
Annual Reviews in Control 56 (2023) 100926

A
1
n

F

M
p
M
D

A

K
A
A
S
H
E

1

a
m
w
p
f
d
r
p

1

t
o
O
K
a
p

E

h
R

Contents lists available at ScienceDirect

Annual Reviews in Control

journal homepage: www.elsevier.com/locate/arcontrol

ull length article

ulti-time scale control and optimization via averaging and singular
erturbation theory: From ODEs to hybrid dynamical systems
ahmoud Abdelgalil, Daniel E. Ochoa, Jorge I. Poveda ∗,1

epartment of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, 92093, USA

R T I C L E I N F O

eywords:
veraging and singular perturbation theory
daptive systems
tability analysis
ybrid dynamical systems
xtremum-seeking systems

A B S T R A C T

Multi-time scale techniques based on singular perturbations and averaging theory are among the most powerful
tools developed for the synthesis and analysis of feedback control algorithms. This paper introduces some
of the recent advances in singular perturbation theory and averaging theory for continuous-time dynamical
systems modeled as ordinary differential equations (ODEs), as well as for hybrid dynamical systems that
combine continuous-time dynamics and discrete-time dynamics. Novel multi-time scale analytical tools based
on higher-order averaging and singular perturbation theory are also discussed and illustrated via different
examples. In the context of hybrid dynamical systems, a class of sufficient Lyapunov-based conditions for
global stability results are also presented. The analytical tools are illustrated through various new architectures
and algorithms within the context of adaptive and extremum-seeking systems. These tools are suitable for the
study of model-free optimization and stabilization problems that require the synergistic use of continuous-time
and discrete-time feedback. The paper aims to acquaint the reader with a range of modern tools for studying
multi-time scale phenomena in optimization and control systems, providing some guidelines for future research
in this field.
. Introduction

Singular perturbation and averaging methods are widely recognized
nd extensively employed perturbation techniques in the study of
ultiple time scales within control theory. In this introductory section,
e first provide a brief survey of the recent literature on singular
erturbation and averaging theory in the control’s literature, with a
ocus on highlighting new themes and novel applications. Detailed
iscussions on particular technical developments (stability techniques,
egularity assumptions, etc.) are deferred to the main sections of the
aper.

.1. Singular perturbation theory

The popularization of singular perturbation methods in control
heory, at least in the West, can be fairly attributed to the seminal work
f Kokotovic and collaborators during the 1960s and 1970s (Kokotović,
’Malley, & Sannuti, 1976; Kokotović & Sannuti, 1968; Sannuti &
okotović, 1969), who showed that the behavior of complex feedback
rchitectures with multiple (stable) time scales could be approximately
redicted by a ‘‘reduced’’ model operating in the slowest time scale.
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Since then, the use of singular perturbation in control theory has
steadily grown. A historical account of the development of singular
perturbation theory is given in the recent monograph by O’Malley
(2014), and a comprehensive collection of developments in singular
perturbation for control systems between 2002 and 2012 is given in
the article (Zhang, Naidu, Cai, & Zou, 2014), and also in the recent
monograph (Narang-Siddarth & Valasek, 2014). Singular perturbation
techniques remain one of the most indispensable tools for the analysis
and design of control systems.

Classically, singular perturbation theory has a well-established pedi-
gree in the analysis and design of high-gain feedback control and
high-gain observers, an enduring subject of investigation in control
theory (Khalil, 2017). In this context, it has been recently applied to
regulate nonminimum phase systems (Huang, Khalil, & Song, 2019),
as well as to address output feedback challenges encountered in sys-
tems with sensors modeled by partial differential equations (Ahmed-
Ali, Lamnabhi-Lagarrigue, & Khalil, 2023). Another classical appli-
cation of singular perturbation techniques is in (near-)optimal con-
trol problems (Sannuti & Kokotović, 1969). In a recent development,
a synergy between singular perturbation techniques and reinforce-
ment learning for solving optimal control problems emerged, see for
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example (Mukherjee, Bai, & Chakrabortty, 2020; Xue et al., 2019).
In multi-agent systems, singular perturbation remains an important
analysis and design tool. It has been applied to the study of con-
sensus in sparse large-scale networks (Chowdhury & Khalil, 2017;
Martin, Morărescu, & Nešić, 2016), in distributed resource alloca-
tion (Liang, Zeng, & Hong, 2018), in characterizing the convergence
rates of distributed consensus over cluster networks (Dutta, Boker, &
Doan, 2022), in the study of synchronization (Kong, Ni, Zhu, Hu, &
Huang, 2023), and most recently in non-convex distributed optimiza-
tion (Carnevale & Notarstefano, 2023). A fascinating avenue where
singular perturbation has found new horizons is within the control-
theoretic approach to synthetic biology (Del Vecchio, Dy, & Qian,
2016). In this context, it has been effectively employed to study mod-
ularity within biological systems (Rivera-Ortiz & De Vecchio, 2014).
Additionally, it has proven invaluable in the design of bio-molecular
feedback controllers (Grunberg & Del Vecchio, 2019) and the anal-
ysis and design of bio-molecular periodic circuits (Cuba Samaniego,
Giordano, & Franco, 2020). Moreover, singular perturbation theory
has played a vital role in the analysis and design of PID implemen-
tations in biochemical networks (Whitby et al., 2022), examining an-
tithetic integral feedback (Zand, Tavazoei, & Kuznetsov, 2022), and
for model order reduction in bio-molecular systems (Herath & Vec-
chio, 2019; Nakakuki & Imura, 2020; Pandey & Murray, 2023) and
biochemical networks (Sootla & Anderson, 2017). Furthermore, it has
been applied to the long-term regulation of epidemic outbreaks (Al-
Radhawi, Sadeghi, & Sontag, 2022; Jaison & Naidu, 2019), and to the
study of inhibition and recruitment in thalamocortical networks in the
brain (McCreesh & Cortés, 2023).

1.2. Averaging theory

On the other hand, the method of averaging is a cornerstone in
modern dynamical systems theory, with roots dating back to the work
of Laplace and Lagrange on secular motion in celestial mechanics.
A historical account of the development of averaging techniques can
be found in the classic book (Sanders, Verhulst, & Murdock, 2007).
We also mention the classic survey (Volosov, 1962). The core idea of
averaging is very natural; the behavior of a nonautonomous dynamical
system can be approximated by the behavior of an autonomous dy-
namical system in which the time-varying behavior is replaced with its
‘‘average’’ effect. Nevertheless, this simple idea is far-reaching and has a
wide range of applications across scientific and engineering disciplines.
Naturally, control systems analysis and design has substantially bene-
fited from the methodology of averaging. From stability and robustness
analysis to nonlinear and adaptive control design, techniques based
on averaging have been widely utilized to solve challenging control
problems.

A key result in the theory of averaging is that, under suitable
regularity conditions on the dynamics, if the averaged system possesses
a locally exponentially stable equilibrium point, then the original time-
varying system possesses a locally exponentially stable attractor, a
(quasi-)periodic orbit in the (quasi-)periodic case. In the traditional
averaging literature, the assumption of exponential stability (or more
generally, normal hyperbolicity) has been a necessity. Nevertheless,
relatively recent results in the control community, based on advanced
Lyapunov techniques, showed that it is possible to relax the assumption
of exponential stability of the averaged system to only asymptotic
stability (Teel, Peuteman, & Aeyels, 1999), with the price of a weaker
notion of stability for the original time-varying system, i.e., semi-global
practical stability. Unlike the classical averaging literature, the focus
in Teel, Moreau, and Nes̆ić (2003) and Teel et al. (1999) is not on
haracterizing the nature of the attractor near the equilibrium of the
veraged system. In particular, practical stability implies the existence
f a compact attracting neighborhood of the origin whose size can be
ade arbitrarily small, and the basin of its attraction arbitrarily large,
2

y choosing a sufficiently small value for the perturbation parameter
of the problem. However, without further conditions on the dynamics,
nothing is asserted about the structure of this attracting compact set. A
key challenge to note here is that, when normal hyperbolicity fails, the
main tool that can be used for establishing the existence and uniqueness
of attractors, i.e., the implicit function theorem, is not applicable.
However, from a practical point of view, the nature of the attractor
is irrelevant as long as it is guaranteed to be bounded by an arbitrarily
small upper bound. Hence, the power of the results in Teel et al. (1999).
Moreover, it was recognized that the result in Teel et al. (1999) can be
characterized in terms of a closeness-of-trajectories property (Moreau &
Aeyels, 2000; Teel & Nešić, 2000). When two systems satisfy the con-
ditions for the closeness-of-trajectories property, the (uniform) stability
properties of one of the systems can be inherited by the other in a
practical sense, attaining practical stability. This observation exploits
structural robustness results for ODEs and stability bounds in terms
of  functions (Teel & Praly, 2000). It is an interesting question
as to how the closeness-of-trajectories property compares to the more
classical ‘‘shadowing’’ property in dynamical systems (Sanders et al.,
2007). For instance, under stronger conditions on the dynamics, the
latter allows for infinite intervals of validity of solution approximations,
even when asymptotic stability does not hold.

The development of practical stability tools in averaging and sin-
gular perturbation theory opened the door for various theoretical ad-
vancements in the control community. In particular, results from the
geometric control literature (Bullo, 2002; Liu, 1997a, 1997b; Suss-
mann & Liu, 1991) became particularly useful for establishing the
closeness-of-trajectories property between a time-varying system and
a suitably averaged system. Henceforth, practical stability became a
staple in the stability theory of time-varying nonlinear systems. In
addition, inspired by the notion of practical stability, various gener-
alizations of control-oriented stability notions emerged, e.g. practical
input-to-state stability (ISS)-like properties (Moreau & Aeyels, 2000;
Nešić & Teel, 1999; Suttner & Dashkovskiy, 2022), singular practical
stability (Dürr, Krstić, Scheinker, & Ebenbauer, 2015), partial prac-
tical stability (Grushkovskaya & Zuyev, 2019), fixed-time practical
stability (Poveda & Krstić, 2021), etc.

1.3. Applications to control and optimization

The potential of employing high-frequency, open-loop, or feedback-
based, oscillatory inputs to induce stability around otherwise unstable
equilibria has been long recognized. In fact, a large class of smooth sys-
tems cannot be stabilized via time-invariant smooth feedback, as shown
in Brockett’s seminal paper (Brockett et al., 1983), but can be stabilized
via smooth time-varying feedback (Coron, 1995). We distinguish be-
tween strictly open-loop stabilization and feedback-based stabilization
using oscillatory inputs. The classical example of the former, also
known as vibrational stabilization, is the Kapitza’s pendulum (Meerkov,
1977). In this type of time-varying control, strictly open-loop high-
amplitude high-frequency input signals can induce stability, without
any feedback. This phenomenon was the subject of significant interest
in the control community during the 20th century (Bellman, Bentsman,
& Meerkov, 1986a, 1986b; Bentsman, 1987; Meerkov, 1977; Shujaee &
Lehman, 1997). On the other hand, feedback-based highly oscillatory
control inputs have been extensively studied in the context of non-
holonomic driftless control-affine systems (Morin, Pomet, & Samson,
1999), and for the practical stabilization of control-affine systems with
drift (Moreau & Aeyels, 2000), see also Bullo (2002) and Vela and
Burdick (2003).

One particular control paradigm has substantially benefited from
a combination of singular perturbation and averaging: adaptive and
learning systems (Amelina, Granichin, & Fradkov, 2019; Anderson
et al., 1986; Ariyur & Krstić, 2003; Astrom & Wittenmark, 1989; Benos-
man, 2016; Borkar, 2009; Kosut, Anderson, & Mareels, 1987; Krilašević,
2023; Sastry & Bodson, 1989; Scheinker & Krstić, 2017). In fact, tradi-

tional and two-time scale averaging theory have been used to establish
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stability properties in identifiers and parameter estimation dynamics
under suitable persistence of excitation conditions (Sastry & Bodson,
1989, Ch. 4). Averaging theory and singular perturbation theory have
also been used in the analysis of extremum-seeking systems, a subclass
of adaptive systems invented in the early 1920’s (Leblanc, 1922). This
technique aims to optimize the steady-state input-to-output map of
a dynamical system with unknown model, using only output mea-
surements of the plant. The first stability proof of extremum-seeking
control for general nonlinear plants was possible largely due to this
combination (Krstić & Wang, 2000). Since then, a variety of algorithms,
schemes, and methodologies have been developed for the solution
of model-free optimization problems in ODEs (Dürr, Stanković, Eben-
bauer, & Johansson, 2013; Grushkovskaya, Zuyev, & Ebenbauer, 2018;
Guay, Vandermeulen, Dougherty, & McLellan, 2015; Moase & Manzie,
2012; Nes̆ić, Tan, Manzie, Mohammadi, & Moase, 2012; Suttner &
Dashkovskiy, 2017; Suttner & Krstić, 2022; Tan, Nes̆ić, & Mareels,
2006; Zhu & Fridman, 2022), PDEs and systems with delays (Feiling,
Koga, Krstić, & Oliveira, 2018; Oliveira & Krstić, 2022; Oliveira, Krstić,
& Tsubakino, 2016; Tsubakino, Oliveira, & Krstić, 2023; Yu, Koga,
& Oliveira, 2021), Nash equilibrium-seeking problems in games (Fri-
hauf, Krstić, & Basar, 2012; Krilašević & Grammatico, 2023; Poveda &
Quijano, 2015; Ye, Han, Ding, & Xu, 2023), and hybrid systems (Kri-
lašević, 2023; Kutadinata, Moase, Manzie, Zhang, & Garoni, 2016;
Poveda, 2023; Poveda, Benosman, Teel, & Sanfelice, 2021; Poveda
et al., 2018; Poveda & Li, 2021; Poveda & Teel, 2017a), to name just
a few. As shown in Scheinker and Krstić (2012), inspired by principles
of vibrational control, extremum-seeking algorithms can also be used
for the solution of model-free stabilization problems in settings where
a control-like Lyapunov function is known a priori for the system,
see Scheinker and Krstić (2017) for a monograph on this subject.
When the model of the plant is known and exploration/adaptation
is not needed, extremum-seeking techniques reduce to steady-state
optimization-based controllers, which can be studied via singular per-
turbation theory (Bianchin, Poveda and Dall’Anese, 2022; Colombino,
Dall’Anese, & Bernstein, 2020; Hauswirth, Bolognani, Hug, & Dorfler,
2020). Such techniques have found important applications in trans-
portation (Bianchin, Cortes, Poveda and DallAnese, 2022) and power
systems literature (Ortmann, Maeght, Panciatici, Dörfler, & Bolognani,
2022).

While singular perturbation and averaging theory were initially
developed for dynamical systems modeled as ordinary differential equa-
tions, they have been recently extended to a class of hybrid dynam-
ical systems (HDS) that incorporate continuous-time dynamics and
discrete-time dynamics (Goebel, Sanfelice, & Teel, 2012). Hybrid dy-
namical systems are ubiquitous in modern engineering and control
systems, and they enable the systematic incorporation of logic states,
timers, clocks, resets, and other non-smooth phenomena in closed-
loop systems (Cassandras & Lygeros, 2010; Goebel, Sanfelice, & Teel,
2009; Sanfelice, 2021). Hybrid systems also emerge naturally in me-
chanical systems, such as robotic systems, where mechanical contacts
are usually modeled as ‘‘jumps’’ (Westervelt, Grizzle, & Koditschek,
2003). Hybrid controllers that incorporate logic states have been shown
to overcome some of the fundamental limitations that emerge when
using smooth feedback controllers. Applications include the robust
global stabilization of a point on smooth compact manifolds and other
topologically-obstructed systems (Mayhew, 2010; Prieur, Goebel, &
Teel, 2007; Sanfelice, 2021), the robust global solution of synchroniza-
tion problems (Poveda & Teel, 2019), the improvement of transient
performance of nonlinear systems via reset control (Prieur, Quein-
nec, Tarbouriech, Zaccarian, et al., 2018) and event-triggered con-
trol (Poveda & Teel, 2017b), and more recently the development of hy-
brid optimization algorithms that implement restarting and/or switch-
ing policies (Baradaran, Poveda, & Teel, 2018; Poveda & Li, 2021;
Teel, Poveda, & Le, 2019). Averaging tools for hybrid systems with
fast-varying states acting in the continuous-time dynamics were also in-
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troduced in Teel and Nesić (2010), and later generalized in Wang, Teel,
and Nes̆ić (2012a) using singular perturbation tools. To a significant ex-
tent, these developments were made possible by the robustness results
developed in Goebel et al. (2012), which enabled the extension of the
closeness-of-trajectories property (in a graphical sense) from solutions
of ODEs to solutions of hybrid systems, which are often non-smooth
or discontinuous. For a class of linear hybrid systems, singular pertur-
bation results in the spirit of Kokotović, Khalil, and O’Reilly (1986)
are also presented in Chitour, Haidar, Mason, and Sigalotti (2023) and
Rejeb, Morărescu, Girard, and Daafouz (2018). Singularly perturbed
switched systems are also studied in Yang, Wang, Wen, and Daafouz
(2020). This diversity of results has opened the door to novel appli-
cations in the context of distributed decision-making problems (Wang,
Teel, Sun, Liu, & Shao, 2023), dynamic pricing (Poveda, Brown, Mar-
den, & Teel, 2017), network control (Heijmans, Nešić, Postoyan, &
Heemels, 2018), and hybrid extremum-seeking control (Poveda & Teel,
2017a).

1.4. Contributions

Motivated by recent applications in chemotactic navigation of sperm
cells (Abdelgalil, Aboelkassem, & Taha, 2022) and in extremum-seeking
control and source-seeking for nonholonomic vehicles (Abdelgalil, El-
desoukey, & Taha, 2023), in this paper we introduce a second-order
two-time scale averaging result for a class of singularly perturbed
highly oscillatory systems for which existing techniques in the liter-
ature are either not applicable or uninformative. We also highlight
a connection between higher-order averaging techniques based on
near-identity transformations (Sanders et al., 2007), and averaging
based on iterated Lie brackets (Dürr et al., 2013; Liu, 1997a). This
connection seems to have been absent from the literature (see the
discussion in Dürr et al., 2013). In particular, we illustrate through
a simple example that a substantial gap between the two approaches
exists, despite the equivalence in certain special cases. In addition to
studying higher-order averaging and singularly perturbation methods
in continuous-time systems, in this paper, we also explore multi-time
scale hybrid dynamical systems, encompassing both ‘‘fast’’ and ‘‘slow’’
states in the continuous-time dynamics. In particular, we study a class
of sufficient Lyapunov-based conditions to ensure global asymptotic
stability in singularly perturbed hybrid inclusions. This result stands
in contrast to the semi-global practical results found in existing liter-
ature (Sanfelice & Teel, 2011), which are usually established under
weaker assumptions than those considered here. In particular, by
considering non-smooth Lyapunov-like conditions on the reduced and
boundary layer dynamics, we extend to hybrid systems the well-known
composite Lyapunov method, a widely used technique in the nonlinear
control systems literature (Khalil, 2002, Ch. 11), (Narang-Siddarth &
Valasek, 2014). Subsequently, we also introduce a global stability result
for hybrid systems based on averaging theory. This result mirrors
the averaging theorems found in the adaptive control literature of
continuous-time systems (Sastry & Bodson, 1989, Thm. 4.2.5), and,
unlike existing results in the literature of hybrid systems (Wang et al.,
2012a), is of global nature (naturally, under stronger assumptions).
The application of this result is demonstrated through various exam-
ples, including parameter estimation problems (Chowdhary & Johnson,
2010; Le & Teel, 2022; Ochoa, Poveda, Subbaraman, Schmidt, & Pour-
Safaei, 2021), switching systems (Hespanha & Morse, 1999; Liberzon,
2003), and sampled-data systems (Goebel et al., 2012). Finally, and
inspired by the previous discussion, we present several new algo-
rithms and schemes for hybrid extremum-seeking (ES) problems that
have not been previously studied, including ES algorithms applied
to source-seeking problems under intermittent feedback and spoofing,
ES algorithms that incorporate hybrid filters for improved transient
performance, and switched Newton-Gradient-like ES algorithms that
adaptively switch between Newton-like ES (Ghaffari, Krstić, & Nes̆ić,
2012) and Gradient-like ES (Ariyur & Krstić, 2003) to facilitate the

semi-global implementation of the method in applications where the
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Hessian estimation is highly susceptible to noise and disturbances far
away from the extremum. Furthermore, we address the problem of
stabilizing a vehicle in a predefined target area in the presence of an
obstacle, and under unknown control directions. This problem, distinct
rom those studied in the literature of hybrid control (where the control
irection is known a priori) (Sanfelice, 2021; Sanfelice, Messina, Tuna,
Teel, 2006) and hybrid extremum-seeking (Poveda et al., 2021), can

e resolved through hybrid vibrational control and averaging theory for
ybrid systems, paralleling the results of Scheinker and Krstić (2012)
or ODEs.

