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Momentum-Based Nash Set-Seeking Over
Networks via Multi-Time Scale
Hybrid Dynamic Inclusions

Daniel E. Ochoa and Jorge |. Poveda

Abstract— Multi-time scale techniques, such as singular
perturbations and averaging theory, have played an impor-
tant role in the development of distributed Nash equilibrium
seeking algorithms for network systems. Such techniques
rely on the uniform asymptotic stability properties of the
dynamics that evolve in each of the time scales of the
closed-loop system. When such properties are absent, the
synthesis of multi-time scale Nash equilibrium-seeking al-
gorithms is more challenging and it requires additional
regularization mechanisms. In this paper, we investigate the
synthesis and analysis of these mechanisms in the con-
text of accelerated pseudogradient flows with time-varying
damping in non-cooperative games. Specifically, we in-
troduce a new class of distributed and hybrid Nash set-
seeking (NSS) algorithms that synergistically combine dy-
namic momentum-based flows with coordinated discrete-
time resets. The reset mechanisms can be seen as restart-
ing techniques that allow individual players to choose their
own momentum restarting policy to potentially achieve
better transient performance. The resulting closed-loop
system is modeled as a hybrid dynamic inclusion, which is
analyzed using tools from hybrid dynamical system’s the-
ory. Our algorithms are developed for potential games, as
well as for monotone games for which a potential function
does not exist. They can be implemented in games where
players have access to gradient Oracles with full or partial
information of the multi-agent system, as well as in games
where players have access only to measurements of their
costs. In the latter case, we use tools from hybrid extremum
seeking control.

Index Terms— Learning in Games, Nash equilibria, Non-
cooperative games, Hybrid Dynamical Systems.

[. INTRODUCTION

MONG the different notions of equilibria related to

game-theoretic models, the notion of Nash equilibrium
(NE), introduced in [1], has become ubiquitous in many
engineering and socio-technical systems such as transportation
networks [2], energy systems [3], [4], and robotic networks
[5], to name just a few. To converge to this equilibrium, dif-
ferent Nash equilibrium-seeking (NES) algorithms have been
developed during the last decades, see [6]-[9]. In the context
of game-theoretic control system design, many results in the
literature are somehow inspired or related to the time-invariant
pseudogradient (PSG) flows studied by Rosen in [10], which
take the form ¢ = —G(q), where G is the pseudogradient
vector of the game [10, Eq. (3.9)], and ¢ € R" is the vector
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of actions of the players. For example, it is well-known that in
potential games PSG flows can robustly minimize the potential
function at a rate of order O(1/t). Additionally, for strongly
monotone games, pseudogradient flows can achieve NES with
exponential rates of convergence of order O(e™"'), with &
being the strong monotonicity coefficient of G. These stability
and convergence results have become instrumental for the
design of extended NES algorithms that incorporate additional
mechanisms based on fast consensus dynamics [7], projections
[11], tracking terms [12], adaptive dynamics [13], etc. See also
the recent work [8] and references therein. However, while
these results have provided significant insight into the design
of NES dynamics, existing results still suffer from transient
limitations inherited from PSG flows, which can be further
exacerbated in games with shallow monotonicity properties.
On the other hand, compared to PSG flows, time-varying
momentum-based dynamics, which are common in the op-
timization and machine learning literature [14]-[18], have
not received as much attention in the context of games. In
particular, in this paper we are interested in studying the Nash
equilibria learning capabilities of the second-order dynamics

2
CJ:;(p—q), p=-21G(q), T=mn, (1)

with 7(0)=Tp,>0 and n > 0, which are related to the
continuous-time approximation of Nesterov’s optimization al-
gorithm [14] via the transformation p = 74 + ¢ when G is
a gradient operator. Such systems are particularly useful for
optimization problems with cost functions having vanishing
curvature at the optimal points, since they exhibit a geomet-
ric property, termed acceleration, able to minimize smooth
convex functions at a rate of order O(1/t?). Moreover, in
strongly convex optimization problems, systems of the form
(1), combined with suitable “restarting” heuristics, can achieve
exponential rates of convergence [14], [19]. Indeed, dynamics
of the form (1) have been shown to accelerate convergence in
adaptive estimation problems [20], extremum seeking control
[17], and concurrent learning techniques [21]. Hence, in light
of intriguing numerical results in the context of games, it
is natural to ask whether systems of the form (1) are also
suitable for the robust and efficient solution of NES problems
in noncooperative games, and whether these dynamics can be
extended to network games and model-free settings. In fact,
most of the existing results in the literature have focused only
on (non-uniform) convergence results in centralized potential
games [22], or in momentum-based dynamics with maximally
monotone operators G via Yosida regularizations of the form
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%(I — (I + X\G)™1), which are usually not suitable for dis-
tributed implementations [23].

Main Results: In this paper, we provide answers to the above
questions by using tools from nonlinear control theory. First,
we show that the direct implementation of (1) is, in general,
not suitable for the efficient distributed solution of Nash set-
seeking (NSS) problems in non-cooperative games, even when
the game is strongly monotone and there exists a potential
function. The limitations arise from three main structural
issues: First, the dependence on a “centralized” momentum co-
efficient 7 that precludes distributed implementations, and that
can also lead to uncoordinated algorithms with poor transient
performance. Second, the unbounded grow of 7 in system (1)
makes them prone to instability under arbitrarily small additive
disturbances, unavoidable in feedback-based implementations.
Third, in non-potential games, traditional Lyapunov functions
used in optimization are not applicable, and solutions to (1)
may even diverge, despite game monotonicity and bounded
states 7.

While the above features might suggest that momentum-
based dynamics are problematic in the context of games, it
turns out that for suitable classes of non-cooperative games,
systems of the form (1) can be used to efficiently and
robustly find NE in a decentralized way, whenever they are
combined with suitable distributed discrete-time dynamics that
persistently reset some of the states of the players in a coordi-
nated way. However, in contrast to results in the optimization
literature [14], [17], [19], our results suggest that for general
(non-potential) noncooperative games the frequency of the
resets must occur in a certain frequency band to simultane-
ously achieve stability and suitable convergence properties.
We establish these results using tools from hybrid dynamical
systems (HDS) theory [24], and we leverage their intrinsic
robustness properties to extend the algorithms to decentralized
network games and model-free settings via multi-time scale
hybrid control theoretic tools. Based on this, the following
original contributions are presented in the paper:

i) We propose the first NSS algorithms with continuous-
time dynamic momentum and robust asymptotic stability
properties in non-cooperative games with n players. The
algorithms incorporate three main elements: a) a class of
distributed continuous-time pseudogradient-based dynamics
with time-varying momentum coefficients inspired by (1); b)
distributed periodic discrete-time resets implemented by the
players, which incorporate heterogeneous reset policies that
allow players to decide whether or not to restart their own
momentum; ¢) a robust ser-valued distributed coordination
mechanism that synchronizes the reset times of the players
to induce suitable network-wide acceleration properties.

ii) To accommodate situations where players do not have
access to full-information Oracles that provide evaluations
of their pseudogradients, we introduce a new distributed
momentum-based hybrid NSS algorithm for games with par-
tial information, where players leverage communication with
neighbors to estimate their actions on-the-fly. The design of
these dynamics follows similar multi-time scale ideas used for
ODE:s in the literature [7], but which are not directly applicable
to systems of the form (1). Indeed, unlike existing results based

on fast consensus dynamics and “reduced” pseudogradient
flows, our reduced dynamics are hybrid and set-valued, which
prevents the direct application of standard tools for ODEs.

iii) We present payoff-based versions of all our hybrid NSS
algorithms, suitable for model-free learning in non-cooperative
games where players have access only to measurements of
their cost. These dynamics exploit recent tools developed
in the context of averaging-based hybrid extremum seeking
control [17], and their analysis is fundamentally different from
other model-free non-hybrid algorithms studied in the litera-
ture, e.g. [11], [25]. In particular, the dynamics considered in
this paper have set-valued jump maps that lead to non-unique
solutions with non-trivial hybrid time domains having multiple
simultaneous jumps in the continuous time domain, a behavior
that is unavoidable in decentralized multi-agent HDS. We also
show that these adaptive dynamics can approximately recover
the convergence bounds of the model-based algorithms.

To the best of our knowledge, the algorithms presented in
this paper are the first in the literature to implement dynamic
momentum and distributed restarting techniques in n-player
noncooperative games.

The rest of this paper is organized as follows. Section II
presents preliminaries. Section III presents the problem state-
ment. Section IV presents the hybrid NSS dynamics for games
with full-information. Section V relaxes this assumption using
multi-time estimation techniques, and Section VI presents
the model-free results. Section VII presents the analysis, and
Section VIII presents the conclusions.

[I. PRELIMINARIES

1) Notation: Given a compact set A C R™ and a vector z €
R™, we use |z| 4 := minge 4 ||z — $||2. We use 1,, to represent
an n-dimensional vector with 1 in all its entries, and define
1, A={zeR" : zy=a2=... =2, =a, a € A}, for
any set A C R. Weuse St == {z € R? : 22 + 22 =1} to
denote the unit circle in R2, and T" to denote the nt"* Cartesian
product of S. We also use rB to denote a closed ball in the
Euclidean space, of radius > 0, and centered at the origin.
We use I, € R"*™ to denote the identity matrix, and (z,y) =
[z7,yT]" for the concatenation of the vectors x and y. Also,
we use D(k) to represent a diagonal matrix of appropriate
dimension whose diagonal is given by the entries of a vector
k. We also use k (resp. k) to denote the largest (resp. smallest)
entry of k. A function 5 : R>¢ X R>9 — Rx¢ is said to be
of class KCL if it is non-decreasing in its first argument, non-
increasing in its second argument, lim, g+ 8(r,s) = 0 for
each s € R>q, and lim,_,, 8(r, s) = 0 for each r € R>.

2) Games: In this paper, we consider noncooperative games
with n € Z>, players, where each player i can control its
own action ¢;, and has access to the actions g; of neighboring
players j € N; = {j € V : (i,j) € &}, who are
characterized by an undirected, connected, and time-invariant
graph G = {€,V}, where V = {1,2,...,n} is the set of
players and £ is the set of edges between players. We use
L to denote the Laplacian matrix of the graph G. The main
goal of each player ¢ is to minimize its own cost function
¢; : R® — R by controlling its own action ¢;. We assume
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that the costs ¢; are twice continuously differentiable, and
we use ¢ = (q1,¢2,---,qn) to denote the overall vector of
actions of the game. We also use g_; to denote the vector of
all actions with the action of player ¢ removed. To simplify our
exposition, we assume that the actions q; are scalars. However,
all our results also hold for vectorial actions by using suitable
Kronecker products. We use G to denote the pseudogradient of
the game, where g — G(q) = a‘gz(lq), 6‘22(2‘]), el 6‘2’;5(1) €
R™. Following standard assumptions in the literature of fast
NES [9] and accelerated optimization [14]-[18], in this paper
we will work with the following assumptions.

Assumption 1: The mapping G is ¢-globally Lipschitz, i.e.,
there exists a constant ¢ > 0 such that |G(q¢) — G(¢')| < £|]q —
q'|, for all ¢,q" € R™. O

Assumption 2: The mapping G is 1/¢-cocoercive, i.e., there
exists £ such that (G(q)~G(¢)) " (¢—4') > 1G(a) — G(¢))?
for all ¢,q' € R™. Moreover, |G(-)|? is radially unbounded. [J

The first property of Assumption 2 implies Assumption 1,
but the converse is not necessarily true in non-potential games
[26]. We will also use the following definition to characterize
the monotonicity properties of the games.

