes at snow thickness stakes in the Ridge Ranch mass balance site?, while accounting for
the uncertainties in the individual measurements. The Ridge Ranch mass balance site was located on level, first-
year ice within the ROV Scan Area from 19 January to 18 March (at which point ice deformation relocated Ridge
Ranch outside of the TLS measurement area). Ridge Ranch included nine snow thickness stakes, arranged in a
cross, with approximately eight meters between stakes. Each stake was frozen into the ice and had a metric length
scale marked on its side. Snow thickness was measured by manually observing the location of the snow surface on
this metric scale with an accuracy of 0.01 m. Changes in snow thickness at each stake can be determined by com-
paring repeat measurements. Because the stake was permanently frozen into the ice, these measurements directly
recorded changes in the snow surface height. They are unaffected by the changes in snow or snow-ice interface
properties that may change the penetration depth of a snow thickness probe*. Manual measurements at Ridge
Ranch were made on 28 January, 5 February, and 7 March. ROV TLS measurements were made on 25 January,
4 February, and 11 March (Table 1). Observers in the field did not observe snow accumulation or drifting snow
at Ridge Ranch during 25-28 January, 4-5 February, and 7-11 March. From these three TLS measurements and
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Evaluation First TLS Second TLS First Manual Second Manual
Period M ement M t M t M ‘emer it
1 2020-01-25 2020-02-04 2020-01-28 2020-02-05
2 2020-02-04 2020-03-11 2020-02-05 2020-03-07

Table 3. Evaluation periods for validating TLS alignment.

three manual stakes measurements, we defined two evaluation periods (Table 3) in which the TLS and the manual
measurements should observe the same change in the surface at each stake, if there were no measurement noise
or bias due scan misalignment.

We define Ski as the change in the snow surface observed by manual stake measurements at stake i over a
evaluation period k. Mathematically, Skiis the true change in the snow surface i plus noise due to measurement
error n1ki (Eq. 1). We consider the measurement accuracy of an individual stake reading (0.01 m) to represent two
standard deviations of the measurement noise. This implies that the standard deviation of the measurement
noise for a single stake reading is 0.005 m. Thus, we represent 1, as an instance of a zero-mean, normally distrib-
uted random variable with a variance g2 = 2*(0.005m)2. Note that each St is the difference of two independent
measurements, hence the multiplication by two in the variance. We define txi as the change in the snow surface
observed by TLS for each stake and evaluation period. #is the true change i plus measurement noise ki
minus a constant bias for the evaluation period bx due to scan misalignment (Eq. 3). To quantify the change
observed in the TLS data at a stake, we looked at the mean vertical distance for all exclusive pairs of horizontally
closest points within 10 cm of the stake (excluding the stake itself) in the scans at the beginning and end of the

B S RSB R A S A i R By R It A RSB SR O e poTmatle St st

beam spreading with distance.

Ski = Thi T M O
nki ~ N (0, 62) 2
byi = Tii + My = by ©)
myi ~ N (0, 03 ) €]

To quantify how misaligned our TLS measurements may be, we computed the posterior distribution of the
bias, bx, given our measurements at each stake. We define y«.i as the difference between the stake measurement sk
and the TLS measurement ti for each stake and evaluation period (Eq. 5). yki is equal to the bias for the evalua-
tion period bk plus the difference in the measurement noise for each measurement, which we denote by gxi. The
measurement noise for the TLS and stake measurements are independent and normally distributed, allowing us
to represent their difference as a zero-mean, normally distributed random variable whose variance is the sum
of the variance of each measurement noise. Thus, each difference yx.i is an instance of a normally distributed
random variable given by:

Yij = ski — tki = be + g0~ N(bx, 024) &)
Qi = mki — mki ~ N(O, o}y ;) (6)

o2 = 02 + o2
ki s tki (7)

Applying Bayes Rule, the posterior probability density of bk given the data for an evaluation period p(bx|y, )
is proportional to the prior probability density p(bx) multiplied by the likelihood p(bx|y,) (Eq. 8). yx denotes the
set of all observations for evaluation period k: , = Wer Ve Yin k- Equation 5 indicates that the likelihood
of a sinfgle observation is gaussian. Conditioned on the bias, the observations are independent. Hence the likeli-
hood of all observations is their product (Eq. 9). Finally, we chose to represent our prior for the bias as a normal
distribution with a mean of zero (we do not expect there to be any bias) and a variance ofjr 2= (0.02m)2 This
variance was chosen because a bias of greater than 0.04 m (twice the standard deviation of our prior) would be
obvious on manual inspection of the data, and was not observed. Moreover, the variance of the uncertainty in
the observations is lower than the variance of this prior. So increasing the variance of the prior has little impact
on the results (i.e., the information content of the observations is considerably higher than this prior). This yields
the following expression for the posterior probability density:

p(rly) o< pOIp(y,|bx) ®)
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Fig. 3 Comparison of snow surface changes measured manually at snow thickness stakes with the snow
surface changes at the same stakes measured by TLS during two evaluation periods (Table 3). Error bars show
the 95% confidence intervals of the measurement uncertainty for the manual measurement (Eq. 2) and the
TLS measurement (Eq. 4, note that each TLS measurement has an individual uncertainty which depends on
the distance of the stake from the scanner and the number of TLS points within 10 cm of the stake). The black,
dashed line is the 1:1 line (on which the manual measurement is equal to the TLS measurement). The grey
shading above and below line represents the +0.011 m uncertainty in our posterior estimate of the bias. No bias
between the manual and TLS measurements is visually apparent.