The paper aims to introduce the reader to a diverse set of recent
ools for analyzing dynamical systems with multiple time scales in both
ontinuous and hybrid time domains, while also providing guidelines
or future research in this field.

.5. Organization

The rest of this paper is organized as follows: In Section 2, we in-
roduce our notation, and some preliminaries on hybrid dynamical sys-
ems, which subsume continuous-time dynamical systems (e.g., ODEs)
s a special case. In Sections 3 and 4 we discuss higher-order averag-
ng, and singular perturbations, respectively, in ODEs. We also study
igher-order singularly perturbed averaging methods that incorporate
radeoffs. Next, Section 5 studies singular perturbation techniques in
ybrid dynamical systems, Section 6 covers averaging methods in such
ystems, Section 7 presents the proofs, and finally Section 8 ends with
he conclusions.

. Preliminaries

In this section, we introduce the notation that will be used through-
ut the paper, as well as some preliminaries on continuous-time and
ybrid dynamical systems.

.1. Notation

The set of (nonnegative) real numbers is denoted as (R≥0) R. The
set of (nonnegative) integers is denoted as (Z≥0) Z. Given a closed set
 ⊂ R𝑛, and a column vector 𝑥 ∈ R𝑛, we define |𝑥| ∶= inf𝑦∈ |𝑥 − 𝑦|.
f 𝑥𝑖 ∈ R𝑛𝑖 , for 𝑖 ∈ {1,… , 𝑘}, are vectors, we use (𝑥1,… , 𝑥𝑘) ∈ R𝑛1+⋯+𝑛𝑘

to denote their concatenation. We use S1 ⊂ R2 to denote the unit circle
centered at the origin, B to denote a closed unit ball of appropriate
dimension, 𝜌B to denote a closed ball of radius 𝜌 > 0, and  + 𝜌B to
denote the union of all sets obtained by taking a closed ball of radius
𝜌 around each point in the set  . A map 𝑓 ∶ R𝑚 → R𝑛 is said to
e 𝑘, for 𝑘 ∈ N≥0, if it is 𝑘-times continuously differentiable with
ocally Lipschitz derivatives. We use 𝐽𝑓 to denote the Jacobian of a
ontinuously differentiable function 𝑓 ∶ R𝑚 → R𝑛. When 𝑛 = 1, we use
∇𝑓 to denote the gradient of 𝑓 . When R𝑚1 ×⋯ × R𝑚𝑘 ∋ (𝑥1,… , 𝑥𝑘) →
𝑓 (𝑥1,… , 𝑥𝑘) ∈ R𝑛 is a continuously differentiable map, we use 𝐽𝑖𝑓 to
denote the Jacobian of 𝑓 with respect to the 𝑖th argument, and 𝐽𝑥𝑖𝑓 to
denote the Jacobian with respect to the argument 𝑥𝑖, for 𝑖 ∈ {1,… , 𝑘}. If
𝑓 is locally Lipschitz, then the set of points where the gradient ∇𝑓 is not
defined, denoted , is of measure zero (Rockafellar & Wets, 1998, pp.
403). In this case, the Clarke generalized gradient of 𝑓 at 𝑥 ∈ dom(𝑓 )
is given by 𝜕𝑓 (𝑥) ∶= co{𝑣 ∈ R𝑚 ∶ ∃ 𝑥𝑘 → 𝑥, 𝑥𝑘 ∉ , lim𝑘→∞ ∇𝑓 (𝑥𝑘) =
𝑣}. For 𝑖 ∈ {1, 2,… , 𝑚}, we use 𝜕𝑥𝑖𝑓 (𝑥) to denote the partial Clarke
gradient of 𝑓 with respect to the component 𝑥𝑖. The function 𝑓 is
said to be regular at 𝑥 if, for every 𝑢 ∈ R𝑛, the directional derivative
𝑓 ′(𝑥; 𝑢) ∶= lim𝑠→0+

𝑓 (𝑥+𝑠𝑢)−𝑓 (𝑥)
𝑠 exists, and 𝑓 ′(𝑥; 𝑢) = max{𝑣⊤𝑢 ∶ 𝑣 ∈

𝜕𝑓 (𝑥)}, for all 𝑢 ∈ R𝑛. Typical examples of locally Lipschitz regular
functions include continuously differentiable and convex functions. The
Lie bracket between two continuously differentiable maps 𝑓1 and 𝑓2
is defined as [𝑓1, 𝑓2] ∶= 𝐽𝑓2 ⋅ 𝑓1 − 𝐽𝑓1 ⋅ 𝑓2. A set-valued mapping
𝑀 ∶ R𝑚 ⇉ R𝑛 is outer semi-continuous (OSC) at 𝑥 ∈ R𝑚 if for all
4

sequences 𝑥𝑖 → 𝑥 and 𝑦𝑖 ∈ 𝑀(𝑥𝑖) such that 𝑦𝑖 → 𝑦 we have that (
𝑦 ∈𝑀(𝑥). A set-valued mapping 𝑀 ∶ R𝑚 ⇉ R𝑛 is locally bounded (LB)
at 𝑥 ∈ R𝑚 if there exists a neighborhood 𝑈𝑥 of 𝑥 such that 𝑀(𝑈𝑥) ⊂ R𝑛

s bounded. Given a set  ⊂ R𝑚 the mapping 𝑀 is said to be OSC and
B relative to  if the set-valued mapping from R𝑚 to R𝑛 defined by
(𝑥) for 𝑥 ∈  and ∅ for 𝑥 ∉  is OSC and LB at each 𝑥 ∈  . We use

co  to denote the closed convex hull of  ,  to denote the closure
of  , and int() to denote its interior. A function 𝜎𝐿 ∶ R≥0 → R≥0
is of class , i.e., 𝜎𝐿 ∈ , if: (i) it is continuous, (ii) decreasing, and
iii) converging to zero as its argument grows unbounded. A function
∶ R≥0 → R≥0 is of class , i.e., 𝛼 ∈ , if: (i) it is continuous, (ii)

ero at zero, and (iii) strictly increasing. A function 𝛼̃ ∶ R≥0 → R≥0
s of class ∞, i.e., 𝛼̃ ∈ ∞, if 𝛼̃ ∈  and 𝛼̃ grows unbounded as
ts argument grows unbounded. A function 𝛽 ∶ R≥0 × R≥0 → R≥0 is
aid to be of class , i.e., 𝛽 ∈  if: (i) it is of class  in its first
rgument; (ii) it is of class  in its second argument. Given a compact
et  ⊂ R𝑛, a function 𝛾 ∶ R𝑛 → R≥0 is said to be positive semi-definite
ith respect to  if 𝛾() = 0 and 𝛾(𝑥) ≥ 0 for all 𝑥 ∈ R𝑛 ⧵ , and
e write 𝛾 ∈ 𝑠(). If, additionally, 𝛾(𝑥) > 0 for all 𝑥 ∈ R𝑛 ⧵ ,

hen we say that 𝛾 is positive definite with respect to , and we write
∈ (). For the case when  = 0, we simply write 𝛾 ∈ 𝑠 and
∈ . A function 𝛿 ∶ (0,∞) → (0,∞) is called and order function if

here exists 𝜀0 ∈ (0,∞) such that 𝛿 is continuous and positive in (0, 𝜀0]
nd the limit lim𝜀→0+ 𝛿(𝜀) exists. We say that a map 𝜑 ∶ R𝑛×(0,∞) → R𝑚

s 𝑂(𝛿(𝜀)) on  ⊂ R𝑛 for some order function 𝛿(𝜀) if there exists positive
onstants 𝑐 and 𝜀0 such that |𝜑(𝑥, 𝜀)| ≤ 𝑐 𝛿(𝜀), for all (𝑥, 𝜀) ∈  × (0, 𝜀0].

.2. Continuous-time and hybrid dynamical systems

We consider finite-dimensional dynamical systems modeled as ordi-
ary differential equations (ODE) or, more generally, as hybrid dynam-
cal systems (HDS) (Goebel et al., 2012). Such systems can be written
s

∈ 𝐶, 𝑥̇ ∈ 𝐹 (𝑥), (2.1a)

∈ 𝐷, 𝑥+ ∈ 𝐺(𝑥), (2.1b)

here 𝑥 ∈ R𝑛 is the main state of the system. In (2.1), the set-valued
appings 𝐹 ∶ R𝑛 ⇉ R𝑛 and 𝐺 ∶ R𝑛 ⇉ R𝑛 are called the flow map

nd the jump map, respectively, and they describe the evolution of the
ystem when 𝑥 belongs to the flow set 𝐶, or the jump set 𝐷, respec-
ively. System (2.1) is represented by the notation  ∶= {𝐶, 𝐹 ,𝐷,𝐺},
here 𝐶, 𝐹 , 𝐷 and 𝐺 comprise the data of . Solutions 𝑥 to (2.1) are
arameterized by a continuous-time index 𝑡 ∈ R≥0, which increases
ontinuously during the flows (2.1a), and a discrete-time index 𝑗, which
ncreases by one during the jumps (2.1b). As such, the notation 𝑥̇ in
2.1a) stands for 𝑥̇ = d𝑥(𝑡,𝑗)

d𝑡 , and the notation 𝑥+ in (2.1b) stands for
𝑥+ = 𝑥(𝑡, 𝑗 + 1). When 𝐷 = ∅, system (2.1) recovers a continuous-time
ystem, and in this case the index 𝑗 can be omitted from the solutions.
dditionally, when 𝐹 is singled-valued and continuous, system (2.1)
educes to a standard ODE. In this way, system (2.1) provides a unifying
ormalism to study both continuous-time systems and hybrid dynamical
ystems. For the case when (2.1) depends on exogenous time-varying
ignals, we will also consider systems of the form

𝑥, 𝜏) ∈ 𝐶 × R≥0, 𝑥̇ ∈ 𝐹 (𝑥, 𝜏), 𝜏̇ = 𝜌, (2.2a)

𝑥, 𝜏) ∈ 𝐷 × R≥0, 𝑥+ ∈ 𝐺(𝑥), 𝜏+ = 𝜏, (2.2b)

hich are common in the averaging literature of hybrid systems (Teel
Nes̆ić, 2010), and where 𝜌 > 0 dictates the rate of evolution of the

uxiliary state 𝜏. In some cases, we will also use a different continuous-
ime scale (usually, denoted by 𝑠) to study the behaviors of systems

2.1) and (2.2) under fast-varying signals or dynamics.
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2.3. Solutions and stability concepts for HDS

Since the solutions to system (2.1) are parameterized by both
continuous-time and discrete-time indexes, they are defined on hybrid
ime domains. A set 𝐸 ⊂ R≥0 × Z≥0 is called a compact hybrid time
omain if 𝐸 = ∪𝐽−1𝑗=0 ([𝑡𝑗 , 𝑡𝑗+1], 𝑗) for some finite sequence of times

= 𝑡0 ≤ 𝑡1 ⋯ ≤ 𝑡𝐽 . The set 𝐸 is a hybrid time domain if for all
𝑇 , 𝐽 ) ∈ 𝐸, 𝐸 ∩ ([0, 𝑇 ] × {0,… , 𝐽}) is a compact hybrid time domain.
gain, if 𝐷 = ∅, then the index 𝑗 can be omitted and in this case the
olutions to system (2.1) are defined on intervals of R≥0.

efinition 2.1. A function 𝑥 ∶ dom(𝑥) ↦ R𝑛 is a hybrid arc if dom(𝑥) is
hybrid time domain and 𝑡↦ 𝑥(𝑡, 𝑗) is locally absolutely continuous for
ach 𝑗 such that the interval 𝐼𝑗 ∶= {𝑡 ∶ (𝑡, 𝑗) ∈ dom(𝑥)} has nonempty
nterior. A hybrid arc 𝑥 is a solution to (2.1) if 𝑥(0, 0) ∈ 𝐶 ∪𝐷, and the
ollowing two conditions hold: (a) For each 𝑗 ∈ Z≥0 such that 𝐼𝑗 has
onempty interior: 𝑥(𝑡, 𝑗) ∈ 𝐶 for all 𝑡 ∈ int(𝐼𝑗 ), and 𝑥̇(𝑡, 𝑗) ∈ 𝐹 (𝑥(𝑡, 𝑗))
or almost all 𝑡 ∈ 𝐼𝑗 ; (b) For each (𝑡, 𝑗) ∈ dom(𝑥) such that (𝑡, 𝑗 + 1) ∈
om(𝑥): 𝑥(𝑡, 𝑗) ∈ 𝐷, and 𝑥(𝑡, 𝑗 + 1) ∈ 𝐺(𝑥(𝑡, 𝑗)). □

A solution 𝑥 to system (2.1) is said to be forward pre-complete if its
omain is compact or unbounded. It is said to be forward complete if
ts domain is unbounded, and it is said to be maximal if there does not
xist another solution 𝜓 to system (2.1) such that dom(𝑥) is a proper

subset of dom(𝜓), and 𝑥(𝑡, 𝑗) = 𝜓(𝑡, 𝑗) for all (𝑡, 𝑗) ∈ dom(𝑥).
In general, given an initial condition 𝑥(0, 0) ∈ R𝑛, solutions to

system (2.1) might not be unique. This will be the case if, for example,
𝐶 ∩𝐷 is not empty, or if the flow or jump maps in (2.1a)–(2.1b) admit
non-unique solutions. Therefore, in the stability analysis of systems
of the form (2.1) (including non-Lipschitz ODEs), we will generally
insist that every solution satisfies suitable boundedness and conver-
gence bounds expressed in terms of  functions, as formalized in the
following definition.

Definition 2.2. Let  ⊂ R𝑛 be compact. The set  is said to be
uniformly globally asymptotically stable (UGAS) for system (2.1) (or (2.2))
if there exists a  function 𝛽 such that any maximal solution to 
satisfies

|𝑥(𝑡, 𝑗)| ≤ 𝛽(|𝑥(0, 0)|, 𝑡 + 𝑗), (2.3)

for all (𝑡, 𝑗) ∈ dom(𝑥). If there exist 𝑐1, 𝑐2 > 0 such that 𝛽(𝑟, 𝑠) = 𝑐1𝑟𝑒−𝑐2𝑠,
then we say that  is uniformly globally exponentially stable (UGES). □

In this paper, we will make the following standing assumption on
the data of the systems.

Assumption 2.1 (The Hybrid Basic Conditions). The sets 𝐶 and 𝐷 are
closed. The set-valued mapping 𝐹 is OSC and LB relative to 𝐶, and
𝐶 ⊂ dom(𝐹 ). Moreover, for every 𝑥 ∈ 𝐶 the set 𝐹 (𝑥) is convex.
The set-valued mapping 𝐺 is OSC and LB relative to 𝐷, and 𝐷 ⊂
dom(𝐺). □

In the next two sections, we will first consider systems of the
form (2.1) and (2.2) with 𝐷 = ∅ and 𝐹 being a continuous function.
Afterwards, in Sections 5–6 we will consider general hybrid dynamical
systems where 𝐷 ≠ ∅.

3. Higher-order averaging in ODEs

First-order averaging techniques, also referred to as standard aver-
aging, have been thoroughly studied in the control literature (Khalil,
2002, Chapter 10) and have found extensive application in various
domains, such as adaptive control (Sastry & Bodson, 1989), pulse-
width modulation-based control (Wang, Teel, & Nešić, 2012b), vibra-
tional control (Khalil, 2002), and extremum-seeking control (Krstić &
Wang, 2000). On the other hand, higher-order averaging techniques
are less widely used, but they emerge in the context of geometric
5

control (Bullo & Lewis, 2004; Liu, 1997a; Vela & Burdick, 2003) and
controllability analysis (Sussmann & Liu, 1991). Various methodolo-
gies and approaches to higher-order averaging have been studied in
the literature, including: (i) averaging based on near-identity (or Lie-)
transforms (Sanders et al., 2007; Volosov, 1962); (ii) averaging based
on the chronological calculus (Bullo, 2001, 2002; Sarychev, 2001); and
averaging based on iterated Lie brackets (Liu, 1997a, 1997b). In a
recent article (Maggia, Eisa, & Taha, 2020), it was argued that the
higher-order averaging methods based on chronological calculus and
on near-identity transforms are equivalent up to the fourth-order. Other
than the discussion in Dürr et al. (2013), it seems that there are limited
results on the connections between the averaging method based on
iterated Lie brackets (Liu, 1997a, 1997b) and the other two methods.
However, averaging based on Iterated Lie Brackets turns out to be con-
nected to a specific form of higher-order averaging known as averaging
with trade-off (Murdock, 1983).

In this section, we review the concept of higher-order averaging and
illustrate the aforementioned connection by focusing our discussion on
the second-order and time-periodic cases.

3.1. Second-order averaging based on near-identity transforms

Consider the following dynamical system evolving on the 𝑠-time
scale:

d𝑥
d𝑠 =

2
∑

𝑘=1
𝜀𝑘𝑓𝑘(𝑥, 𝜏),

d𝜏
d𝑠 = 1, (3.1)

where (𝑥, 𝜏) ∈ R𝑛 × R≥0, 𝜀 ∈ (0, 𝜀0] is a parameter, and where the
functions 𝑓𝑘 are 3−𝑘 in the first argument, and continuous and 𝑇 -
periodic in the second argument, i.e., there exists 𝑇 > 0 such that:

𝑓𝑘(𝑥, 𝜏 + 𝑇 ) = 𝑓𝑘(𝑥, 𝜏), ∀ 𝑥 ∈ R𝑛. (3.2)

Due to periodicity, we can always take the initial condition for 𝜏 to
be 𝜏(0) = 0, without any loss of generality. In the 𝑠-time scale, system
(3.1) has the form of (2.2) with 𝐷 = ∅, 𝐶 = R𝑛 and 𝜌 = 1. For each
(𝜉, 𝜏, 𝜀) ∈ R𝑛 × R≥0 × [0, 𝜀0], we define the function

(𝜉, 𝜏, 𝜀) ∶= 𝜉 + 𝜀𝑤(𝜉, 𝜏), (3.3)

here 𝑤 is given by:

(𝜉, 𝜏) = ∫

𝜏

0

(

𝑓1(𝜉, 𝜈) − 𝑓1(𝜉)
)

𝑑𝜈, (3.4)

𝑓1(𝜉) =
1
𝑇 ∫

𝑇

0
𝑓1(𝜉, 𝜈) 𝑑𝜈. (3.5)

Restricted to any bounded domain  ⊂ R𝑛, and for 𝜀 sufficiently
small, the map 𝑊 (⋅, 𝜏, 𝜀) is a well-defined diffeomorphism, for all 𝜏 ∈
≥0 (Sanders et al., 2007, Lemma 2.8.3). For 𝜀 = 0, the map 𝑊

educes to the identity map. Hence, we refer to 𝑊 as a near-identity
ransformation.

To study system (3.1) using the near-identity transformation 𝑊 , we
ntroduce the second-order averaged system, in the 𝑠-time scale, given by:

d𝜉
d𝑠 =

2
∑

𝑘=1
𝜀𝑘𝑓𝑘(𝜉), (3.6)

here the function 𝑓2 ∶ R𝑛 → R𝑛 is defined as follows:

𝑓2(𝜉) =
1
𝑇 ∫

𝑇

0

(

𝑓2(𝜉, 𝜈) +
1
2
[

𝑤, 𝑓1 + 𝑓1
]

(𝜉, 𝜈)
)

𝑑𝜈.