Definition 1: A game with pseudogradient G is said to be:

1) Monotone if (G(q) — g(q’))T(q —¢')>0,forall ¢, ¢’ €
R™.

2) Strictly monotone if (G(q) — Q(q’))—r(q —¢') > 0, for all
q#q €R"

3) k-Strongly Monotone with k> 0, if (G(¢) —G(q"))
q') > klg—¢'|% for all ¢,¢' € R".

4) k-Strongly Monotone quadratic if it is a k-Strongly
Monotone game with G(q) = Ag+0b for some A € R™*"
and b € R"™.

5) Potential if there exists a continuously differentiable and
radially unbounded function P : R®™ — R, such that
G(q) = VP(q), for all ¢ € R™. O

Remark 1: Cocoercive maps are monotone but not neces-
sarily strongly monotone. Games that are x-strongly monotone
and (-Lipschitz are k/¢?-cocoercive [26, Prop. 2.1]. O

Ta—

We will also work with the following assumption.
Assumption 3: The function ¢; R — R is radially
unbounded in ¢; for ever q_; € R*~! and all i € V. O

3) Hybrid Dynamical Systems: To study our algorithms, in
this paper we consider HDS with state z € R™, and dynamics

reC,2=F(x), and z€D, 2zt €G(z), @)

where x € R" is the state of the system, F' : R® — R" is
called the flow map, G : R® = R" is a set-valued mapping
called the jump map, and C' C R™ and D C R" are closed
sets, called the flow set and the jump set, respectively [24].
We use H = (C, F, D, G) to denote the data of the HDS H.
For a precise definition of hybrid time domains and solutions
to HDS of the form (2), we refer the reader to [24, Ch.2]. The
following definitions will be used throughout the paper.

Definition 2: The compact set A C C' U D is said to be
uniformly globally asymptotically stable (UGAS) for system
(2) if 3 B € KL such that every solution x satisfies:

|z(t, j)|.a < B(|x(0,0)|a,t+7), ¥ (t,4) € dom(z). (3)

for all 2(0,0) € R™ When S(r,s) = cyre“2® for some
c1,co > 0, the set A is uniformly globally exponentially
stable (UGES). When 3 T* > 0 such that 5(r,s) = 0, V
s > T*,r > 0, the set A is said to be uniformly globally
fixed-time stable (UGFxS). J
We will also consider e-parameterized HDS of the form:

r€C., ©=F.(r), and z€ D, 27 € G.(x), &)

where ¢ > 0. For these systems we will study semi-global
practical stability properties as € — 0.

Definition 3: The compact set A C C'U D is said to be
Semi-Globally Practically Asymptotically Stable (SGP-AS) as
€ — 07 for system (4) if 3 8 € KL such that for each pair
d>v>0 there exists ¢* > 0 such that for all € € (0,£*) every
solution of (4) with |2(0,0)|4 < 0 satisfies

(£, 5)a < B(2(0,0)[a,t +7) + v, (5)

Y (t,j) € dom(x). When S is exponential, we say that A is

semi-globally practically exponentially stable (SGP-ES). [

The notions of SGP-AS (-ES) can be extended to systems

that depend on multiple parameters € = (e1,€2,...,&¢). In

this case, we say that A is SGP-AS as (g, ...,e2,61) = 0T
where the parameters are tuned in order starting from ¢;.
Definition 4 (Robustness): Consider the perturbed HDS

x+eeC, t=F(z+e)+te, (6a)
z+eeD, zteGx+e)+te, (6b)

where e is measurable, and Sup(; j)cdom(e) l€(t; J)| < € with
€ > 0. System (6) is said to be R-UGAS (resp. R-UGEYS) if:
1) it is UGAS (resp. ES) when € = 0; and 2) it is SGP-AS
(resp. SGP-ES) as ¢ — 0. O

Definition 5: Two hybrid signals 7 : dom(z;) — R™ and
x9 : dom(zg) — R™ are said to be (T, J,e)-close if: (1) for
each (t,7) € dom(zy) with ¢t < T and j < J there exists s
such that (s,j) € dom(zz), with |t — s| < e and |z1(¢,j) —
x2(t,7)] < & (2) for each (¢,j) € dom(xz) with t < T
and j < J there exists s such that (s,j) € dom(zy), with
|t —s| <eand |za(t,j) —x1(t,5)] < e

[1I. PROBLEM STATEMENT AND MOTIVATION
A NE is defined as an action profile ¢* € R™ that satisfies
¢ilq7,q";) = inf ¢i(gi,q;), VieV. ()
¢; €ER

When the game is monotone, ¢* is a NE if and only if
G(¢*) = 0 [27, Prop. 2.1]. Moreover, strict monotonicity of G
implies that there is exactly one NE, if it exists. For x-strongly
monotone games and monotone potential games, existence is
always guaranteed [28, Thm. 2.3.3].

Our goal is to efficiently and robustly find the set of points ¢*
that satisfy (7), denoted Ang, using algorithms with dynamic
momentum. However, as the following example shows, this
task is not trivial, even for potential games.

Example 1: (Instability Under Small Disturbances) Con-
sider a duopoly game with pseudogradient G(q) = Agq + b,
where A = [10, —5; —5,10], and b = [—250, —150]. This is a
k-strongly monotone potential game, studied in [11, Sec. II]
using PSG flows. The unique NE is ¢* = (130/3,110/3), and
since A is symmetric, the game has a (quadratic) potential

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on February 18,2024 at 21:25:20 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Automatic Control. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TAC.2023.3321901

i 1000 A0 300 000~ 3000

Timels]

—— No Restarting

= With Restarting

Suon 10000

Fig. 1. Instability of (1) in a duopoly game with perturbed gradients and
To = 2+/2 x 10~3. The instability can be removed by incorporating
resets, which generate the stable trajectories shown in black.

function, which permits the direct application of [14, Thm. 3]
to conclude convergence of all functions ¢ generated by (1)
towards the NE ¢*. Nevertheless, if (1) is implemented with a
perturbed gradient G(q) + e(t), where e is an arbitrarily small
bounded disturbance, the highly oscillatory unstable behavior,
shown in blue in Figure 1, emerges. In this case, there is no
B € KL such that the bound (5) holds for the solutions of (1),
[29, Thm.1]. However, we will show that this bound actually
exists when the signals (7, ¢) are reset, generating the stable
behavior shown in black color in Figure 1. O

The robustness issues illustrated in Example 1 prevent the
direct implementation of the momentum-based dynamics (1)
in noisy environments, or in settings where some of the states
or gradients are computed on-the-fly using multi-time scale
techniques such as singular perturbations or averaging theory.
In fact, such techniques usually require “reduced” or “average”
systems with stability properties characterized by KL bounds
of the form (3); see [30, Assumption 4.].

While the incorporation of resets can help stabilize system
(1), as the following example illustrates, uncoordinated resets
can eventually impede the potential advantages of using algo-
rithms with dynamic momentum.

Example 2: (Slow Convergence and Uncoordinated Resets)
Consider a distributed implementation of system (1) in a x-
strongly monotone potential-game with 30 players and k =
0.01. Each player ¢ implements its own states (q;, p;, 7 ), with

dynamics ¢; = %(pZ — ), i = —272-%, and 7; = 7, with
n = 1. Also, players implement periodic resets of (7;,q;)

every 25 seconds (in their own local time reference frame)
via the individual jump maps ;7 = 0.1 and p;” = ¢;. While
this periodic reset strategy has been shown to guarantee fast
convergence in centralized optimization problems, e.g., [31,
Thm. 1], Figure 2 shows the behavior in noncooperative games
with distributed and uncoordinated resets. As shown in blue,
the solutions of (1) actually converge to the NE, but at a
slower rate compared to the PSG flow. On the other hand, the
trajectory corresponding to players implementing coordinated
resets, shown in black color, achieves much faster performance
by exploiting momentum, c.f. Theorem 1. (]

L

=== No Coordination
m— \Vith Coordination

— PSG Flow

NI S T
225 2.50
0
! 7
1040 g
=———
1013 | T l:)%‘“

0 20 1] 60 80 100 120 140

Timels]

Fig. 2. Coordinated vs non-coordinated resets in a quadratic x-strongly
monotone potential-game with x = 0.01,£ = 100 and n = 30. The
insets show the evolution of the states ; with and without coordination
mechanisms.

The following example shows that even when resets are
implemented in a centralized manner, in non-potential games,
the solutions to (1) may not converge to the NE.

Example 3: (Instability in Non-Potential Games) We con-
sider a non-potential «-strongly monotone quadratic game with
30 players and x = 0.02. For this game, the standard PSG
flow guarantees exponential convergence via [10, Thm. 1].
However, as shown in color blue in Figure 3, system (1) gen-
erates trajectories that diverge, even when resets are (slowly)
implemented in a centralized manner. The same plot shows in
black color a trajectory that rapidly converges to the unique
NE of the game. We will show that this stable and fast behavior
can be guaranteed using a hybrid algorithm with distributed
coordinated resets that dissipate energy “sufficiently often” via
suitable contraction properties; c.f., Theorem 3. O

V. DISTRIBUTED HYBRID NSS DYNAMICS WITH
COORDINATED RESTARTING

To achieve robust NSS with dynamic momentum, we start
by endowing each player i € V with a state x; = (¢;,p;, 7)) €
R x R x R+, and a gradient Oracle that provides real-time
measurements of the partial derivative %@ at the overall
action state ¢ € R"™. The reset mechanisms of the players make
use of three positive tunable parameters (7, 7Tp,7"), which
satisfy T'> Ty > 0 and 1/2 > n > 0, and which are selected
a priori by the system designer. The state x; evolves according
to hybrid dynamics that are coordinated by a local timer 7;.
In particular, the continuous-time dynamics of each player are

i 2 (pi — qi)
T; € [TO,T) — pl :Fl(x): _27—1'&?);(1(;1) ; (8)
Ti n
and the discrete-time dynamics are given by
qg_ di
n=T= | pi |=Ri(zi)=|aipi+(1-)g |. 9
.t To

In (9), the parameters «; € {0,1} model the different
individual reset policies of the players. The choice a; = 0
leads to resets of the form p} = ¢;, which corresponds to
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Fig. 3. Lack of convergence of trajectories of (1) in a non-potential -
strongly monotone quadratic game with k = 0.02, £ = 0.0214, n =
30, To = 0.1, T' = 3.74. The black line shows the trajectory of the
proposed hybrid controller with resets.

(jj = (0, i.e., the momentum of player ¢ is reset. On the other
hand, a;; = 1 corresponds to keeping p; constant.

Since players have access to Oracles that provide real-time
evaluations of their gradient, they can implement the hybrid
dynamics (8)-(9) in a fully decentralized way by running their
own timers 7; to coordinate the flows (8) and the jumps
(9). However, as shown in Example 2, lack of coordination
between the resets of the players can hinder the acceleration
properties expected from using dynamic momentum. To ad-
dress this issue, we proceed to endow each player with a
distributed hybrid coordination mechanism for the resets.

A. Coordinated Distributed Resets

The coordination mechanism of each player j € V uses a
set-valued coordination mapping C; : R>g = R>¢, defined as
T iijG(T0+7’j,T]
{To,T} iij:T()-f—?“j N
To iijE[To,To-i-’l"j)

where the individual parameter r; > 0 satisfies ;€ (0, Z=12).
Using C;, the coordination mechanism works as follows:
whenever the timer of player ¢ satisfies 7; = T, the following
two events happen: 1) player ¢ resets its own state x; using the
dynamics (9), and 2) player 7 sends a pulse to its neighbors
j € N;, who proceed to update their state x; as follows:

o =, pj=p; 7 €C(m). AN
Since player i can only signal its neighbors, the rest of the
players j ¢ N; will keep their states constant after the above
two events, i.e., a:;r = x;, for all j ¢ ;.

