
1

Momentum-Based Nash Set-Seeking Over
Networks via Multi-Time Scale

Hybrid Dynamic Inclusions
Daniel E. Ochoa and Jorge I. Poveda

AbstractÐ Multi-time scale techniques, such as singular
perturbations and averaging theory, have played an impor-
tant role in the development of distributed Nash equilibrium
seeking algorithms for network systems. Such techniques
rely on the uniform asymptotic stability properties of the
dynamics that evolve in each of the time scales of the
closed-loop system. When such properties are absent, the
synthesis of multi-time scale Nash equilibrium-seeking al-
gorithms is more challenging and it requires additional
regularization mechanisms. In this paper, we investigate the
synthesis and analysis of these mechanisms in the con-
text of accelerated pseudogradient flows with time-varying
damping in non-cooperative games. Specifically, we in-
troduce a new class of distributed and hybrid Nash set-
seeking (NSS) algorithms that synergistically combine dy-
namic momentum-based flows with coordinated discrete-
time resets. The reset mechanisms can be seen as restart-
ing techniques that allow individual players to choose their
own momentum restarting policy to potentially achieve
better transient performance. The resulting closed-loop
system is modeled as a hybrid dynamic inclusion, which is
analyzed using tools from hybrid dynamical system’s the-
ory. Our algorithms are developed for potential games, as
well as for monotone games for which a potential function
does not exist. They can be implemented in games where
players have access to gradient Oracles with full or partial
information of the multi-agent system, as well as in games
where players have access only to measurements of their
costs. In the latter case, we use tools from hybrid extremum
seeking control.

Index TermsÐ Learning in Games, Nash equilibria, Non-
cooperative games, Hybrid Dynamical Systems.

I. INTRODUCTION

A
MONG the different notions of equilibria related to

game-theoretic models, the notion of Nash equilibrium

(NE), introduced in [1], has become ubiquitous in many

engineering and socio-technical systems such as transportation

networks [2], energy systems [3], [4], and robotic networks

[5], to name just a few. To converge to this equilibrium, dif-

ferent Nash equilibrium-seeking (NES) algorithms have been

developed during the last decades, see [6]±[9]. In the context

of game-theoretic control system design, many results in the

literature are somehow inspired or related to the time-invariant

pseudogradient (PSG) flows studied by Rosen in [10], which

take the form q̇ = −G(q), where G is the pseudogradient

vector of the game [10, Eq. (3.9)], and q ∈ R
n is the vector
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of actions of the players. For example, it is well-known that in

potential games PSG flows can robustly minimize the potential

function at a rate of order O(1/t). Additionally, for strongly

monotone games, pseudogradient flows can achieve NES with

exponential rates of convergence of order O(e−κt), with κ
being the strong monotonicity coefficient of G. These stability

and convergence results have become instrumental for the

design of extended NES algorithms that incorporate additional

mechanisms based on fast consensus dynamics [7], projections

[11], tracking terms [12], adaptive dynamics [13], etc. See also

the recent work [8] and references therein. However, while

these results have provided significant insight into the design

of NES dynamics, existing results still suffer from transient

limitations inherited from PSG flows, which can be further

exacerbated in games with shallow monotonicity properties.

On the other hand, compared to PSG flows, time-varying

momentum-based dynamics, which are common in the op-

timization and machine learning literature [14]±[18], have

not received as much attention in the context of games. In

particular, in this paper we are interested in studying the Nash

equilibria learning capabilities of the second-order dynamics

q̇ =
2

τ
(p− q), ṗ = −2τG(q), τ̇ = η, (1)

with τ(0)=T0>0 and η > 0, which are related to the

continuous-time approximation of Nesterov’s optimization al-

gorithm [14] via the transformation p = τ
2 q̇ + q when G is

a gradient operator. Such systems are particularly useful for

optimization problems with cost functions having vanishing

curvature at the optimal points, since they exhibit a geomet-

ric property, termed acceleration, able to minimize smooth

convex functions at a rate of order O(1/t2). Moreover, in

strongly convex optimization problems, systems of the form

(1), combined with suitable ªrestartingº heuristics, can achieve

exponential rates of convergence [14], [19]. Indeed, dynamics

of the form (1) have been shown to accelerate convergence in

adaptive estimation problems [20], extremum seeking control

[17], and concurrent learning techniques [21]. Hence, in light

of intriguing numerical results in the context of games, it

is natural to ask whether systems of the form (1) are also

suitable for the robust and efficient solution of NES problems

in noncooperative games, and whether these dynamics can be

extended to network games and model-free settings. In fact,

most of the existing results in the literature have focused only

on (non-uniform) convergence results in centralized potential

games [22], or in momentum-based dynamics with maximally

monotone operators G via Yosida regularizations of the form
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1
λ (I − (I + λG)−1), which are usually not suitable for dis-

tributed implementations [23].

Main Results: In this paper, we provide answers to the above

questions by using tools from nonlinear control theory. First,

we show that the direct implementation of (1) is, in general,

not suitable for the efficient distributed solution of Nash set-

seeking (NSS) problems in non-cooperative games, even when

the game is strongly monotone and there exists a potential

function. The limitations arise from three main structural

issues: First, the dependence on a ªcentralizedº momentum co-

efficient τ that precludes distributed implementations, and that

can also lead to uncoordinated algorithms with poor transient

performance. Second, the unbounded grow of τ in system (1)

makes them prone to instability under arbitrarily small additive

disturbances, unavoidable in feedback-based implementations.

Third, in non-potential games, traditional Lyapunov functions

used in optimization are not applicable, and solutions to (1)

may even diverge, despite game monotonicity and bounded

states τ .

While the above features might suggest that momentum-

based dynamics are problematic in the context of games, it

turns out that for suitable classes of non-cooperative games,

systems of the form (1) can be used to efficiently and

robustly find NE in a decentralized way, whenever they are

combined with suitable distributed discrete-time dynamics that

persistently reset some of the states of the players in a coordi-

nated way. However, in contrast to results in the optimization

literature [14], [17], [19], our results suggest that for general

(non-potential) noncooperative games the frequency of the

resets must occur in a certain frequency band to simultane-

ously achieve stability and suitable convergence properties.

We establish these results using tools from hybrid dynamical

systems (HDS) theory [24], and we leverage their intrinsic

robustness properties to extend the algorithms to decentralized

network games and model-free settings via multi-time scale

hybrid control theoretic tools. Based on this, the following

original contributions are presented in the paper:

i) We propose the first NSS algorithms with continuous-

time dynamic momentum and robust asymptotic stability

properties in non-cooperative games with n players. The

algorithms incorporate three main elements: a) a class of

distributed continuous-time pseudogradient-based dynamics

with time-varying momentum coefficients inspired by (1); b)

distributed periodic discrete-time resets implemented by the

players, which incorporate heterogeneous reset policies that

allow players to decide whether or not to restart their own

momentum; c) a robust set-valued distributed coordination

mechanism that synchronizes the reset times of the players

to induce suitable network-wide acceleration properties.

ii) To accommodate situations where players do not have

access to full-information Oracles that provide evaluations

of their pseudogradients, we introduce a new distributed

momentum-based hybrid NSS algorithm for games with par-

tial information, where players leverage communication with

neighbors to estimate their actions on-the-fly. The design of

these dynamics follows similar multi-time scale ideas used for

ODEs in the literature [7], but which are not directly applicable

to systems of the form (1). Indeed, unlike existing results based

on fast consensus dynamics and ªreducedº pseudogradient

flows, our reduced dynamics are hybrid and set-valued, which

prevents the direct application of standard tools for ODEs.

iii ) We present payoff-based versions of all our hybrid NSS

algorithms, suitable for model-free learning in non-cooperative

games where players have access only to measurements of

their cost. These dynamics exploit recent tools developed

in the context of averaging-based hybrid extremum seeking

control [17], and their analysis is fundamentally different from

other model-free non-hybrid algorithms studied in the litera-

ture, e.g. [11], [25]. In particular, the dynamics considered in

this paper have set-valued jump maps that lead to non-unique

solutions with non-trivial hybrid time domains having multiple

simultaneous jumps in the continuous time domain, a behavior

that is unavoidable in decentralized multi-agent HDS. We also

show that these adaptive dynamics can approximately recover

the convergence bounds of the model-based algorithms.

To the best of our knowledge, the algorithms presented in

this paper are the first in the literature to implement dynamic

momentum and distributed restarting techniques in n-player

noncooperative games.

The rest of this paper is organized as follows. Section II

presents preliminaries. Section III presents the problem state-

ment. Section IV presents the hybrid NSS dynamics for games

with full-information. Section V relaxes this assumption using

multi-time estimation techniques, and Section VI presents

the model-free results. Section VII presents the analysis, and

Section VIII presents the conclusions.

II. PRELIMINARIES

1) Notation: Given a compact set A ⊂ R
n and a vector z ∈

R
n, we use |z|A := mins∈A ∥z− s∥2. We use 1n to represent

an n-dimensional vector with 1 in all its entries, and define

1n · A := {x ∈ R
n : x1 = x2 = . . . = xn = a, a ∈ A}, for

any set A ⊂ R. We use S
1 := {z ∈ R

2 : z21 + z22 = 1} to

denote the unit circle in R
2, and T

n to denote the nth Cartesian

product of S
1. We also use rB to denote a closed ball in the

Euclidean space, of radius r > 0, and centered at the origin.

We use In ∈ R
n×n to denote the identity matrix, and (x, y) :=

[x⊤, y⊤]⊤ for the concatenation of the vectors x and y. Also,

we use D(k) to represent a diagonal matrix of appropriate

dimension whose diagonal is given by the entries of a vector

k. We also use k (resp. k) to denote the largest (resp. smallest)

entry of k. A function β : R≥0 × R≥0 → R≥0 is said to be

of class KL if it is non-decreasing in its first argument, non-

increasing in its second argument, limr→0+ β(r, s) = 0 for

each s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.

2) Games: In this paper, we consider noncooperative games

with n ∈ Z≥2 players, where each player i can control its

own action qi, and has access to the actions qj of neighboring

players j ∈ Ni := {j ∈ V : (i, j) ∈ E}, who are

characterized by an undirected, connected, and time-invariant

graph G = {E ,V}, where V = {1, 2, . . . , n} is the set of

players and E is the set of edges between players. We use

L to denote the Laplacian matrix of the graph G. The main

goal of each player i is to minimize its own cost function

ϕi : Rn → R by controlling its own action qi. We assume
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that the costs ϕi are twice continuously differentiable, and

we use q = (q1, q2, . . . , qn) to denote the overall vector of

actions of the game. We also use q−i to denote the vector of

all actions with the action of player i removed. To simplify our

exposition, we assume that the actions qi are scalars. However,

all our results also hold for vectorial actions by using suitable

Kronecker products. We use G to denote the pseudogradient of

the game, where q 7→ G(q) :=
(

∂ϕ1(q)
∂q1

, ∂ϕ2(q)
∂q2

, . . . , ∂ϕn(q)
∂qn

)

∈
R

n. Following standard assumptions in the literature of fast

NES [9] and accelerated optimization [14]±[18], in this paper

we will work with the following assumptions.

Assumption 1: The mapping G is ℓ-globally Lipschitz, i.e.,

there exists a constant ℓ > 0 such that |G(q)−G(q′)| ≤ ℓ|q−
q′|, for all q, q′ ∈ R

n. □

Assumption 2: The mapping G is 1/ℓ-cocoercive, i.e., there

exists ℓ such that
(

G(q)−G(q′)
)⊤

(q− q′) ≥ 1
ℓ |G(q)−G(q′)|2

for all q, q′ ∈ R
n. Moreover, |G(·)|2 is radially unbounded. □

The first property of Assumption 2 implies Assumption 1,

but the converse is not necessarily true in non-potential games

[26]. We will also use the following definition to characterize

the monotonicity properties of the games.