In this way, system (3.6) is defined in terms of 𝑓1, and, on average,
also in terms of the function 𝑓2 and the Lie brackets between 𝑤 and
𝑓1 + 𝑓1. The relationship between the trajectories of system (3.1) and
its average system (3.6) is characterized by the following theorem,

adapted from Sanders et al. (2007):
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Theorem 3.1 (Sanders et al., 2007). Let 𝐾0 ⊂ R𝑛 be a compact set.
uppose that for each 𝜉0 ∈ 𝐾0 and 𝜀 ∈ (0, 𝜀0] system (3.6) has a unique
nd uniformly bounded solution 𝜉 starting at the initial condition 𝜉(0) = 𝜉0.
hen, for each 𝑇𝑓 ∈ R>0 there exists 𝜀∗ ∈ (0, 𝜀0] such that for all 𝜀 ∈ (0, 𝜀∗)
nd all 𝜉0 ∈ 𝐾0 system (3.1) has a unique solution (𝑥, 𝜏) satisfying

𝑥(𝑠) − 𝑥̄(𝑠; 𝜀)| = 𝑂(𝜀2), ∀ 𝑠 ∈
[

0,
𝑇𝑓
𝜀

]

, (3.7)

for (𝑥(0), 𝜏(0)) = (𝜉0, 0), where 𝑥̄(𝑠; 𝜀) ∶= 𝑊 (𝜉(𝑠), 𝜏(𝑠), 𝜀). □

A crucial difference between higher-order periodic averaging and
first-order averaging is that in the latter case we may directly compare
the trajectories of the averaged system (3.6) to those of the original
system (3.1) and obtain an 𝑂(𝜀)-estimate on the error (Sanders et al.,
2007, Theorem 2.8.1). However, in the second-order case the near-
identity transform 𝑊 must be used to obtain the 𝑂(𝜀2)-estimate on
the error. Nevertheless, a special situation arises when 𝑓1 = 0. In
this case, it is possible to sacrifice part of the accuracy of the error
estimate, which is 𝑂(𝜀2), in exchange for a longer interval of validity.
This situation, known as averaging with trade-off, is captured by the
following theorem, which is adapted from Sanders et al. (2007, Section
2.9) and Murdock (1983):

Theorem 3.2 (Murdock, 1983; Sanders et al., 2007). Let 𝐾0 ⊂ R𝑛 be
a compact set, and suppose that 𝑓1 = 0. Moreover, suppose that for all
𝜀 ∈ (0, 𝜀0] and all 𝜉0 ∈ 𝐾0 system (3.6) has a unique and uniformly
bounded solution 𝜉 starting at the initial condition 𝜉(0) = 𝜉0. Then for each
𝑇𝑓 ∈ R>0 there exists 𝜀∗ ∈ (0, 𝜀0] such that for all 𝜀 ∈ (0, 𝜀∗) and all
𝜉0 ∈ 𝐾0 there exists a unique solution (𝑥, 𝜏) to (3.1) satisfying

|𝑥(𝑠) − 𝜉(𝑠)| = 𝑂(𝜀), ∀ 𝑠 ∈
[

0,
𝑇𝑓
𝜀2

]

, (3.8)

for (𝑥(0), 𝜏(0)) = (𝜉0, 0). □

In Theorem 3.2, the near-identity transform 𝑊 does not appear in
3.8). The reason is that, in this special case, the deviation of the near-
dentity transform 𝑊 from the identity has the same asymptotic order
s the error term, i.e., 𝑂(𝜀). Therefore, the near-identity transform does
ot contribute to the asymptotic order of the estimate and it can be
eplaced by the identity map. Moreover, since 𝑓1 = 0, in this case the
veraged system in the 𝑠-time scale becomes

d𝜉
d𝑠 = 𝜀2𝑓2(𝜉), (3.9)

which is equivalent, after the time-scale change 𝑡 = 𝜀−2𝑠, to the
following system in the 𝑡-time scale:

𝜉̇ = 𝑓2(𝜉), (3.10)

where 𝑓2 is now given by:

𝑓2(𝜉) =
1
𝑇 ∫

𝑇

0

(

𝑓2(𝜉, 𝜏) +
1
2
[

𝑤, 𝑓1
]

(𝜉, 𝜏)
)

𝑑𝜈. (3.11)

with

𝑤(𝜉, 𝜏) = ∫

𝜏

0
𝑓1(𝜉, 𝜈) 𝑑𝜏. (3.12)

Later, we will show that averaging with trade-off encompasses the
approach of averaging based on iterated Lie brackets (Dürr et al., 2013;
Liu, 1997a) under a specific assumption about the structure of the
vector fields 𝑓1 and 𝑓2.

3.2. Second-order averaging based on iterated Lie brackets

Let 𝑟 ∈ N≥2 and consider the time-varying control-affine system:

̇ = 𝑏0(𝑥) +
𝑟
∑

𝑖=1
𝑏𝑖(𝑥)𝜔

1
2 𝑢𝑖(𝜏), 𝜏̇ = 𝜔, (3.13)

where (𝑥, 𝜏) ∈ R𝑛 × R≥0, and 𝜔 ∈ R>0 is a parameter. This system has
𝑛

6

the form of (2.2) with 𝐶 = R , 𝐷 = ∅, and 𝜌 = 𝜔. We assume that
𝑏0 ∈ 1, 𝑏𝑖 ∈ 2, and the functions 𝑢𝑖(⋅) are continuous and 𝑇 -periodic.
oreover, the functions 𝑢𝑖(⋅) are such that:

= ∫

𝑇

0
𝑢𝑖(𝜏) 𝑑𝜏, 𝑣𝑗𝑖 =

1
𝑇 ∫

𝑇

0
𝑢𝑗 (𝜏)∫

𝜏

0
𝑢𝑖(𝜈)𝑑𝜈 𝑑𝜏.

Remark 3.3. Systems of the form (3.13), as discussed in Dürr et al.
(2013) in the context of extremum-seeking, represent the second-order
version of the class of systems extensively treated in Liu (1997a).
In Dürr et al. (2013), the functions 𝑢𝑖 can also depend on the slow-
time 𝑡, but for the sake of clarity, we omit this generalization as it is
ot crucial for our purposes. Additionally, we note that the regularity
ssumptions adopted here are stronger than those in Dürr et al. (2013),
ut they can be easily relaxed. □

We now introduce the autonomous Lie Bracket Approximation system
or (3.13), with state 𝜉 ∈ R𝑛 and dynamics:

̇ = 𝑏0(𝜉) +
𝑟
∑

𝑖=1, 𝑗>𝑖
[𝑏𝑖, 𝑏𝑗 ](𝜉) 𝑣𝑗𝑖. (3.14)

The following theorem, adapted from Dürr et al. (2013), charac-
erizes the relationship between the trajectories of the two systems
hen 𝜔 is large enough to induce a time-scale separation between the

ime-varying periodic vector field (3.13) and the average dynamics.

heorem 3.4. Let 𝐾0 ⊂ R𝑛 be a compact set. Suppose that for all 𝜉0 ∈ 𝐾0
ystem (3.14) has a unique and uniformly bounded solution 𝜉 starting at the
nitial condition 𝜉(0) = 𝜉0. Then, for all 𝜖, 𝑇𝑓 ∈ R>0 there exists 𝜔∗ ∈ R>0
uch that for all 𝜔 ≥ 𝜔∗ and all 𝜉0 ∈ 𝐾0, system (3.13) has a unique
olution (𝑥, 𝜏) satisfying

𝑥(𝑡) − 𝜉(𝑡)| ≤ 𝜖, (3.15)

or (𝑥(0), 𝜏(0)) = (𝜉0, 0), and for all 𝑡 ∈ [0, 𝑇𝑓 ]. □

We note that the asymptotic order of the error is not explicitly
stated in Theorem 3.4, though careful inspection of the proofs in Dürr
et al. (2013) reveals that the asymptotic order is in fact 𝑂(1∕

√

𝜔). This
ubtlety is already a strong hint for the connection to averaging with
rade-off.

.3. A connection between the two approaches

The statement of Theorem 3.4 is nearly identical to the statement
f Theorem 3.2. This similarity is not coincidental. In fact, the two
heorems are equivalent, provided that an additional assumption is
ade regarding the structure of the function 𝑓1 in Theorem 3.2. We

summarize this observation in the following proposition. The proof is
provided in Section 7.1.

Proposition 3.5. Consider the system (3.1) and suppose that 𝑓1 and 𝑓2
are of the form:

𝑓1(𝑥, 𝜏) =
𝑟
∑

𝑖=1
𝑏𝑖(𝑥) 𝑢𝑖(𝜏), 𝑓2(𝑥) = 𝑏0(𝑥), (3.16)

here the functions 𝑢𝑖(⋅) are continuous and 𝑇 -periodic. Then, the averaged
map 𝑓2 given by (3.11) reduces to:

𝑓2(𝜉) = 𝑏0(𝜉) +
𝑟
∑

𝑖=1,𝑗>𝑖
[𝑏𝑖, 𝑏𝑗 ](𝜉)𝑣𝑗𝑖, (3.17)

𝑣𝑗𝑖 =
1
𝑇 ∫

𝑇

0
𝑢𝑗 (𝜏)∫

𝜏

0
𝑢𝑖(𝜈) 𝑑𝜈 𝑑𝜏. (3.18)

for all 𝜉 ∈ R𝑛. □

We note that the two systems (3.1) and (3.13) are written in
different time-scales. That is, the time-scale change 𝑠 = 𝜀−2𝑡 and the
identification 𝜔 = 𝜀−2 transform either system to the other, provided
that the assumptions of Proposition 3.5 hold.
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Remark 3.6. Higher-order periodic averaging also applies to quasi-
periodic vector fields, with the same error estimates, provided that the
quasi-periodicity arises from a finite summation of periodic functions.
In the general case, the error estimates are necessarily more conserva-
tive, see e.g., the discussion in Sanders et al. (2007, Sections 4.5–4.6).
Finally, we note that in the context of Proposition 3.5 it is possible to
relax the continuity assumptions on 𝑢 to mere measurability. □

The following example illustrates a gap between second-order av-
eraging based on near-identity transforms with trade-off (c.f. Theo-
rem 3.2) and second-order averaging based on iterated Lie brackets (c.f.
Theorem 3.4)

Example 3.7. Consider the system

̇ = 𝜀−1ℎ(cos(𝑐(𝑥) + 𝜏)), 𝜏̇ = 𝜀−2, (3.19)

where 𝑥 ∈ R, 𝑐(⋅) is strictly convex with a unique minimizer 𝑥∗, and
ℎ(⋅) is a non-zero and odd 2 function that is not necessarily linear,
thus violating the structure required by Theorem 3.2. Moreover, since
ℎ is smooth and odd, we have:

∫

2𝜋

0
ℎ(cos(𝑎 + 𝜏)) 𝑑𝜏 = 0, ∀ 𝑎 ∈ R, (3.20)

which shows that the standard (first-order) average of (3.19) van-
ishes. However, we can apply second-order averaging with trade-off to
analyze system (3.19). Indeed, using (3.11) we obtain the following
average dynamics:

𝜉̇ = −𝛼(𝑐(𝜉)) ∇𝑐(𝜉), (3.21)

where the function 𝛼(⋅) is given by

(𝑎) = 1
2𝜋 ∫

2𝜋

0
ℎ(cos(𝑎 + 𝜏))2 𝑑𝜏. (3.22)

Since (3.22) is the integral of a non-negative function that is strictly
positive in a subset of the domain of integration, it follows that 𝛼(𝑎) > 0
for all 𝑎. Moreover, 𝛼 is 2𝜋-periodic in 𝑎, and it can be written as

𝛼(𝑎) = 1
2𝜋 ∫

2𝜋+𝑎

𝑎
ℎ(cos(𝜎))2𝑑𝜎.

Differentiating 𝛼 using Leibniz’s rule:

′(𝑎) = 1
2𝜋

(

ℎ(cos(2𝜋 + 𝑎))2 − ℎ(cos(𝑎))2
)

= 0

which shows that 𝛼 remains constant and 𝛼(𝑎) = 𝛼(0), for all 𝑎 ∈ R.
Therefore, the averaged dynamics (3.21) describes a gradient flow,
for which the estimate of Theorem 3.2 holds. Fig. 1 shows different
trajectories of system (3.19) for the function 𝑐(𝑥) = 1

2𝑥
2 and various

hoices of the function ℎ, including highly nonlinear ones. For the
pecific case where ℎ(𝑢) = 𝑢, and by utilizing special properties of
rigonometric functions, it is possible to transform the system into a
ontrol-affine form, allowing the application of the results in Dürr et al.
2013). □

emark 3.8. We remark that the function ℎ in Example 3.7 can be
hought of as a control non-linearity. The Lie bracket approximation
pproach (Dürr et al., 2013; Grushkovskaya et al., 2018; Suttner &
ashkovskiy, 2017) assumes a control-affine structure for the dynami-
al system under consideration. However, higher-order averaging based
n near-identity transforms does not assume a control-affine structure,
llustrating its generality. In fact, the function ℎ may reverse sign at
everal points in its domain as long as it remains an odd function. □

It is worth mentioning that the full potential of higher-order aver-
ging based on near-identity transforms in control theory, including its
xtension to averaging over angles where the frequency of oscillation
ay depend on the state (Sanders et al., 2007, Chapter 7), remains
7

argely unexplored.
Fig. 1. Trajectories of system (3.19) for 𝜀 = 1∕
√

6𝜋, 𝑐(𝑥) = 𝑥2, 𝑥(0) = 5, and several
hoices for the nonlinearity ℎ(𝑢), shown in the legend.

emark 3.9. Theorem 3.2, respectively Theorem 3.4, establishes
he closeness-of-solutions property in compact sets and compact time
omains between system (3.1), respectively (3.13), and system (3.10),
espectively (3.14). A consequence of this fact is that the original
ynamics (3.1), respectively (3.13), can inherit uniform stability prop-
rties (characterized by, e.g.,  bounds) from the average dynamics
3.10), respectively (3.14), in a practical sense (Moreau & Aeyels, 2000;
eel et al., 2003). We refer the reader to Moreau and Aeyels (2000)
nd Teel et al. (2003) for more information on practical stability in
DES. □

We conclude this section with a note on the upper bound 𝜀∗ in
heorems 3.1 and 3.2 (or, equivalently, the frequency lower bound
∗ in Theorem 3.4). The most general results, i.e. for arbitrary order,

n both approaches to averaging are qualitative in nature (Liu, 1997a;
anders et al., 2007). However, there exist results (Dürr et al., 2013;
rushkovskaya et al., 2018) that provide constructive proofs for the

econd-order case, and more recently the works (Zhang & Fridman,
023; Zhu & Fridman, 2022) studied LMIs to obtain quantitative es-
imates on the frequency lower bound 𝜔∗ in the context of Lie Bracket
veraging.

. Higher-order two-time scale averaging in ODEs

In the previous section, we studied a class of systems in which the
ime-scale separation exists between the full state of the system and fast
ime-periodic variations. In that case, the method of averaging allowed
s to derive a suitably averaged system that captures the average effects
f the fast periodic variations. However, when the ‘‘fast’’ dynamics
nvolve not only periodic time-variations but also a portion of the states
f the system, a different set of analytical tools needs to be used to study
he system. Such tools are referred to in the literature as two-time scale
veraging (Sastry & Bodson, 1989).

In order to study two-time scale averaging, we consider continuous-
ime systems of the form

𝑥̇ = 𝑓𝑥 (𝑥, 𝑧, 𝜏) , (4.1a)

𝜀 𝑧̇ = 𝑓𝑧 (𝑥, 𝑧, 𝜏) (4.1b)

𝜏̇ = 1, (4.1c)

here 𝑥 ∈ R𝑛1 is the ‘‘slow’’ state, 𝑧 ∈ R𝑛2 is the ‘‘fast’’ state, and
∈ (0,∞) is a small parameter. To simplify the presentation, we will

ssume that the vector fields 𝑓𝑥, 𝑓𝑧 are sufficiently smooth in (𝑥, 𝑧), and
-periodic and continuous with respect to 𝜏. Note that system (4.1) has

he form of (2.2) with 𝐶 = R𝑛1 × R𝑛2 , 𝐷 = ∅, and 𝜌 = 1
𝜀 .

To study system (4.1), we assume the existence of a time-invariant
uasi-steady state mapping 𝜑0 ∶ R𝑛1 → R𝑛2 , such that for all 𝑥 ∈ R𝑛1

and all 𝜏 ∈ R≥0:
𝑓𝑧(𝑥, 𝑧, 𝜏) = 0 ⟺ 𝑧 = 𝜑0(𝑥). (4.2)
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By using 𝜑0, we can define a reduced system, which has states (𝑥̃, 𝜏) ∈
R𝑛1 × R≥0 and dynamics

̇̃𝑥 = 𝑓𝑥(𝑥̃, 𝜏) ∶= 𝑓𝑥(𝑥̃, 𝜑0(𝑥̃), 𝜏), 𝜀𝜏̇ = 1. (4.3)

The study of system (4.3) via standard (i.e., first-order) averaging leads
to the following averaged reduced-order dynamics with state 𝑥̄ ∈ R𝑛1 :

̇̄ = 𝑓𝑥(𝑥̄), (4.4)

where the mapping 𝑓𝑥 is given by

𝑓𝑥(𝑥̄) =
1
𝑇 ∫

𝑇

0
𝑓𝑥(𝑥̄, 𝜏) 𝑑𝜈,

or all 𝑥̄ ∈ R𝑛1 . Then, the relationship between the slow part of
he trajectories of the original system (4.1) and the reduced-order
veraged system (4.4) can be characterized via standard results in two-
ime scale averaging, as described in Sastry and Bodson (1989, Thm.
.4.2). Fundamentally, two-time scale averaging combines (first-order)
veraging and (first-order) singular perturbation techniques.

Substantial generalizations of this classical result have been studied
n the literature. For example, Teel (2000) presents a unified framework
or averaging, singular perturbation, and two-time scale averaging
sing Input-to-State Stability (ISS) properties (Sontag, 1989) and relax-
ng various classical requirements on the dynamics of the fast states.
owever, most results in the literature on two-time scale averaging
re limited to the first-order case, which restricts their applicability
o systems in which the first-order approximation does not vanish.
evertheless, as illustrated in Section 3, there are systems for which

he first-order average does vanish, and it is the second-order average
hat provides valuable information for stability analysis. It turns out
hat a similar situation arises in two-time scale averaging. We illustrate
his fact through the following stylized example:

xample 4.1. Consider the following system:

𝑥̇ = 𝛽𝑥 + 𝜀−1 sin(𝛶 + 𝜏), (4.5a)

𝜀2𝜏̇ = 1 (4.5b)

𝜎1𝜇 𝑧̇1 = 𝜙(𝑥) − 𝑧1, (4.5c)

2𝜇 𝑧̇2 = 𝑧1 − 𝑧2 (4.5d)

𝛶 = 2𝑘(𝑧1 − 𝑧2), (4.5e)

here (𝑥, 𝜏, 𝑧1, 𝑧2) ∈ R4, 𝜙(𝑥) = 𝑥2, 𝛽 ∈ (0, 1), 𝑘, 𝜎1, 𝜎2 ∈ R>0, and 𝜇 and
are small positive parameters. Eq. (4.5a) describes a one-dimensional
ie bracket based extremum-seeking algorithm (Scheinker & Krstić,
014) expressed in the form of a highly oscillatory system. On the other
and, the last three equations in (4.5) model an LTI system with input
(𝑥), output 𝛶 , and transfer function given by:

(𝑠̂) =
2𝑘𝜎1𝜇𝑠̂

(𝜎1𝜇𝑠̂ + 1)(𝜎2𝜇𝑠̂ + 1)
,

which corresponds to a band-pass filter with passband (1∕(max{𝜎1, 𝜎2}
𝜇), 1∕(min{𝜎1, 𝜎2}𝜇)). An alternative block diagram description of this
ystem is shown in Fig. 2.

Setting 𝜇 = 𝜀2 leads to the following system in the new time scale
= 𝜀−1𝑡:
d𝑥
d𝑠 = sin(2𝑘(𝑧1 − 𝑧2) + 𝜏) + 𝜀𝛽𝑥, (4.6a)

𝜀d𝜏
𝑑𝑠

= 1 (4.6b)

𝜀
d𝑧1
d𝑠 = 𝜎1

−1 (𝜙(𝑥) − 𝑧1
)

, (4.6c)

d𝑧2
d𝑠 = 𝜎2

−1 (𝑧1 − 𝑧2
)

, (4.6d)

which is on the standard form (4.1) for the application of two-time
scale averaging. In this case, the quasi-steady state of the fast dynamics
corresponds to 𝑧 = 𝑧 = 𝜙(𝑥). Therefore, by applying the standard
8

1 2 n
Fig. 2. Block diagram description of system (4.5).