The combination of continuous-time dynamics with mo-
mentum (8), and the set-valued discrete-time dynamics that
model the coordinated resets leads to a HDS of the form
(2), where multiple resets can happen simultaneously (in
the continuous-time domain) when more than two players
satisfy the condition 7; = T'. To ensure that this system has
suitable robustness properties we need to guarantee that small
disturbances in the states do not lead to drastic changes in
the behavior of the players. This property can be ensured by
working with well-posed HDS in the sense of [24, Ch. 7].
Roughly speaking, for a HDS to be well-posed, a suitable
(graphically) convergent sequence of solutions of the overall
system must also converge (in a graphical sense) to another

Ci(ry) = (10)

solution of the hybrid system. In the context of (8)-(11),
we need to guarantee, among other properties, that for each
7o € [Tv,T] and each graphically convergent sequence of
solutions {7y }ren With components 7; j satisfying

OSTL]C(O,O)S...STn7k(O,0)<T0, Vk’EN7 (128.)
and lim 7 4(0,0) =...= lim 7,%(0,0) =79, (12b)
k—oc0 k—oc0

the sequence {7 }ren converges (graphically) to a mapping
7 that is also a solution starting from the initial condition
71(0,0) = ... = 7,(0,0) = 79. Thus, when 79 = T, the
above conditions imply that players will reset their timers
Ti,k sequentially with smaller and smaller times between
resets as £k — oo. Thus, in the limit, resets must also be
sequential with no time between resets. Since the sequence
depends on the initial conditions, a well-posed model of the
coordination mechanism must take into account every possible
order of sequential resets. In other words, if multiple players
simultaneously satisfy 7; = T, then we need to consider
all possible sequential resets induced by such players. As
discussed in [32], this behavior is unavoidable in well-posed
multi-agent HDS with decentralized discrete-time dynamics.

B. Well-Posed Hybrid NSS Dynamics

To formalize the above discussion, we proceed to construct
a suitable jump map and a jump set that describe the behavior
of the overall NSS dynamics. Specifically, we introduce a new
set-valued mapping G° : R®" = R3", which is defined to be
non-empty only when 7; = T and 7; € [T),T) with j # 1,
for each ¢ € V, and has elements given by

G0(93) = {(v17v27v3) € R : (m,uvg,i,vs,i) = Ri(l‘i),
v1,; = qj, V25 =Dpj,v3; € Ci(1), V j €N,
v; =1, j ¢M}, (13)

where = = (x1,x9, - ,xy), and where the reset map R;
and the coordination mapping C; are defined in (9) and (10),
respectively. Using the construction (13), the jump map of the
overall hybrid system is defined as

T € Gi(z) = GOx), (14)
where GO is the outer-semicontinuous hull of G, [33,
pp. 154], i.e., the unique set-valued mapping that satisfies
graph(G;) = cl(graph(G°)). By construction, the mapping
(G is locally bounded and outer-semicontinuous in R™ x R™ x
[To, T)™. Moreover, it preserves the sparsity properties of the
graph G, and guarantees that any pair of resets of the form
(9) satisfy condition (12).

Using the jump map (14), we can now define the hy-
brid momentum-based-NSS (HM-NSS) dynamics H; =
(C1, Fy, Dy, G1), with overall state x = (p,q,7) € R3", and
vectorial continuous-time dynamics:

q 2D(1) " (p —q)
p | =Fi(z) = —2D(7)G(q) )
T nl,

where p == (p1,p2,...,pn) and 7 = (71, 72,...,Ts). The

flow set C; is defined as:

el ;:{x ER:qeR™, peR”, 7€ [TO,T]”}, (16)
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Fig. 4. Scheme of Individual HM-NSS dynamics. Periodic coordinated
resets restart the state p; and the timer r;, where j € N;.

the jump map G is given by (14), and the jump set is

Dy = {JIGRS": z € (Y, ma\giri:T}. (17)
S

Figure 4 shows a block-diagram representation of the hybrid
dynamics of each player.

The next lemma is instrumental for our results. All proofs
are presented in Section VIL.

Lemma 1: The HDS (14)-(17) is well-posed in the sense of
[24, Def. 6.29]. Moreover, under Assumption 1, every maximal
solution of H; is complete, and there are at most n jumps in
any continuous time interval of length %(T —Tp). Furthermore,
for each solution x and for all (¢,j) € T (x), we have that

.Z'(t,j) € Async = ({TO,T}’H) @] (1n . [TQ,T]), where
T(x) = {(t,j) €dom(z): t+j>T*},  (18)
and T* .= (T — Tp)/n + n. O

The qualitative behavior of system 7#; will depend on
the choice of parameters (1,7,7Tp), which characterize the
frequency and the minimum and maximum values of the
momentum coefficient 7. Different choices of (1, T, T) will
lead to different reset conditions (RCs). In turn, as hinted
in Example 3, and in contrast to standard optimization [17],
different types of games will require different RCs to guarantee
convergence to the set of NE. The RCs will be defined in
terms of the following condition numbers of the game, the
reset mechanism, and the graph:

! T Amax (L)

O¢ = /1’ Oy ‘= T07 )\Q(E) s

where ¢ is given by Assumptions 1 or 2, x is given in

Definition 1, and A\y(L£), Amax (L) are the smallest positive and
the largest eigenvalues, respectively, of the Laplacian L.

19)

opr —

C. Main Stability Results

We study the stability and convergence properties of the
dynamics H; with respect to the compact set
A= qu X Asynm (20)
where A, = {(¢,p) € R*" : p=¢q, q € Axg}. The first RC
that we consider is given by

212> P2

where p; € Ry>( is a parameter to be determined and o =
min;ey ;. This condition will regulate how frequently players

(RCy)

reset their states. Also, let

L ps
=(1-= - 2L
,7(pJ) ( 0_% 2T2) )

where o, is defined in (19). This quantity will be instrumental
to characterize the rates of convergence of the algorithms.

21

1) Results for Potential Games: Our first result focuses on
monotone potential games and k-strongly potential games.

Theorem 1: Let G describe a monotone potential game.
Suppose that Assumption 1 holds, and consider the HDS
under (RC;). Then, the following holds:

(i1) If « = 1, and p; > 0 then the set A is R-UGAS.
Moreover, and during flows, for any ¢ € V' the potential
function satisfies the bound
. Cj

P(q(t, j))—P(Axg) < 27)
where {c;}22, \, 0" depends on z(0,0).
If « € {0,1}", G describes a k-strongly monotone
potential game and p; = !, then the set A is R-UGES,
and there exists A > 0 such that for each compact set
Ky C Cy U D; there exists My > 0 such that for all
solutions x with (0, 0) € Ko, and for all (¢, j) € dom(z)
the following bound holds:

lq(t, §) — q*| < Moe A+, (23)

If « =0, G describes a k-strongly monotone potential
game and p; = k!, then the set A is R-UGES, and for
each compact set Ky C C; U D; there exists My > 0
such that all solutions = with x(0,0) € Ky, and for all
(t,7) € dom (x) the following bound holds:

at.) = ') < 00T (1= (p)) = Mo,
where a(j) == max{0, [2="]} and v(p,s) € (0,1). O

The results of Theorem 1 establish robust NSS for H; in
monotone and strongly monotone potential games. Thus, un-
like system (1), for the hybrid dynamics #; there exists a class
KL function 3 such that a bound of the form (5) holds under
small bounded additive disturbances on the dynamics. This
bound effectively rules out the instability observed in Figure
1. The bounds of Theorem 1 also establish suitable semi-
acceleration properties. Such bounds will eventually hold since
the UGAS result also implies that for all times (¢,7) ¢ T (x),
the trajectories remain (uniformly) bounded, and Lemma 1
guarantees completeness of solutions. Indeed, solutions of 4
exhibit a “transient phase”, where the momentum coefficients
synchronize to each other, followed by a “semi-acceleration
phase” where the system behaves as having a global mo-
mentum coefficient coordinating the network. Figures 1 and
2 illustrate the advantages of using the hybrid dynamics
compared to the ODE (1).

Remark 2: When all players implement the reset protocol
a; = 1, item (i) establishes a semi-acceleration property of
order O(1/72) that holds during intervals of flow in 7 (z).
Since intervals of flow in 7 (z) have a length proportional
to T — Ty, they can be made arbitrarily large by increasing
T. Moreover, if all players initialize their coefficients as
7:(0,0) = Tp, then during the first interval of flow we have

, V() €T(x), (22)

(i2)

(i3)
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Fig. 5.

Phase planes showing the trajectories of the actions of the players resulting from the HM-NSS dynamics in a non-potential 2-player «-

strongly monotone quadratic game with « = 6, £ = 6.2 and 7(0,0) = 0.1 - 12. Asymptotic stability is achieved by reducing T'.

that P(q(¢,0)) — P(¢*) < tg, for all (¢,0) € dom(x),
where dy > 0 is determined by the initial conditions of the
system and the properties of the pseudogradient G. To the
best knowledge of the authors, the result of Theorem 1-(i;)
is the first in the literature that establishes R-UGAS and this
type of acceleration property in distributed NES dynamics.
Centralized convergence results without resets were recently

studied independently in [8]. ]

Remark 3: For k-strongly monotone potential games, the
reset policy a; = 0, Vi € V), guarantees exponential NSS with
rate of convergence dictated by 1 — v (k~1). In this case, by
borrowing results from the literature on centralized accelerated
optimization [17], [19], we can consider a ‘“quasi-optimal”

ey/ 5 + T3, which guarantees
acceleration-like exponential convergence of order O(e~V*?)
whenever Ty < 1. Finally, the result of item (i3) shows that
the stability and convergence properties of 7, are robust to
heterogeneous reset policies in the game. ]

2) Results for Non-Potential Games: When a potential func-
tion does not exist, the analysis of the HDS #; is more
challenging. To study this case, we introduce the following
matrix parameterized by (pp,d) € Rsg x R>q:

Ms(q,pr) = In — S5 (0, pr) Ss (0, pr) ",
with S5 : R™ x Ry — R™™ ™ given by the scaled matrix

S5(q, pr) = x(pr,0)? (pFIn - 3Q(q)>,
where 0G is the Jacobian of G, and where the mapping x :
Rso x R>o = Ry is given by
T2 1
1—0T2 pp(l—n)—dp%
which is defined for all arguments such that 672 < 1 and

1 —mn > dpr. We use the following definition to extend [34,
Def. 4.1.2] to matrices of the form (24).

Definition 6: The mapping ¢ — S;5(q, pr) is pr-Globally
Contractive (pF-GC) if Ms(q,pr) = 0forall g¢ Axg. O

Note that when M > 0, the coefficient y characterizes the
level of contraction of Ss. Indeed, M > 0 if and only if

1 2
————— > Omax I,—0 , 25

restarting parameter 7T’

(24)

x(pr,0) =

where omax(-) is the maximum singular value of its argument
[35, Thm. 7.7.2]. Using the definition of X, and inequality
(25), it can be observed that in order to ensure that S; is pp-
GC for some pair (0, pr), the resetting parameter 7' cannot be
chosen arbitrarily large. Example 4 illustrates this point.