Definition 1: A game with pseudogradient G is said to be:

1) Monotone if
(

G(q)−G(q′)
)⊤

(q− q′) ≥ 0, for all q, q′ ∈
R

n.

2) Strictly monotone if
(

G(q)−G(q′)
)⊤

(q− q′) > 0, for all

q ̸= q′ ∈ R
n.

3) κ-Strongly Monotone with κ > 0, if
(

G(q)−G(q′)
)⊤

(q−
q′) ≥ κ|q − q′|2, for all q, q′ ∈ R

n.

4) κ-Strongly Monotone quadratic if it is a κ-Strongly

Monotone game with G(q) = Aq+b for some A ∈ R
n×n

and b ∈ R
n.

5) Potential if there exists a continuously differentiable and

radially unbounded function P : R
n → R, such that

G(q) = ∇P (q), for all q ∈ R
n. □

Remark 1: Cocoercive maps are monotone but not neces-

sarily strongly monotone. Games that are κ-strongly monotone

and ℓ-Lipschitz are κ/ℓ2-cocoercive [26, Prop. 2.1]. □

We will also work with the following assumption.

Assumption 3: The function ϕi : R → R is radially

unbounded in qi for ever q−i ∈ R
n−1 and all i ∈ V . □

3) Hybrid Dynamical Systems: To study our algorithms, in

this paper we consider HDS with state x ∈ R
n, and dynamics

x ∈ C, ẋ = F (x), and x ∈ D, x+ ∈ G(x), (2)

where x ∈ R
n is the state of the system, F : Rn → R

n is

called the flow map, G : Rn ⇒ R
n is a set-valued mapping

called the jump map, and C ⊂ R
n and D ⊂ R

n are closed

sets, called the flow set and the jump set, respectively [24].

We use H = (C,F,D,G) to denote the data of the HDS H.

For a precise definition of hybrid time domains and solutions

to HDS of the form (2), we refer the reader to [24, Ch.2]. The

following definitions will be used throughout the paper.

Definition 2: The compact set A ⊂ C ∪ D is said to be

uniformly globally asymptotically stable (UGAS) for system

(2) if ∃ β ∈ KL such that every solution x satisfies:

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j), ∀ (t, j) ∈ dom(x). (3)

for all x(0, 0) ∈ R
n. When β(r, s) = c1re

−c2s for some

c1, c2 > 0, the set A is uniformly globally exponentially

stable (UGES). When ∃ T ∗ > 0 such that β(r, s) = 0, ∀
s ≥ T ∗, r > 0, the set A is said to be uniformly globally

fixed-time stable (UGFxS). □

We will also consider ε-parameterized HDS of the form:

x ∈ Cε, ẋ = Fε(x), and x ∈ Dε, x
+ ∈ Gε(x), (4)

where ε > 0. For these systems we will study semi-global

practical stability properties as ε→ 0+.

Definition 3: The compact set A ⊂ C ∪ D is said to be

Semi-Globally Practically Asymptotically Stable (SGP-AS) as

ε → 0+ for system (4) if ∃ β ∈ KL such that for each pair

δ>ν>0 there exists ε∗ > 0 such that for all ε ∈ (0, ε∗) every

solution of (4) with |x(0, 0)|A ≤ δ satisfies

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) + ν, (5)

∀ (t, j) ∈ dom(x). When β is exponential, we say that A is

semi-globally practically exponentially stable (SGP-ES). □

The notions of SGP-AS (-ES) can be extended to systems

that depend on multiple parameters ε = (ε1, ε2, . . . , εℓ). In

this case, we say that A is SGP-AS as (εℓ, . . . , ε2, ε1) → 0+

where the parameters are tuned in order starting from ε1.

Definition 4 (Robustness): Consider the perturbed HDS

x+ e ∈ C, ẋ = F (x+ e) + e, (6a)

x+ e ∈ D, x+ ∈ G(x+ e) + e, (6b)

where e is measurable, and sup(t,j)∈dom(e) |e(t, j)| ≤ ε with

ε > 0. System (6) is said to be R-UGAS (resp. R-UGES) if:

1) it is UGAS (resp. ES) when ε = 0; and 2) it is SGP-AS

(resp. SGP-ES) as ε→ 0+. □

Definition 5: Two hybrid signals x1 : dom(x1) → R
n and

x2 : dom(x2) → R
n are said to be (T, J, ε)-close if: (1) for

each (t, j) ∈ dom(x1) with t ≤ T and j ≤ J there exists s
such that (s, j) ∈ dom(x2), with |t − s| ≤ ε and |x1(t, j) −
x2(t, j)| ≤ ε; (2) for each (t, j) ∈ dom(x2) with t ≤ T
and j ≤ J there exists s such that (s, j) ∈ dom(x1), with

|t− s| ≤ ε and |x2(t, j)− x1(t, j)| ≤ ε. □

III. PROBLEM STATEMENT AND MOTIVATION

A NE is defined as an action profile q∗ ∈ R
n that satisfies

ϕi(q
∗
i , q

∗
−i) = inf

qi∈R

ϕi(qi, q
∗
−i), ∀ i ∈ V. (7)

When the game is monotone, q∗ is a NE if and only if

G(q∗) = 0 [27, Prop. 2.1]. Moreover, strict monotonicity of G
implies that there is exactly one NE, if it exists. For κ-strongly

monotone games and monotone potential games, existence is

always guaranteed [28, Thm. 2.3.3].

Our goal is to efficiently and robustly find the set of points q∗

that satisfy (7), denoted ANE, using algorithms with dynamic

momentum. However, as the following example shows, this

task is not trivial, even for potential games.

Example 1: (Instability Under Small Disturbances) Con-

sider a duopoly game with pseudogradient G(q) = Aq + b,
where A = [10,−5;−5, 10], and b = [−250,−150]. This is a

κ-strongly monotone potential game, studied in [11, Sec. II]

using PSG flows. The unique NE is q∗ = (130/3, 110/3), and

since A is symmetric, the game has a (quadratic) potential
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Fig. 1. Instability of (1) in a duopoly game with perturbed gradients and
T0 = 2

√
2 × 10−3. The instability can be removed by incorporating

resets, which generate the stable trajectories shown in black.

function, which permits the direct application of [14, Thm. 3]

to conclude convergence of all functions q generated by (1)

towards the NE q∗. Nevertheless, if (1) is implemented with a

perturbed gradient G(q)+ e(t), where e is an arbitrarily small

bounded disturbance, the highly oscillatory unstable behavior,

shown in blue in Figure 1, emerges. In this case, there is no

β ∈ KL such that the bound (5) holds for the solutions of (1),

[29, Thm.1]. However, we will show that this bound actually

exists when the signals (τ, q̇) are reset, generating the stable

behavior shown in black color in Figure 1. □

The robustness issues illustrated in Example 1 prevent the

direct implementation of the momentum-based dynamics (1)

in noisy environments, or in settings where some of the states

or gradients are computed on-the-fly using multi-time scale

techniques such as singular perturbations or averaging theory.

In fact, such techniques usually require ªreducedº or ªaverageº

systems with stability properties characterized by KL bounds

of the form (3); see [30, Assumption 4.].

While the incorporation of resets can help stabilize system

(1), as the following example illustrates, uncoordinated resets

can eventually impede the potential advantages of using algo-

rithms with dynamic momentum.

Example 2: (Slow Convergence and Uncoordinated Resets)

Consider a distributed implementation of system (1) in a κ-

strongly monotone potential-game with 30 players and κ =
0.01. Each player i implements its own states (qi, pi, τi), with

dynamics q̇i =
2
τi
(pi − qi), ṗi = −2τi

∂ϕi

∂qi
, and τ̇i = η, with

η = 1
2 . Also, players implement periodic resets of (τi, q̇i)

every 25 seconds (in their own local time reference frame)

via the individual jump maps τ+i = 0.1 and p+i = qi. While

this periodic reset strategy has been shown to guarantee fast

convergence in centralized optimization problems, e.g., [31,

Thm. 1], Figure 2 shows the behavior in noncooperative games

with distributed and uncoordinated resets. As shown in blue,

the solutions of (1) actually converge to the NE, but at a

slower rate compared to the PSG flow. On the other hand, the

trajectory corresponding to players implementing coordinated

resets, shown in black color, achieves much faster performance

by exploiting momentum, c.f. Theorem 1. □

Fig. 2. Coordinated vs non-coordinated resets in a quadratic κ-strongly
monotone potential-game with κ = 0.01, ℓ = 100 and n = 30. The
insets show the evolution of the states τi with and without coordination
mechanisms.

The following example shows that even when resets are

implemented in a centralized manner, in non-potential games,

the solutions to (1) may not converge to the NE.

Example 3: (Instability in Non-Potential Games) We con-

sider a non-potential κ-strongly monotone quadratic game with

30 players and κ = 0.02. For this game, the standard PSG

flow guarantees exponential convergence via [10, Thm. 1].

However, as shown in color blue in Figure 3, system (1) gen-

erates trajectories that diverge, even when resets are (slowly)

implemented in a centralized manner. The same plot shows in

black color a trajectory that rapidly converges to the unique

NE of the game. We will show that this stable and fast behavior

can be guaranteed using a hybrid algorithm with distributed

coordinated resets that dissipate energy ªsufficiently oftenº via

suitable contraction properties; c.f., Theorem 3. □

IV. DISTRIBUTED HYBRID NSS DYNAMICS WITH

COORDINATED RESTARTING

To achieve robust NSS with dynamic momentum, we start

by endowing each player i ∈ V with a state xi = (qi, pi, τi) ∈
R × R × R>0, and a gradient Oracle that provides real-time

measurements of the partial derivative
∂ϕi(q)
∂qi

at the overall

action state q ∈ R
n. The reset mechanisms of the players make

use of three positive tunable parameters (η, T0, T ), which

satisfy T > T0 > 0 and 1/2 ≥ η > 0, and which are selected

a priori by the system designer. The state xi evolves according

to hybrid dynamics that are coordinated by a local timer τi.
In particular, the continuous-time dynamics of each player are

τi ∈ [T0, T ) =⇒





q̇i
ṗi
τ̇i



=Fi(x):=





2
τi
(pi − qi)

−2τi
∂ϕi(q)
∂qi

η



 , (8)

and the discrete-time dynamics are given by

τi = T =⇒





q+i
p+i
τ+i



=Ri(xi):=





qi
αipi + (1−αi)qi

T0



 . (9)

In (9), the parameters αi ∈ {0, 1} model the different

individual reset policies of the players. The choice αi = 0
leads to resets of the form p+i = qi, which corresponds to
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Fig. 3. Lack of convergence of trajectories of (1) in a non-potential κ-
strongly monotone quadratic game with κ = 0.02, ℓ = 0.0214, n =
30, T0 = 0.1, T = 3.74. The black line shows the trajectory of the
proposed hybrid controller with resets.

q̇+i = 0, i.e., the momentum of player i is reset. On the other

hand, αi = 1 corresponds to keeping pi constant.

Since players have access to Oracles that provide real-time

evaluations of their gradient, they can implement the hybrid

dynamics (8)-(9) in a fully decentralized way by running their

own timers τi to coordinate the flows (8) and the jumps

(9). However, as shown in Example 2, lack of coordination

between the resets of the players can hinder the acceleration

properties expected from using dynamic momentum. To ad-

dress this issue, we proceed to endow each player with a

distributed hybrid coordination mechanism for the resets.