(first-order) two-time scale averaging procedure (Sastry & Bodson,
1989), we obtain the following reduced-order dynamics:
d𝑥̃
d𝑠 = sin(𝜏), 𝜀d𝜏

d𝑠 = 1 (4.7)

nd also the following reduced order averaged dynamics:
d𝑥̄
d𝑠 = 0, (4.8)

hich is only marginally stable. Yet, as shown in Fig. 3, the original
ystem (4.5) exhibits a (practical) asymptotically stable behavior when

= 𝜀2. Indeed, since the first-order approximation vanishes, the
tability properties of system (4.5) are actually dictated by higher-order
pproximations, which are neglected in standard (first-order) two-time
cale averaging.

On the other hand, using the trigonometric identity sin(𝑥 + 𝑦) =
in(𝑥) cos(𝑦) + cos(𝑦) sin(𝑥), and setting 𝜔 = 𝜀−2, system (4.5) can be
xpressed in the same form as the class of singularly perturbed highly
scillatory systems considered in the literature of extremum-seeking
ontrol (Dürr et al., 2015; Dürr, Krstić, Scheinker, & Ebenbauer, 2017).
n this case, the quasi-steady state of the fast dynamics is still given by
1 = 𝑧2 = 𝜙(𝑥). However, using the singularly perturbed Lie bracket
pproximation results from Dürr et al. (2015, 2017), we obtain the
ollowing reduced order system:

̇̃ = 𝛽𝑥̃ +
√

𝜔 sin(𝜔𝑡), (4.9)

nd the following reduced order average Lie bracket system:

̇̄ = 𝛽𝑥̄, (4.10)

hich is exponentially unstable. Thus, this approximation also does not
apture the stable behavior shown in Fig. 3. Indeed, since the analysis
n Dürr et al. (2015, 2017) requires that 𝜇 = 𝑂(𝜔−𝜅 ) for some 𝜅 > 2,

the case 𝜇 = 𝑂(𝜔−1) = 𝑂(𝜀2) strictly violates the sufficient conditions
considered in Dürr et al. (2015). Intuitively, when 𝜇 = 𝑂(𝜔−1), there
s not enough time-scale separation between the frequency of the
inusoidal signals and the fast dynamics to justify replacing the fast
tates with a stationary quasi-steady state. Indeed, if 𝜇 = 𝑂(𝜔−1), the
requency of the dither signal 𝜔 lies inside the passband of the filter 𝐺(𝑠̂)
hen 𝜔 ≫ 1, and therefore has a significant contribution to the second-
rder effects which is not accounted for by the framework considered
n Dürr et al. (2015, 2017). □

To properly capture the behavior of systems of the form (4.5) when
= 𝜀2, one needs a suitable higher-order extension of two-time scale

veraging. Such an extension requires an asymptotic approximation of
he fast motion around the slow manifold. Indeed, applying second-order
veraging to system (4.7) would still result in the uninformative system
4.8). In other words, a higher-order singular perturbation analysis is

eeded to study (4.5).
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Fig. 3. Trajectories of system (4.5) for 𝜀 = 1∕
√

8𝜋, 𝜇 = 𝜀2, 𝛽 = 1∕2, 𝑘 = 3, and initial
onditions (𝑥(0), 𝑧1(0), 𝑧2(0)) = (2, 4,−1).

.1. Higher-order singular perturbation

We now provide a brief introduction to higher-order asymptotics
n singular perturbations, mostly based on Vasil’Eva, Butuzov, and
alachev (1995), focusing on the first-order correction. After this, and
otivated by applications in extremum-seeking control and source

eeking for nonholonomic systems (Abdelgalil et al., 2022, 2023), we
tate and prove a second-order two-time scale averaging result.

Consider the following sub-class of systems (4.1):

𝑥̇ = 𝑓𝑥(𝑥, 𝑧), (4.11a)

𝑧̇ = 𝑓𝑧(𝑥, 𝑧), (4.11b)

here (𝑥, 𝑧) ∈ R𝑛1 × R𝑛2 and 𝜀 > 0 is a small parameter. As before, we
ssume the existence of a quasi-steady state mapping 𝜑0 ∶ R𝑛1 → R𝑛2
atisfying

𝑧(𝑥, 𝑧) = 0 ⟺ 𝑧 = 𝜑0(𝑥), (4.12)

or all 𝑥 ∈ R𝑛1 . The reduced order system in the 𝑡-time scale is given
y

̇̃𝑥 = 𝑓𝑥(𝑥̃) ∶= 𝑓𝑥(𝑥̃, 𝜑0(𝑥̃)), (4.13)

or all 𝑥̃ ∈ R𝑛1 . Similarly, the boundary layer system, in the time-scale
= 𝜀−1𝑡, is defined as:

d𝑧̃
d𝑠 = 𝑓𝑧(𝑥̃, 𝑧̃), (4.14)

for all (𝑥̃, 𝑧̃) ∈ R𝑛1 × R𝑛2 where 𝑥̃ is treated as a parameter. The
relationship between the trajectories of system (4.11) and systems
(4.13)–(4.14), on compact time intervals and compact sets of initial
conditions, is given by the classical theorem of Tikhonov (Khalil, 2002,
Section 11.2), and can be extended to the infinite interval under ap-
propriate smoothness and stability assumptions (Khalil, 2002, Section
11.2).

On the other hand, the construction of higher-order asymptotics
in singular perturbation problems is, in general, substantially more
difficult than regular perturbations and typically involves matched
asymptotic expansions (Kuehn et al., 2015, Section 9.1) with asymp-
totic series that are not clear a priori. As a consequence, with rare
exceptions (Bernard, Jebai, & Martin, 2020), higher-order singular per-
turbation has rarely appeared in the controls literature. Nevertheless,
when the linearization of the fast vector field 𝑓2 around the quasi-
steady state 𝜑0 is uniformly Hurwitz, the construction of higher-order
asymptotics reduces to a regular perturbation problem. Specifically,
the uniform exponential attractivity property of the boundary layer
9

𝐽

dynamics clarifies the appropriate fast-time scale and the structure of
the composite expansion to be sought in the perturbation analysis. By
exploiting this additional structure, the so-called Boundary Function
method (Vasil’Eva et al., 1995) provides an algorithmic procedure for
obtaining higher-order asymptotics.

The starting point for the Boundary Function method is a composite
expansion of the solutions to (4.11), in the form:

𝑥(𝑡, 𝑠; 𝜀) = 𝑥̃(𝑡; 𝜀) + 𝑥̂(𝑠; 𝜀), (4.15a)

𝑧(𝑡, 𝑠; 𝜀) = 𝑧̃(𝑡; 𝜀) + 𝑧̂(𝑠; 𝜀), (4.15b)

here 𝑠 = 𝜀−1𝑡 denotes the ‘‘fast’’ time-scale. Similarly, the vector fields
in (4.11) are decomposed as

𝑓𝑥 = 𝑓𝑥 + 𝑓𝑥, 𝑓𝑧 = 𝑓𝑧 + 𝑓𝑧, (4.16)

where 𝑓𝑥, 𝑓𝑧, 𝑓𝑥, and 𝑓𝑧 are defined as:

𝑓𝑥(𝑥̃, 𝑧̃) ∶= 𝑓𝑥(𝑥̃, 𝑧̃),

𝑓𝑧(𝑥̃, 𝑧̃) ∶= 𝑓𝑧(𝑥̃, 𝑧̃),

𝑥̂(𝑥̂, 𝑧̂; 𝑥̃, 𝑧̃) ∶= 𝑓𝑥(𝑥̃ + 𝑥̂, 𝑧̃ + 𝑧̂) − 𝑓𝑥(𝑥̃, 𝑧̃),

𝑓𝑧(𝑥̂, 𝑧̂; 𝑥̃, 𝑧̃) ∶= 𝑓𝑧(𝑥̃ + 𝑥̂, 𝑧̃ + 𝑧̂) − 𝑓𝑧(𝑥̃, 𝑧̃).

Using (4.15) and (4.16), and computing the 𝑡-time derivatives of (𝑥, 𝑧),
e obtain:
d𝑥̃
d𝑡 + d𝑠

d𝑡
d𝑥̂
d𝑠 = d𝑥̃

d𝑡 + 1
𝜀

d𝑥̂
d𝑠 = 𝑓𝑥 + 𝑓𝑥, (4.17a)

𝜀d𝑧̃
d𝑡 + 𝜀

d𝑠
d𝑡

d𝑧̂
d𝑠 = 𝜀d𝑧̃

d𝑡 +
d𝑧̂
d𝑠 = 𝑓𝑧 + 𝑓𝑧. (4.17b)

Considering a composite expansion for the solutions 𝑥̃, 𝑥̂, 𝑧̃, 𝑧̂, of the
form

𝑥̃(𝑡; 𝜀) = 𝑥̃0(𝑡) + 𝜀 𝑥̃1(𝑡) + 𝑂(𝜀2), (4.18a)

̂(𝑠; 𝜀) = 𝑥̂0(𝑠) + 𝜀 𝑥̂1(𝑠) + 𝑂(𝜀2), (4.18b)

𝑧̃(𝑡; 𝜀) = 𝑧̃0(𝑡) + 𝜀 𝑧̃1(𝑡) + 𝑂(𝜀2), (4.18c)

𝑧̂(𝑠; 𝜀) = 𝑧̂0(𝑠) + 𝜀 𝑧̂1(𝑠) + 𝑂(𝜀2), (4.18d)

ubstituting into the Eqs. (4.17), expanding in a Taylor series, and
ollecting the terms of like-powers in 𝜀 (see Kuehn et al. (2015, Section
.3) and Vasil’Eva et al. (1995)) yields a hierarchy of equations of
hich the leading order is:

d𝑥̃0
d𝑡 = 𝑓𝑥(𝑥̃0, 𝑧̃0), (4.19a)

0 = 𝑓𝑧(𝑥̃0, 𝑧̃0), (4.19b)
d𝑥̂0
d𝑠 = 0, (4.19c)

d𝑧̂0
d𝑠 = 𝑓𝑧(𝑥̂0, 𝑧̂0; 𝑥̃0(0), 𝑧̃0(0)). (4.19d)

The asymptotic properties of the solutions to the system of Eqs.
(4.19) with respect to the original system (4.11) are those asserted
in the classical Tikhonov’s theorem (Khalil, 2002, Theorem 11.1).
Subsequent orders, however, provide incremental corrections to the
classical error estimates. In particular, the first-order correction is given
by the system of linear time-varying equations:
d𝑥̃1
d𝑡 = 𝐽1𝑓𝑥(𝑡)𝑥̃1 + 𝐽2𝑓𝑥(𝑡)𝑧̃1, (4.20a)

d𝑧̃0
d𝑡 = 𝐽1𝑓𝑧(𝑡)𝑥̃1 + 𝐽2𝑓𝑧(𝑡)𝑧̃1, (4.20b)

d𝑥̂1
d𝑠 = 𝑓𝑥(𝑥̂0(𝑠), 𝑧̂0(𝑠); 𝑥̃(0), 𝑧̃(0)), (4.20c)

d𝑧̂1
d𝑠 = 𝐽1𝑓𝑧(𝑠)𝑥̂1 + 𝐽2𝑓𝑧(𝑠)𝑧̂1 + 𝑔1(𝑠), (4.20d)

here we used the condensed notation

𝐽𝑖𝑓𝑗 (𝑡) ∶= 𝐽𝑖𝑓𝑗 (𝑥̃0(𝑡), 𝑧̃0(𝑡)), 𝑖, 𝑗 ∈ {𝑥, 𝑧}

𝑓 (𝑠) ∶= 𝐽 𝑓 (𝑥̂ (𝑠), 𝑧̂ (𝑠); 𝑥̃ (0), 𝑧̃ (0)), 𝑖 ∈ {𝑥, 𝑧},
𝑖 𝑧 𝑖 𝑧 0 0 0 0
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and where the vector-valued map 𝑔1 is defined by

𝑔1(𝑠) ∶=
(

𝐽1𝑓𝑧(𝑠) − 𝐽1𝑓𝑧(0)
)(

𝑥̃1(0) + 𝑥̃′0(0)𝑠
)

+
(

𝐽2𝑓𝑧(𝑠) − 𝐽2𝑓𝑧(0)
)(

𝑧̃1(0) + 𝑧̃′0(0)𝑠
)

,

where (𝑥̃0, 𝑧̃0) and (𝑥̂0, 𝑧̂0) are the trajectories of system (4.20), and
𝑥̃′0(0) = d𝑥̃0(𝑡)∕d𝑡|

|𝑡=0. We remark that (4.20b) is an algebraic equation
rather than an ODE, since d𝑧̃0∕d𝑡 is fully determined by the trajectories
of the system (4.19).

In order to be able to use the trajectories of the systems (4.19)–
(4.20) to approximate the trajectories of the original system (4.11), we
need to determine how the initial conditions of these systems relate to
each other. The decomposition (4.15), along with the expansion (4.18),
provides the relationships:

𝑥̃0(0) + 𝑥̂0(0) = 𝑥(0), 𝑥̃1(0) + 𝑥̂1(0) = 0, (4.21a)

𝑧̃0(0) + 𝑧̂0(0) = 𝑧(0), 𝑧̃1(0) + 𝑧̂1(0) = 0, (4.21b)

However, these relationships are not sufficient to completely define the
initial conditions for the systems (4.19)–(4.20). To obtain a complete
characterization of the appropriate initial conditions, the Boundary
Function method imposes the following condition

lim
𝑠→∞

𝑥̂𝑗 (𝑠) = 0, 𝑗 ∈ {1, 2}. (4.22)

Indeed, it is shown in Vasil’Eva et al. (1995) that condition (4.22),
along with the standing assumption in the Boundary Function method,
which is that the linearization of the map 𝑓2 around the quasi-steady
manifold 𝜑0 is uniformly Hurwitz, provides a complete characteriza-
tion of the initial conditions. In particular, as a result of imposing
the condition (4.22), the appropriate initial conditions of the systems
(4.19)–(4.20) are expressed in terms of the initial conditions of the
original system (4.11) by the relationships:

𝑥̃0(0) = 𝑥(0), (4.23a)

𝑥̂0(0) = 0, (4.23b)

𝑧̂0(0) = 𝑧(0) − 𝜑0(𝑥(0)) (4.23c)

𝑥̃1(0) = −𝑥̂1(0) = ∫

∞

0
𝑔2(𝑠) 𝑑𝑠 (4.23d)

𝑧̂1(0) = −𝑧̃1(0) (4.23e)

where 𝑔2 is defined as follows:

𝑔2(𝑠) = 𝑓𝑥(𝑥̂0(𝑠), 𝑧̂0(𝑠); 𝑥̃0(0), 𝑧̃0(0)).

It can be shown that the improper integral in (4.23d) is well-defined
due to the uniform Hurwitz condition on the linearization of the vector
field 𝑓2 around the quasi-steady manifold 𝜑0. We refer the reader to
the monograph (Vasil’Eva et al., 1995) for the details.

The trajectories of the systems (4.19)–(4.20), with the initial condi-
tions (4.23), provide a second-order approximation to the solutions of
the original dynamics (4.11). In particular, it is shown in Vasil’Eva et al.
(1995) that carrying out the procedure, outlined above for the first-
order correction, leads to asymptotic approximations with arbitrary
order to the solutions of the singularly perturbed system (4.11) under
sufficient smoothness properties. The following theorem, specialized
from Vasil’Eva et al. (1995), characterizes the asymptotic properties of
the second-order approximations produced by the Boundary Function
method:

Theorem 4.2 (Vasil’Eva et al., 1995). Let 𝐾0 ⊂ R𝑛1+𝑛2 be compact.
Consider system (4.11) with initial conditions (𝑥(0), 𝑧(0)) ∈ 𝐾0, and let
𝑓𝑥, 𝑓𝑧 be sufficiently smooth. Suppose that the linearization of 𝑓𝑧 around
the quasi-steady state 𝜑0 is uniformly Hurwitz, and there exists 𝑇𝑓 > 0
such that the functions

(𝑥̃(𝑡; 𝜀), 𝑧̃(𝑡; 𝜀)) =
1
∑

(

𝜀𝑘𝑥̃𝑘(𝑡), 𝜀𝑘𝑧̃𝑘(𝑡)
)

,
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are well-defined for all 𝑡 ∈ [0, 𝑇𝑓 ], and correspond to the unique solutions
to the first two equations in (4.19) and (4.20) with the initial conditions
defined by (4.23). Then, there exists 𝜀∗ > 0 such that for all 𝜀 ∈ (0, 𝜀∗),
system (4.11) has unique solutions (𝑥, 𝑧) that satisfy:

|𝑥(𝑡) − 𝑥̃(𝑡; 𝜀) − 𝑥̂(𝑡∕𝜀; 𝜀)| = 𝑂(𝜀2), ∀ 𝑡 ∈ [0, 𝑇𝑓 ],

|𝑧(𝑡) − 𝑧̃(𝑡; 𝜀) − 𝑧̂(𝑡∕𝜀; 𝜀)| = 𝑂(𝜀2), ∀ 𝑡 ∈ [0, 𝑇𝑓 ].

for all (𝑥(0), 𝑧(0)) ∈ 𝐾0. □

Having introduced the Boundary Function method for the construc-
tion of higher-order asymptotics in singular perturbation problems, and
motivated by a class of highly oscillatory systems that emerge in the
context of chemotactic navigation of sperm cells (Abdelgalil et al.,
2022) and source seeking for nonholonomic vehicles (Abdelgalil et al.,
2023), we show in the next subsection that higher-order averaging can
be combined with the key ideas of the Boundary Function method
to provide a higher-order extension of two-time scale averaging with
trade-off. As before, we restrict our presentation to the second-order
case.

4.2. Second-order two-time scale averaging

Consider the following system:

𝑥̇ =
2
∑

𝑘=1
𝜀𝑘−2𝑓𝑥,𝑘(𝑥, 𝑧, 𝜏), (4.24a)

𝑧̇ =
2
∑

𝑘=0
𝜀𝑘−2𝑓𝑧,𝑘(𝑥, 𝑧, 𝜏), (4.24b)

𝜏̇ = 𝜀−2, (4.24c)

where 𝑥 ∈ R𝑛1 , 𝑧 ∈ R𝑛2 , 𝜏 ≥ 0, and 𝜀 > 0. Note that this system is of
the form (2.2) with 𝐶 = R𝑛1 × R𝑛2 , 𝐷 = ∅, and 𝜌 = 𝜀−2. We make the
following regularity assumptions on (4.24):

Assumption 4.1. The functions 𝑓𝑥,𝑘 and 𝑓𝑧,𝑘 are 3−𝑘 in the first two
arguments, continuous and 𝑇 -periodic in the last argument, and the
function 𝑓𝑥,1 satisfies ∫ 𝑇0 𝑓𝑥,1(𝑥, 𝑧, 𝜏) 𝑑𝜏 = 0. Moreover, there exists a
unique 3 mapping 𝜑0 ∶ R𝑛1 → R𝑛2 such that 𝑓𝑧,0(𝑥, 𝜑0(𝑥), 𝜏) = 0, for
all 𝑥 ∈ R𝑛1 and all 𝜏 ∈ R≥0. □

To study system (4.24), we will leverage the exponential stabil-
ity properties of the boundary layer dynamics, in the same spirit
of the Boundary Function method. These properties are expressed in
terms of Lyapunov functions, which will also play a prominent role in
Sections 5–6.