Example 4: Consider a k-strongly monotone quadratic
game with k = 6, and

6 15 .

o) = (55 7)) -0,

1.5 (26)

where ¢* = (2,—2). First, let § = 0, and note that for this
game Mo (q, pr) = D (mo(pr)1l2) € R?*2, where
4(pr —12)pp + 153
mo(pp) =1—T2 .
(er) 41 =n)pr

Notice that 4(pp —12)pr + 153 > 0 for all pr € R+, and
recall that n < 5 by assumption. Thus, for all pr > 0 there
exists T € Rxg such that Mo(q, pr) > 0 for all T € (0,7),
and Mo(q,pr) =0 for T > T. Similarly, when § > 0 we
have that if S5 is pp-GC, then Sy is also pp-GC. Thus, we
can conclude that for every pr and > 0 there exists T such
that Ss is not px-GC for any T > T. ]

By using the global contractivity property of Definition 6 to
inform the tuning of the resetting parameters of 7, we can
achieve NSS in non-potential games.

Theorem 2: Let G describe a strictly monotone game, and
suppose that Assumptions 2 and 3 hold. Consider the HDS
H1 under (RCy) with py > 0 and with reset policy a = 1,,.
If Sy is £-GC then the set A is R-UGAS, for every i € V), and
for all solutions x the following bound holds during flows

NP < =

1G(q(t, ma V (t,§) € T(z),

where {¢;} \, 0T is a sequence parameterized by z(0,0). O

Unlike Theorem 1, in non-potential games the pp-global-
contractivity of Ss plays a fundamental role in the stability
analysis of ;. In particular, the /-GC property of S5 will
guarantee a suitable dissipativity property during flows via
Lyapunov-based tools. Note that, while in Theorem 2 this is
only a sufficient condition, the plots of Figure 5 indicate that
keeping T' “sufficiently small” is also a necessary condition
to preserve stability in non-potential games. In this figure, we
show the phase plane of solutions to H; with different values
of T, in a game with pseudogradient given by (26).

27)
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Next, we provide a sufficient condition on the parameter T’
such that Sy is ¢-GC in cocoercive strictly monotone games.

Lemma 2: Suppose that Assumption 2 holds, and G de-
scribes a strictly-monotone game. Let (1, T, ¢) satisfy:

1—-n
2
0<T <—2€ . (RCy)

Then, Sy is ¢-GC. O

We now turn our attention to games that are rk-strongly
monotone and ¢-Lipschitz. For these games, we ask that the
contractivity properties of S5 hold with § > 0, and that (RCy)
holds with a particular value of p;.

Theorem 3: Suppose that Assumption 1 holds and let G
describe a k-strongly monotone game. Consider the HDS 4
under (RC;), and suppose that S5 is (04¢)-GC with 0 < 6 <
(1 —n)/(o4l). Then, the following holds:

(i4) If @« € {0,1}™ and p; = 0, then A is R-UGES, and there
exists A > 0 such that for each compact set K C C1UD;
there exists My > 0 such that for all solutions x, with
z(0,0) € Ky, the bound (23) holds.

(i5) If @ =0, and p;y = o3x~", then A is R-UGES and for
each compact set Ky C C; U D there exists My > 0
such that for all solutions z, with x(0,0) € Ky, and for
all (¢,7) € dom (), the following bound holds:

N ag)
lq(t,5) = ¢"[ < ovog (1= (ps)) > Mo,

where a(j) == max{0, [Z=2]}, and v (ps) € (0,1). O

Before commenting on the implications of Theorem 3, we

present a reset condition for x-strongly monotone games that
is analogous to the one of Lemma 2.

Lemma 3: Suppose that Assumption 1 holds and that G
describes a k-strongly monotone game. Let (1, T, o4¢) satisfy:

1—n— 0oyl
T? R
O < T r o —n—d0,0)" RCs)
with 0 < § < (1 —n)/(ogf). Then S; is (04¢)-GC. O

Remark 4: When p; = ojx~", the conjunction of (RCy)

and (RCj3) imposes upper and lower bounds for the reset times
of the HDS H; for all times (¢,j) € T (z). This result is in
contrast to the case of potential games (and standard convex
optimization problems) with periodic restarting where only
a lower bound between resets is usually needed to achieve
exponential convergence [17], [19]. Instead, Theorem 3 asks
for the resets to occur in a particular frequency band: they
should not occur too frequently (i.e., 7' should not be too
small) such that (RC;) holds and the distance |¢ — ¢*| shrinks
by a constant quantity after each interval of flow; however,
resets should also happen frequently enough (i.e., T' should
not be too large) such that S5 remains (o4¢)-GC. O

The next lemma provides a sufficient condition to guarantee
feasibility of the reset conditions of Theorem 3.

Lemma 4: For any x > 0, n < 1/2 and o4 such that cré —
Ui < 2(1—n), there exists (T, Tp) such that (RC;) and (RC3)
hold with p; = o7x~", provided ¢ is sufficiently small. ~ [J

In Theorem 3, the restarting policy o = 0, leads to

exponential NSS with rate of convergence characterized by
(1- 7(035 /k)). For this coefficient, one can choose a “quasi-

optimal” restarting parameter 7' to induce an acceleration-like
property in x-strongly monotone games:

Lemma 5: Under the Assumptions of Theorem 3-(i5), and
for any v > 0, the choice T = T := ey, /5 + :—22
@

guarantees that |q(¢,j) — ¢*| < v for all t > t,om, where

1 1 TP M
P = 2 eoyy | — + 20 —1p | In [ Z29r 0
v ¢ 2

n 2k oy v

and M is a constant that depends on |¢(0,0) — ¢*|. Moreover,
the convergence is of order O(e~V*t/7¢) as Ty — 0. [

Remark 5: The result of Lemma 5 showcases the exponen-
tial bound induced by the HM-NSS dynamics: as o4 — 1,
the convergence is of order O(e~V**), which, compared to
PSG flows, is advantageous in games with low curvature and
moderate condition number, see Figure 3. However, as o4 in-
creases, the theoretical convergence rate decreases. Whether or
not a small o is a necessary condition to achieve acceleration
in games with dynamic momentum remains an open question.
Additional numerical experiments that explore this question
can be found in the extended manuscript [36]. ([l

It is possible to find additional conditions on the game and
the parameters of 7, such that 7°F" satisfies (RC;) and (RC3).
However, such conditions are rather involved and unintuitive,
and therefore are omitted for brevity. Yet, we note that in
Example 3 the quasi-optimal restarting 7°" can be verified to
be feasible. We also note that, based on numerical experiments,
our theoretical bounds are conservative, see Figure 3. Indeed,
for k-strongly monotone quadratic games, it is possible to
obtain less conservative reset conditions (RC;) and (RC3) by
using a different Lyapunov function that leverages the affine
structure of the pseudogradient. See the extended manuscript
[36] for more details.

Remark 6: The results of Theorems 2 and 3 can also be
applied to games with a potential function P and a vector of
weights w € R™ such that D(w)V P is strictly or k-strongly
monotone, provided § = D(w)VP satisfies the required
conditions in S5. Such weighted potential games have been
recently studied in [37] in the context of congestion games. []

V. HYBRID MOMENTUM-BASED NSS WITH PARTIAL
INFORMATION

In the previous section, we assumed that players had access
to individual Oracles able to generate measurements of %&O
at the overall state g. In this section, we relax this assumptién
by considering Oracles that provide evaluations of these
functions. Thus, to perform gradient evaluations, players need
to estimate on-the-fly the overall state q.

A. Individual Multi-Time Scale Hybrid Dynamics

To achieve distributed NSS over graphs with partial in-
formation, we proceed to endow each player ¢« € V
with an auxiliary state e’ that serves as an individual
estimation of the actions of the other players: e
(el,eb,....q,...,e,,_,e,) € R™ Since players do not

need to estimate their own action, it is also convenient to
introduce the auxiliary state e’; € R"™! which contains
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Fig. 6. Scheme of Individual HM-NSS dynamics for games with partial
information. Consensus dynamics are implemented to estimate the
actions of other players. In the figure, 5 € Nj;.

the same entries of e’ with the exception of ¢;, which is
removed. Using this notation, we now assume that each player
1 has access to individual gradient Oracles characterized by
mappings of the form (¢;, e’ ;) — Gi(g;, e’ ), which satisfy
,C';Z-(qi, q—i) = %q(iq). Following similar notation used in the

literature of network games [7], we define the matrices

0(i1)><(ni)> 7
L)

0, — ( Iy O¢i—1)x1

On—iyx(i-1) Om—i)x1

Pi = (01xi=1) 1 O1x(n—s)) -

By using these definitions, each player ¢ now implements the

following momentum-based augmented continuous-time NSS
dynamics:

(ji %(pl_ql)—’_??’z:m/\a(el—ej)

pi | _ —27;Gi(qi e’;) (29)
T no ' ’

el . _%Qi Ejef\fi (e’ —e’)

K3

where € > 0 is a new tunable parameter. These dynamics
are implemented whenever the state 7; satisfies 7; € [Tp, T).
The momentum-based dynamics (29) implement a dynamic
consensus mechanism with state e’ ;. This mechanism uses a
high gain é to induce a time-scale separation in the flows of the
hybrid algorithm. In particular, if the states e’ were to instanta-
neously achieve their steady state value, the flows (29) would
reduced to the flows (15). When players are uncoordinated, the
individual resets are triggered by the condition 7, = T', and are
given by =] = R;(z;), T, = ' ,, where R; is defined in (9).
However, lack of coordination between resets can induced the
same issues discussed in Example 2. To avoid this issue, we
will incorporate the hybrid coordinated restarting mechanism
described in Section IV-A. Figure 6 shows a block-diagram of
the multi-time scale hybrid dynamics of each player.

B. Well-Posed Coordinated HDS with Partial Information

To write the coordinated HDS in vectorial form, we in-
troduce the matrices Q = D(Q;) € R(™-m>xn* anq
P = D(P;) € R™™, and note that ¢ = Pe € R" "
Additionally, we define the state ¢ := Qe, such that using
PPT =1, QQT =1,2_,, and PQT = 0, we can write
e = ¥(q,q) == P'q+ Q'q, where e = (e!,---,e"),
and express the overall hybrid NSS dynamics as a HDS (2)
with data Ho = (Co, Fa,D2,G2) and state (x,§), where
x = (q,p,7) € R3". The flow map is given by

q 2D(1)" (p ~ ) ~ PLY(q, )
p; =Fy(z,§)= _QD(T;%_E:#(CL q)) . (30)

where L := £ ® I,, denotes the communication matrix of the
graph G. The continuous-time dynamics in (30) are allowed
to evolve whenever (z, §) belongs to the flow set:

02 :{((E,(j) c Rn2+2n i qe€ Rn7p € Rn,

e [To, T, G e R"2‘"}. G1)

On the other hand, the jump set is defined as:
Dy = {(x,q) ERVF . 4 e C, max T, = T}, (32)
and the discrete-time dynamics of the algorithm are given by:
(F,4") € Ga(2,4) = Gi(g,p,7) x {G},  (33)
where (G is defined as in (14). Similar to Lemma 1, the next

lemma follows directly by construction of the HDS.

Lemma 6: For the HDS HQ = (027F2,D2,G2), all the
properties of Lemma 1 still hold. |

We will study the stability properties of the HDS Hy with
respect to the following compact set:

Ag == A x{Q(1, ®q")}, (34)
where A was defined in (20). In this case, we will use the

following restricted reverse-Lipschitz assumption, also used
in [22] for NES with static inertia.