A. Coordinated Distributed Resets

The coordination mechanism of each player j ∈ V uses a

set-valued coordination mapping Cj : R≥0 ⇒ R≥0, defined as

Cj(τj) :=







T if τj ∈ (T0 + rj , T ]
{T0, T} if τj = T0 + rj
T0 if τj ∈ [T0, T0 + rj)

, (10)

where the individual parameter rj > 0 satisfies rj∈
(

0, T−T0

n

)

.

Using Cj , the coordination mechanism works as follows:

whenever the timer of player i satisfies τi = T , the following

two events happen: 1) player i resets its own state xi using the

dynamics (9), and 2) player i sends a pulse to its neighbors

j ∈ Ni, who proceed to update their state xj as follows:

q+j = qj , p+j = pj , τ+j ∈ Cj(τj). (11)

Since player i can only signal its neighbors, the rest of the

players j /∈ Ni will keep their states constant after the above

two events, i.e., x+j = xj , for all j /∈ Ni.

The combination of continuous-time dynamics with mo-

mentum (8), and the set-valued discrete-time dynamics that

model the coordinated resets leads to a HDS of the form

(2), where multiple resets can happen simultaneously (in

the continuous-time domain) when more than two players

satisfy the condition τi = T . To ensure that this system has

suitable robustness properties we need to guarantee that small

disturbances in the states do not lead to drastic changes in

the behavior of the players. This property can be ensured by

working with well-posed HDS in the sense of [24, Ch. 7].

Roughly speaking, for a HDS to be well-posed, a suitable

(graphically) convergent sequence of solutions of the overall

system must also converge (in a graphical sense) to another

solution of the hybrid system. In the context of (8)-(11),

we need to guarantee, among other properties, that for each

τ0 ∈ [T0, T ] and each graphically convergent sequence of

solutions {τk}k∈N with components τi,k satisfying

0 ≤ τ1,k(0, 0) ≤ . . . ≤ τn,k(0, 0) < τ0, ∀ k ∈ N, (12a)

and lim
k→∞

τ1,k(0, 0) = . . . = lim
k→∞

τn,k(0, 0) = τ0, (12b)

the sequence {τk}k∈N converges (graphically) to a mapping

τ̃ that is also a solution starting from the initial condition

τ̃1(0, 0) = . . . = τ̃n(0, 0) = τ0. Thus, when τ0 = T , the

above conditions imply that players will reset their timers

τi,k sequentially with smaller and smaller times between

resets as k → ∞. Thus, in the limit, resets must also be

sequential with no time between resets. Since the sequence

depends on the initial conditions, a well-posed model of the

coordination mechanism must take into account every possible

order of sequential resets. In other words, if multiple players

simultaneously satisfy τi = T , then we need to consider

all possible sequential resets induced by such players. As

discussed in [32], this behavior is unavoidable in well-posed

multi-agent HDS with decentralized discrete-time dynamics.

B. Well-Posed Hybrid NSS Dynamics

To formalize the above discussion, we proceed to construct

a suitable jump map and a jump set that describe the behavior

of the overall NSS dynamics. Specifically, we introduce a new

set-valued mapping G0 : R3n ⇒ R
3n, which is defined to be

non-empty only when τi = T and τj ∈ [T0, T ) with j ̸= i,
for each i ∈ V , and has elements given by

G0(x) :=
{

(v1, v2, v3) ∈ R
3n : (v1,i, v2,i, v3,i) = Ri(xi),

v1,j = qj , v2,j = pj , v3,j ∈ Cj(τj), ∀ j ∈ Ni,

vj = xj , ∀ j /∈ Ni

}

, (13)

where x := (x1, x2, · · · , xn), and where the reset map Ri

and the coordination mapping Cj are defined in (9) and (10),

respectively. Using the construction (13), the jump map of the

overall hybrid system is defined as

x+ ∈ G1(x) := G0(x), (14)

where G0 is the outer-semicontinuous hull of G0, [33,

pp. 154], i.e., the unique set-valued mapping that satisfies

graph(G1) = cl(graph(G0)). By construction, the mapping

G1 is locally bounded and outer-semicontinuous in R
n×R

n×
[T0, T ]

n. Moreover, it preserves the sparsity properties of the

graph G, and guarantees that any pair of resets of the form

(9) satisfy condition (12).

Using the jump map (14), we can now define the hy-

brid momentum-based-NSS (HM-NSS) dynamics H1 :=
(C1, F1, D1, G1), with overall state x = (p, q, τ) ∈ R

3n, and

vectorial continuous-time dynamics:




q̇
ṗ
τ̇



 = F1(x) =





2D(τ)−1(p− q)
−2D(τ)G(q)

η1n



 , (15)

where p := (p1, p2, . . . , pn) and τ := (τ1, τ2, . . . , τn). The

flow set C1 is defined as:

C1 :=
{

x ∈ R
3n : q ∈ R

n, p ∈ R
n, τ ∈ [T0, T ]

n
}

, (16)
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Fig. 4. Scheme of Individual HM-NSS dynamics. Periodic coordinated
resets restart the state pi and the timer τi, where j ∈ Ni.

the jump map G1 is given by (14), and the jump set is

D1 :=
{

x ∈ R
3n : x ∈ C1, max

i∈V
τi = T

}

. (17)

Figure 4 shows a block-diagram representation of the hybrid

dynamics of each player.

The next lemma is instrumental for our results. All proofs

are presented in Section VII.

Lemma 1: The HDS (14)-(17) is well-posed in the sense of

[24, Def. 6.29]. Moreover, under Assumption 1, every maximal

solution of H1 is complete, and there are at most n jumps in

any continuous time interval of length 1
η (T−T0). Furthermore,

for each solution x and for all (t, j) ∈ T (x), we have that

x(t, j) ∈ Async := ({T0, T}n) ∪ (1n · [T0, T ]), where

T (x) := {(t, j) ∈ dom(x) : t+ j ≥ T ∗} , (18)

and T ∗ := (T − T0)/η + n. □

The qualitative behavior of system H1 will depend on

the choice of parameters (η, T, T0), which characterize the

frequency and the minimum and maximum values of the

momentum coefficient τ . Different choices of (η, T, T0) will

lead to different reset conditions (RCs). In turn, as hinted

in Example 3, and in contrast to standard optimization [17],

different types of games will require different RCs to guarantee

convergence to the set of NE. The RCs will be defined in

terms of the following condition numbers of the game, the

reset mechanism, and the graph:

σϕ :=
ℓ

κ
, σr :=

T

T0
, σL =

λmax(L)
λ2(L)

, (19)

where ℓ is given by Assumptions 1 or 2, κ is given in

Definition 1, and λ2(L), λmax(L) are the smallest positive and

the largest eigenvalues, respectively, of the Laplacian L.

C. Main Stability Results

We study the stability and convergence properties of the

dynamics H1 with respect to the compact set

A := Aqp ×Async, (20)

where Aqp := {(q, p) ∈ R
2n : p = q, q ∈ ANE}. The first RC

that we consider is given by

T 2 − T 2
0 >

ρJ
2

· (1− α) , (RC1)

where ρJ ∈ R≥0 is a parameter to be determined and α =
mini∈V αi. This condition will regulate how frequently players

reset their states. Also, let

γ(ρJ) :=

(

1− 1

σ2
r

− ρJ
2T 2

)

, (21)

where σr is defined in (19). This quantity will be instrumental

to characterize the rates of convergence of the algorithms.

1) Results for Potential Games: Our first result focuses on

monotone potential games and κ-strongly potential games.

Theorem 1: Let G describe a monotone potential game.

Suppose that Assumption 1 holds, and consider the HDS H1

under (RC1). Then, the following holds:

(i1) If α = 1n and ρJ ≥ 0 then the set A is R-UGAS.

Moreover, and during flows, for any i ∈ V the potential

function satisfies the bound

P (q(t, j))−P (ANE) ≤
cj

τ2i (t, j)
, ∀ (t, j) ∈ T (x), (22)

where {cj}∞j=0 ↘ 0+ depends on x(0, 0).

(i2) If α ∈ {0, 1}n, G describes a κ-strongly monotone

potential game and ρJ = κ−1, then the set A is R-UGES,

and there exists λ > 0 such that for each compact set

K0 ⊂ C1 ∪ D1 there exists M0 > 0 such that for all

solutions x with x(0, 0) ∈ K0, and for all (t, j) ∈ dom(x)
the following bound holds:

|q(t, j)− q∗| ≤M0e
−λ(t+j). (23)

(i3) If α = 0n, G describes a κ-strongly monotone potential

game and ρJ = κ−1, then the set A is R-UGES, and for

each compact set K0 ⊂ C1 ∪ D1 there exists M0 > 0
such that all solutions x with x(0, 0) ∈ K0, and for all

(t, j) ∈ dom (x) the following bound holds:

|q(t, j)− q∗| ≤ σr
√
σϕ (1− γ(ρJ))

α(j)
2 M0,

where α(j) := max{0, ⌊ j−n
n ⌋} and γ(ρJ) ∈ (0, 1). □

The results of Theorem 1 establish robust NSS for H1 in

monotone and strongly monotone potential games. Thus, un-

like system (1), for the hybrid dynamics H1 there exists a class

KL function β such that a bound of the form (5) holds under

small bounded additive disturbances on the dynamics. This

bound effectively rules out the instability observed in Figure

1. The bounds of Theorem 1 also establish suitable semi-

acceleration properties. Such bounds will eventually hold since

the UGAS result also implies that for all times (t, j) /∈ T (x),
the trajectories remain (uniformly) bounded, and Lemma 1

guarantees completeness of solutions. Indeed, solutions of H1

exhibit a ªtransient phaseº, where the momentum coefficients

synchronize to each other, followed by a ªsemi-acceleration

phaseº where the system behaves as having a global mo-

mentum coefficient coordinating the network. Figures 1 and

2 illustrate the advantages of using the hybrid dynamics

compared to the ODE (1).

Remark 2: When all players implement the reset protocol

αi = 1, item (i1) establishes a semi-acceleration property of

order O(1/τ2) that holds during intervals of flow in T (x).
Since intervals of flow in T (x) have a length proportional

to T − T0, they can be made arbitrarily large by increasing

T . Moreover, if all players initialize their coefficients as

τi(0, 0) = T0, then during the first interval of flow we have
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Fig. 5. Phase planes showing the trajectories of the actions of the players resulting from the HM-NSS dynamics in a non-potential 2-player κ-
strongly monotone quadratic game with κ = 6, ℓ = 6.2 and τ(0, 0) = 0.1 · 12. Asymptotic stability is achieved by reducing T .

that P (q(t, 0)) − P (q∗) ≤ d0

t2 , for all (t, 0) ∈ dom(x),
where d0 > 0 is determined by the initial conditions of the

system and the properties of the pseudogradient G. To the

best knowledge of the authors, the result of Theorem 1-(i1)

is the first in the literature that establishes R-UGAS and this

type of acceleration property in distributed NES dynamics.