Assumption 4.2. There exists a 1 function 𝑉 ∶ R𝑛2 ×R≥0 → R≥0, and
constants 𝜅𝑖 > 0, 𝑖 ∈ {1,… , 4}, such that for all 𝑦 ∈ R𝑛2 , all 𝑥 ∈ R𝑛1 ,
and all 𝜏 ∈ R≥0, the following inequalities holds:

𝜅1|𝑦|
2 ≤ 𝑉 (𝑦, 𝜏) ≤ 𝜅2|𝑦|

2, (4.25a)

∇1𝑉
⊤𝑓𝑧,0(𝑦, 𝜏) + ∇2𝑉 (𝑦, 𝜏) ≤ −𝜅3|𝑦|2, (4.25b)

|∇1𝑉 (𝑦, 𝜏)| ≤ 𝜅4|𝑦|, (4.25c)

where 𝑓𝑧,0(𝑥, 𝑦, 𝜏) ∶= 𝑓𝑧,0(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏). □

Next, we introduce the reduced order system with state (𝑥̃, 𝜏) ∈
R𝑛1 × R≥0, and dynamics:

̇̃𝑥 =
2
∑

𝑘=1
𝜀𝑘−2 𝑓𝑘(𝑥̃, 𝜏), 𝜏̇ = 𝜀−2, (4.26)

where the functions 𝑓𝑘 are defined as:

𝑓1(𝑥̃, 𝜏) = 𝑓𝑥,1(𝑥̃, 𝜑0(𝑥̃), 𝜏), (4.27a)
̃ (4.27b)
𝑓2(𝑥̃, 𝜏) = 𝑓𝑥,2(𝑥̃, 𝜑0(𝑥̃), 𝜏) + 𝐽2𝑓𝑥,1(𝑥̃, 𝜑0(𝑥̃), 𝜏)𝜑1(𝑥̃, 𝜏),
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𝜑1(𝑥̃, 𝜏) = ∫

𝜏+𝑇

𝜏
𝐸𝛷(𝜏, 𝜈)𝑏𝜑(𝑥̃, 𝜈) 𝑑𝜈, (4.27c)

𝜑(𝑥̃, 𝜏) = 𝑓𝑧,1(𝑥̃, 𝜑0(𝑥̃), 𝜏) − 𝐽𝜑0(𝑥̃) 𝑓𝑥,1(𝑥̃, 𝜑0(𝑥̃), 𝜏), (4.27d)

ith a matrix-valued mapping 𝐸𝛷 given by:

𝐸𝛷(𝜏, 𝜈) = (𝐼 −𝛷(𝜏 + 𝑇 , 𝜏))−1𝛷(𝜏 + 𝑇 , 𝜈),

where 𝛷 is the state-transition matrix associated with the following
linear time-periodic system:
d𝑦
𝑑𝜏

= 𝐴(𝜏; 𝑥̃)𝑦, 𝐴(𝜏; 𝑥̃) ∶= 𝐽2𝑓𝑧,0(𝑥̃, 𝜑0(𝑥̃), 𝜏).

The reduced system (4.26) can be studied via second-order averaging
with trade-off. In particular, its reduced order averaged dynamics are
given by

̇̄𝑥 = 1
𝑇 ∫

𝑇

0

(

𝑓2(𝑥̄, 𝜏) +
1
2
[

𝑤̃1, 𝑓1
]

(𝑥̄, 𝜏)
)

𝑑𝜏, (4.28)

where 𝑤̃1 is

𝑤̃1(𝑥̄, 𝜏) = ∫

𝜏

0
𝑓1(𝑥̄, 𝜈) 𝑑𝜈. (4.29)

The following theorem provides an approximation result for the tra-
jectories of the original system (4.24) and the reduced-order averaged
system (4.28). The proof is presented in Section 7.

Theorem 4.3. Suppose that Assumptions 4.1 and 4.2 hold, and let
𝐾1 ⊂ R𝑛1 be a compact set. Suppose there exists 𝑇𝑓 ∈ R>0 such that for
each 𝑥0 ∈ 𝐾1, system (4.28) has a unique solution 𝑡 ↦ 𝑥̄(𝑡) with 𝑥̄(0) = 𝑥0,
defined for all 𝑡 ∈ [0, 𝑇𝑓 ]. Then, for each compact set 𝐾2 ⊂ R𝑛2 and each
𝜖 ∈ R>0 there exists 𝜀∗ ∈ (0, 𝜀0) and 𝜆, 𝛾 ∈ R>0 such that for all 𝜀 ∈ (0, 𝜀∗)
and all (𝑥0, 𝑧0 − 𝜑0(𝑥0)) ∈ 𝐾1 × 𝐾2, system (4.24) has a unique solution
(𝑥, 𝑧) with (𝑥(0), 𝑧(0)) = (𝑥0, 𝑧0), satisfying

|𝑥(𝑡) − 𝑥̄(𝑡)| ≤ 𝜖,

|𝑧(𝑡) − 𝑧̄(𝑡)| ≤ 𝛾|𝑧0 − 𝜑0(𝑥0)| e−𝜆𝜀
−2𝑡 + 𝜖,

for all 𝑡 ∈ [0, 𝑇𝑓 ], where 𝑧̄(𝑡) = 𝜑0(𝑥̄(𝑡)). □

Remark 4.4. Similar to Theorems 3.2 and 3.4, Theorem 4.3 is an
approximation result that establishes (a variation of) the closeness-of-
solutions property (on compact time domains and compact sets) be-
tween system (4.24) and system (4.28). However, unlike Theorem 3.2
and Theorem 3.4, the approximation provided by Theorem 4.3 is not
uniform on the interval [0, 𝑇𝑓 ] which is to be expected since the
system (4.24) is singularly perturbed. Nevertheless, it can be shown
that uniform stability properties (e.g., expressed in terms of  bounds)
of system (4.28) can be inherited by the system (4.24) in a practical
sense. We do not further pursue this idea in this paper. □

Going back to Example 4.1, we observe that for the case when
𝜎1 = 𝜎2 = 1, 𝜇 = 𝜀2, and using (4.28), the reduced order averaged
system is given by:

̇̄ =
(

𝛽 − 𝑘
2

)

𝑥̄, (4.30)

whose trajectories converge to the origin exponentially fast whenever
0 < 𝛽 < 𝑘∕2, thus explaining the behavior observed in Fig. 3 for the case
when 𝜇 = 𝑂(𝜀2). Finally, we remark that system (4.5) also highlights
the intricacies of multiple time-scale phenomena when more than one
parameter is involved. Indeed, depending on the relative asymptotic
order of 𝜇 with respect to 𝜀, the system can exhibit strikingly different
behaviors.

One of the motivations for the study of systems of the form (4.24)
arises from the phenomenon of sperm chemotaxis (Abdelgalil et al.,
2022; Alvarez, Friedrich, Gompper, & Kaupp, 2014; Friedrich &
Jülicher, 2007). In the next section, we give a brief exposition of this
11

phenomenon
4.3. Application to 3D chemotactic navigation in sperm cells

Certain marine invertebrates, such as sea urchins, are broadcast
spawners, i.e., male and female gametes are released into open wa-
ter, where fertilization takes place (Abdelgalil et al., 2022; Alvarez
et al., 2014; Friedrich & Jülicher, 2007; Jikeli et al., 2015). In this
process, an egg cell secretes chemical cues that act as chemoattractants
for the sperm cells. Diffusion in the surrounding water establishes
an approximately radial concentration field centered around the egg.
Sperm cells then propel themselves through the undulating motion of
their flagella. The asymmetric beating pattern of the flagella leads to
a periodic trajectory pattern, which forms a helical trajectory in 3D.
The presence of chemoattractants, coupled with the periodic trajectory
pattern, exposes the sperm cell to a periodic stimulus. Through a simple
modulation of the mean curvature of the beating flagella with the
periodic variations in the perceived stimulus (Jikeli et al., 2015), sperm
cells can dynamically align the centerline of their helical trajectory with
the direction of the increasing stimulus. This direction corresponds to
higher chemoattractant concentration, allowing the sperm cells to swim
towards an egg cell.

To model the above phenomenon, we assume that the sperm cells
flow in low Reynolds number fluid regimes, where their motion can
be well-approximated by kinematic models (Friedrich, Riedel-Kruse,
Howard, & Jülicher, 2010). In this case, the kinematics of rigid body
motion in 3D is given by the system:

𝑞̇ = 𝑅𝑣, 𝑅̇ = 𝑅𝛺̂, (4.31)

where 𝑅 ∈ 𝑆𝑂(3) is a rotation matrix, 𝑞 ∈ R3 is the position of
the cell, 𝑣 ∈ R3 is the velocity in body coordinates, and 𝛺 ∈ R3

is the angular velocity in body coordinates. The mean curvature of
the beating flagellum affects the angular velocities of the cell in body
coordinates. A simplified model that captures the essential features of
this behavior assumes that the linear and angular velocities in body
coordinates take the form:

𝑣 =
⎛

⎜

⎜

⎝

𝑣𝑝,0
0
0

⎞

⎟

⎟

⎠

, 𝛺(𝑢) =
⎛

⎜

⎜

⎝

𝛺𝑝,0
0
𝛺⟂

⎞

⎟

⎟

⎠

+
⎛

⎜

⎜

⎝

𝛺𝑝,1
0
0

⎞

⎟

⎟

⎠

𝑢, (4.32)

where 𝑢 is the mean curvature of the flagellum, and 𝑣𝑝,0, 𝛺𝑝,0, 𝛺𝑝,1,
and 𝛺⟂ are constant coefficients. Let the local concentration of the
chemoattractant at the position 𝑞 be denoted by 𝜙(𝑞). Exposure to
the chemoattractant molecules stimulates the signaling pathway of the
sperm cell. The simplest model of such stimulation dynamics is the
first-order lag

𝜎1𝜇𝑧̇1 = 𝜙(𝑞) − 𝑧1, (4.33)

where 𝑧1 is the excitation due to the stimulus 𝜙(𝑞). In addition, the
signaling pathway of the sperm cell is known for its ability to adapt to
the mean stimulus level. The simplest model of such adaptation is the
first-order lag

𝜎2𝜇𝑧̇2 = 𝑧1 − 𝑧2, (4.34)

where 𝑧2 is the amount of relaxation in response to an excitation
𝑧1. Therefore, the adaptive response of the pathway due to the local
concentration 𝜙(𝑞) is given by the difference between the excitation and
relaxation, i.e. 𝑧1 − 𝑧2. Finally, the simplest transfer function between
the adaptive response of the signaling pathway 𝑧1 − 𝑧2 and the mean
curvature of the flagellum 𝑢 is a simple gain 𝑘, that is

𝑢 = 2𝑘(𝑧1 − 𝑧2). (4.35)

iven this simple model of the signaling pathway, we observe that
he dynamic relation between the local stimulus 𝜙(𝑞) and the mean
urvature of the flagellum 𝑢 is given by an LTI system whose transfer
unction coincides with the transfer function of the bandpass filter 𝐺(𝑠̂)
n (4.5). Indeed, the step response of the signaling pathway has been
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𝑝

𝑞

Fig. 4. Simulation results for system (4.36) for the case ∇𝜙(𝑞) ≠ 0 but ∇2𝜙(𝑞) = 0. Left plot: the misalignment between the gradient ∇𝜙 and the unit vectors 𝑝3 and 𝑝̄3 defined by
𝑉 (𝑝3) = 1 − ⟨𝑝3 ,∇𝜙∕|∇𝜙|⟩. Center plot: the trajectory of 𝑝3 and 𝑝̄3 on the unit sphere S2 where 𝑝⋆3 = ∇𝜙∕|∇𝜙| is the normalized gradient. Right plot: evolution of the trajectory of
𝑞 and 𝑞 in R3. The simulation parameters are 𝑣̃𝑝 = 𝛺𝑝,0 = 𝛺𝑝,1 = 𝜎1 = 𝜎2 = 1, 𝑘 = 2, and 𝜀 = 1∕

√

10𝜋.
shown to closely resemble that of a band-pass filter (Abdelgalil et al.,
2022; Alvarez et al., 2012; Kaupp et al., 2003).

To study the dynamic properties of the sperm cells, let 𝜀 ∈ (0, 1),
𝑣𝑝,0 = 𝑣̃𝑝∕𝜀, 𝛺𝑝,0 = 𝛺̃𝑝,0∕𝜀, 𝛺𝑝,1 = 𝛺̃𝑝,1∕𝜀, 𝛺⟂ = 1∕𝜀2, and 𝜇 = 𝜀2. In
addition, let 𝑃 = 𝑅 exp (−𝛺𝑜𝑡𝑒3), where 𝑒3 is the unit vector 𝑒3 = (0, 0, 1)
and 𝑒3 is the skew-symmetric matrix associated with 𝑒3. Then, partition
the matrix 𝑃 ∈ 𝑆𝑂(3) into three columns with 𝑃 = [𝑝1, 𝑝2, 𝑝3], where
𝑝𝑖 ∈ S2. Since 𝑃 ∈ 𝑆𝑂(3), the vectors 𝑝𝑖 form an orthonormal basis
of R3. Using this change of coordinates, system (4.31)–(4.35) takes the
form

𝑞̇ = 𝑣̃𝑝𝜀
−1 cos

(

𝜀−2𝑡
)

𝑝1 + 𝑣̃𝑝𝜀−1 sin
(

𝜀−2𝑡
)

𝑝2 (4.36a)

𝑝̇1 = −(𝛺̃𝑝,0 + 𝛺̃𝑝,1𝑢)𝜀−1 sin
(

𝜀−2𝑡
)

𝑝3 (4.36b)

𝑝̇2 = (𝛺̃𝑝,0 + 𝛺̃𝑝,1𝑢)𝜀−1 cos
(

𝜀−2𝑡
)

𝑝3 (4.36c)

𝑝̇3 = (𝛺̃𝑝,0 + 𝛺̃𝑝,1𝑢)𝜀−1
(

sin
(

𝜀−2𝑡
)

𝑝1 − cos
(

𝜀−2𝑡
)

𝑝2
)

(4.36d)

where the input 𝑢 is given by 𝑢 = 2𝑘(𝑧1 − 𝑧2), and

𝑧̇1 = 𝜀−2𝜎1
−1 (𝜙(𝑞) − 𝑧1

)

, (4.36e)

𝑧̇2 = 𝜀−2𝜎2
−1 (𝑧1 − 𝑧2

)

. (4.36f)

It follows that system (4.36) takes the same form as the class of
systems (4.24) with 𝑥 = (𝑞, 𝑝1, 𝑝2, 𝑝3) and 𝑧 = (𝑧1, 𝑧2). Therefore, we may
apply the formulas (4.27)–(4.29) to obtain the following reduced-order
averaged system:

̇̄𝑞 = 𝑣̃𝑝𝛺̃𝑝,0𝑝̄3

̇̄ 1 = 𝑘𝑣̃𝑝𝛺̃𝑝,1
(

𝛾1𝑝̄3𝑝̄
⊤
1 + 𝛾2𝑝̄3𝑝̄⊤2

)

∇𝜙(𝑞) + 1
2
𝛺̃2
𝑝,0𝑝̄2

̇̄𝑝2 = 𝑘𝑣̃𝑝𝛺̃𝑝,1
(

𝛾1𝑝̄3𝑝̄
⊤
2 − 𝛾2𝑝̄3𝑝̄⊤1

)

∇𝜙(𝑞) − 1
2
𝛺̃2
𝑝,0𝑝̄1

̇̄𝑝3 = 𝑘𝑣̃𝑝𝛺̃𝑝,1𝛾1
(

𝐼 − 𝑝̄3𝑝̄⊤3
)

∇𝜙(𝑞),

where the constants 𝛾1 and 𝛾2 are given by 𝛾1 = 𝜎2(𝜎1+𝜎2)
(1+𝜎12)(1+𝜎22)

and
𝛾2 =

𝜎2(1−𝜎1𝜎2)
(1+𝜎12)(1+𝜎22)

.

Since the dynamics of 𝑞 and 𝑝̄3 do not depend on 𝑝̄1 and 𝑝̄2, we
can restrict our attention to the dynamics of 𝑞 and 𝑝̄3, which evolves
on R3 × S2. The vector 𝑝̄3 ∈ S2 is a unit vector that points along the
centerline of the helical trajectory. The chemotactic behavior emerges
through the dynamics of 𝑝̄3. For illustration, let us assume that the
concentration field is linear, i.e. ∇2𝜙(𝑞) = 0, which is a valid assumption
for a local analysis when the concentration field is weakly non-linear,
i.e. |∇2𝜙(𝑞)| ≪ |∇𝜙(𝑞)|2. In this case, the dynamics of 𝑝̄3 decouples
further from the dynamics of 𝑞, leading to the system:

̇̄ = 𝑣̃ 𝛺̃ 𝑝̄ , ̇̄𝑝 = 𝑘𝑣̃ 𝛺̃ 𝛾
(

𝐼 − 𝑝̄ 𝑝̄⊤
)

∇𝜙, (4.37)
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𝑝 𝑝,0 3 3 𝑝 𝑝,1 1 3 3
where ∇𝜙 does not depend on 𝑞. The operator
(

𝐼 − 𝑝̄3𝑝̄⊤3
)

is the pro-
jection onto the orthogonal complement of the linear space spanned
by 𝑝̄3. Therefore, the helical centerline will dynamically bend until it
is aligned with the gradient. We illustrate this chemotactic behavior
through the simulation results in Fig. 4. As the figure illustrates, the
axis of the helical trajectory dynamically bends in order to align with
the (constant) direction of the gradient. In particular, the reduced-
order average system provides a suitable approximation of the expected
behavior of the trajectories of the cell. The deviation between the
trajectories of the original and the reduced-order averaged system on
a compact time interval can be made arbitrarily small by choosing a
sufficiently small 𝜀.

We conclude this section by highlighting recent research on chemo-
tactic navigation (Kromer, Märcker, Lange, Baier, & Friedrich, 2018;
Li, Chakrabarti, Castilla, Mahajan, & Saintillan, 2022), which suggests
that sperm cells may demonstrate diverse dynamics during the seeking
process, switching between different operating modes depending on
their current state. The study of such systems will require suitable ex-
tensions of second-order two-time scale averaging theory for switching
and hybrid dynamical systems.

5. Singularly perturbed hybrid dynamical systems

In the previous sections, we considered second-order averaging
and singular perturbation tools for continuous-time dynamical sys-
tems modeled as ODEs. In this section, we now turn our attention
to multi-time scale dynamical systems that also incorporate discrete-
time dynamics. Such systems, called hybrid dynamical systems (HDS),
can be modeled as (2.1) or (2.2), with 𝐷 ≠ ∅, and their solutions
are parameterized by both continuous-time and discrete-time indices
evolving on hybrid time domains (c.f., Definition 2.1). Since HDS
usually exhibit non-smooth solutions with complex behaviors, second-
order perturbation-based analyses of their trajectories, similar to those
presented in Sections 3 and 4, are more challenging and the subject of
ongoing research. Nevertheless, HDS that exhibit multiple time scales
in their continuous-time dynamics can be studied via first-order singular
perturbation techniques using Lyapunov-based methods.

The use of Lyapunov-based conditions to analyze multi-time scale
dynamical systems has a rich history in the field of adaptive con-
trol (Kosut et al., 1987; Sastry & Bodson, 1989) and high-gain ob-
servers (Grujić, 1979; Khalil, 2002; Kokotović et al., 1986; Saberi &
Khalil, 1984). For instance, a set of sufficient Lyapunov-like condi-
tions for certifying asymptotic stability in first-order singularly per-
turbed ordinary differential equations (ODEs) was studied in Saberi and
Khalil (1984). These conditions are expressed in terms of quadratic-
type Lyapunov functions that decrease along the trajectories of both
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the reduced dynamics and the boundary layer dynamics. They also
satisfy suitable interconnection inequalities, akin to small-gain con-
ditions. In the literature of singular perturbations, this approach is
commonly referred to as the ‘‘composite Lyapunov method’’ (Gru-
jić, 1979; Khalil, 2002; Narang-Siddarth & Valasek, 2014; Saberi &
Khalil, 1984). It has been widely applied in various domains, includ-
ing consensus and distributed optimization problems (Kia, Cortés, &
Martínez, 2013), feedback optimization algorithms (Colombino et al.,
2020; Hauswirth et al., 2020), competitive neural networks (Meyer-
Bäse, Ohl, & Scheich, 1996), multi-link flexible robots (Zhu, Commuri,
& Lewis, 1994), power system transient stability analysis (Anup, Verma,
& Bhatti, 2022), and network control systems (Heijmans et al., 2018).
Thus, motivated by practical applications of hybrid systems in feedback
optimization (Bianchin, Poveda et al., 2022), parameter estimation
for adaptive control (Ochoa et al., 2021), and traffic network con-
trol systems (Bianchin, Cortes et al., 2022; Kutadinata et al., 2016),
in this section, we discuss how Lipschitz Lyapunov-like functions of
quadratic-type can also be used for the stability analysis of singu-
larly perturbed HDS. Similar sufficient conditions have been discussed
in Fang, Liu, Sun, and Teel (2020), Heijmans et al. (2018) and Sanfelice
and Teel (2011). We present different numerical examples to illustrate
the results.