Assumption 4: There exists ( > 0 such that
G(q) — G(¢")| = Clg — ¢7|, for all ¢ € R™. O
The next result leverages items (i1)-(i5) of Theorems 1-3.

Theorem 4: Let G describe a strictly monotone game. Sup-
pose that Assumptions 2, 3 and 4 hold, and consider the HDS
Ho under (RCy). If S5 is /—GC with 0 < § < (1 —n)/¢, then
under any of the conditions (i)-(i5) the following holds:

(a) Forall € € (0,¢5), where ¢} is given by (28), the set Ag
is R-UGAS.

(b) For each (%, 7 v) € R3 ) and each compact set K, x K4 C
C3 U Do, there exists ¢** such that for each € € (0,**)
and each solution of H3 with 2(0,0) € K, and 4(0,0) €
K, there exists a solution Z of system H; with & € K,
such that = and Z are (£, ], v)-close. a

* 1

-1

1
202/n ( tor

1 J4 4
zmaX{WHTAmax(z:) ’ 2+2mmx(£>}>

§min {1, (2} 28)
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10
00 .
— (t) T A. Model-Free NSS Dynamics
g(t) — g |
sool - W}A 7 _ To achieve model-free NSS, each player ¢ generates an
' — B ‘irkm ]l?fOI'IiTE‘t‘”‘l individual probing signal ¢ — 1;(t), obtained as the solution of
il a dynamic oscillator with state y; == (fi;, j;) € R?, evolving
100 [ on the unit circle S! according to
ne|s
. 1 0 1
fti = —Ripi, pi €S', Ri=2mg (1 0) (35
Ep
where €, and ¢; are positive tunable parameters. Note that
St is forward invariant under the dynamics of j;. Using this
probing signal, each player implements the flows:
. 2
. qi ?i(pi — )
—200 . _ 4 ~\ T
pi | =\ —midilg+eaper pi |, (36)
) 1 7 n
Timels]
where 11 = (pi1, pi2, - - - , fin) € R?", and where i is the vector
Fig. 7. Trajectories of g, g in a non-potential «-strongly monotone  that contains the odd components of /2. The dynamics (36) use

quadratic game with n = 30, kx = 0.01, £ = 0.1, 75(0,0) =
0.1-1,,ande = 5 x 10—3. The inset shows the distance to g*.

Item (a) of Theorem 4 establishes robust stability and con-
vergence properties for the hybrid NSS dynamics H,. On the
other hand, item (b) establishes that, on compact sets of initial
conditions and on compact time domains, the trajectories x
will behave as the trajectories of the “full-information” system
H1 as € — 07 in (30). In particular, by combining items (a)
and (b), we recover the convergence bounds of Theorems 1, 2,
and 3, now in a semi-global practical sense as ¢ — 0T. This
behavior is illustrated in Figure 7, which shows the trajectories
q and ¢ in a k-strongly monotone game. As observed, the
solutions of Ho approximate those of H; as € — 0F.

Remark 7: Assumption 4 always holds for k-strongly
monotone games with ( = k. Hence, for these games one
can compute an alternative expression of 5 by substituting
Assumptions 2-4 in Theorem 4 by Assumption 1 when S is
(04¢)-GC. Moreover, to guarantee that S5 is ¢-GC, a suitable
upper bound for 7" can be obtained by mirroring the derivations
of Lemma 3, which we omit here due to space limitations. [

To our best knowledge, Theorem 4 is the first result in
the literature that establishes robust convergence and stability
properties for decentralized momentum-based NSS algorithms
over graphs. Note that the stable incorporation of the multi-
time scale consensus mechanism is enabled by the use of
resets, since otherwise no CL bound (or strong Lyapunov
function) would exist for the reduced dynamics of the flows.

VI. MODEL-FREE NSS WITH MOMENTUM

We now dispense with the gradient Oracles considered
in the previous sections, and we design momentum-based
model-free hybrid NSS dynamics, suitable for applications
where players have access only to real-time measurements of
the signals that correspond to their cost functions ¢; (e.g.,
the difference between the individual cost and revenue in a
market), which are generated by the game. Such algorithms
can be designed via tools recently developed in the context of
hybrid equilibrium seeking control [17].

real-time measurements of the cost ¢;, and are implemented
whenever 7; € [Ty, T). Conversely, when 7, = T and players
are uncoordinated, they reset their states according to the
dynamics xj = Ri(x;), uj = u;, where R; is defined as
in (9). The constant €, > 0 is also a tunable parameter.

We impose the following assumption on the parameters g;

of (35), which is standard in the literature [11], [25].

Assumption 5: For all 4, ¢; is a positive rational number,
Si F Sjs Si # 265, S # 3¢5, forall i # j € V. 0
As in the model-based case, an uncoordinated implemen-
tation of the model-free hybrid dynamics can be detrimental
to the stability and/or transient performance of the algorithm.
Thus, we incorporate the hybrid coordination mechanism
described in Section IV-A to coordinate the resets of the
players, which results in the following discrete-time dynamics
(x, u") € Gs(w, 1) == Gi(z) x {u}, 37
where (g7 is given by (14). This jump map will preserve the
sequential nature of the resets needed to guarantee a well-
posed HDS that satisfies (12). Using ¢ = (¢1, ¢, ..., dn),
the continuous-time dynamics of the model-free hybrid NSS
algorithm can be written in vector form as:

q _iﬂ[?)(T)‘_1 (p—q)
1; By ) = - (T)¢17(Q+5a/1')ﬂ L 38)
1 éD(Ri)ﬂ
and the flow and jump sets are defined as:
C3:=Cy xT", and Dj3:= Dy xT". (39)

Figure 8 shows a scheme of the proposed algorithm.

B. Semi-Global Practical Stability Results

The data Hs = (Cs, F3, D3, G3) defines the third hybrid
NSS dynamics considered in this paper. The stability and
convergence properties of Hs are given in the following
theorem, which also leverages items (i1)-(i5) of Theorems 1-3.

Theorem 5: Let G describe a strictly monotone game, and
consider the HDS 73 under (RC;). Then, under any of the
conditions (i1)-(i5) the following holds:

(a) The set A x T" is SGPAS as (gp,2,) — 0.
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Fig. 8. Scheme of Individual Model-Free HM-NSS dynamics with real-
time measurements of the cost. In the figure, j € N.

(b) For each (f,j’,zz) € R? and each compact set K, C
CiUD;, Fe; >0st Ve, €(0,;) Ie, >0 st
V ey, € (0,¢5), and for each trajectory = of system H3
with z(0,0) € K, there exists a solution Z of system #;
such that z and Z are (£, ], v)-close. O

The result of Theorem 5 establishes two key properties:
First, for any desired precision v > 0, and any compact set of
initial conditions K, every solution of the HDS H3 initialized
in K, will satisfy a bound of the form'

[2(t, )4 < B2(0.0at +5)+ 5. (40)

with 8 € KL, provided the parameters ¢, and ¢, are suffi-
ciently small. Second, selecting €, and ¢, sufficiently small
leads to trajectories x of H3 with approximately the same fast
convergence bounds established in Section IV-C.

Remark 8: The model-free dynamics Hs are based on
averaging theory for (perturbed) hybrid systems [17], [30].
Thus, as €,4,6, — 0T the trajectories of H3 behave as their
average hybrid dynamics (modulo a small perturbation), which
are precisely given by H;. Both dynamics are set-valued,
which differs from existing results in the literature of model-
free Nash set-seeking [11]. Figure 9 compares a solution to
Hs and a solution to the model-free dynamics of [11] based
on PSG flows, in a k-strongly monotone quadratic game. [

We finish this section by commenting on the extensions of
system Hs3 to applications where players could have access
to an individual “Black-Box Oracle” that allows them to
evaluate (as opposed to measure) their local cost ¢; at their
current state ¢;, using estimations of the actions of the other
players and without knowledge of the mathematical form of
¢; (e.g., using dynamic simulators). In this case, we can
follow the same approach of Section V, by incorporating an
auxiliary estimation state §. In this case, the hybrid system
Hy = (Cy, Fy, Dy, G4) will have a flow map given by
2D(7)" ! (p — q) — PLa(g, §)

—~ D)6 (g + it @)
Lo , (41)
= D(Ri)u
— - QLY(g,q)

QT R
Il
o
—
~
N~—
I

'We note that |(t, j)|n = O for all (¢, ) in the domain of the solutions.

= Maodel-Free HM-NSS —
— Model-Free PSG

Average Hybrid
- Average PSG

a(t) — ')

q

15

Timels]

Fig. 9.  Trajectories of #1 and #s in a non-potential k-strongly
monotone quadratic game with k = 0.197, £ = 0.2 and n = 10.

a jump map G42(x, w,q) = Gq(z) x {u} x{G}, flow set C’él =
C1 x TP x R™ ™™ and jump set Dy = D7 x T" x R™ ~™,
For this hybrid system, a result like Theorem 5-(a) also holds,
now with respect to the set A x T" x {Q(1,, ® ¢*)} and
as (gp,€a,6c) — 0. Similarly, a result like Theorem 5-(b)
holds by noting that the average hybrid dynamics of H, are
precisely given by the HDS H3 (modulo a small perturbation
on the gradient), whose robust stability properties were already
established in Section V. Thus, we can follow exactly the same
steps of the proof of Theorem 4 to obtain an equivalent result.

VIl. ANALYSIS AND PROOFS

In this section, we present the main proofs of our results.

A. Proofs of Section IV

Proof of Lemma 1: Well-posedness follows directly by [24,
Thm. 6.30], since F} is continuous, C; and D1 are closed sets,
and (7 is outer-semicontinuous (OSC) and locally bounded
(LB) in D;. To rule out finite escape times it suffices to study
the behavior of the states (¢, p). Using Assumption 1, the form
of (15), and the fact that G(¢*) = 0, we have that || <
#|p = al. [pl < 2T¢lq — g*|, which implies that |(¢,p)| <
U(g,p) — (¢%,¢%)|, with £ := 2v/3max{7,T¢}. Thus, by
the Gronwall-Bellman inequality, the flow map (15) does not
generate finite escape times. Moreover, since Tt e {T, T}™,
we have that G1(D) C Cy U Dy, which implies that solutions
do not stop due to jumps leaving the set C1UD;. The dynamics
of 7 are decoupled and can be written as:

reC, =T, )" (42a)
reD, = {7’ € C, : maxr; = T}, e G (r), (42b)

T =nl,,

where G, (7) is the projection of G; into the T-component,
which is independent of (p,q). This hybrid system is well-
posed by construction, and by [32, Thm. 1] it renders Agync
UGFxS, with a convergence bound 7™ given by T* =
%(T —To) +n, ¥ 7(0,0) € [To,T])"™. Moreover, by [32,
Thm. 1], each solution has at most n jumps in any interval
of length L = %(T — Tp), and, for any pair of hybrid times
(t,7),(s,i) € dom(r) with t 4+ j > s+ ¢ > T* the following
dwell-time condition holds L + ¢t — s > V—:J L, where |-|
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denotes the floor function. Thus, any solution 7 of system
(42a) is complete and also satisfies |7(t,7)|4,, = O for all
t+j > T* such that (¢, j) € dom(7). Since the states (g, p) of
H1 evolve in R™ x R™, for each 7(0,0) € [Ty, T]™ the hybrid
time domains of system (14)-(17) are the same hybrid time
domains of system (42a). This equivalence, plus the above
properties, establish the result. |
The previous Lemma directly implies the following:

Lemma 7: Let v > 0 and consider the HDS #; with
restricted flow and jump sets given by:

Cp={a e R (p,g) € {(¢",q")} + VB, 7 € [Ty, T]"},
D, ::{x eR?: ze€C,, maxt = T},
S

and jump map G with values intersected with the set C.,.
Then, the restricted system H, = {Fy,C,,G,,D,} renders
UGFxS the set A, == ({(¢*,¢")} + VB) X Agync. O

With Lemmas 1 and 7 at hand, we proceed to analyze
the HDS #; by studying the HDS #, with data intersected
with the set A,. We denote this new HDS as H, :=
{Fs,Cs,Gs,Ds}, and we note that any compact set A" C
R™ x R™ such that A" x Agye is UGAS for this system will
also be UGAS for #,, thanks to the hybrid reduction principle
[24, Cor. 7.24]. Moreover, since v is arbitrary and independent
of any parameter, and #; has no finite escape times, the set
A’ X Agyne Will also be UGAS for #H;. Thus, in the following
we focus on studying the stability properties H .