Centralized convergence results without resets were recently

studied independently in [8]. □

Remark 3: For κ-strongly monotone potential games, the

reset policy αi = 0, ∀i ∈ V , guarantees exponential NSS with

rate of convergence dictated by 1− γ
(

κ−1
)

. In this case, by

borrowing results from the literature on centralized accelerated

optimization [17], [19], we can consider a ªquasi-optimalº

restarting parameter T = e
√

1
2κ + T 2

0 , which guarantees

acceleration-like exponential convergence of order O(e−
√
κt)

whenever T0 ≪ 1. Finally, the result of item (i2) shows that

the stability and convergence properties of H1 are robust to

heterogeneous reset policies in the game. □

2) Results for Non-Potential Games: When a potential func-

tion does not exist, the analysis of the HDS H1 is more

challenging. To study this case, we introduce the following

matrix parameterized by (ρF , δ) ∈ R>0 × R≥0:

Mδ(q, ρF ) := In − Sδ (q, ρF )Sδ (q, ρF )
⊤
, (24)

with Sδ : Rn × R>0 → R
n×n given by the scaled matrix

Sδ(q, ρF ) := χ(ρF , δ)
1
2

(

ρF In − ∂G(q)
)

,

where ∂G is the Jacobian of G, and where the mapping χ :
R>0 × R≥0 → R>0 is given by

χ(ρF , δ) =
T 2

1− δT 2
· 1

ρF (1− η)− δρ2F
,

which is defined for all arguments such that δT 2 < 1 and

1 − η > δρF . We use the following definition to extend [34,

Def. 4.1.2] to matrices of the form (24).

Definition 6: The mapping q 7→ Sδ(q, ρF ) is ρF -Globally

Contractive
(

ρF -GC
)

if Mδ(q, ρF ) ≻ 0 for all q /∈ ANE. □

Note that when Mδ ≻ 0, the coefficient χ characterizes the

level of contraction of Sδ . Indeed, Mδ ≻ 0 if and only if

1

χ(ρF , δ)
≥ σmax

(

ρF In − ∂G(q)
)2

, (25)

where σmax(·) is the maximum singular value of its argument

[35, Thm. 7.7.2]. Using the definition of χ, and inequality

(25), it can be observed that in order to ensure that Sδ is ρF -

GC for some pair (δ, ρF ), the resetting parameter T cannot be

chosen arbitrarily large. Example 4 illustrates this point.

Example 4: Consider a κ-strongly monotone quadratic

game with κ = 6, and

G(q) =
(

6 1.5
−1.5 6

)

(q − q∗) , (26)

where q∗ = (2,−2). First, let δ = 0, and note that for this

game M0(q, ρF ) = D (m0(ρF )12) ∈ R
2×2, where

m0(ρF ) = 1− T 2 4(ρF − 12)ρF + 153

4(1− η)ρF
.

Notice that 4(ρF − 12)ρF + 153 > 0 for all ρF ∈ R>0, and

recall that η ≤ 1
2 by assumption. Thus, for all ρF > 0 there

exists T̄ ∈ R>0 such that M0(q, ρF ) ≻ 0 for all T ∈ (0, T̄ ),
and M0(q, ρF ) ⪯ 0 for T ≥ T̄ . Similarly, when δ > 0 we

have that if Sδ is ρF -GC, then S0 is also ρF -GC. Thus, we

can conclude that for every ρF and δ ≥ 0 there exists T̄ such

that Sδ is not ρF -GC for any T ≥ T̄ . □

By using the global contractivity property of Definition 6 to

inform the tuning of the resetting parameters of H1, we can

achieve NSS in non-potential games.

Theorem 2: Let G describe a strictly monotone game, and

suppose that Assumptions 2 and 3 hold. Consider the HDS

H1 under (RC1) with ρJ ≥ 0 and with reset policy α = 1n.

If S0 is ℓ-GC then the set A is R-UGAS, for every i ∈ V , and

for all solutions x the following bound holds during flows

|G(q(t, j))|2 ≤ c̃j
τ2i (t, j)

, ∀ (t, j) ∈ T (x), (27)

where {c̃j} ↘ 0+ is a sequence parameterized by x(0, 0). □

Unlike Theorem 1, in non-potential games the ρF -global-

contractivity of Sδ plays a fundamental role in the stability

analysis of H1. In particular, the ℓ-GC property of Sδ will

guarantee a suitable dissipativity property during flows via

Lyapunov-based tools. Note that, while in Theorem 2 this is

only a sufficient condition, the plots of Figure 5 indicate that

keeping T ªsufficiently smallº is also a necessary condition

to preserve stability in non-potential games. In this figure, we

show the phase plane of solutions to H1 with different values

of T , in a game with pseudogradient given by (26).
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Next, we provide a sufficient condition on the parameter T
such that S0 is ℓ-GC in cocoercive strictly monotone games.

Lemma 2: Suppose that Assumption 2 holds, and G de-

scribes a strictly-monotone game. Let (η, T, ℓ) satisfy:

0 < T 2 <
1− η

2ℓ
. (RC2)

Then, S0 is ℓ-GC. □

We now turn our attention to games that are κ-strongly

monotone and ℓ-Lipschitz. For these games, we ask that the

contractivity properties of Sδ hold with δ > 0, and that (RC1)

holds with a particular value of ρJ .

Theorem 3: Suppose that Assumption 1 holds and let G
describe a κ-strongly monotone game. Consider the HDS H1

under (RC1), and suppose that Sδ is (σϕℓ)-GC with 0 < δ <
(1− η)/(σϕℓ). Then, the following holds:

(i4) If α ∈ {0, 1}n and ρJ = 0, then A is R-UGES, and there

exists λ > 0 such that for each compact set K ⊂ C1∪D1

there exists M0 > 0 such that for all solutions x, with

x(0, 0) ∈ K0, the bound (23) holds.

(i5) If α = 0n and ρJ = σ2
ϕκ

−1, then A is R-UGES and for

each compact set K0 ⊂ C1 ∪ D1 there exists M0 > 0
such that for all solutions x, with x(0, 0) ∈ K0, and for

all (t, j) ∈ dom (x), the following bound holds:

|q(t, j)− q∗| ≤ σrσϕ (1− γ (ρJ))
α(j)
2 M0,

where α(j) := max{0, ⌊ j−n
n ⌋}, and γ (ρJ) ∈ (0, 1). □

Before commenting on the implications of Theorem 3, we

present a reset condition for κ-strongly monotone games that

is analogous to the one of Lemma 2.

Lemma 3: Suppose that Assumption 1 holds and that G
describes a κ-strongly monotone game. Let (η, T, σϕℓ) satisfy:

0 < T 2 <
1− η − δσϕℓ

σϕℓ− κ+ δ(1− η − δσϕℓ)
, (RC3)

with 0 ≤ δ < (1− η)/(σϕℓ). Then Sδ is (σϕℓ)-GC. □

Remark 4: When ρJ = σ2
ϕκ

−1, the conjunction of (RC1)

and (RC3) imposes upper and lower bounds for the reset times

of the HDS H1 for all times (t, j) ∈ T (x). This result is in

contrast to the case of potential games (and standard convex

optimization problems) with periodic restarting where only

a lower bound between resets is usually needed to achieve

exponential convergence [17], [19]. Instead, Theorem 3 asks

for the resets to occur in a particular frequency band: they

should not occur too frequently (i.e., T should not be too

small) such that (RC1) holds and the distance |q− q∗| shrinks

by a constant quantity after each interval of flow; however,

resets should also happen frequently enough (i.e., T should

not be too large) such that Sδ remains (σϕℓ)-GC. □

The next lemma provides a sufficient condition to guarantee

feasibility of the reset conditions of Theorem 3.

Lemma 4: For any κ > 0, η ≤ 1/2 and σϕ such that σ4
ϕ −

σ2
ϕ < 2(1−η), there exists (T, T0) such that (RC1) and (RC3)

hold with ρJ = σ2
ϕκ

−1, provided δ is sufficiently small. □

In Theorem 3, the restarting policy α = 0n leads to

exponential NSS with rate of convergence characterized by

(1− γ(σ2
ϕ/κ)). For this coefficient, one can choose a ªquasi-

optimalº restarting parameter T to induce an acceleration-like

property in κ-strongly monotone games:

Lemma 5: Under the Assumptions of Theorem 3-(i5), and

for any ν > 0, the choice T = T opt := eσϕ

√

1
2κ +

T 2
0

σ2
ϕ

guarantees that |q(t, j)− q∗| ≤ ν for all t ≥ tνopt , where

topt
ν =

1

η

(

eσϕ

√

1

2κ
+
T 2
0

σ2
ϕ

− T0

)

ln

(

σϕσrM0

ν

)

,

and M0 is a constant that depends on |q(0, 0)− q∗|. Moreover,

the convergence is of order O(e−
√
κt/σϕ) as T0 → 0+. □

Remark 5: The result of Lemma 5 showcases the exponen-

tial bound induced by the HM-NSS dynamics: as σϕ → 1,

the convergence is of order O(e−
√
κt), which, compared to

PSG flows, is advantageous in games with low curvature and

moderate condition number, see Figure 3. However, as σϕ in-

creases, the theoretical convergence rate decreases. Whether or

not a small σϕ is a necessary condition to achieve acceleration

in games with dynamic momentum remains an open question.

Additional numerical experiments that explore this question

can be found in the extended manuscript [36]. □

It is possible to find additional conditions on the game and

the parameters of H1 such that T opt satisfies (RC1) and (RC3).

However, such conditions are rather involved and unintuitive,

and therefore are omitted for brevity. Yet, we note that in

Example 3 the quasi-optimal restarting T opt can be verified to

be feasible. We also note that, based on numerical experiments,

our theoretical bounds are conservative, see Figure 3. Indeed,

for κ-strongly monotone quadratic games, it is possible to

obtain less conservative reset conditions (RC2) and (RC3) by

using a different Lyapunov function that leverages the affine

structure of the pseudogradient. See the extended manuscript

[36] for more details.

Remark 6: The results of Theorems 2 and 3 can also be

applied to games with a potential function P and a vector of

weights ω ∈ R
n such that D(ω)∇P is strictly or κ-strongly

monotone, provided G := D(ω)∇P satisfies the required

conditions in Sδ . Such weighted potential games have been

recently studied in [37] in the context of congestion games. □

V. HYBRID MOMENTUM-BASED NSS WITH PARTIAL

INFORMATION

In the previous section, we assumed that players had access

to individual Oracles able to generate measurements of
∂ϕi(·)
∂qi

at the overall state q. In this section, we relax this assumption

by considering Oracles that provide evaluations of these

functions. Thus, to perform gradient evaluations, players need

to estimate on-the-fly the overall state q.

A. Individual Multi-Time Scale Hybrid Dynamics

To achieve distributed NSS over graphs with partial in-

formation, we proceed to endow each player i ∈ V
with an auxiliary state e

i that serves as an individual

estimation of the actions of the other players: e
i :=

(ei1, e
i
2, . . . , qi, . . . , e

i
n−1, e

i
n) ∈ R

n. Since players do not

need to estimate their own action, it is also convenient to

introduce the auxiliary state e
i
−i ∈ R

n−1 which contains
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Fig. 6. Scheme of Individual HM-NSS dynamics for games with partial
information. Consensus dynamics are implemented to estimate the
actions of other players. In the figure, j ∈ Ni.

the same entries of e
i with the exception of qi, which is

removed. Using this notation, we now assume that each player

i has access to individual gradient Oracles characterized by

mappings of the form (qi, e
i
−i) 7→ Ĝi(qi, e

i
−i), which satisfy

Ĝi(qi, q−i) = ∂ϕi(q)
∂qi

. Following similar notation used in the

literature of network games [7], we define the matrices

Qi :=

(

I(i−1) 0(i−1)×1 0(i−1)×(n−i)

0(n−i)×(i−1) 0(n−i)×1 I(n−i)

)

,

Pi :=
(

01×(i−1) 1 01×(n−i)

)

.