Expectation of Posterior
Evaluation Period | Density of Bias 95% Credible Interval
1 -0.001 m [-0.009 m, 0.007 m]
2 -0.004 m [-0.011 m, 0.004 m]

Table 4. Scan misalignment bias.

N
b b
< p®9 [T plryy) )
) bzk- N 1 2 -
o« exp =K ~Ilexp = (y,; — b
"B Gy (10)

Algebraic simplification of Eq. 10 yields that the posterior density p(biy,) is a gaussian (Eq. 11) whose mean
is the mean of the prior and the observations, each weighted by the inverse of their variance (Eq. 12). The vari-
ance of p(bx|y,) is determined from the sum of the inverse variances of the prior and the observations (Eq. 13).

p(bdy ) = N(u , 72
k

k k (11)
Y Y
u =rt? ki
k k2+
=1 g ki (12)
1_1 N1
72 72 -Z o2
k 0 =0 g ki (13)

We use the posterior density of the bias to establish a 95% credible interval (the interval between the 2.5th
and 97.5th percentiles in the distribution of a parameter) for the bias in our alignment procedure.
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Fig. 4 Histogram of vertical differences between TLS data points and reconstructed surface for a 250 m x 65m
region of sea ice containing a large ridge and level ice measured on 26 March 2020. The overlain curve shows
anormal distribution with the same median absolute deviation as the data. The 2.5th percentile to the 97.5th
percentile of the differences roughly matches a normal distribution but the tails are more extreme.

To validate the TLS alignment, we compared the snow surface change observed by TLS and manual meas-
urements (Fig. 3) at the Ridge Ranch mass balance site*! during evaluation periods 1 and 2 (Table 3). Each
evaluation period included at least one snow accumulation and redistribution event. The evaluation periods
collectively span 25 January to 11 March. Manual measurements indicated that most stakes experienced little to
no change in the snow surface in either evaluation period. The largest snow accumulation observed manually at
any of the stakes occurred during evaluation period 2, when 0.07 m of snow accumulated at two stakes (Fig. 3).
The TLS measurements, too, observed approximately 0.07 m of change at the same two stakes and little to no
change at the others (Fig. 3). With these data, we compute the posterior density of the bias (Table 4) following
Egs. 1-12. The estimated mean biases for evaluation period 1 and 2 are -0.001 m and -0.004 m, respectively.
And the minimum and maximum 95% credible interval bounds are -0.011 m and 0.007 m respectively. Thus,
we conclude that the bias due to scan misalignment is less than 0.011 m. We stress that these numerical values
are particular to the ROV and Snow2 scan areas at MOSAIC (regular ice deformation in the Snow1 area will
require future work to correct for). Future TLS measurement campaigns should conduct in-situ validation meas-
urements for their specific measurement sites.

Surface Reconstruction Validation. We validated our gaussian process regression approach to surface
reconstruction by examining the differences between the vertical components of TLS data points and the recon-
structed surface. Figure 4 shows an example of the distribution of these differences for a 250 m x 65 m region
reconstructed on a 10 cm grid containing a large ridge and level ice. The mean difference is 2.5 x 107 m, the
median difference is 6.5 x 10~ m, the standard deviation of the differences is 0.0054 m and the median absolute
deviation, a metric of the variability of data that is robust to extreme values®, for these data is 0.0017 m. This is
similar in magnitude to the median standard deviation of the vertical uncertainty due to laser beam divergence:
0.0026 m. These results combined with manual inspection of the differences suggest that almost all of the differ-
ences between the TLS points and the reconstructed surface can be attributed to the divergence of the laser beam
with distance from the scanner. A small fraction (less than 5%) of the differences are due to areas with high sur-
face roughness on horizontal length scales of less than the 10 cm grid spacing. These rough areas cause the tails of
the distribution of differences to be more extreme than a normal distribution (Fig. 4). For the purpose of assessing
snow accumulation, the uncertainties in our surface reconstruction approach are insignificant compared to the
alignment uncertainties (0.011 m, see above). However, we caution that applications involving surface roughness
may want to further develop surface reconstruction techniques.

Usage Notes

On 18 March, the ice was deforming within the ROV Scan Area while we were collecting TLS data. On 8 April,
Snow1 split in two while we were collecting TLS data. Data collected after the deformation began are in a second
project (‘mosaic_01_080420.RiSCAN’). We recommend caution when using data collected during deformation
events. The convention in project names was inadvertently switched from ‘"MMDDYY’ to ‘DDMMYY” at the
turn of the year (except for ‘mosaic_01b_061219.RiSCAN.RiSCAN.RiSCAN’ on 6 December). A function is
provided in pydar to convert a Project’s name to its date (pydar.mosaic_date parser). Sometimes extra
*RiSCAN’s were included in the Project name, these have no significance.
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Researchers interested in extending the functionality of pydar (e.g., adding feature tracking functionality
for ice deformation, point cloud segmentation, etc) are encouraged to contact the corresponding author in case
related efforts are underway. We also welcome discussions on potential uses of these data and collaborations
with other data products.

Code availability
pydar is available at Zenodo® (https://zenodo.org/record/8120858).
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