5.1. Model and main assumptions

We consider the singularly perturbed (SP) HDS:

(𝑥, 𝑧) ∈ 𝐶 ∶= 𝐶𝑥 × 𝐶𝑧,
{

𝑥̇ ∈ 𝐹𝑥(𝑥, 𝑧)
𝜀𝑧̇ ∈ 𝐹𝑧(𝑥, 𝑧)

(5.1a)

(𝑥, 𝑧) ∈ 𝐷 ∶= 𝐷𝑥 ×𝐷𝑧, (𝑥+, 𝑧+) ∈ 𝐺(𝑥, 𝑧), (5.1b)

where 𝜀 ∈ R>0 is a small parameter, 𝑥 ∈ R𝑛1 is the ‘‘slow’’ state
of the system, 𝑧 ∈ R𝑛2 is the ‘‘fast’’ state, 𝐹𝑥 ∶ R𝑛1 × R𝑛2 ⇉ R𝑛1
and 𝐹𝑧 ∶ R𝑛1 × R𝑛2 ⇉ R𝑛2 are set-valued mappings that characterize
the continuous-time dynamics of 𝑥 and 𝑧, respectively, 𝐺 ∶ R𝑛1 ×
R𝑛2 ⇉ R𝑛1+𝑛2 characterizes the jump map of the system, and the sets
𝐶𝑥 ⊂ R𝑛1 , 𝐶𝑧 ⊂ R𝑛2 , and 𝐷𝑥 ⊂ R𝑛1 , 𝐷𝑧 ⊂ R𝑛2 , characterize the flow set
𝐶 and the jump set 𝐷, respectively.

Similar to the continuous-time systems studied in Section 4, when
𝜀 is sufficiently small the stability properties of system (5.1) can be
studied based on the stability properties of a simpler reduced hybrid
system. To characterize these reduced dynamics, we first introduce
the map 𝜑0, which plays the role of the quasi-steady state map in
classical singular perturbation problems, characterized by the following
assumption:

Assumption 5.1. There exists a 1-map 𝜑0 ∶ R𝑛1 → R𝑛2 satisfying
𝜑0(𝑥) ∈ 𝐶𝑧 for all 𝑥 ∈ 𝐶𝑥. □

Remark 5.1. Assumption 5.1 is similar to the standard assumptions
in ODEs, see Khalil (2002, Ch. 11) and Kokotović et al. (1986). In
general, for the sake of stability analysis, it is not necessary to assume
that the quasi-steady state is a single-valued map, see for instance San-
felice and Teel (2011). For example, in Section 6.4.3, we consider
a system where a multi-valued quasi-steady state map is used when
discussing hybrid extremum-seeking controllers applied to self-tuning
amplitude problems in oscillators. Nevertheless, we assume singled-
valued maps to follow a similar approach as in Section 4 and to parallel
the presentation for singularly-perturbed ODEs considered in Khalil
(2002). □

By using the mapping 𝜑0, we introduce the shifted state 𝑦 = 𝑧−𝜑0(𝑥),
and the change of coordinates from (𝑥, 𝑧) to 𝜓 = (𝑥, 𝑦). The coordinate
change leads to the following HDS:

(𝑥, 𝑦) ∈ 𝐶̂,
{

𝑥̇ ∈ 𝐹𝑥(𝑥, 𝑦) (5.2a)
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𝜀𝑦̇ ∈ 𝐹𝑦(𝑥, 𝑦, 𝜀)
(𝑥, 𝑦) ∈ 𝐷̂, (𝑥+, 𝑦+) ∈ 𝐺̂(𝑥, 𝑦), (5.2b)

where the set-valued flow maps 𝐹𝑥 and 𝐹𝑦 are defined by

𝐹𝑥(𝑥, 𝑦) ∶=
{

𝑓𝑥 ∶ 𝑓𝑥 ∈ 𝐹𝑥(𝑥, 𝑦 + 𝜑0(𝑥))
}

,

𝐹𝑦(𝑥, 𝑦, 𝜀) ∶=
{

𝑓𝑧 − 𝜀𝐽𝜑0(𝑥)𝑓𝑥 ∶ 𝑓𝑧 ∈ 𝐹𝑧(𝑥, 𝑦 + 𝜑0(𝑥)),

𝑓𝑥 ∈ 𝐹𝑥(𝑥, 𝑦 + 𝜑0(𝑥))
}

.

Since 𝜑0 is 1, the Jacobian 𝐽𝜑0(𝑥) ∈ R𝑛2×𝑛1 is a well-defined
continuous single-valued map. The jump map 𝐺̂ is given by

𝐺̂(𝑥, 𝑦) ∶=
{

(𝑣1, 𝑣2) ∶ 𝑣1 = 𝑔1, 𝑣2 = 𝑔2 − 𝜑0(𝑔1),

(𝑔1, 𝑔2) ∈ 𝐺(𝑥, 𝑦 + 𝜑0(𝑥))
}

,

the flow set 𝐶̂ can be written as

𝐶̂ ∶= {(𝑥, 𝑦) ∶ 𝑥 ∈ 𝐶𝑥, 𝑦 + 𝜑0(𝑥) ∈ 𝐶𝑧},

and the jump set 𝐷̂ can be written as

𝐷̂ ∶= {(𝑥, 𝑦) ∶ 𝑥 ∈ 𝐷𝑥, 𝑦 + 𝜑0(𝑥) ∈ 𝐷𝑧}.

We make the standing assumption that for any 𝜀 > 0 system (5.2)
satisfies the hybrid basic conditions of Assumption 2.1.

Next, we introduce the boundary layer dynamics for the SP-HDS
(5.2), which ignores the jumps (5.2b) and treats 𝑥 as a constant:

(𝑥, 𝑦) ∈ 𝐶̂, 𝑦̇ ∈ 𝐹𝑦(𝑥, 𝑦, 0), 𝑥̇ = 0. (5.3)

We also introduce the reduced HDS associated with the SP-HDS (5.2).
Unlike the reduced dynamics of Sections 3 and 4.2, this reduced system
is hybrid. It has a state 𝑥̃ ∈ R𝑛1 and dynamics

𝑥̃ ∈ 𝐶𝑥, ̇̃𝑥 ∈ 𝐹 (𝑥̃), (5.4a)

𝑥̃ ∈ 𝐷𝑥, 𝑥̃+ ∈ 𝐺̃(𝑥̃), (5.4b)

where the set-valued mappings 𝐹 ∶ R𝑛1 ⇉ R𝑛1 and 𝐺̃ ∶ R𝑛1 ⇉ R𝑛1 are
defined as follows:

𝐹 (𝑥̃) ∶= 𝐹𝑥(𝑥̃, 0), (5.5a)

𝐺̃(𝑥̃) ∶=
{

𝑠 ∈ R𝑛1 ∶ (𝑠, 𝑙) ∈ 𝐺̂(𝑥̃, 𝑦), 𝑦 + 𝜑0(𝑥̃) ∈ 𝐷𝑧
}

. (5.5b)

Note that, since 𝐷𝑧 is not necessarily assumed to be compact, in order
to have a locally bounded mapping 𝐺̃ one might need that 𝐺̂(𝑥̃, ⋅) is
uniformly bounded, or alternatively, that the jumps of 𝑥 do not depend
on the fast state 𝑧 in Eq. (5.1b).

The following assumption captures the stability properties of the
boundary-layer dynamics (5.3). For generality, and since it is common
to have non-smooth Lyapunov functions in hybrid systems, we consider
Lyapunov functions that are locally Lipschitz and regular, but not
necessarily continuously differentiable.

Assumption 5.2. There exists a locally Lipschitz and regular function
𝑊 ∶ R𝑛1 × R𝑛2 → R≥0, functions 𝛼1, 𝛼2 ∈ ∞, a continuous function
𝜑𝑦 ∈ 𝑠, and a constant 𝑘𝑦 ∈ R>0 such that the following conditions
hold: (1) 𝛼1 (|𝑦|) ≤ 𝑊 (𝑥, 𝑦) ≤ 𝛼2 (|𝑦|) for all (𝑥, 𝑦) ∈ 𝐶̂ ∪ 𝐷̂ ∪ 𝐺̂(𝐷̂); and
(2) max𝜈∈𝜕𝑦𝑊 (𝑥,𝑦)⟨𝜈, 𝑓𝑦⟩ ≤ −𝑘𝑦𝜑2

𝑦 (𝑦), for all (𝑥, 𝑦) ∈ 𝐶̂ and all 𝑓𝑦 ∈
𝐹𝑦(𝑥, 𝑦, 0). □

When 𝜑𝑦 is also positive definite, the conditions of Assumption 5.2
establish UGAS of the origin for the boundary-layer dynamics (5.3),
uniformly on 𝑥. In addition, when 𝐹𝑦 is single-valued and locally
Lipschitz, and 𝑊 is 2, Assumptions 5.1–5.2 recover the quadratic-
type conditions considered in the literature of singularly perturbed
ODEs (Khalil, 2002, Ch.11.4). We note that other stability and
Lyapunov-based characterizations that enable the incorporation of
exogenous disturbances in singularly perturbed ODEs have also been
studied in the literature using the notion of input-to-state stability

(Christofides & Teel, 1996; Christofides, Teel, & Daoutidis, 1996) .
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The stability properties of the reduced hybrid dynamics (5.4) are
studied with respect to a compact set  ⊂ R𝑛1 , and are characterized
y the following two assumptions:

ssumption 5.3. There exists a locally Lipschitz and regular function
∶ R𝑛1 → R≥0, functions 𝛼3, 𝛼4 ∈ ∞, a continuous function 𝜑𝑥 ∈

𝑠(), and a constant 𝑘𝑥 ∈ R>0, such that: (1) 𝛼3(|𝑥̃|) ≤ 𝑉 (𝑥̃) ≤
𝛼4(|𝑥̃|), for all 𝑥̃ ∈ 𝐶𝑥 ∪𝐷𝑥 ∪ 𝐺̃(𝐷𝑥); (2) max𝜈∈𝜕𝑉 (𝑥̃)⟨𝜈, 𝑓𝑥⟩ ≤ −𝑘𝑥𝜑2

𝑥(𝑥̃),
for all 𝑥̃ ∈ 𝐶𝑥 and all 𝑓𝑥 ∈ 𝐹 (𝑥̃). □

When 𝑉 is 2, the left-hand side in the second condition of Assump-
tion 5.3 can be substituted by the inner product ⟨∇𝑉 , 𝑓𝑥⟩. The following
assumption considers the same function 𝑉 of Assumption 5.3.

Assumption 5.4. There exists a continuous function 𝜌𝑥 ∈ 𝑠() and
a constant 𝑐𝑥 ∈ R>0, such that 𝑉 (𝑔̃) − 𝑉 (𝑥̃) ≤ −𝑐𝑥𝜌𝑥(𝑥̃), for all 𝑥̃ ∈ 𝐷𝑥
and all 𝑔̃ ∈ 𝐺̃(𝑥̃). □

As discussed in Christofides et al. (1996, Sec. 6), in general, fur-
ther interconnection conditions are needed to guarantee stability in
singularly perturbed systems that have asymptotically stable boundary
layers and reduced dynamics. The following assumptions provide some
sufficient interconnection conditions for the flows and jumps of (5.2).
Below, in Assumptions 5.5–5.7 the functions 𝑉 , 𝑊 , 𝜑𝑥, and 𝜑𝑦 are the
same from Assumptions 5.2–5.4.

Assumption 5.5. There exist 𝑘1, 𝑘2, 𝑘3 ∈ R>0, such that:

(a) For all (𝑥, 𝑦) ∈ 𝐶̂, and for all 𝑓𝑥, 𝑓𝑥 ∈ 𝐹𝑥(𝑥, 𝑦), we have:

max
𝑣∈𝜕𝑥𝑊 (𝑥,𝑦)

⟨𝑣, 𝑓𝑥⟩ − max
𝑣∈𝜕𝑦𝑊 (𝑥,𝑦)

⟨𝑣, 𝐽𝜑0(𝑥)𝑓𝑥⟩ ≤ 𝑘1𝜑𝑦(𝑦)𝜑𝑥(𝑥) + 𝑘2𝜑2
𝑦(𝑦),

(5.6)

(b) For all (𝑥, 𝑦) ∈ 𝐶̂, and for all 𝑓𝑥 ∈ 𝐹𝑥(𝑥, 𝑦), there exists 𝑓𝑥 ∈ 𝐹 (𝑥)
such that:

max
𝜈∈𝜕𝑉 (𝑥)

⟨𝜈, 𝑓𝑥 − 𝑓𝑥⟩ ≤ 𝑘3𝜑𝑦(𝑦)𝜑𝑥(𝑥). (5.7)

The following two additional assumptions will be used whenever
the composite hybrid Lyapunov function constructed from 𝑉 and 𝑊
does not necessarily decrease during jumps.

Assumption 5.6. There exist 𝑘4 ∈ R>0 and a continuous function
𝜌4 ∈ 𝑠(), such that

𝑊 (𝑔𝑥, 𝑔𝑧) −𝑊 (𝑥, 𝑦) ≤ 𝑘4𝜌4(𝑥), (5.8)

for all (𝑔𝑥, 𝑔𝑧) ∈ 𝐺̂(𝑥, 𝑦) and all (𝑥, 𝑦) ∈ 𝐷̂. □

Assumption 5.7. There exist 𝑘5 ∈ R>0, and a continuous function
𝜌5 ∈ 𝑠, such that

𝑉 (𝑔̃) − 𝑉 (𝑥) ≤ 𝑘5𝜌5(𝑦),

for all 𝑔̃ ∈ 𝐺̃(𝑥̃), and for all (𝑥̃, 𝑦) ∈ 𝐷̂. □

When 𝐷 = 𝐺 = ∅,  = {0}, 𝜑𝑥, 𝜑𝑦 ∈ , and the flow map is
singled-valued and locally Lipschitz, the conditions of Assumptions 5.2–
5.5 essentially recover the quadratic-type characterization presented
in Saberi and Khalil (1984) for locally Lipschitz ODEs. In this sense,
the different conditions of Assumptions 5.2–5.7 are natural extensions
to study the stability properties of HDS with respect to compact sets.

5.2. Stability analysis via composite Lyapunov functions

By using the functions 𝑉 and 𝑊 , it is possible to study the stability
properties of the shifted SP-HDS (5.2) with respect to the set

̃ ∶= (𝑥, 𝑦) ∈ R𝑛 ∶ 𝑥 ∈ , 𝑦 = 0 , (5.9)
14

{ }
which is compact due the compactness of . To do this, and following
similar constructions for ODEs (Saberi & Khalil, 1984), consider the
regular and locally Lipschitz function

𝐸𝜃(𝜓) ∶= (1 − 𝜃)𝑉 (𝑥) + 𝜃𝑊 (𝑥, 𝑦), (5.10)

where 𝜃 ∈ (0, 1). Let 𝜀∗ ∶= 𝑘𝑥𝑘𝑦
𝑘𝑥𝑘2+𝑘1𝑘3

, 𝜃∗ = 𝑘3
𝑘1+𝑘3

, where the positive

constants (𝑘1, 𝑘2, 𝑘3, 𝑘𝑥, 𝑘𝑦) were introduced in Assumptions 5.2, 5.3 and
5.5. The next theorem studies UGAS of ̃ under an additional strong
decrease condition of 𝐸𝜃∗ during the jumps of (5.2). For completeness,
we present the proof in Section 7.3.

Theorem 5.1. Let  ⊂ R𝑛1 be compact, 𝜀 ∈ (0, 𝜀∗), and suppose that
Assumption 5.1 holds, and:

(a) Assumptions 5.2, 5.3 and 5.5 hold, 𝜑𝑥 ∈ () and 𝜑𝑦 ∈ .
(b) There exists a function 𝜌̂ ∈ (̃) such that

𝐸𝜃∗ (𝑔) − 𝐸𝜃∗ (𝜓) ≤ −𝜌̂(𝜓), (5.11)

for all 𝑔 ∈ 𝐺̂(𝑥, 𝑦), and all (𝑥, 𝑦) ∈ 𝐷̂, where 𝐸𝜃∗ is given by (5.10).

Then, the set ̃ is UGAS for the SP-HDS (5.2). □

The following academic example, inspired by Khalil (2002, Ex.
11.12), illustrates the use of Theorem 5.1 in a simple hybrid system
with jumps triggered by a timer.

Example 5.1. Consider the following SP-HDS with jumps triggered by
a timer 𝑥2 ∈ [0, 1]:

(𝑥1, 𝑥2, 𝑧) ∈ 𝐶 = 𝐶𝑥 × R
𝐶𝑥 ∶= R × [0, 1]

,

⎧

⎪

⎨

⎪

⎩

𝑥̇1 = 𝑥1 − 𝑥31 + 𝑧
𝑥̇2∈ [𝜌, 𝜌]
𝜀𝑧̇ = −𝑥1 − 𝑧,

(5.12a)

𝑥1, 𝑥2, 𝑧) ∈ 𝐷 = 𝐷𝑥 × R
𝐷𝑥 ∶= R × {1}

,

⎧

⎪

⎨

⎪

⎩

𝑥+1 = −𝑎𝑥1
𝑥+2 = 0

𝑧+ = −𝑏𝑧 + 𝑐𝑥1,

(5.12b)

where 𝜀 > 0 is a small parameter, 0 < 𝜌 ≤ 𝜌, and 𝑎, 𝑏, 𝑐 ∈ R. Because
he rate of evolution of the timer 𝑥2 is bounded from below by 𝜌 and

from above by 𝜌, the solutions to (5.12) experience a jump after at most
1∕𝜌 units of flow time, but not before 1∕𝜌̄ units of flow time. Therefore,
solutions to (5.12) are not unique when 𝜌̄ ≠ 𝜌.

For this system, the quasi-steady state map related to the fast state
𝑧 is given by 𝜑0(𝑥) = −𝑥1, and the hybrid system (5.2) becomes:

(𝑥, 𝑦) ∈ 𝐶̂ = 𝐶,

⎧

⎪

⎨

⎪

⎩

𝑥̇1 = −𝑥31 + 𝑦

𝑥̇2∈ [𝜌, 𝜌]

𝜀𝑦̇ = −𝑦,

(5.13a)

𝑥, 𝑦) ∈ 𝐷̂ = 𝐷,

⎧

⎪

⎨

⎪

⎩

𝑥+1 = −𝑎𝑥1
𝑥+2 = 0

𝑦+ = −𝑏𝑦 + (𝑏 + 𝑐 − 𝑎)𝑥1.

(5.13b)

e study the stability properties of this system with respect to the
ompact set ̃ =  × {0}, where  = {0} × [0, 1]. The boundary layer

dynamics (5.3) take the form 𝑦̇ = −𝑦, which renders the origin UGES.
Indeed, using 𝑊 (𝑥, 𝑦) = 1

2 |𝑦|
2, we obtain:

∇𝑦𝑊 (𝑥, 𝑦),−𝑦
⟩

= −|𝑦|2, ∀(𝑥, 𝑦) ∈ 𝐶̂,

hich implies that Assumption 5.2 holds with 𝑘𝑦 = 1, and 𝜑𝑦(𝑦) = |𝑦|.
The reduced dynamics (5.4) are given by the HDS:

𝑥̃ ∈ 𝐶𝑥, ̇̃𝑥1 = −𝑥̃31, ̇̃𝑥2 ∈ [𝜌, 𝜌],

𝑥̃ ∈ 𝐷𝑥, ̃̃𝑥+1 = −𝑎𝑥̃1, 𝑥̃+2 = 0.

ince 𝑥̃2 is restricted to evolve in the set [0, 1] along every solution, we
just need to study the behavior of the state 𝑥̃ with respect to the origin.
1
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Thus, using 𝑉 (𝑥̃) = 1
4 𝑥̃

4
1, we obtain:

⟨

∇𝑉 (𝑥̃), ̇̃𝑥
⟩

= −𝑥̃61, and
𝛥𝑉 (𝑥̃) ∶= 𝑉 (𝑥̃+) − 𝑉 (𝑥̃) = (𝑎4 − 1)𝑉 (𝑥̃).