By using these definitions, each player i now implements the

following momentum-based augmented continuous-time NSS

dynamics:










q̇i

ṗi

τ̇i

ė
i
−i











=









2
τi
(pi − qi) + Pi

∑

j∈Ni
(ei − e

j)

−2τiĜi(qi, e
i
−i)

η
− 1

εQi

∑

j∈Ni
(ei − e

j)









, (29)

where ε > 0 is a new tunable parameter. These dynamics

are implemented whenever the state τi satisfies τi ∈ [T0, T ).
The momentum-based dynamics (29) implement a dynamic

consensus mechanism with state e
i
−i. This mechanism uses a

high gain 1
ε to induce a time-scale separation in the flows of the

hybrid algorithm. In particular, if the states ei were to instanta-

neously achieve their steady state value, the flows (29) would

reduced to the flows (15). When players are uncoordinated, the

individual resets are triggered by the condition τi = T , and are

given by x+i = Ri(xi), e
i+
−i = e

i
−i, where Ri is defined in (9).

However, lack of coordination between resets can induced the

same issues discussed in Example 2. To avoid this issue, we

will incorporate the hybrid coordinated restarting mechanism

described in Section IV-A. Figure 6 shows a block-diagram of

the multi-time scale hybrid dynamics of each player.

B. Well-Posed Coordinated HDS with Partial Information

To write the coordinated HDS in vectorial form, we in-

troduce the matrices Q := D(Qi) ∈ R
(n2−n)×n2

and

P := D(Pi) ∈ R
n×n2

, and note that q = Pe ∈ R
n2−n.

Additionally, we define the state q̂ := Qe, such that using

PP⊤ = In, QQ⊤ = In2−n, and PQ⊤ = 0, we can write

e = ψ(q, q̂) := P⊤q + Q⊤q̂, where e =
(

e
1, · · · , en

)

,

and express the overall hybrid NSS dynamics as a HDS (2)

with data H2 = (C2, F2, D2, G2) and state (x, q̂), where

x := (q, p, τ) ∈ R
3n. The flow map is given by









q̇
ṗ
τ̇
˙̂q









=F2(x, q̂):=









2D(τ)−1(p− q)− PLψ(q, q̂)

−2D(τ)Ĝ(ψ(q, q̂))
η1n

− 1
εQLψ(q, q̂)









, (30)

where L := L ⊗ In denotes the communication matrix of the

graph G. The continuous-time dynamics in (30) are allowed

to evolve whenever (x, q̂) belongs to the flow set:

C2 :=
{

(x, q̂) ∈ R
n2+2n : q ∈ R

n, p ∈ R
n,

τ ∈ [T0, T ]
n, q̂ ∈ R

n2−n
}

. (31)

On the other hand, the jump set is defined as:

D2 :=
{

(x, q̂) ∈ R
n2+2n : x ∈ C, max

i∈V
τi = T

}

, (32)

and the discrete-time dynamics of the algorithm are given by:

(x+, q̂+) ∈ G2(x, q̂) := G1(q, p, τ)× {q̂}, (33)

where G1 is defined as in (14). Similar to Lemma 1, the next

lemma follows directly by construction of the HDS.

Lemma 6: For the HDS H2 := (C2, F2, D2, G2), all the

properties of Lemma 1 still hold. □

We will study the stability properties of the HDS H2 with

respect to the following compact set:

AG := A× {Q(1n ⊗ q∗)}, (34)

where A was defined in (20). In this case, we will use the

following restricted reverse-Lipschitz assumption, also used

in [22] for NES with static inertia.

Assumption 4: There exists ζ > 0 such that

|G(q)− G(q∗)| ≥ ζ |q − q∗|, for all q ∈ R
n. □

The next result leverages items (i1)-(i5) of Theorems 1-3.

Theorem 4: Let G describe a strictly monotone game. Sup-

pose that Assumptions 2, 3 and 4 hold, and consider the HDS

H2 under (RC1). If Sδ is ℓ−GC with 0 < δ < (1−η)/ℓ, then

under any of the conditions (i1)-(i5) the following holds:

(a) For all ε ∈ (0, ε∗δ), where ε∗δ is given by (28), the set AG

is R-UGAS.

(b) For each (t̂, ĵ, ν) ∈ R
3
>0 and each compact set Kx×Kq̂ ⊂

C2 ∪D2, there exists ε∗∗ such that for each ε ∈ (0, ε∗∗)
and each solution of H2 with x(0, 0) ∈ Kx and q̂(0, 0) ∈
Kq̂ , there exists a solution x̃ of system H1 with x̃ ∈ Kx

such that x and x̃ are (t̂, ĵ, ν)-close. □

ε
∗
δ :=

1

2σL
√
n



1 + σ
2
r

max

{

1
T2

+ 4
ℓ

Tλmax(L)
, 2 + 2

ℓ
Tλmax(L)

}

δmin {1, ζ2}





−1

(28)
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Fig. 7. Trajectories of q, q̂ in a non-potential κ-strongly monotone
quadratic game with n = 30, κ = 0.01, ℓ = 0.1, τs(0, 0) =
0.1 · 1n, and ε = 5 × 10−3. The inset shows the distance to q∗.

Item (a) of Theorem 4 establishes robust stability and con-

vergence properties for the hybrid NSS dynamics H2. On the

other hand, item (b) establishes that, on compact sets of initial

conditions and on compact time domains, the trajectories x
will behave as the trajectories of the ªfull-informationº system

H1 as ε → 0+ in (30). In particular, by combining items (a)

and (b), we recover the convergence bounds of Theorems 1, 2,

and 3, now in a semi-global practical sense as ε → 0+. This

behavior is illustrated in Figure 7, which shows the trajectories

q and q̂ in a κ-strongly monotone game. As observed, the

solutions of H2 approximate those of H1 as ε→ 0+.

Remark 7: Assumption 4 always holds for κ-strongly

monotone games with ζ = κ. Hence, for these games one

can compute an alternative expression of ε∗δ by substituting

Assumptions 2-4 in Theorem 4 by Assumption 1 when Sδ is

(σϕℓ)-GC. Moreover, to guarantee that Sδ is ℓ-GC, a suitable

upper bound for T can be obtained by mirroring the derivations

of Lemma 3, which we omit here due to space limitations. □

To our best knowledge, Theorem 4 is the first result in

the literature that establishes robust convergence and stability

properties for decentralized momentum-based NSS algorithms

over graphs. Note that the stable incorporation of the multi-

time scale consensus mechanism is enabled by the use of

resets, since otherwise no KL bound (or strong Lyapunov

function) would exist for the reduced dynamics of the flows.

VI. MODEL-FREE NSS WITH MOMENTUM

We now dispense with the gradient Oracles considered

in the previous sections, and we design momentum-based

model-free hybrid NSS dynamics, suitable for applications

where players have access only to real-time measurements of

the signals that correspond to their cost functions ϕi (e.g.,

the difference between the individual cost and revenue in a

market), which are generated by the game. Such algorithms

can be designed via tools recently developed in the context of

hybrid equilibrium seeking control [17].

A. Model-Free NSS Dynamics

To achieve model-free NSS, each player i generates an

individual probing signal t 7→ µi(t), obtained as the solution of

a dynamic oscillator with state µi := (µ̃i, µ̂i) ∈ R
2, evolving

on the unit circle S
1 according to

µ̇i =
1

εp
Riµi, µi ∈ S

1, Ri := 2πςi

(

0 1
−1 0

)

, (35)

where εp and ςi are positive tunable parameters. Note that

S
1 is forward invariant under the dynamics of µi. Using this

probing signal, each player implements the flows:




q̇i
ṗi
τ̇i



 =





2
τi
(pi − qi)

− 4
εa
τiϕi(q + εaµ̃)e

⊤
1 µi

η



 , (36)

where µ = (µ1, µ2, . . . , µn) ∈ R
2n, and where µ̃ is the vector

that contains the odd components of µ. The dynamics (36) use

real-time measurements of the cost ϕi, and are implemented

whenever τi ∈ [T0, T ). Conversely, when τi = T and players

are uncoordinated, they reset their states according to the

dynamics x+i = Ri(xi), µ+
i = µi, where Ri is defined as

in (9). The constant εa > 0 is also a tunable parameter.

We impose the following assumption on the parameters ςi
of (35), which is standard in the literature [11], [25].

Assumption 5: For all i, ςi is a positive rational number,

ςi ̸= ςj , ςi ̸= 2ςj , ςi ̸= 3ςj , for all i ̸= j ∈ V . □

As in the model-based case, an uncoordinated implemen-

tation of the model-free hybrid dynamics can be detrimental

to the stability and/or transient performance of the algorithm.

Thus, we incorporate the hybrid coordination mechanism

described in Section IV-A to coordinate the resets of the

players, which results in the following discrete-time dynamics

(x+, µ+) ∈ G3(x, µ) := G1(x)× {µ}, (37)

where G1 is given by (14). This jump map will preserve the

sequential nature of the resets needed to guarantee a well-

posed HDS that satisfies (12). Using ϕ̄ := (ϕ1, ϕ2, . . . , ϕn),
the continuous-time dynamics of the model-free hybrid NSS

algorithm can be written in vector form as:








q̇
ṗ
τ̇
µ̇









= F3(x, µ) :=









2D(τ)−1(p− q)
− 4

εa
D(τ)ϕ̄(q + εaµ̃)µ̃

η
1
εp
D(Ri)µ









, (38)

and the flow and jump sets are defined as:

C3 := C1 × T
n, and D3 := D1 × T

n. (39)

Figure 8 shows a scheme of the proposed algorithm.

B. Semi-Global Practical Stability Results

The data H3 = (C3, F3, D3, G3) defines the third hybrid

NSS dynamics considered in this paper. The stability and

convergence properties of H3 are given in the following

theorem, which also leverages items (i1)-(i5) of Theorems 1-3.

Theorem 5: Let G describe a strictly monotone game, and

consider the HDS H3 under (RC1). Then, under any of the

conditions (i1)-(i5) the following holds:

(a) The set A× T
n is SGPAS as (εp, εa) → 0+.
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Fig. 8. Scheme of Individual Model-Free HM-NSS dynamics with real-
time measurements of the cost. In the figure, j ∈ Ni.

(b) For each (t̂, ĵ, ν) ∈ R
3 and each compact set Kx ⊂

C1 ∪ D1, ∃ ε∗a > 0 s.t. ∀ εa ∈ (0, ε∗a) ∃ ε∗p > 0 s.t.

∀ εp ∈ (0, ε∗p), and for each trajectory x of system H3

with x(0, 0) ∈ Kx there exists a solution x̃ of system H1

such that x and x̃ are (t̂, ĵ, ν)-close. □

The result of Theorem 5 establishes two key properties:

First, for any desired precision ν > 0, and any compact set of

initial conditions Kx, every solution of the HDS H3 initialized

in Kx will satisfy a bound of the form1

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j) +
ν

2
, (40)

with β ∈ KL, provided the parameters εa and εp are suffi-

ciently small. Second, selecting εa and εp sufficiently small

leads to trajectories x of H3 with approximately the same fast

convergence bounds established in Section IV-C.

Remark 8: The model-free dynamics H3 are based on

averaging theory for (perturbed) hybrid systems [17], [30].