1) Proofs for Potential-games: For simplicity, we first
present the proofs for potential games.

Lemma 8: Under the conditions of Theorem 1-(i;), system
‘Hs renders UGAS the set A given by (20). O

Proof: Using the potential P, we define the error P(g) =
P(q) — P(Ang), and we consider the Lyapunov function

V(z) = Vi(z) + Va(z) + V3(z), (43)
where the smooth functions V; are defined as follows:
1 1
Vi@)=7lp—al, Va(@) = 7oLy, @40)
I71? 5
V() = =~ P(a), (44b)

where |z|%(w)’ANE = MiNge Ay, |2 — 3\%(@ and |z|2D(w) =
2T D(w)z. By our definition of potential-games, and the con-
struction of V7 and V5, the function V' is radially unbounded
and positive definite with respect to the compact set A N
(Cs U Dy). During flows in Cs, we have:

) 1 T .
V(e) < ——lp—q =7 (¢ - Laws(p) "6(0) ~ Pla))

) (4$)
where 114, (p) is the projection of p on Ayxg. Since G is

Lipschitz and P is convex (implied by the monotonicity of G
[33, Thm. 12.17]), it follows that [38, Thm. 5.8] ﬁ |Q(q)|2 <
(¢—TLay,(»)" G(q)— P(q), and thus, from (45), we obtain
during flows that

. 1 T,
<——lp—q-= 2,
V(z) < - lp — ql 2glg(q)l

Since |G(g)| = 0 if and only if ¢ € Ang, during flows we have
V(z) < 0 for all z € Cs\A. On the other hand, during jumps,

(40)

we have that AgHV(a:) =V (x(t, j+1))—V (x(t, )) satisfies
AV (z) = ATPV5(x). Additionally, by the definition of
G1 in (14) the following two facts hold: first, if x € D,, we
have two possible cases for all players ¢ € V: a) if ; = T,
then 7';' = To; b) if 7, = T then Ti+ € {Ty,T}; second, if
x € Dg, we have that in each jump one and only one player
i satisfies 7, = T and Tj = Ty. Therefore, since T > Ty
there exists £ > 0 such that 7§ — 7% = —&. Hence, it follows

that A§+1V3(ZE) = @Z?ﬂ(riﬂ —712) = _%P(q) < 0.
This implies that V' does not increase during each reset
triggered by a player. Given that the hybrid time domains of
H, are intervals of flow of duration %(T —Tp), followed by
n consecutive jumps, we can apply the previous inequality
n times to obtain: ATV (z) = Y A;ii_lV(z) =
—eP(q) <0, V x € D,. By [24, Prop. 3.27], the periodic
strong decrease of V' during flows, and its non-increase during
jumps, imply that s renders UGAS the set A. |
Lemma 9: Under the conditions of Theorem 1-(iz), system
H, renders UGES the set A.
Proof: Let V' given by (43), where Ang = {¢*} due to strong
monotonicity. During flows, we have (45) with 114, . (p) =
q*, which using the strong monotonicity of G leads to

. 1 K "
V(z) < ——Ip- q® - Togla—q > <-AV(z), @7

where we used the global Lipschitz property of G, and the
quadratic upper bound of (43), with

3 2 min{l,025,Tx} 1 1 1
" 3A  max{1,272¢} T 12T o, s’
where the approximation holds when Tj is sufficiently small,
and T is sufficiently large (but finite). Thus, during each
interval of flow, V satisfies the ¢-time bound

V(t,j) < V(tj,j)e ), (49)
for all (t,5) € dom (z) such that j = kn for some k € N.
To study V' during jumps, let © and I be the set of indices
of players who implement «; = 0, and o; = 1, respectively.
After the n consecutive jumps that proceed the flows:

AV (z) < _i Y wi(pi—a)*+ i —q)?) .

(48)

ico
1 2 2 1 *\ 2
=5 \ R —T5) =5 Z(qi_%)
€0
I{/ *
— 5 =T (4 — ) <0,

iel

where we used the strong monotonicity of G, which implies
strong convexity of P [33, Thm. 12.17], and the condition
T -T3 > i implied by (RC;) with p; = x~. Therefore, it
follows that V (¢, j) < V(t;,5—n)e **~%) forall j > n and
t > t;. Since each interval of flow has length L = (T'—1y) /7,
it follows that V' (t;,5) < V(tj_n + L,j — n)e Me A=t
Iterating, and using (49):

V(t,j) < V(0,0)e ML =DEemAG=t) (50
By r-strong convexity of P and the ¢-Lipschitz of G:
(1 KT2) 1 2 3), .
1n1n{4,2}|xA<V(x)<2max 1—|—;, 3 7|74,
(5D
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and thus, from (50), we obtain:
|2(t, 5)] 4 < c](0,0)] , e~ 2 Tmmaxr@0)/m) (52

with ¢ > 0. Moreover, using the structure of the hybrid time
domains, all hybrid times (¢, j) € dom (x) satisfy

A 1 . AL
_§t§_37n>\(t+j)+?7 (53)
for all A > 0. Hence, we obtain:
2t 5)] 4 < €5 (0,0)] €737+, (54)

1,1
where ¢, == ce)‘L(3+2"). |

Lemma 10: Under the conditions of Theorem 1-(iz), system
H, renders UGES the set A.

Proof: Using the Lyapunov function V' given by (43), and the
fact that Axg = {¢*}, we obtain again inequality (47) during
flows. Since now a = 0,,, during jumps we have

: 1 _ @ i}
AV (z) < V3 — Vo — 5(73 - T3)P(q) + Zla—qa 2.

By strong convexity of P, we can further bound (55) as:(SS)
AV (2) < = (k1) V(a), (56)
where (-) is given by (21), which under (RC;) satisfies
v (k') € (0,1). Thus, by [39, Thm. 1], inequalities (47)
and (56), and the quadratic upper and lower bounds of V, we
obtain that H, renders UGES the set A. [ ]
With Lemmas 8-10 at hand for system Hs, we can now
proceed to proof the three main items of Theorem 1.

Proof of Theorem 1: (a) Stability: By the hybrid reduction
principle [24, Cor. 7.24], UGAS of A for system H; (es-
tablished in Lemmas 8, 9 and 10), and UGFxS of A, for
system H,,, imply that A is UGAS for system H,. Moreover,
since the choice of v > 0 is arbitrary, and has no effect on
the dynamics of the system, and since the trajectories of the
original HDS #; are complete and bounded, the compact set
A is also UGAS for system H;. This establishes UGAS of
A under the conditions of items (i), (i2) and (i3). For items
(i2) and (i3), UGES follows by the exponential convergence
bounds of Lemmas 9-10 and the fixed-time synchronization of
7. R-UGAS and R-UGES follow directly by robustness results
of well-posed HDS, specifically by [24, Thm. 7.21].

(b) Convergence Bounds: For any solution x and all (t,j) €
T (x) we have that |7(t, j)|4,,. = 0. Thus, for such times the
trajectories of H; satisfy the Lyapunov inequalities established
in Lemmas 8-10. To establish (22), we use inequality (46),
which implies that for each (¢,7),(s,7) € T (z), such that
t > s, we have V(t,7) < V(s,5). Since V3 < V, and using
s;j =min {t € R>o, (t,7) € T(z)}, we obtain

~ . 2n , Cj
where ¢; = 2V/(s;,j). Using the fact V is non-increasing

during flows and jumps, and also converges to zero, we obtain
that {c;}32, “\ 0F. To obtain the convergence bound of
item (i), we first note that from the proof of Lemma 1 it

follows that Lmt‘A < E\I|A for all (¢,j) € dom (z), where

(= 2+/2 max {1 T%v T¢ } In particular, this implies that

|2 (ts, )| 4 < |2(0,0)] 4 el Tmax7(@0)/n (5g)

where t5, js are the smallest times for which |7(¢,7)[ 4. =0
for all t + j > ts + js. Note that z(ts, js) € Cs U 55, and
hence (52) holds with |x(0,0)| 4 replaced by |z(ts, js)| 4. i-€.,
|z(t,7)| 4 satisfies:

2 (t, )| 4 < ¢a(ts, j)| g e~ 2ET-maxr@O)/m) - (59)

for all t 4+ 7 > ts + js. Using (59), (58), and the structure of
the hybrid time domains in (53):

ja(t, §)] 4 < €12(0,0)] 4 =T (), 60)

with ¢ = ce(A(%+%)+1L) which establishes the bound in
(23). This also implies that #; renders A UGES under
the conditions of Theorem 1-(i3). Finally, to establish the
convergence bound of item (i3), we note that (56) implies
V(z(t,j+n)) < (1 —v(s1)Va(z(t,j)). Since Vi(z) <
V(z) for all (t,j) € T(z), V does not increase during flows,
and using the periodicity of the hybrid time domains:

Va(t, js+kn) < (1= (k71)"Va(ts, js), Yk € Zxo, (61)

forallt € (t;+ (k—1)L,ts+ kL), where (¢s,75) denotes the
first hybrid time after which the timers 7 flow synchronized.
By Lemma 1, such times are uniformly bounded as 0 < ¢, +
js < 2T*. Using (61), the definition of V3, as well as strong
convexity and smoothness of 15, we obtain:

|Q(t,js + kn) - q*| < O—T\/Z(l -7 (Hﬁl))%m(tsajs) - q*|a
(62)
for all k € Z>¢. Finally, since by Lemma 1 all solutions are
bounded, for each compact set of initial conditions K there
exists My > 0 such that |z(¢,j)|4a < My for all (¢,7) €
dom(z) such that 0 < ¢ < ¢, and 0 < j < j,. This bound
and (62), implies the bound of the theorem via the change of
variable j = js + kn and the upper bound n < j, < 2n. B

2) Proofs for Non-Potential Games: As before, we divide the
proof in different lemmas.

Lemma 11: Consider the HDS H, under the Assumptions
of Theorem 2. Then, the set A is UGAS. O

Proof: By Assumption 3 and the strict monotonicity of the
pseudo-gradient, existence of the NE is guaranteed via [6, Cor
4.2]. Let V= i+ Vo + Vg, where V7 and V5 are defined in
(44), and 173 1S now:
7P 15(a)I”
2n ’
where ¢, corresponds to the cocoercivity constant of G. By
construction and Assumption 2, V' is radially unbounded, and
also positive definite with respect to A N (Cs U Dy). Using
co-cocoercivity of G, inequality (45) becomes

V(z) < —75@ Mye, (g, 7)%,
where & := ((p — ¢),G(q)). and
17 I, —c ag(q)T)
M c s Ts = T.;.) n " ° . (65)
1/ n(q ) (In _ Coag(Q) Co(l - 77)]n
Since 1 < 3 by design, ¢, = 1/¢, and 7, € [Tp, T}, under the

conditions of Theorem 2, we have that M;(q, ) = 0 for all
7s € [To,T] and g # ¢* whenever

m( ag(Q)T) (f[n — 8g(Q))

Vs () =co (63)

(64)

0<1,— oI, — (66)
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The expression in (66) is precisely (24) with pr = ¢ and
0 = 0. Thus, since by assumption Sy is ¢-GC, it follows that
(66) holds. Also note that when ¢ = ¢* inequality (64) reduces
to V(z) < —qg2<o.