Thus, Assumption 5.3 holds with 𝜑𝑥(𝑥̃) = |𝑥̃1|
3 and 𝑘𝑥 = 1. If 𝑎 ∈ (0, 1),

then Assumption 5.4 also holds with 𝜌𝑥(𝑥̃) = 𝑉 (𝑥̃) and 𝑐𝑥 = 1 − 𝑎4.
Similarly, from (5.13), we have that 𝐹𝑥(𝑥, 𝑦) = {−𝑥31 + 𝑦} × [𝜌, 𝜌].

Therefore, the interconnection conditions of Assumption 5.5 are veri-
fied with the inequalities:
⟨

∇𝑦𝑊 (𝑥, 𝑦),−𝐽𝜑0(𝑥)𝑓𝑥
⟩

= 𝑦(−𝑥31 + 𝑦) ≤ 𝜑𝑥(𝑥)𝜑𝑦(𝑦) + 𝜑𝑦(𝑦)2,

for all 𝑓𝑥 ∈ 𝐹𝑥(𝑥, 𝑦), and
⟨

∇𝑉 (𝑥), 𝑓𝑥 − 𝑓𝑥
⟩

= 𝑥31𝑦 ≤ 𝜑𝑥(𝑥)𝜑𝑦(𝑦), for all
(𝑥, 𝑦) ∈ 𝐶̂, 𝑓𝑥 ∈ 𝐹 (𝑥, 𝑦), and all 𝑓𝑥 ∈ 𝐹𝑥(𝑥) = {−𝑥31} × [𝜌, 𝜌]. Therefore,

item (a) of Theorem 5.1 is verified. To evaluate (5.11) during the jumps
of (5.13), we note that 𝛥𝑊 (𝑥, 𝑦) ∶= 𝑊 (𝑥+, 𝑦+) −𝑊 (𝑥, 𝑦) satisfies

𝛥𝑊 (𝑥, 𝑦) = 1
2
(−𝑏𝑦 + (𝑏 + 𝑐 − 𝑎)𝑥1)2 −

1
2
𝑦2.

If, for instance, 𝑏 = (𝑎 − 𝑐) ∈ (0, 𝜌), with 𝜌 < 1, then

𝛥𝑊 (𝑥, 𝑦) ≤ −(1 − 𝜌2)
𝑦2

2
= −𝑐𝑦𝑊 (𝑥, 𝑦),

where 𝑐𝑦 ∈ (0, 1). Since for all 𝜓 = (𝑥, 𝑦) ∈ 𝐷̂ we have

𝐸𝜃∗ (𝜓+) − 𝐸𝜃∗ (𝜓) ≤ −𝑐𝑥(1 − 𝜃∗)𝑉 (𝑥) − 𝑐𝑦𝜃∗𝑊 (𝑥, 𝑦),

inequality (5.11) holds with 𝜌̂(𝜓) = min{𝑐𝑥, 𝑐𝑦}𝐸𝜃∗ (𝜓). Thus, by Theo-
rem 5.1, if 𝜀 ∈ (0, 12 ) we can conclude that the set ̃ is UGAS for the
SP-HDS (5.13). □

In some applications, it might be difficult to find functions 𝑉 , 𝑊
that satisfy all the conditions of Theorem 5.1. In that case, some of the
assumptions can be relaxed if certain complete solutions to system (5.1)
can be ruled out. In those scenarios, we shall also use the following
assumption that captures a non-increasing property on 𝑊 during the
jumps of the system:

Assumption 5.8. There exists 𝑐𝑦 > 0 and a continuous function 𝜌𝑦 ∈
𝑠 such that the function 𝑊 of Assumption 5.2 satisfies: 𝑊 (𝑔𝑥, 𝑔𝑦) −
(𝑥, 𝑦) ≤ −𝑐𝑦𝜌𝑦(𝑦), for all (𝑔𝑥, 𝑔𝑧) ∈ 𝐺̂(𝑥, 𝑦), and all (𝑥, 𝑦) ∈ 𝐷̂. □

Theorem 5.2 below exploits the construction of the composite Lya-
punov function (5.10) and the hybrid invariance principle. The proof
is presented in Section 7.3

Theorem 5.2. Let 𝜀 ∈ (0, 𝜀∗). Suppose that Assumption 5.1 holds, and:

(a) Assumptions 5.2, 5.3, and 5.5 hold with 𝜑𝑥 ∈ 𝑠(), 𝜑𝑦 ∈ 𝑠.
(b) At least one of the following conditions holds:

(1) Assumptions 5.4 and 5.6 hold with 𝜌𝑥 = 𝜌4 and 𝑘3𝑘4
𝑘1

< 𝑐𝑥.

(2) Assumptions 5.7 and 5.8 hold with 𝜌𝑦 = 𝜌5 and 𝑘1𝑘5
𝑘3

< 𝑐𝑦.

(c) There does not exist a complete solution 𝜓 that remains in a non-zero
level set of 𝐸𝜃∗ .

Then, the set ̃ is UGAS for the SP-HDS (5.2). □

Example 5.2 (Feedback Optimization via Heavy-Ball Systems with Resets).
Consider the following SP-HDS:

(𝑥1, 𝑥2, 𝑥3, 𝑧) ∈ 𝐶 = 𝐶𝑥 × R𝑛
𝐶𝑥 ∶= R𝑛 × R𝑛 × [0, 𝑇 ]

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥̇1 = 𝑥2
𝑥̇2 = −𝑥2 −𝑀∇𝜙(𝑧)
𝑥̇3 ∈ [0, 1]
𝜀𝑧̇ = 𝐴𝑧 + 𝐵𝑥1,

(5.14a)

(𝑥1, 𝑥2, 𝑥3, 𝑧) ∈ 𝐷 = 𝐷𝑥 × R𝑛
𝐷𝑥 ∶= R𝑛 × R𝑛 × {𝑇 }

⎧

⎪

⎪

⎨

⎪

⎪

𝑥+1 = 𝑥1
𝑥+2∈ [0, 𝜌]𝑥2
𝑥+3 = 0
+

(5.14b)
15

⎩
𝑧 = 𝑧, (
where 𝑀 ∈ R𝑛×𝑛 is invertible, 𝐴 ∈ R𝑛×𝑛 is Hurwitz, 𝐵 ∈ R𝑛×𝑛, and
𝜌 ∈ [0, 1) is a tunable parameter. System (5.14) models a feedback
interconnection between a linear plant with state 𝑧 and input 𝑥1, and a
heavy ball optimization algorithm that incorporates resets of 𝑥2 via the
jump rule 𝑥+2 ∈ [0, 𝜌]𝑥2 whenever the timer 𝑥3 satisfies 𝑥3 = 𝑇 . Since
̇ 3 ∈ [0, 1], system (5.14) can generate different types of behaviors,
ranging from solutions that never jump, to solutions that periodically
reset the state 𝑥3 after 𝑇 amount of flow time.

For the purpose of analysis, we assume that 𝜙 ∶ R𝑛 → R is continu-
ously differentiable, radially unbounded, and ∇𝜙(𝐻𝑥1) = 0 if and only
if 𝑥1 = 𝑥∗, where 𝐻 ∶= −𝐴−1𝐵 is assumed to be nonsingular, and 𝑥∗1 is
the unique minimizer of the function 𝑥1 ↦ 𝜙(𝐻𝑥1). Additionally, ∇𝜙 is
assumed to be globally 𝓁-Lipschitz.

In (5.14a), the quasi steady-state map related to the fast state 𝑧 is
given by 𝜑0(𝑥) = 𝐻𝑥1, and the hybrid system (5.2) is given by

(𝑥, 𝑦) ∈ 𝐶̂ = 𝐶

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥̇1 = 𝑥2
𝑥̇2 = −𝑥2 −𝑀∇𝜙(𝑦 +𝐻𝑥1)

𝑥̇3∈ [0, 1]

𝜀𝑦̇ = 𝐴𝑦 + 𝜀𝐴−1𝐵𝑥1,

(5.15a)

(𝑥, 𝑦) ∈ 𝐷̂ = 𝐷

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥+1 = 𝑥1
𝑥+2∈ [0, 𝜌]𝑥2
𝑥+3 = 0
𝑦+ = 𝑦.

(5.15b)

We study the stability properties of system (5.15) with respect to the
compact set ̃ = ×{0} where  = {𝑥∗1}×{0}× [0, 𝑇 ]. In this case, the
boundary layer system (5.3) is the exponentially stable system 𝑦̇ = 𝐴𝑦.
Indeed, there exists 𝑃 ≻ 0 such that 𝐴⊤𝑃 + 𝑃𝐴 = −𝐼 , and using
𝑊 (𝑥, 𝑦) = 𝑦⊤𝑃𝑦, we obtain
⟨

∇𝑦𝑊 (𝑥, 𝑦), 𝐴𝑦
⟩

≤ −|𝑦|2, ∀ (𝑥, 𝑦) ∈ R2𝑛 × R𝑛,

which implies that Assumption 5.2 holds with 𝑘𝑦 = 1 and 𝜑𝑦(𝑦) = |𝑦|.
The reduced HDS (5.4) takes the form

𝑥̃ ∈ 𝐶𝑥,

⎧

⎪

⎨

⎪

⎩

̇̃𝑥1 = 𝑥̃2
̇̃𝑥2 = −𝑥̃2 −𝑀∇𝜙(𝐻𝑥̃1)
̇̃𝑥3 ∈ [0, 1],

(5.16a)

𝑥̃ ∈ 𝐷𝑥,

⎧

⎪

⎨

⎪

⎩

𝑥̃+1 = 𝑥̃1
𝑥̃+2 ∈ [0, 𝜌]𝑥̃2
𝑥̃+3 = 0.

(5.16b)

We can analyze (5.16) using the function 𝑉 (𝑥̃) = 𝜙(𝐻𝑥̃1) − 𝜙(𝐻𝑥∗1) +
1
2 |𝑥̃2|

2, which satisfies Assumption 5.3-(1) since, 𝜙 is radially un-
ounded, 𝐻 is non-singular, and 𝜙(𝐻𝑥̃1) attains its minimum at 𝑥∗1.
oreover, setting 𝑀 = 𝐻⊤ leads to:

∇𝑉 (𝑥̃), 𝑓𝑥
⟩

=
⟨ (

𝐻⊤∇𝜙(𝐻𝑥̃1), 𝑥̃2
)

,
(

𝑥̃2,−𝑥̃2 −𝑀∇𝜙(𝐻𝑥̃1)
) ⟩

= −|𝑥̃2|
2,

or all 𝑓𝑥 ∈ 𝐹𝑥(𝑥̃) =
{(

𝑥̃2,−𝑥̃2 −𝑀∇𝜙(𝐻𝑥̃1)
)}

× [0, 1], thus verifying
ssumption 5.3-(2) with 𝑘𝑥 = 1 and 𝜑𝑥(𝑥̃) ∶= |𝑥̃2|. Additionally, the

nequalities
⟨

𝑃𝑦,𝐴−1𝐵𝑥2
⟩

≤ |𝑃 ∥ 𝐵|
|𝐴|

𝜑𝑦(𝑦)𝜑𝑥(𝑥)
⟨

𝑥2,𝑀
(

∇𝜙(𝐻𝑥1 + 𝑦) − ∇𝜙(𝐻𝑥1)
)⟩

≤ 𝓁|𝑀|𝜑𝑥(𝑥)𝜑𝑦(𝑦),

mply that the interconnection conditions of Assumption 5.5 are ver-
fied with 𝑘1 = 𝜎𝑃 𝜎𝐵∕𝜎𝐴, 𝑘2 > 0, and 𝑘3 = 𝓁𝜎𝑀 , where 𝜎𝛹 and 𝜎𝛹

denote the maximum singular value, and the minimum singular value,
respectively, of a matrix 𝛹 . Since 𝜑𝑥 ∈ 𝑠() and 𝜑𝑦 ∈ 𝑠, item (a)
of Theorem 5.2 is satisfied.

Next, we show that condition (b)-(1) of Theorem 5.2 also holds. To
verify Assumption 5.4, we evaluate the change of 𝑉 during the jumps

+ 2 1 (1 − 𝜌2). To
5.16b): 𝛥𝑉 (𝑥) = 𝑉 (𝑥 ) − 𝑉 (𝑥) = −𝑐𝑥𝜑𝑥(𝑥) , with 𝑐𝑥 = 2
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verify Assumption 5.6, we evaluate the change of 𝑊 during the jumps
of the original hybrid dynamics (5.14), leading to 𝛥𝑊 = 𝑊 (𝑥+1 , 𝑦

+) −
(𝑥1, 𝑦) = 0 ≤ 𝑘4𝜑𝑥(𝑥)2, where 𝑘4 is any positive number that satisfies

4 < (1 − 𝜌2)𝜎𝑃 𝜎𝐵∕2𝓁𝜎𝑀𝜎𝐴.
Finally, we verify item (c) of Theorem 5.2. Since item (a) holds and

∈ (0, 𝜀∗), there exists 𝜆 > 0 such that 𝐸̇𝜃∗ ≤ −𝜆(𝜑𝑥(𝑥)2 + 𝜑𝑦(𝑦)2) ≤ 0,
or all (𝑥, 𝑧) ∈ R2𝑛 ×R𝑛. Since item (b) holds, the change of 𝐸𝜃∗ during
umps satisfies 𝛥𝐸𝜃∗ = 𝐸𝜃∗ (𝜓+) − 𝐸𝜃∗ (𝜓) ≤ 𝑐𝜑𝑥(𝑥)2 ≤ 0, 𝑐 > 0, for all
= (𝑥, 𝑦) ∈ R2𝑛×R𝑛. We proceed to show that no complete solution can

eep 𝐸𝜃∗ equal to a non-zero constant. In particular, since 𝐸𝜃∗ does not
ncrease during jumps, and since every jump is separated by intervals of
low with length lower bounded by 𝑇 , it suffices to study the behavior
f 𝐸̇𝜃∗ . Since 𝐸̇𝜃∗ = 0 whenever 𝜑𝑥(𝑥) = 0 and 𝜑𝑦(𝑦) = 0, we study the

behavior of the trajectories of (5.14) in the Kernel of these functions:

𝑈=
{

(𝑥, 𝑦) ∈ R2𝑛 × [0, 𝑇 ] × R𝑛 ∶ 𝑥2 = 0, 𝑦 = 0
}

,

hich is invariant under the jump map. Indeed, for any trajectory that
emains in 𝑈 during flows, we must have 𝑥̇2 = 0 and ∇𝜙(𝑦 + 𝐻𝑥1) =
𝜙(𝐻𝑥1) = 0. But, by assumption, the latter condition can only occur

f 𝑥1 = 𝑥∗1. It follows that the only non-empty set where 𝐸𝜃∗ (𝑥, 𝑦) can
remain constant along the trajectories of the system is precisely the set
̃, which satisfies 𝐸𝜃∗ (̃) = 0. By Theorem 5.2, we can conclude UGAS
f ̃ for the SP-HDS (5.15). □

The procedure followed in Example 5.2 is similar to the one used
n the literature of continuous-time feedback optimization (Bianchin,
oveda et al., 2022; Colombino et al., 2020; Cothren, Bianchin, &
all’Anese, 2022; Hauswirth et al., 2020), where the fast dynamics of
model the dynamics of the plant, and the slow dynamics of 𝑥 capture

the dynamics of an optimization algorithm using real-time output feed-
back to steer the plant towards an optimal steady-state point. Such tech-
niques have found fruitful applications in power systems (Colombino
et al., 2020; Hauswirth et al., 2020), transportation systems (Bianchin,
Cortes et al., 2022), and supply chain management (Belgioioso et al.,
2022). Example 5.2 shows that similar hybrid multi-time scale feedback
architectures could be considered. We finish this section by highlight-
ing that global stability results for continuous-time systems have also
been established via contraction theory (Del Vecchio & Slotine, 2012).
However, for SP-HDS, such results remain unexplored.

5.2.1. Relaxations for semi-global practical stability
The assumptions required in Theorems 5.1–5.2 can be significantly

relaxed in order to establish local or semi-global stability results in well-
posed HDS (Sanfelice & Teel, 2011). In particular, while Tikhonov’s-
type of results (Khalil, 2002, Thm. 11.1), Deghat, Ahmadizadeh, Nešić,
and Manzie (2021), are difficult to establish in HDS (for which solutions
might not even be unique), the following closeness of solutions property
(specialized to singled-valued dynamics) was established in Wang et al.
(2012a, Ex. 1 & Thm. 1) for a general class of (first-order) singularly
perturbed HDS of the form (5.1).

Proposition 5.3. Consider the SP-HDS (5.1), and suppose that 𝐹𝑥, 𝐹𝑧,
𝐺, and 𝜑0 are continuous, 𝐶𝑥, 𝐷𝑥 are closed, 𝛹 = 𝐶𝑧 = 𝐷𝑧 is compact, and
that for each compact set 𝐾0 ⊂ R𝑛1 the reduced system has no solutions with
finite escape times. Then, for each 𝜖 > 0 and any pair 𝑇 , 𝐽 > 0 there exists
𝜀∗ such that for all 𝜀 ∈ (0, 𝜀∗) and all solutions 𝑥 to (5.1) with 𝑥(0, 0) ∈ 𝐾0,
there exists some solution 𝑥̃ of the reduced system with 𝑥̃(0, 0) ∈ 𝐾0 such
that:

• for each (𝑡, 𝑗) ∈ dom(𝑥) with 𝑡 ≤ 𝑇 and 𝑗 ≤ 𝐽 there exists 𝑡′ such that
(𝑡′, 𝑗) ∈ dom(𝑥̃), with |𝑡 − 𝑡′| ≤ 𝜖 and |𝑥(𝑡, 𝑗) − 𝑥̃(𝑡′, 𝑗)| ≤ 𝜖.

• for each (𝑡, 𝑗) ∈ dom(𝑥̃) with 𝑡 ≤ 𝑇 and 𝑗 ≤ 𝐽 there exists 𝑡′ such that
(𝑡′, 𝑗) ∈ dom(𝑥), with |𝑡 − 𝑡′| ≤ 𝜖 and |𝑥̃(𝑡, 𝑗) − 𝑥(𝑡′, 𝑗)| ≤ 𝜖.

Proposition 5.3 says that every solution 𝑥 of the slow dynamics
of the SP-HDS (5.1) can be made arbitrarily close, on compact time
16

domains and in a graphical sense, to some solution of its reduced c
Fig. 5. (𝑇 , 𝐽 )−closeness of a solution 𝑥 and a solution 𝑥̃ of the reduced hybrid system.

ybrid system (5.4), provided the reduced system is forward complete;
ee Fig. 5 for an illustration. The fact that for SP-HDS the closeness
f solutions property is studied in a graphical sense instead of using
he standard 2-norm is a key difference with respect to the Lipschitz
ontinuous ODE case studied in the literature (Khalil, 2002) and in
ections 3–4. To the best knowledge of the authors, results on closeness
f solutions for second-order SP-HDS are still absent in the literature.

If the Assumptions of Proposition 5.3 hold, and the reduced HDS has
compact set  ⊂ R𝑛1 that is UGAS (in the sense of Definition 2.2),

then it can be established that the original SP-HDS (5.1) renders the
set  × 𝛹 semi-globally practically asymptotically stable (SGpAS) as
𝜀 → 0+ (Wang et al., 2012a, Thm. 2), (Sanfelice & Teel, 2011, Thm. 1),
amely, there exists 𝛽 ∈  such that for each compact set 𝐾0 ⊂ R𝑛1

and each 𝜈 > 0, there exists 𝜀⋆ > 0 such that for all 𝜀 ∈ (0, 𝜀⋆), every
olution to (5.1) with 𝑥(0, 0) ∈ 𝐾0 satisfies the bound

𝑥(𝑡, 𝑗)| ≤ 𝛽(|𝑥(0, 0)|, 𝑡 + 𝑗) + 𝜈, (5.17)

or all (𝑡, 𝑗) ∈ dom(𝑥, 𝑧). When 𝜀∗ is independent of 𝐾0 and (5.17) holds
or all initial conditions, the set  is said to be uniformly globally
ractically asymptotically stable (UGpAS). If 𝛽(𝑟, 𝑠) = 𝑐1𝑟𝑒−𝑐2𝑠, we use
he acronyms SGpES and UGpES.

The above property actually applies to a more general class of HDS
including ODEs Teel et al., 2003) for which the reduced system is
efined via averaging theory Wang et al. (2012a), which is the main
ubject of the next section.