Thus, as εa, εp → 0+ the trajectories of H3 behave as their

average hybrid dynamics (modulo a small perturbation), which

are precisely given by H1. Both dynamics are set-valued,

which differs from existing results in the literature of model-

free Nash set-seeking [11]. Figure 9 compares a solution to

H3 and a solution to the model-free dynamics of [11] based

on PSG flows, in a κ-strongly monotone quadratic game. □

We finish this section by commenting on the extensions of

system H3 to applications where players could have access

to an individual ªBlack-Box Oracleº that allows them to

evaluate (as opposed to measure) their local cost ϕi at their

current state qi, using estimations of the actions of the other

players and without knowledge of the mathematical form of

ϕi (e.g., using dynamic simulators). In this case, we can

follow the same approach of Section V, by incorporating an

auxiliary estimation state q̂. In this case, the hybrid system

H4 = (C4, F4, D4, G4) will have a flow map given by












q̇
ṗ
τ̇
µ̇
˙̂q













= F4(ζ) :=













2D(τ)−1(p− q)− PLψ(q, q̂)
− 4

εa
D(τ)ϕ̄(ψ(q + εaµ̃, q̂))µ̃

η
1
εp
D(Ri)µ

− 1
εc
QLψ(q, q̂)













, (41)

1We note that |µ(t, j)|Tn = 0 for all (t, j) in the domain of the solutions.

Fig. 9. Trajectories of H1 and H3 in a non-potential κ-strongly
monotone quadratic game with κ = 0.197, ℓ = 0.2 and n = 10.

a jump map G4(x, µ, q̂) := G1(x)×{µ}×{q̂}, flow set C4 :=
C1 × T

n × R
n2−n and jump set D4 := D1 × T

n × R
n2−n.

For this hybrid system, a result like Theorem 5-(a) also holds,

now with respect to the set A × T
n × {Q(1n ⊗ q∗)} and

as (εp, εa, εc) → 0+. Similarly, a result like Theorem 5-(b)

holds by noting that the average hybrid dynamics of H4 are

precisely given by the HDS H2 (modulo a small perturbation

on the gradient), whose robust stability properties were already

established in Section V. Thus, we can follow exactly the same

steps of the proof of Theorem 4 to obtain an equivalent result.

VII. ANALYSIS AND PROOFS

In this section, we present the main proofs of our results.

A. Proofs of Section IV

Proof of Lemma 1: Well-posedness follows directly by [24,

Thm. 6.30], since F1 is continuous, C1 and D1 are closed sets,

and G1 is outer-semicontinuous (OSC) and locally bounded

(LB) in D1. To rule out finite escape times it suffices to study

the behavior of the states (q, p). Using Assumption 1, the form

of (15), and the fact that G(q∗) = 0, we have that |q̇| ≤
2
T0
|p − q|, |ṗ| ≤ 2Tℓ|q − q∗|, which implies that |(q̇, ṗ)| ≤

ℓ̃|(q, p) − (q∗, q∗)|, with ℓ̃ := 2
√
3max{ 1

T0
, T ℓ}. Thus, by

the Gronwall-Bellman inequality, the flow map (15) does not

generate finite escape times. Moreover, since τ+ ∈ {T0, T}n,

we have that G1(D) ⊂ C1 ∪D1, which implies that solutions

do not stop due to jumps leaving the set C1∪D1. The dynamics

of τ are decoupled and can be written as:

τ ∈ Cτ := [T0, T ]
n, τ̇ = η1n, (42a)

τ ∈ Dτ :=
{

τ ∈ Cτ : max
i
τi = T

}

, τ+ ∈ Gτ (τ), (42b)

where Gτ (τ) is the projection of G1 into the τ -component,

which is independent of (p, q). This hybrid system is well-

posed by construction, and by [32, Thm. 1] it renders Async

UGFxS, with a convergence bound T ∗ given by T ∗ :=
1
η (T − T0) + n, ∀ τ(0, 0) ∈ [T0, T ]

n. Moreover, by [32,

Thm. 1], each solution has at most n jumps in any interval

of length L := 1
η (T − T0), and, for any pair of hybrid times

(t, j), (s, i) ∈ dom (τ) with t+ j ≥ s+ i ≥ T ∗ the following

dwell-time condition holds L + t − s ≥
⌊

j−i
n

⌋

L, where ⌊·⌋
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denotes the floor function. Thus, any solution τ of system

(42a) is complete and also satisfies |τ(t, j)|Async
= 0 for all

t+j ≥ T ∗ such that (t, j) ∈ dom(τ). Since the states (q, p) of

H1 evolve in R
n×R

n, for each τ(0, 0) ∈ [T0, T ]
n the hybrid

time domains of system (14)-(17) are the same hybrid time

domains of system (42a). This equivalence, plus the above

properties, establish the result. ■

The previous Lemma directly implies the following:

Lemma 7: Let ν > 0 and consider the HDS H1 with

restricted flow and jump sets given by:

Cν :=
{

x ∈ R
3n : (p, q) ∈ {(q∗, q∗)}+ νB, τ ∈ [T0, T ]

n
}

,

Dν :=
{

x ∈ R
3n : x ∈ Cν , max

i∈V
τi = T

}

,

and jump map G1 with values intersected with the set Cν .

Then, the restricted system Hν = {F1, Cν , Gν , Dν} renders

UGFxS the set Aν := ({(q∗, q∗)}+ νB)×Async. □

With Lemmas 1 and 7 at hand, we proceed to analyze

the HDS H1 by studying the HDS Hν with data intersected

with the set Aν . We denote this new HDS as Hs :=
{Fs, Cs, Gs, Ds}, and we note that any compact set A′ ⊂
R

n × R
n such that A′ ×Async is UGAS for this system will

also be UGAS for Hν thanks to the hybrid reduction principle

[24, Cor. 7.24]. Moreover, since ν is arbitrary and independent

of any parameter, and H1 has no finite escape times, the set

A′ ×Async will also be UGAS for H1. Thus, in the following

we focus on studying the stability properties Hs.

1) Proofs for Potential-games: For simplicity, we first

present the proofs for potential games.

Lemma 8: Under the conditions of Theorem 1-(i1), system

Hs renders UGAS the set A given by (20). □

Proof: Using the potential P , we define the error P̃ (q) :=
P (q)− P (ANE), and we consider the Lyapunov function

V (x) = V1(x) + V2(x) + V3(x), (43)

where the smooth functions Vi are defined as follows:

V1(x):=
1

4
|p− q|2, V2(x) :=

1

4
|p|2ANE

, (44a)

V3(x) :=
|τ |2
n
P̃ (q), (44b)

where |z|2D(ω),ANE
= mins∈ANE

|z − s|2D(ω) and |z|2D(ω) =

z⊤D(ω)z. By our definition of potential-games, and the con-

struction of V1 and V2, the function V is radially unbounded

and positive definite with respect to the compact set A ∩
(Cs ∪Ds). During flows in Cs, we have:

V̇ (x) ≤ − 1

τs
|p− q|2 − τs

(

(

q −ΠANE
(p)
)⊤G(q)− P̃ (q)

)

,

(45)

where ΠANE
(p) is the projection of p on ANE . Since G is

Lipschitz and P̃ is convex (implied by the monotonicity of G
[33, Thm. 12.17]), it follows that [38, Thm. 5.8] 1

2ℓ |G(q)|
2 ≤

(q −ΠANE
(p))

⊤ G(q)− P̃ (q), and thus, from (45), we obtain

during flows that

V̇ (x) ≤ − 1

τs
|p− q|2 − τs

2ℓ
|G(q)|2. (46)

Since |G(q)| = 0 if and only if q ∈ ANE, during flows we have

V̇ (x) < 0 for all x ∈ Cs\A. On the other hand, during jumps,

we have that ∆j+1
j V (x) := V (x(t, j+1))−V (x(t, j)) satisfies

∆j+1
j V (x) = ∆j+1

j V3(x). Additionally, by the definition of

G1 in (14) the following two facts hold: first, if x ∈ Ds, we

have two possible cases for all players i ∈ V: a) if τi = T0,

then τ+i = T0; b) if τi = T then τ+i ∈ {T0, T}; second, if

x ∈ Ds, we have that in each jump one and only one player

i satisfies τi = T and τ+i = T0. Therefore, since T > T0
there exists ε̃ > 0 such that T 2

0 − T 2 = −ε̃. Hence, it follows

that ∆j+1
j V3(x) = P̃ (q)

n

∑n
i=1(τ

2+
i − τ2i ) = − ε̃

n P̃ (q) ≤ 0.
This implies that V does not increase during each reset

triggered by a player. Given that the hybrid time domains of

Hs are intervals of flow of duration 1
η (T − T0), followed by

n consecutive jumps, we can apply the previous inequality

n times to obtain: ∆j+n
j V (z) =

∑n
k=1 ∆

j+k
j+k−1V (z) =

−εP̃ (q) ≤ 0, ∀ x ∈ Ds. By [24, Prop. 3.27], the periodic

strong decrease of V during flows, and its non-increase during

jumps, imply that Hs renders UGAS the set A. ■

Lemma 9: Under the conditions of Theorem 1-(i2), system

Hs renders UGES the set A.

Proof: Let V given by (43), where ANE = {q∗} due to strong

monotonicity. During flows, we have (45) with ΠANE
(p) =

q∗, which using the strong monotonicity of G leads to

V̇ (x) ≤ − 1

τs
|p− q|2 − τs

κ

2
|q − q∗|2 ≤ −λV (x), (47)

where we used the global Lipschitz property of G, and the

quadratic upper bound of (43), with

λ :=
2

3∆

min{1, 0.25T0Tκ}
max{1, 2T 2ℓ} ≈ 1

12T

1

σr

1

σϕ
, (48)

where the approximation holds when T0 is sufficiently small,

and T is sufficiently large (but finite). Thus, during each

interval of flow, V satisfies the t-time bound

V (t, j) ≤ V (tj , j)e
−λ(t−tj), (49)

for all (t, j) ∈ dom (x) such that j = kn for some k ∈ N.

To study V during jumps, let Θ and I be the set of indices

of players who implement αi = 0, and αi = 1, respectively.

After the n consecutive jumps that proceed the flows:

∆j+n
j V (x) ≤ −1

4

∑

i∈Θ

ωi

(

(pi − qi)
2 + (pi − q∗i )

2
)

. . .

− 1

2

(

κ(τ2s − T 2
0 )−

1

2

)

∑

i∈Θ

(qi − q∗i )
2 . . .

− κ

2
(τ2s − T 2

0 )
∑

i∈I

(qi − q∗i )
2 ≤ 0,

where we used the strong monotonicity of G, which implies

strong convexity of P̃ [33, Thm. 12.17], and the condition

T 2−T 2
0 >

1
2κ implied by (RC1) with ρJ = κ−1. Therefore, it

follows that V (tj , j) ≤ V (tj , j−n)e−λ(t−tj) for all j ≥ n and

t ≥ tj . Since each interval of flow has length L = (T−T0)/η,

it follows that Ṽ (tj , j) ≤ Ṽ (tj−n + L, j − n)e−λLe−λ(t−tj).

Iterating, and using (49):

V (t, j) ≤ V (0, 0)e−λ(⌊ j
n
⌋−1)Le−λ(t−tj). (50)

By κ-strong convexity of P̃ and the ℓ-Lipschitz of G:

min

{

1

4
,
κT 2

0

2

}

|x|2A ≤ V (x) ≤ 1

2
max

{

1 +
ℓ2

κ
,
3

2

}

|x|2A ,
(51)
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and thus, from (50), we obtain:

|x(t, j)|A ≤ c |x(0, 0)|A e−
λ
2 (t−(T−max τ(0,0))/η), (52)

with c > 0. Moreover, using the structure of the hybrid time

domains, all hybrid times (t, j) ∈ dom (x) satisfy

−λ
2
t ≤ − 1

3n
λ (t+ j) +

λL

3
, (53)

for all λ > 0. Hence, we obtain:

|x(t, j)|A ≤ ĉs |x(0, 0)|A e−
λ
3n (t+j), (54)

where ĉs := ceλL(
1
3+

1
2η ). ■

Lemma 10: Under the conditions of Theorem 1-(i3), system

Hs renders UGES the set A.