On the other hand, after the n consecutive jumps that
proceed each interval of flow, the change of V' is A Jr”V( ) =
% |G(q )2 (T¢ — T?) < 0. Now, we show that no complete
solutlon keeps V in a non-zero level set. In particular, since
for all (¢, p, 7) € R™\{q*} xR" x [Ty, T] we have that V < 0,
it suffices to consider the case ¢ = ¢*, which leads to V=0
only when p = ¢, i.e., when (p,q) € A. Since the flows are
periodic, we obtain UGAS of A by [24, Thm. 8.8]. |

Proof of Theorem 2: (a) Stability Properties: Follows by the
same ideas used in the proof of the stability properties of
Theorem 1-(i1), but using Lemma 11 instead of Lemma 8.

(b) Convergence Bounds: Follows by the same steps used
in the proof of Theorem 1-(iy), substltutmg (57) by

20n
G@I* < F=Vh(s;,0) = 5,

Lemma 12: Consider the HDS Hs under the Assumptions
of Theorem 3-(is). Then, the set A is UGES. ([l

Proof: V= i —i—VQ—i—f/g, where V7 and V5 are defined in (44),
and V3 is given by (63) with ¢, = K /62. The time derivative

~j = 2€V3(8j,j). |

of V now satisfies V(x) < —TSiTM%g(q,Ts);%, with T =
((p—4),G(q)). By assumption we know that S; is (04¢)-GC

which is equivalent to:
o<1 [T\ (o6lhn = 9G(0)") (05l1n — 8G(q))
" 1-1T25 ogl(1 —n) — 3025 '

In turn, when 0 < § < (1 —7)/04f and 0 < n < 1/2, the

above inequality directly implies that M, ¢(q,7s) = 01, for

all 7, € [Tp,T] and all ¢ # ¢*. Thus, for such points, and

during flows, we have V < —d(|p — ¢|* + |G| (¢)). Using -

strong-monotonicity and x/¢2-cocoercivity of G we conclude

4TH6

- . (67)

max {3,2(% + £72)}

On the other hand, during jumps, using (RCl) the definition
of V3, and the Reset Policy o € {0,1}", the change of V is

iZ((pi_Qi) + (pi—q})?) = (03K~ )1/3( ),

i€®
(68)
where v(ain_l) € (0,1) is given by (21), and © is
defined in the proof of Lemma 9. Thus, it follows that
A””V < 0. Moreover, by the k-strong monotonicity

V(z) < —AV(z), with A =

A,jj+nvg_

and £- LlpSChltZ continuity of G, V satisfies the quadratic
kT2
4 20’%

bounds g|x\A <V(z )gc\x|A, where: ¢:= mm{ } and

- 3 1, kT?? .
c=maxq ¥, 5 + 5 . The exponential decrease of V'
during the periodic flows, the non-increase of V' du~ring the

jumps, and the quadratic upper and lower bounds of V', imply

that H, renders UGES the set A. [ ]
Lemma 13: Consider the HDS H; under the Assumptions
of Theorem 3-(i5). Then, the set A is UGES. O

Proof: Consider the Lyapunov function V used in the proof
of Lemma 11, which still satisfies (67). During jumps, the
reset policy « = 0, implies that © = V in (68), leading

to Af—"f/(x) < —Vi(z) — Va(z) — (o )Wa(z) <
—’V(O’iI{il)V(x). The result follows by [39, Thm. 1] and the
quadratic upper and lower bounds of V. |

Proof of Theorem 3: (a) Stability Properties: Follows by
using using Lemmas 12 and 13 in conjunction with the same
ideas used in the proof of Theorem 1.

(b) Convergence Bounds: We follow the same steps of the
proof of Theorem 1, using now Vs instead of V. For item
(i4), this leads to the following bound instead of (60):

2 (t, §)| 4 < &|2(0,0)] g e 3w+,

where )\ are defined in (67), ¢ := +/¢/c- e(G’\JFDL, and ¢ and
¢ are as defined in the proof of Lemma 12. Finally, for item
(i5), we obtain the following bound instead of (62):

k
la(t, s +kn) =" < ooy (L= (05671)) * lalts, 5s) — a7
from here, the proof follows the exact same steps. ]

Proof of Lemmas 2 and 3: We first show Lemma 3. Using
co = k/0* we have that (RC3) can be equivalently written as
& > 1-2cok+c20?, with & == (75 — 6) (co(1—n)—6). Since
G is (-Lipschitz continuous, we have that 9G(q)"9G(q) <
£21,, [22]. Additionally, given the monotonicity properties of
G, it follows that 9G(q) +9G(q) T = 2kI,, [28, Prop 2.3.2 ¢)].
Using these facts, the above condition on & implies that

0<I— ( T2 ) (In - Coag(Q)T) (In - Coag(q))
1-1T26 co(l—n) =10 ’
which means, whenever 0 < ¢ < ¢o(1 —n), that Ss is (1/c,)-
GC. Lemma 2 follows by the same arguments, using ¢, = 1/¢,
and letting k — 0. [ |

Proof of Lemma 4: The result follows by direct computation
considering (RC;) and (RCj3) simultaneously. A step-by-step
computation can be found in the extended manuscript [36]. B

Proof of Lemma 5: The result is obtained from the conver-
gence bound of Theorem 3-(i5) by leveraging the periodicity
of the hybrid time domains, and optimizing with respect to
T. A step-by-step computation can be found in the extended
manuscript [36]. |

B. Proofs of Section 3

To prove Theorem 4, we present two auxiliary lemmas:
Lemma 14: Consider the assumptions of Theorem 4, and
let Ho s = {Ca s, Fa 5, D2 s, G2 s} be obtained by intersecting
the data of Hy with Ay, == A, x (Q(1,, ® ¢*) + vB), where
A, = ({(¢"*,¢%)} + vB) X Agne. Then Hy ; renders UGAS
the set A x {Q(1,, ® ¢*)}.
Proof: Consider the change of variable § = ¢ — h(q), with
h(q) == Q(1, ® q), and let
W(g,0,e) = —-QLQ"0 —£Q (1, ® 2D(7) " (p — q))
+eQ (1, ® PLQTH). (69)
This change of coordinates leads to a HDS Hy with state
9 = (x,0), where + = (¢,p,7), and data Hy =
(Ca,9,F29,D29,G2.9), where C3 9, D2 9 and G2y are ob-
tained directly from (31), (32), and (33) respectively via the
change of coordinates, and where the flow map is defined by
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F5 9(9) == (U(z,0+ h(q)), W(q,0,e)/e) where:
2D(r)"'(p—q) — PLQ0
Uz, 0+ h(q) = [ —2D(1)G(1, ® ¢+ QT0) (70)
nln

Let Hy, s be the HDS that results from intersecting the data
of Hy with A, x (vB), with v > 0. Studying the stability of
A x {9Q(1,, ® ¢*} under Hs s, is equivalent to analyzing the
stability of the compact set Ag g = A x {O}"z_” under Hy 5.
For this last system, we consider the Lyapunov function

Ve(9) = (1 —d)V(z) +d-Va(8), with d € (0,1),  (71)
where V is defined as in Lemma 11, and Vj (6 ) = 116|%. Using
the proof of Lemma 11, and the equality G 1®q) =G(q),

it follows that a‘g—g’:)U(gs,h(q)) < —73@ " My(q,75)%, with
i = ((p — q),9(g)) and M, given by (65) with ¢, = 1.
Under the assumptions of Theorem 4 we know that

o<1 (T (= 95(a)7) (1, — 9G(q)

" 1-T2%6 01 —n)— 026 ’
and thus that My(q,7s) = 61, V75 € [Tp, T]. Hence, letting
1/2

&(x) = (|p —qP+lq— q*|2> we obtain that

oV (x)

T S _T‘O(S min {17 <} 52(33)7

where we used the bound of Assumption 4. Also,

OV 1, 6+-h(@)-U(2)) < 1 (fp—al +la—a"]) ], (73)

D
T?* Amax (L) { 1
—————— " max
V2 T)\max(ﬁ) TAmax(L)
On the other hand, by the fact that the underlying communica-
tion graph is undirected and connected, it follows that QLQ T
is positive definite [7, Lemma 6], and, moreover that

(72)

Cc1 =

oVy A

By (q,0,0) < -2 )\Gl (74)
oVy 0Vy Oh
(G2-Tnot) vt S Senb(e) B B, 09

where co = 2v/2n /Ty and c3 = 2v/nA\max(L). Hence, using
(72)-(75) it follows that the time derivative of Vg satisfies
VG < _(§(I)79)TAE(£($)a9) with
(1 —d)Tpemin {1,¢*} —3(1—d)ey — 2eo
Ac=| 4 d (,\2(.6) _ 63) )

é(l - d)cl - %02 en

which is positive definite provided that ¢ € (0,e3) where ¢
is as defined in (28). Note moreover, that if ¢ satisfies this
condition there exists k. > 0 such that

Ve <~k (p—a+la—a'P+16). (6
Using the results regarding the change of the Lyapunov
function V' during jumps presented in the proofs of Lemmas
11, 12 and 13, given that (RC1) is satisfied with p; = 0 by
assumption, and since V,"(0) = Vp(0) for all § whenever
¥ € Dy y, it follows that Aﬁ”V@,(ﬁ) < 0 for any resetting
policy a € {0,1}". This 1nequal1ty and (76) imply that Hy ,
renders the set Ag ¢ UGAS via [24, Prop. 3.27]. The stability
results for Hy s follow directly by the change of cooordinates
G =0+ h(q) and the described result for Hy ;. |

Lemma 15: Every solution of Hs is complete.

40 o4 2¢ }

Proof: Follows by using the Lipschitz continuity of the flow-
map F> and the Gronwall-Bellman inequality. Step-by-step
derivations are presented in the extended manuscript [36]. W

Proof of Theorem 4: (a) Let H5 , be defined from Hs by
following the same procedure described in the statement of
Lemma 7. Since the addition of the state ¢ and its associated
dynamics do not affect the synchronization dynamics, Hs .
renders UGFxS the set Aj,, where Aj, is as defined in
Lemma 14. Therefore, by the hybrid reduction principle [24,
Cor. 7.24], UGAS of A x {Q(1,, ® ¢*)} for system Hs s,
established in Lemma 14, implies that A x {Q(1,, ® ¢*)} is
UGAS for Hs . Since the choice of v > 0 is arbitrary and
since solutions of H, are complete and bounded, using Lemma
15, we have that A x {Q(1,, ® ¢*)} is UGAS for 7-{,2.