Proof: Using the Lyapunov function V given by (43), and the

fact that ANE = {q∗}, we obtain again inequality (47) during

flows. Since now α = 0n, during jumps we have

∆j+n
j V (x) ≤ −V1 − V2 −

1

2
(τ2s − T 2

0 )P̃ (q) +
ω̄

4
|q − q∗|2.

(55)
By strong convexity of P̃ , we can further bound (55) as:

∆j+n
j V (x) ≤ −γ

(

κ−1
)

V (x), (56)

where γ(·) is given by (21), which under (RC1) satisfies

γ
(

κ−1
)

∈ (0, 1). Thus, by [39, Thm. 1], inequalities (47)

and (56), and the quadratic upper and lower bounds of V , we

obtain that Hs renders UGES the set A. ■

With Lemmas 8-10 at hand for system Hs, we can now

proceed to proof the three main items of Theorem 1.

Proof of Theorem 1: (a) Stability: By the hybrid reduction

principle [24, Cor. 7.24], UGAS of A for system Hs (es-

tablished in Lemmas 8, 9 and 10), and UGFxS of Aν for

system Hν , imply that A is UGAS for system Hν . Moreover,

since the choice of ν > 0 is arbitrary, and has no effect on

the dynamics of the system, and since the trajectories of the

original HDS H1 are complete and bounded, the compact set

A is also UGAS for system H1. This establishes UGAS of

A under the conditions of items (i1), (i2) and (i3). For items

(i2) and (i3), UGES follows by the exponential convergence

bounds of Lemmas 9-10 and the fixed-time synchronization of

τ . R-UGAS and R-UGES follow directly by robustness results

of well-posed HDS, specifically by [24, Thm. 7.21].

(b) Convergence Bounds: For any solution x and all (t, j) ∈
T (x) we have that |τ(t, j)|Async

= 0. Thus, for such times the

trajectories of H1 satisfy the Lyapunov inequalities established

in Lemmas 8-10. To establish (22), we use inequality (46),

which implies that for each (t, j), (s, j) ∈ T (x), such that

t > s, we have V (t, j) ≤ V (s, j). Since V3 ≤ V , and using

sj := min {t ∈ R≥0, (t, j) ∈ T (x)}, we obtain

P̃ (q(t, j)) ≤ 2n

τ⊤τ
V (sj , j) =

cj
τ2s
, ∀t > sj , (57)

where cj := 2V (sj , j). Using the fact V is non-increasing

during flows and jumps, and also converges to zero, we obtain

that {cj}∞j=0 ↘ 0+. To obtain the convergence bound of

item (i2), we first note that from the proof of Lemma 1 it

follows that
d|x|

A

dt ≤ ℓ̃ |x|A for all (t, j) ∈ dom (x), where

ℓ̃ = 2
√
2max

{

1
T0
, T ℓ

}

. In particular, this implies that

|x(ts, js)|A ≤ |x(0, 0)|A el̃(T−max τ(0,0))/η, (58)

where ts, js are the smallest times for which |τ(t, j)|Async
= 0

for all t + j ≥ ts + js. Note that x(ts, js) ∈ Cs ∪ Ds, and

hence (52) holds with |x(0, 0)|A replaced by |x(ts, js)|A, i.e.,

|x(t, j)|A satisfies:

|x(t, j)|A ≤ c |x(ts, js)|A e−
λ
2 (t−(T−max τ(0,0))/η), (59)

for all t+ j ≥ ts + js. Using (59), (58), and the structure of

the hybrid time domains in (53):

|x(t, j)|A ≤ ĉ |x(0, 0)|A e−
λ
3n (t+j), (60)

with ĉ = ce(λ(
1
2+

L
3 )+l̃L) which establishes the bound in

(23). This also implies that H1 renders A UGES under

the conditions of Theorem 1-(i2). Finally, to establish the

convergence bound of item (i3), we note that (56) implies

V (x(t, j + n)) ≤ (1 − γ
(

κ−1
)

)V3(x(t, j)). Since V3(x) ≤
V (x) for all (t, j) ∈ T (x), V does not increase during flows,

and using the periodicity of the hybrid time domains:

V3(t, js+kn) ≤ (1−γ
(

κ−1
)

)kV3(ts, js), ∀ k ∈ Z≥0, (61)

for all t ∈ (ts+(k−1)L, ts+kL), where (ts, js) denotes the

first hybrid time after which the timers τ flow synchronized.

By Lemma 1, such times are uniformly bounded as 0 ≤ ts +
js ≤ 2T ∗. Using (61), the definition of V3, as well as strong

convexity and smoothness of P̃ , we obtain:

|q(t, js + kn)− q∗| ≤ σr

√

ℓ

κ
(1− γ

(

κ−1
)

)
k
2 |q(ts, js)− q∗|,

(62)

for all k ∈ Z≥0. Finally, since by Lemma 1 all solutions are

bounded, for each compact set of initial conditions K0 there

exists M0 > 0 such that |x(t, j)|A ≤ M0 for all (t, j) ∈
dom(x) such that 0 ≤ t ≤ ts and 0 ≤ j ≤ js. This bound

and (62), implies the bound of the theorem via the change of

variable j = js + kn and the upper bound n ≤ js ≤ 2n. ■

2) Proofs for Non-Potential Games: As before, we divide the

proof in different lemmas.

Lemma 11: Consider the HDS Hs under the Assumptions

of Theorem 2. Then, the set A is UGAS. □

Proof: By Assumption 3 and the strict monotonicity of the

pseudo-gradient, existence of the NE is guaranteed via [6, Cor

4.2]. Let Ṽ = V1 + V2 + Ṽ3, where V1 and V2 are defined in

(44), and Ṽ3 is now:

Ṽ3(x) := co
|τ |2 |G(q)|2

2n
, (63)

where co corresponds to the cocoercivity constant of G. By

construction and Assumption 2, V is radially unbounded, and

also positive definite with respect to A ∩ (Cs ∪ Ds). Using

co-cocoercivity of G, inequality (45) becomes

˙̃V (x) ≤ −τsx̃⊤M1/co(q, τs)x̃, (64)

where x̃ :=
(

(p− q),G(q)
)

, and

M1/co(q, τs) :=

( 1
τ2
s
In In − co∂G(q)⊤

In − co∂G(q) co(1− η)In

)

. (65)

Since η ≤ 1
2 by design, co = 1/ℓ, and τs ∈ [T0, T ], under the

conditions of Theorem 2, we have that Mℓ(q, τs) ≻ 0 for all

τs ∈ [T0, T ] and q ̸= q∗ whenever

0 ≺ In − T 2

ℓ(1− η)

(

ℓIn − ∂G(q)⊤
)(

ℓIn − ∂G(q)
)

. (66)
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The expression in (66) is precisely (24) with ρF = ℓ and

δ = 0. Thus, since by assumption S0 is ℓ-GC, it follows that

(66) holds. Also, note that when q = q∗ inequality (64) reduces

to
˙̃V (x) ≤ − 1

τs
|p− q|2 ≤ 0.

On the other hand, after the n consecutive jumps that

proceed each interval of flow, the change of V is ∆j+n
j Ṽ (z) =

co
2 |G(q)|2

(

T 2
0 − T 2

)

≤ 0. Now, we show that no complete

solution keeps Ṽ in a non-zero level set. In particular, since

for all (q, p, τ) ∈ R
n\{q∗}×R

n×[T0, T ] we have that V̇ < 0,

it suffices to consider the case q = q∗, which leads to V̇ = 0
only when p = q, i.e., when (p, q) ∈ A. Since the flows are

periodic, we obtain UGAS of A by [24, Thm. 8.8]. ■

Proof of Theorem 2: (a) Stability Properties: Follows by the

same ideas used in the proof of the stability properties of

Theorem 1-(i1), but using Lemma 11 instead of Lemma 8.

(b) Convergence Bounds: Follows by the same steps used

in the proof of Theorem 1-(i1), substituting (57) by

|G(q)|2 ≤ 2ℓn

τ⊤τ
Ṽ3(sj , j) =

c̃j
τ2s
, c̃j := 2ℓṼ3(sj , j). ■

Lemma 12: Consider the HDS Hs under the Assumptions

of Theorem 3-(i4). Then, the set A is UGES. □

Proof: Ṽ = V1+V2+Ṽ3, where V1 and V2 are defined in (44),

and Ṽ3 is given by (63) with co = κ/ℓ2. The time derivative

of Ṽ now satisfies
˙̃V (x) ≤ −τsx̃⊤Mσϕℓ(q, τs)x̃, with x̃ :=

(

(p−q),G(q)
)

. By assumption we know that Sδ is (σϕℓ)-GC,

which is equivalent to:

0 ≺ In −
(

T 2

1− T 2δ

)

(

σϕℓIn − ∂G(q)⊤
)

(σϕℓIn − ∂G(q))
σϕℓ(1− η)− σ2

ϕℓ
2δ

.

In turn, when 0 < δ < (1 − η)/σϕℓ and 0 < η ≤ 1/2, the

above inequality directly implies that Mσϕℓ(q, τs) ≻ δIn, for

all τs ∈ [T0, T ] and all q ̸= q∗. Thus, for such points, and

during flows, we have
˙̃V ≤ −δ(|p− q|2 + |G| (q)). Using κ-

strong-monotonicity and κ/ℓ2-cocoercivity of G we conclude

˙̃V (x) ≤ −λṼ (x), with λ =
4T0δ

max
{

3, 2( 1
κ2 + κ

ℓ2T
2)
} . (67)

On the other hand, during jumps, using (RC1), the definition

of Ṽ3, and the Reset Policy α ∈ {0, 1}n, the change of Ṽ is

∆j+n
j Ṽ≤−1

4

∑

i∈Θ

(

(pi−qi)2 + (pi−q∗i )2
)

−γ
(

σ2
ϕκ

−1
)

Ṽ3(x),

(68)

where γ(σ2
ϕκ

−1) ∈ (0, 1) is given by (21), and Θ is

defined in the proof of Lemma 9. Thus, it follows that

∆j+n
j Ṽ ≤ 0. Moreover, by the κ-strong monotonicity

and ℓ-Lipschitz continuity of G, Ṽ satisfies the quadratic

bounds c |x|2A ≤Ṽ (x)≤c |x|2A, where: c:=min
{

1
4 ,

κT 2
0

2σ2
a

}

and

c:=max
{

3
4 ,

1
2 + κT 2ℓ2

2

}

. The exponential decrease of V

during the periodic flows, the non-increase of V during the

jumps, and the quadratic upper and lower bounds of Ṽ , imply

that Hs renders UGES the set A. ■

Lemma 13: Consider the HDS Hs under the Assumptions

of Theorem 3-(i5). Then, the set A is UGES. □

Proof: Consider the Lyapunov function Ṽ used in the proof

of Lemma 11, which still satisfies (67). During jumps, the

reset policy α = 0n implies that Θ = V in (68), leading

to ∆j+n
j Ṽ (x) ≤ −V1(x) − V2(x) − γ(σ2

ϕκ
−1)V3(x) ≤

−γ(σ2
ϕκ

−1)Ṽ (x). The result follows by [39, Thm. 1] and the

quadratic upper and lower bounds of Ṽ . ■

Proof of Theorem 3: (a) Stability Properties: Follows by

using using Lemmas 12 and 13 in conjunction with the same

ideas used in the proof of Theorem 1.

(b) Convergence Bounds: We follow the same steps of the

proof of Theorem 1, using now Ṽ3 instead of V3. For item

(i4), this leads to the following bound instead of (60):

|x(t, j)|A ≤ ĉ |x(0, 0)|A e−
λ
3n (t+j),

where λ are defined in (67), ĉ :=
√

c/c · e( 5
6λ+l̃)L, and c and

c are as defined in the proof of Lemma 12. Finally, for item

(i5), we obtain the following bound instead of (62):

|q(t, js+kn)−q∗| ≤ σrσϕ
(

1− γ
(

σ2
ϕκ

−1
))

k
2 |q(ts, js)−q∗|,

from here, the proof follows the exact same steps. ■

Proof of Lemmas 2 and 3: We first show Lemma 3. Using

co = κ/ℓ2 we have that (RC3) can be equivalently written as

α̃ > 1−2coκ+c
2
oℓ

2, with α̃ :=
(

1
T 2 − δ

)

(co(1−η)−δ). Since

G is ℓ-Lipschitz continuous, we have that ∂G(q)⊤∂G(q) ≺
ℓ2In [22]. Additionally, given the monotonicity properties of

G, it follows that ∂G(q)+∂G(q)⊤ ≻ 2κIn [28, Prop 2.3.2 c)].

Using these facts, the above condition on α̃ implies that

0 ≺ I −
(

T 2

1− T 2δ

)

(

In − co∂G(q)⊤
)

(In − co∂G(q))
co(1− η)− δ

,

which means, whenever 0 ≤ δ < c0(1− η), that Sδ is (1/co)-
GC. Lemma 2 follows by the same arguments, using co = 1/ℓ,
and letting κ→ 0+. ■

Proof of Lemma 4: The result follows by direct computation

considering (RC1) and (RC3) simultaneously. A step-by-step

computation can be found in the extended manuscript [36]. ■

Proof of Lemma 5: The result is obtained from the conver-

gence bound of Theorem 3-(i5) by leveraging the periodicity

of the hybrid time domains, and optimizing with respect to

T . A step-by-step computation can be found in the extended

manuscript [36]. ■

B. Proofs of Section 3

To prove Theorem 4, we present two auxiliary lemmas:

Lemma 14: Consider the assumptions of Theorem 4, and

let H2,s = {C2,s, F2,s, D2,s, G2,s} be obtained by intersecting

the data of H2 with A2,ν := Aν × (Q(1n ⊗ q∗)+ νB), where

Aν = ({(q∗, q∗)} + νB) × Async. Then H2,s renders UGAS

the set A× {Q(1n ⊗ q∗)}.

Proof: Consider the change of variable θ = q̂ − h(q), with

h(q) := Q(1n ⊗ q), and let

W (q, θ, ε) := −QLQ⊤θ − εQ
(

1n ⊗ 2D(τ)−1(p− q)
)

+ εQ
(

1n ⊗ PLQ⊤θ
)

. (69)

This change of coordinates leads to a HDS Hϑ with state

ϑ := (x, θ), where x = (q, p, τ), and data Hϑ =
(C2,ϑ, F2,ϑ, D2,ϑ, G2,ϑ), where C2,ϑ, D2,ϑ and G2,ϑ are ob-

tained directly from (31), (32), and (33) respectively via the

change of coordinates, and where the flow map is defined by
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F2,ϑ(ϑ) := (U(x, θ + h(q)), W (q, θ, ε)/ε) where:

U(x, θ + h(q)) =





2D(τ)−1(p− q)− PLQ⊤θ
−2D(τ)Ĝ(1n ⊗ q +Q⊤θ)

η1n



 . (70)

Let Hϑ,s be the HDS that results from intersecting the data

of Hϑ with Aν × (νB), with ν > 0. Studying the stability of

A× {Q(1n ⊗ q∗} under H2,s, is equivalent to analyzing the

stability of the compact set AG,θ = A×{0}n
2−n

under Hϑ,s.

For this last system, we consider the Lyapunov function

VG(ϑ) = (1− d)Ṽ (x) + d · Vθ(θ), with d ∈ (0, 1), (71)

where Ṽ is defined as in Lemma 11, and Vθ(θ) :=
1
2 |θ|2. Using

the proof of Lemma 11, and the equality Ĝ(1 ⊗ q) = G(q),
it follows that

∂Ṽ (x)
∂x U(x, h(q)) ≤ −τsx̃⊤Mℓ(q, τs)x̃, with

x̃ :=
(

(p − q),G(q)
)

and Mℓ given by (65) with co = 1
ℓ .

Under the assumptions of Theorem 4 we know that

0 ≺ In −
(

T 2

1− T 2δ

)

(

ℓIn − ∂G(q)⊤
)

(ℓIn − ∂G(q))
ℓ(1− η)− ℓ2δ

,

and thus that Mℓ(q, τs) ≻ δIn ∀τs ∈ [T0, T ]. Hence, letting

ξ(x) :=
(

|p− q|2 + |q − q∗|2
)1/2

we obtain that

∂Ṽ (x)

∂x
ẋ ≤ −T0δmin {1, ζ} ξ2(x), (72)

where we used the bound of Assumption 4. Also,

∂Ṽ

∂x
(U(x, θ+h(q))−U(x)) ≤ c1 (|p−q|+ |q−q∗|) |θ| , (73)

c1 :=
T 2λmax(L)√

2
max

{

1

T 2
+

4ℓ

Tλmax(L)
, 2 +

2ℓ

Tλmax(L)

}

.

On the other hand, by the fact that the underlying communica-

tion graph is undirected and connected, it follows that QLQ⊤

is positive definite [7, Lemma 6], and, moreover that

∂Vθ
∂θ

W (q, θ, 0) ≤ −λ2(L)
n

|θ|2 , (74)
(

∂Vθ
∂x

−∂Vθ
∂θ

∂h

∂x

)

U(x, θ+h(q))≤c2ψ(x) |θ|+c3 |θ|2 , (75)

where c2 := 2
√
2n/T0 and c3 := 2

√
nλmax(L). Hence, using

(72)-(75) it follows that the time derivative of VG satisfies

V̇G ≤ −(ξ(x), θ)⊤Λε(ξ(x), θ) with

Λε :=

(

(1− d)T0ϵmin
{

1, ζ2
}

− 1
2 (1− d)c1 − 1

2c2

− 1
2 (1− d)c1 − 1

2c2 d
(

λ2(L)
εn − c3

)

)

,

which is positive definite provided that ε ∈ (0, ε∗δ) where ε∗δ
is as defined in (28). Note moreover, that if ε satisfies this

condition there exists kε > 0 such that

V̇G ≤ −kε
(

|p− q|2 + |q − q∗|2 + |θ|2
)

. (76)

Using the results regarding the change of the Lyapunov

function Ṽ during jumps presented in the proofs of Lemmas

11, 12 and 13, given that (RC1) is satisfied with ρJ = 0 by

assumption, and since V +
θ (θ) = Vθ(θ) for all θ whenever

ϑ ∈ D2,ϑ, it follows that ∆j+n
j VG(ϑ) ≤ 0 for any resetting

policy α ∈ {0, 1}n. This inequality and (76) imply that Hϑ,s

renders the set AG,θ UGAS via [24, Prop. 3.27]. The stability

results for H2,s follow directly by the change of cooordinates

q̂ = θ + h(q) and the described result for Hϑ,s. ■

Lemma 15: Every solution of H2 is complete.

Proof: Follows by using the Lipschitz continuity of the flow-

map F2 and the Gronwall-Bellman inequality. Step-by-step

derivations are presented in the extended manuscript [36]. ■

Proof of Theorem 4: (a) Let H2,ν be defined from H2 by

following the same procedure described in the statement of

Lemma 7. Since the addition of the state q̂ and its associated

dynamics do not affect the synchronization dynamics, H2,ν

renders UGFxS the set A2,ν , where A2,ν is as defined in

Lemma 14. Therefore, by the hybrid reduction principle [24,

Cor. 7.24], UGAS of A × {Q(1n ⊗ q∗)} for system H2,s,

established in Lemma 14, implies that A × {Q(1n ⊗ q∗)} is

UGAS for H2,ν . Since the choice of ν > 0 is arbitrary and

since solutions of H2 are complete and bounded, using Lemma

15, we have that A× {Q(1n ⊗ q∗)} is UGAS for H2.

(b) Let ν > 0, and K0:=Kx×Kq̂ ⊂ R
3n × R

n2−n be an

arbitrary compact set. Define v := maxϑ∈K0
VG(ϑ), where

VG is as given in (71). Notice that v exists since VG is

continuous and K0 is compact by assumption. It follows that

K0 ⊆ LVG
(v), where LVG

(c) represents the c-sublevel set

of VG. Since VG is radially unbounded by construction and

Assumption 2, LVG
(v) is compact. Let KV := LVG

(v) and

define the HDS H2,K = (F2, C2 ∩ KV , G2, D2 ∩ KV ).
Notice that under H2,K , q̂ evolves in a compact set. Moreover,

by the arguments presented in the proof of item (a), H2,K

renders KV strongly forward invariant for any ε ∈ (0, ε∗δ).
Hence, using Lemma 15, it follows that, given any arbitrary

compact set K̃x×K̃q̂ ⊂ KV , every solution to H2,K with

(x(0, 0), q̂(0, 0)) ∈ K̃x×K̃q̂ is complete. Therefore, by [30,

Thm. 1], for any pair t̂, ĵ > 0 there exists ε̃ ∈ (0, ε∗δ) such that

for each ε ∈ (0, ε̃] and each solution z to H2,K , with z(0, 0) ∈
Kx×Kq̂ , there exists a solution x to H1such that x and z are

(t̂, ĵ, ν)−close. The result follows with ε∗∗=min {ε̃, ε∗δ}. ■

Proof of Theorem 5: First, using a Taylor expansion of

the form ϕi(q + εaµ̃)µ̃i = µ̃iϕi(q) + εaµ̃iµ̃
⊤∇ϕi(q) +

µ̃iO(ε2a), and the fact that |µ̃i|≤1 for all i ∈ V , and that
1
L̃

∫ L̃

0
µ̃i(t)µ̃(t)

⊤dt=ei, where L̃ = 2πLCM{1/ς1, . . . , 1/ςn}
and LCM denotes the least common multiple, the average

dynamics of H3 are given by HA
3 = (C1, F

A
1 , D1, G1), where

G1, C1 and D1 are given by (14), (16), and (17), respectively,

and

FA
1 (x) =





2D(τ)−1(p− q)
−2D(τ) (G(q) +O(εa))

η1n



 . (77)

It follows that, on compact sets, we have FA
1 (x) ∈ conF1(x+

kεaB) + kεaB, for some k > 0, where F1 was defined

in (15). Thus, any solution of the average dynamics HA
3 is

also a solution of an inflated HDS generated from H1. By

[24, Thm. 7.21], we conclude that, under the Assumptions of

Theorems 1-3, system HA
3 renders SGPAS as εa → 0+ the

compact set A. Since HA
3 and H1 are nominally well-posed,

all assumptions of [17, Thm.7] are satisfied, and we conclude

that H3 renders SGPAS as (εp, εa) → 0+ the compact set

A× T
n. Item (b) follows directly by [17, Prop. 6]. ■

VIII. CONCLUSIONS

We introduced a class of hybrid Nash set-seeking algorithms

with dynamic momentum for the efficient solution of non-
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cooperative games with finitely many players. The algo-

rithms incorporate continuous-time dynamics with momentum

and discrete-time decentralized coordinated resets that model

restarting mechanisms. By using tools from hybrid dynamical

systems theory, we developed model-based algorithms that rely

on full-information Oracles, as well as algorithms suitable for

games with partial information and model-free settings. In the

latter cases, we established robust stability and convergence

properties using multi-time scale techniques based on singular

perturbations and averaging theory.
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