(b) Let v > 0, and Ko:=K,xK; C R x R™ =" be an
arbitrary compact set. Define ¥ := maxycx, Vi (9), where
Vi is as given in (71). Notice that v exists since Vg is
continuous and Ky is compact by assumption. It follows that
Ko C Ly, (U), where Ly, (c) represents the c-sublevel set
of Vi. Since Vg is radially unbounded by construction and
Assumption 2, Ly (v) is compact. Let KV := Ly, (v) and
define the HDS H27K = (FQ, Cy N Kv, GQ, Dy N Kv).
Notice that under Hz g, ¢ evolves in a compact set. Moreover,
by the arguments presented in the proof of item (a), Ha x
renders KV strongly forward invariant for any ¢ € (0,¢}).
Hence, using Lemma 15, it follows that, given any arbitrary
compact set K, Xf(q C KV, every solution to Ho x with
(2(0,0),¢(0,0)) € K, ><Kq is complete. Therefore, by [30,
Thm. 1], for any pair £, j > 0 there exists £ € (0,}) such that
for each € € (0, €] and each solution z to Hs k, with 2(0,0) €

K, x Ky, there exists a solution z to Hsuch that x and z are
(,7,v)—close. The result follows with ¢**=min {£,£;}. W
Proof of Theorem S5: First, using a Taylor expansion of
the form ¢;(q + eaft)iii = Ridi(q) + €aftift' Vi(q) +
i O(e i), and the fact that |fi;|<1 for all 4 € V, and that
Tl i (t)Tdt=e;, where L = 27LCM{1/c1,...,1/c,}
and LCM denotes the least common multiple, the average
dynamics of H3 are given by H4 = (Cy, F{*, D1, G1), where
G1,Cy and D, are given by (14), (16), and (17), respectively,

and QD(T)_l(p B q)
F(z) = [ —2D(7) (9(q) + O(ea)) (77)
nl,

It follows that, on compact sets, we have F{!(x) € conF} (z +
ke,B) + ke,B, for some k > 0, where F; was defined
in (15). Thus, any solution of the average dynamics ’H{;‘ 1s
also a solution of an inflated HDS generated from 7{;. By
[24, Thm. 7.21], we conclude that, under the Assumptions of
Theorems 1-3, system ”Hg“ renders SGPAS as ¢, — 07 the
compact set A. Since ’Hé“ and H; are nominally well-posed,
all assumptions of [17, Thm.7] are satisfied, and we conclude
that Hs renders SGPAS as (e),e,) — 07 the compact set
A x T™. Ttem (b) follows directly by [17, Prop. 6]. [ |

VIII. CONCLUSIONS

We introduced a class of hybrid Nash set-seeking algorithms
with dynamic momentum for the efficient solution of non-
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cooperative games with finitely many players. The algo-
rithms incorporate continuous-time dynamics with momentum
and discrete-time decentralized coordinated resets that model
restarting mechanisms. By using tools from hybrid dynamical
systems theory, we developed model-based algorithms that rely
on full-information Oracles, as well as algorithms suitable for
games with partial information and model-free settings. In the
latter cases, we established robust stability and convergence
properties using multi-time scale techniques based on singular
perturbations and averaging theory.

[1]

[2]

[3]

[4]

[5]
[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

REFERENCES

J. Nash, “Non-cooperative games,” Annals of Mathematics, vol. 54,
no. 2, pp. 286-295, 1951.

R. Kutadinata, W. Moase, C. Manzie, L. Zhang, and T. Garoni,
“Enhancing the performance of existing urban traffic light control
through extremum-seeking,” Transportation Research Part C: Emerging
Technologies, vol. 62, pp. 1-20, 2016.

K. Ma, G. Hu, and C. J. Spanos, “Distributed energy consumption
control via real-time pricing feedback in smart grid,” IEEE Transactions
on Control System Technology, vol. 22, no. 5, pp. 1907-1914, 2014.

J. R. Marden, S. D. Ruben, and L. Y. Pao, “A model-free approach to
wind farm control using game theoretic methods,” IEEE Transactions
on Control Systems Technology, vol. 21, no. 4, pp. 1207-1214, 2013.
M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks. Princeton University Press, 2010.

T. Basar and G. J. Olsder, Dynamic Noncooperative Game Theory. San
Diego, CA: SIAM, 1998.

D. Gadjov and L. Pavel, “A passivity-based approach to Nash equilib-
rium seeking over networks,” IEEE Trans. Autom. Contr., vol. 64, no. 3,
pp. 1077-1092, 2019.

B. Gao and L. Pavel, “On the rate of convergence of continuous-time
game dynamics in N-player potential games,” 59th IEEE Conference on
Decision and Control, pp. 1678-1683, 2020.

M. Bianchi and S. Grammatico, “Fully distributed Nash equilibrium
seeking over time-varying communication networks with linear conver-
gence,” IEEE Cont. Syst. Letters, vol. 5, no. 2, pp. 499-504, 2021.

J. B. Rosen, “Existence and uniqueness of equilibrium points for concave
n-person games,” Econometrica, vol. 33, pp. 520-534, 1965.

P. Frihauf, M. Krsti¢, and T. Basar, “Nash equilibrium seeking in non-
cooperative games,” IEEE Transactions on Automatic Control, vol. 57,
pp. 1192-1207, May 2012.

M. Ye and G. Hu, “Distributed seeking of time-varying Nash equilib-
rium for non-cooperative games,” IEEE Trans. Autom. Contr., vol. 60,
pp- 3000-3005, 2015.

S. Krilasevi¢ and S. Grammatico, “Learning generalized Nash equilib-
ria in multi-agent dynamical systems via extremum seeking control,”
Automatica, vol. 133, 2021.

W. Su, S. Boyd, and E. Candes, “A differential equation for modeling
Nesterov’s accelerated gradient method: Theory and insights,” Journal
of Machine Learning Research, vol. 17, no. 153, pp. 1-43, 2016.

B. Shi, S. S. Du, M. 1. Jordan, and W. J. Su, “Understanding the
acceleration phenomenon via high-resolution differential equations,”
Mathematical Programming, Jul 2021.

M. Muehlebach and M. I. Jordan, “Optimization with momentum:
Dynamical, control-theoretic, and symplectic perspectives,” Journal of
Machine Learning Research, vol. 22, no. 73, pp. 1-50, 2021.

J. 1. Poveda and N. Li, “Robust hybrid zero-order optimization algo-
rithms with acceleration via averaging in continuous time,” Automatica,
vol. 123, 2021.

D. E. Ochoa, J. I. Poveda, C. Uribe, and N. Quijano, “Robust optimiza-
tion over networks using distributed restarting of accelerated dynamics,”
IEEE Control Systems Letters, vol. 5, pp. 301-306, 2021.
O’Donoghue and E. J. Candes, “Adaptive restart for accelerated gradient
schemes,” Foundations of Computational Mathematics, vol. 15, no. 3,
pp. 715-732, 2013.

J. E. Gaudio, A. M. Annaswamy, M. A. Bolender, and E. Lavretsky, “A
class of high order tuners for adaptive systems,” IEEE Control Systems
Letters, vol. 5, no. 2, pp. 391-396, 2021.

D. E. Ochoa, J. I. Poveda, A. Subbaraman, G. Schmidt, and F. Pour-
Safaei, “Accelerated concurrent learning algorithms via data-driven
hybrid dynamics and non-smooth ODEs,” Learning for Dynamics and
Control Conference, vol. 144, pp. 1-13, 2021.

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]
[31]
[32]
[33]
[34]
[35]
(36]

(371

(38]
[39]

D. Gadjov and L. Pavel, “On the exact convergence to Nash equilibrium
in hypomonotone regimes under full and partial-decision information,”
IEEE Transactions on Automatic Control, 2022.

H. Attouch and J. Peypouquet, “Convergence of inertial dynamics
and proximal algorithms governed by maximally monotone operators,”
Mathematical Programming, vol. 174, pp. 391432, 2018.

R. Goebel, R. Sanfelice, and A. R. Teel, Hybrid Dynamical System.
Princeton, NJ: Princeton University Press, 2012.

R. Kutadinata, W. H. Moase, and C. Manzie, “Dither re-use in Nash
equilibrium seeking,” IEEE Trans. Autom. Control, vol. 60, pp. 1433—
1438, 2015.

W. M. Moursi and L. Vandenberghe, “Douglas—Rachford splitting for
the sum of a lipschitz continuous and a strongly monotone operator,”
Jour. of Opti. Theory and Appl., vol. 183, pp. 179-198, 2019.

P. Mertikopoulos and Z. Zhou, “Learning in games with continuous
action sets and unknown payoff functions,” Mathematical Programming,
vol. 173, no. 1, pp. 465-507, 2019.

F. Facchinei and J.-S. Pang, Finite-dimensional variational inequalities
and complementarity problems. Springer, 2007.

J. I. Poveda and A. R. Teel, “The Heavy-Ball ODE with time-varying
damping: Persistence of excitation and uniform asymptotic stability,” in
2020 American Control Conference (ACC), pp. 773-778, IEEE, 2020.
W. Wang, A. R. Teel, and D. Ne§i¢, “Analysis for a class of singularly
perturbed hybrid system via averaging,” Automatica, vol. 48, 2012.

J. I. Poveda and N. Li, “Inducing uniform asymptotic stability in time-
varying accelerated optimization dynamics via hybrid regularization,”
58th IEEE Conference on Decision and Control, to appear., 2019.

J. 1. Poveda and A. R. Teel, “Hybrid mechanisms for robust synchroniza-
tion and coordination of multi-agent networked sampled-data systems,”
Automatica, vol. 99, pp. 41-53, 2019.

R. T. Rockafellar and R. J. Wets, Variational Analysis. Springer, 1998.
D. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas-Revised
and Expanded Edition. Princeton University Press, 2018.

R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge, 2013.

D. E. Ochoa and J. I. Poveda, “Momentum-Based Nash Set Seeking
over Networks via Multi-Time Scale Hybrid Dynamic Inclusions,” arXiv
preprint arXiv:2110.07269, 2021.

M. Arcak and N. C. Martins, “Dissipativity tools for convergence to
nash equilibria in population games,” IEEE Transactions on Control of
Network Systems, vol. 8, no. 1, pp. 39-50, 2020.

A. Beck, First-order methods in optimization. SIAM, 2017.

A. R. Teel, F. Forni, and L. Zaccarian, “Lyapunov-based sufficient con-
ditions for exponential stability in hybrid systems,” IEEE Transactions
on Automatic Control, vol. 58, no. 6, pp. 1591-1596, 2013.

Daniel E. Ochoa is a Ph.D. candidate in the De-
partment of Electrical and Computer Engineer-
ing at the University of California, San Diego.
He received his M.Sc. degree in Electrical Engi-
neering from the University of Colorado, Boulder
in 2022, and a M.Sc. degree in Electronics and
Computer engineering from the University of
Los Andes, Colombia in 2019. He holds double
Bachelor’s degrees in Electronics Engineering
(cum laude) and Physics from the University of
Los Andes, Colombia, with a minor in Computa-

tional Mathematics.

Jorge |. Poveda is an Assistant Professor in the
Electrical and Computer Engineering Depart-
ment at UC San Diego. He received his M.Sc.
and Ph.D. degrees in Electrical and Computer
Engineering from UC Santa Barbara in 2016
and 2018, respectively. Before joining UCSD, he
was an Assistant Professor at the University of
Colorado, Boulder, and a Postdoctoral Fellow at
Harvard University. He has received the NSF
2020 Research Initiation (CRII) and 2022 Early

O
- Career (CAREER) awards, the 2022 AFOSR

Young Investigator Award, the UCSB-CCDC Outstanding Scholar Fel-
lowship (2013) and Best Ph.D. Thesis award (2020), and the 2023 AACC
Donald P. Eckman award. His research interests include hybrid control,
adaptive and network systems, and model-free control and optimization.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on February 18,2024 at 21:25:20 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