. Averaging theory in hybrid dynamical systems

In this section, we focus on a specific subset of HDS (2.1), whose
tability properties can be effectively analyzed using averaging the-
ry. The dynamics considered in this context usually involve oscil-
ating or time-varying vector fields that exhibit well-defined average
appings as the frequency of the time variation increases, similar

o those considered in Sections 3–4. However, for HDS we restrict
ur attention to first-order averaging. In particular, we study HDS
or which we can establish global stability results by imposing suit-
ble smoothness properties and ensuring the (exponential) stability of
heir (first-order) average dynamics. Such results are natural exten-
ions of existing stability results for ODEs, Sastry and Bodson (1989,
h.4). We illustrate these findings through various examples, including
ime-varying switched systems, sampled-data systems, and parameter
stimation algorithms with momentum and resets. Subsequently, we
onsider cases where semi-global practical asymptotic stability results
an be obtained under weaker assumptions. Such cases are illustrated
ia novel applications in the context of hybrid source-seeking problems,
ealing with issues like spoofing and intermittent feedback. We also
xplore new hybrid switched extremum-seeking algorithms and hybrid
odel-free controllers for the stabilization of systems with unknown

ontrol directions.
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𝜓
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𝑝

6.1. Model and main assumptions

Consider a HDS with states 𝜓 = (𝑥, 𝑞) ∈ R𝑛 × R𝑚, 𝜏 ∈ R≥0, and
dynamics:

(𝑥, 𝑞, 𝜏) ∈ 𝐶 ∶= R𝑛 × 𝐶𝑞 × R≥0,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥̇ = 𝑓 (𝑥, 𝑞, 𝜏, 𝜀)

𝑞̇ ∈ 𝐹𝑞(𝑞)

𝜏̇ = 1
𝜀
,

(6.1a)

(𝑥, 𝑞, 𝜏) ∈ 𝐷 ∶= R𝑛 ×𝐷𝑞 × R≥0,

⎧

⎪

⎨

⎪

⎩

𝑥+ = 𝑔(𝑥, 𝑞)
𝑞+ ∈ 𝐺𝑞(𝑞)
𝜏+ = 𝜏

(6.1b)

where 𝜀 > 0 is a small parameter, 𝐶𝑞 , 𝐷𝑞 ⊂ R𝑚, 𝑥 is the main
state, 𝑞 is an auxiliary state that can be used to model logic modes,
timers, oscillators, etc, and 𝜏 is used to model the fast variations of 𝑓 .
We make the following regularity assumptions on (6.1a)–(6.1b). These
assumptions are natural extensions of those considered in the literature
of averaging for ODEs whenever global results (as opposed to local, or
semi-global) are sought-after, e.g., Sastry and Bodson (1989, Ch. 4).

Assumption 6.1. There exists 𝜀0 > 0 such that:

(a) The function 𝑓 is 1, and 𝑔 is continuous. The mapping 𝐹𝑞 ∶
R𝑚 ⇉ R𝑚 is OSC, LB, and convex-valued relative to 𝐶𝑞 ; The
mapping 𝐺𝑞 ∶ R𝑚 ⇉ R𝑚 is OSC and LB relative to 𝐷𝑞 ; the sets
𝐶𝑞 and 𝐷𝑞 are compact, and satisfy 𝐶𝑞 ⊂ dom 𝐹𝑞 , 𝐷𝑞 ⊂ dom 𝐺𝑞 .

(b) The function 𝑓 satisfies 𝑓 (0, 𝑞, 𝜏, 𝜀) = 0 for all (𝑞, 𝜏, 𝜀) ∈ (𝐶𝑞∪𝐷𝑞)×
R≥0 × [0, 𝜀0). The function 𝑔 satisfies 𝑔(0, 𝑞) = 0 for all 𝑞 ∈ 𝐷𝑞 .

(c) There exists 𝐿𝑥 > 0, such that

|𝑓 (𝑥1, 𝑞, 𝜏, 𝜀) − 𝑓 (𝑥2, 𝑞, 𝜏, 𝜀)| ≤ 𝐿𝑥|𝑥1 − 𝑥2|, (6.2)

for all 𝑞 ∈ 𝐶𝑞 , all 𝑥1, 𝑥2 ∈ R𝑛, and all 𝜀 ∈ [0, 𝜀0).
(d) There exists 𝐿𝜀∗ > 0, such that

|𝑓 (𝑥, 𝑞, 𝜏, 𝜀1) − 𝑓 (𝑥, 𝑞, 𝜏, 𝜀2)| ≤ 𝐿𝜀0 |𝑥||𝜀1 − 𝜀2|, (6.3)

for all 𝑞 ∈ 𝐶𝑞 , all 𝑥 ∈ R𝑛, and all 𝜀1, 𝜀2 ∈ (0, 𝜀0).
(e) There exists 𝐿𝑔 > 0 such that

|𝑔(𝑥1, 𝑞) − 𝑔(𝑥2, 𝑞)| ≤ 𝐿𝑔|𝑥1 − 𝑥2|, (6.4)

for all 𝑞 ∈ 𝐷𝑞 , all 𝑥1, 𝑥2 ∈ R𝑛.
(f) The mapping 𝐺(𝑥, 𝑞) ∶= 𝑔(𝑥, 𝑞) × 𝐺𝑞(𝑞) satisfies 𝐺(R𝑛 × 𝐷𝑞) ⊂

R𝑛 × (𝐶𝑞 ∪𝐷𝑞). □

Conditions (6.2), (6.3), and (6.4) can be relaxed to local Lipschitz
continuity (uniform over 𝑞) whenever local or semi-global stability
results are of interest, or when 𝑥 in (6.1a)–(6.1b) is restricted to evolve
within a compact set.

To study the stability properties of the HDS (6.1a)–(6.1b), we
introduce the (first-order) average map of 𝑓 .

Definition 6.1. 𝑓 is said to have an average map 𝑓 if there exists a
class- function 𝛾 such that
|

|

|

|

|

1
𝑇 ∫

𝜏+𝑇

𝜏

(

𝑓 (𝑥, 𝑞, 𝑠, 0) − 𝑓 (𝑥, 𝑞)
)

d𝑠
|

|

|

|

|

≤ 𝛾(𝑇 )|𝑥|, (6.5)

for all 𝑥 ∈ R𝑛, all 𝑞 ∈ 𝐶𝑞 ∪ 𝐷𝑞 , and all 𝜏, 𝑇 ∈ R≥0. The function 𝛾(⋅) is
called the convergence function. □

As in Section 3, the average map is defined with respect to the flow
map of (6.1a). If 𝑓 is periodic in 𝜏, one can take 𝛾(𝑇 ) = 1

1+𝑇 (Khalil,
2002, Ex. 10.12). Other choices of convergence functions are discussed
in Anderson et al. (1986), Khalil (2002, Ch. 10) and Sastry and Bodson
(1989, Ch.4).

Let 𝑑(𝑥, 𝑞, 𝜏) ∶= 𝑓 (𝑥, 𝑞, 𝜏, 0) − 𝑓 (𝑥, 𝑞). The following smoothness
assumption on 𝑑 and 𝑓 , uniformly on 𝐶𝑞 ∪ 𝐷𝑞 , will be instrumental
in our analysis.
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Assumption 6.2. The function 𝑓 admits a 1 average map 𝑓 , with
convergence function 𝛾, and there exists 𝐿ave > 0 such that:

|𝑓 (𝑥1, 𝑞) − 𝑓 (𝑥2, 𝑞)| ≤ 𝐿ave|𝑥1 − 𝑥2|,

for all 𝑥1, 𝑥2 ∈ R𝑛, and all 𝑞 ∈ 𝐶𝑞 . Moreover,
|

|

|

|

|

1
𝑇 ∫

𝜏+𝑇

𝜏
𝐽𝜓𝑑(𝑥, 𝑞, 𝜏)d𝜏

|

|

|

|

|

≤ 𝛾(𝑇 ), (6.6)

or all 𝜓 = (𝑥, 𝑞) ∈ R𝑛 × (𝐶𝑞 ∪𝐷𝑞) and all 𝜏, 𝑇 ∈ R≥0. □

Next, we introduce the average HDS associated to system (6.1a)–
6.1b).

efinition 6.2. The average HDS of system (6.1a)–(6.1b) has state
̄ = (𝑥̄, 𝑞) ∈ R𝑛 × 𝐶𝑞 ∪𝐷𝑞 , and dynamics

̄ ∈ R𝑛 × 𝐶𝑞 , ̇̄𝜓 ∈ 𝐹 (𝜓̄) ∶=
(

𝑓 (𝑥̄, 𝑞)
𝐹𝑞(𝑞)

)

(6.7a)

̄ ∈ R𝑛 ×𝐷𝑞 , 𝜓̄+ ∈ 𝐺̄(𝜓̄), (6.7b)

where the average jump map is defined as 𝐺̄(𝜓̄) ∶= 𝐺(𝑥̄, 𝑞), for all
̄ ∈ (R𝑛 ×𝐷𝑞). □

By Assumptions 6.1 and 6.2, the average hybrid dynamics (6.7)
satisfy the hybrid basic conditions of Assumption 2.1. To characterize
the stability properties of the average dynamics, we use the following
assumption, which is an extension to hybrid systems of the assumptions
made in Sastry and Bodson (1989, Thm. 4.2.5) for ODEs. For simplicity,
we will study the stability properties of the set  ∶= {0} × (𝐶𝑞 ∪𝐷𝑞).

ssumption 6.3. There exists a 1 function 𝑉 ∶ R𝑛×(𝐶𝑞 ∪𝐷𝑞) → R≥0,
> 1, and 𝑐𝑖 > 0, for 𝑖 ∈ {1, 2,… , 5}, such that:

(a) 𝑐1|𝜓̄|
𝑝
 ≤ 𝑉 (𝜓̄) ≤ 𝑐2|𝜓̄|

𝑝
, for all 𝜓̄ ∈ R𝑛 × (𝐶𝑞 ∪𝐷𝑞).

(b) ⟨∇𝑉 (𝜓̄), 𝑓 ⟩ ≤ −𝑐4𝑉 (𝜓̄), and |∇𝑉 (𝜓̄)| ≤ 𝑐3|𝜓̄|
𝑝−1
 , for all 𝜓̄ ∈

R𝑛 × 𝐶𝑞 , and all 𝑓 ∈ 𝐹 (𝜓̄).
(c) 𝑉 (𝑔̄) ≤ 𝑐5𝑉 (𝜓̄), for all 𝜓̄ ∈ R𝑛 × 𝐷𝑞 , and all 𝑔̄ ∈ 𝐺̄(𝜓̄), where

𝑐5 ∈ (0, 1) satisfies 21−𝑝 > 𝑐2
𝑐1
𝑐5 =∶ 𝜆. □

By Teel, Forni, and Zaccarian (2013, Thm. 1), Assumption 6.3
guarantees that the set  is UGES for the averaged HDS (6.7).

6.2. Stability properties and examples

The following theorem establishes that the original hybrid dynamics
(6.1) preserve the stability properties of the average hybrid dynamics
(6.7) whenever 𝜀 is sufficiently small. For completeness, the proof is
presented in Section 7.4.

Theorem 6.1. Suppose that Assumptions 6.1–6.3 hold. Then:

(a) For each 𝜈 > 0 there exists 𝜀⋆ > 0 such that for all 𝜀 ∈ (0, 𝜀⋆), all
𝜓(0, 0), 𝜏(0, 0) ∈ R𝑛 × (𝐶𝑞 ∪𝐷𝑞) ×R≥0, all solutions (𝜓, 𝜏) to system
(6.1) satisfy the bound:

|𝜓(𝑡, 𝑗)| ≤ 𝜅1|𝜓(0, 0)|𝑒−𝜅2(𝑡+𝑗) + 𝜈, (6.8)

for all (𝑡, 𝑗) ∈ dom(𝜓, 𝜏), where 𝜅1, 𝜅2 > 0.
(b) If, additionally, 𝐽𝑞𝑓 (𝑥, 𝑞, 𝜏, 𝜀)𝑞̇ = 0 for all (𝑥, 𝑞, 𝜏, 𝜀) ∈ R𝑛 × 𝐶𝑞 ×

R≥0 × [0, 𝜀0], then there exists 𝜀⋆ > 0 such that for all 𝜀 ∈ (0, 𝜀⋆)
all solutions (𝜓, 𝜏) to system (6.1) satisfy the bound (6.8) with
𝜈 = 0. □

The following example illustrates the application of Theorem 6.1 in
a class of switched systems with linear time-varying mappings.

Example 6.1 (Switched Systems with Resets and Time-Varying Vector

Fields). Consider a switching system with resets, of the form 𝑥̇ = 𝐴𝜎 (𝜏)𝑥,
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(
𝜌

𝑥+ = 𝜌𝑥, where 𝜎 ∶ R≥0 → 𝑄 = {1, 2, 3} is a switching signal, 𝜏̇ = 1
𝜀 ,

> 0 is a small parameter, 𝜌 ∈ (0, 12 ) and

1(𝜏) =
[

−0.1 + sin(𝜏) −1
4 sin(𝜏)2 −0.2 cos(𝜏)2

]

,

2(𝜏) =
[

−0.1 2 + 5 sin(𝜏)
−1 + cos(𝜏) −0.1

]

,

3(𝜏) =
[

0.2 sin2(𝜏) 0.2
−0.1 0.3 + sin(𝜏)

]

.

To analyze this system via averaging theory, we model the switching
system as a HDS with continuous-time dynamics:

̇ = 𝐴𝑞1 (𝜏)𝑥, 𝜏̇ = 1
𝜀
, (6.9)

where 𝑞1 ∈ 𝑄 is now a logic state generated by the following hybrid
utomaton:

̇1 = 0, 𝑞̇2 ∈
[

0, 1
𝜏𝑑

]

, 𝑞̇3 ∈
[

0, 1
𝜏𝑎

]

− I𝑄𝑢 (𝑞1). (6.10)

where 𝑄𝑢 ∶= {3}. The dynamics (6.9)–(6.10) evolve in the flow set
(

𝑥, (𝑞1, 𝑞2, 𝑞3), 𝜏
)

∈ R2 ×𝐶𝑞 ×R≥0, where 𝐶𝑞 = 𝑄 × [0, 𝑁] × [0, 𝑇 ], 𝑁 ≥ 1,
≥ 0. The discrete-time dynamics of the HDS are given by:

+ = 𝜌𝑥, 𝑞+1 ∈ 𝑄∖{𝑞1}, 𝑞+2 = 𝑞2 − 1, 𝑞+3 = 𝑞3, (6.11)

hich evolve in the jump set (𝑥, (𝑞1, 𝑞2, 𝑞3), 𝜏) ∈ R2 × 𝐷𝑞 × R≥0, where
𝑞 = 𝑄 × [1, 𝑁] × [0, 𝑇 ]. Solutions to system (6.9)–(6.11) have the
roperty that for any 𝑡2 ≥ 𝑡1 the number of switches of the signal 𝑞1
n the interval [𝑡1, 𝑡2) is bounded above as 𝑁𝑡2 ,𝑡1 ≤ 1

𝜏𝑑
(𝑡2 − 𝑡1) +𝑁0 (Cai,

Teel, & Goebel, 2008, Prop. 1.1). Additionally, every solution to (6.10)
also satisfies the average activation-time constraint 𝐴𝑡2 ,𝑡1 ≤ 1

𝜏𝑎
(𝑡2 − 𝑡1) +

0 (Poveda & Teel, 2017a, Lemma 7), where 𝐴𝑡2 ,𝑡1 corresponds to the
otal amount of time that the signal 𝑞1 satisfies 𝑞1 = 3 during the
nterval [𝑡1, 𝑡2), i.e., ∫ 𝑡2𝑡1 I𝑄𝑢 (𝑞1(𝑠, 𝑗(𝑠)))𝑑𝑠.

Computing the average of (6.9) leads to the average matrices 𝐴̄1 =
−0.1,−1; 2,−0.1] = 𝐴̄⊤2 , 𝐴̄3 = [0.1, 0.2; −0.1, 0.3], and since 𝐴̄1 and 𝐴̄2
re Hurwitz, following the procedure of Galarza, Poveda, Bianchi, and
allenese (2021, Lemma 6) there exist constants 𝜏𝑑 , 𝜏𝑎 > 0 such that
hen 𝜌 is sufficiently small the average HDS

̇̄ = 𝐴̄𝑞1 𝑥̄, ̇̄𝑞1 = 0, ̇̄𝑞2 ∈
[

0, 1
𝜏𝑑

]

, ̇̄𝑞3 ∈
[

0, 1
𝜏𝑎

]

− I𝑄𝑢 (𝑞1),

̄+ = 𝜌𝑥̄, 𝑞+1 ∈ 𝑄∖{𝑞1}, 𝑞+2 = 𝑞2 − 1, 𝑞+3 = 𝑞3,

enders UGES the set  = {0}×𝑄×[0, 𝑁]×[0, 𝑇 ] = {0}×(𝐶𝑞∪𝐷𝑞) with a
yapunov function 𝑉 satisfying Assumption 6.3. Since the original and
he average HDS satisfy Assumptions 6.1–6.3, by Theorem 6.1 we can
onclude there exists 𝜀⋆ > 0 such that for all 𝜀 ∈ (0, 𝜀⋆) the solutions

of the HDS (6.9)–(6.11) satisfy a bound of the form (6.8). □

The stability of switched systems via averaging theory has been
considered in Liberzon (2003), Mostacciuolo, Trenn, and Vasca (2017),
and Wang and Nesic (2010), although most of the results in the litera-
ture usually consider average systems obtained by averaging along the
switching signal 𝑞1. Instead, in (6.9), both the state 𝑥 and the switching
signal evolve in a slower time scale compared to the fast variations
induced by 𝜏.

In the following example, we study the application of averaging
theory to sampled-data systems with oscillating plants.

Example 6.2 (Sampled-Data Systems with Oscillatory Plant Dynamics).
Consider a linear time-varying plant with dynamics 𝑥̇1 = 𝐴(𝜏)𝑥1 +𝐵𝑥2,
where 𝐵 ∈ R𝑛1×𝑛2 , 𝐴 ∶ R≥0 → R𝑛1×𝑛1 is a continuous time-varying
matrix, and 𝑥2 ∈ R𝑛2 is the control input. To stabilize the plant to
𝑥1 = 0, we consider a sampled-data structure with control dynamics
𝑥+2 = 𝐾𝑥1, 𝐾 ∈ R𝑛2×𝑛1 , interconnected with the plant via a zeroth-order
hold device with a periodic resetting timer. The resulting closed-loop
18

system can be modeled as a HDS of the form (6.1a)–(6.1b), given by
Fig. 6. Trajectories of a sampled-data system with oscillatory plant dynamics.

𝑥̇1 = 𝐴(𝜏)𝑥1 + 𝐵𝑥2, 𝑥̇2 = 0, 𝑞̇ = 1, 𝜏̇ = 1
𝜀

(6.12a)

𝑥+1 = 𝑥1, 𝑥+2 = 𝐾𝑥1, 𝑞+ = 0, 𝜏+ = 𝜏, (6.12b)

with flow set 𝐶 = R𝑛1 ×R𝑛2 ×𝐶𝑞×R≥0, jump set 𝐷 = R𝑛1 ×R𝑛2 ×𝐷𝑞×R≥0,
𝐶𝑞 = [0, 𝑇 ], 𝐷𝑞 = {𝑇 }. The average hybrid dynamics of system (6.12)
are given by:

̇̄ 1 = 𝐴̄𝑥̄1 + 𝐵𝑥̄2, ̇̄𝑥2 = 0, ̇̄𝑞 = 1,

̄+1 = 𝑥̄1, 𝑥̄+2 = 𝐾𝑥̄1, 𝑞+ = 0,

with flow set R𝑛 × R𝑚 × 𝐶𝑞 and jump set R𝑛 × R𝑚 × 𝐷𝑞 . Assuming
that: (a) the matrix 𝐴̄ = lim𝑇 ′→∞

1
𝑇 ′ ∫

𝑡+𝑇 ′

𝑡 𝐴(𝑠)𝑑𝑠 is well-defined; and
b) there exists 𝑇 > 0 and 𝑃 ≻ 0 such that 𝑀⊤𝑃𝑀 − 𝑃 ≺ −𝜌𝐼 , where
> 0, 𝑀 = exp(𝐹𝑇 )𝐽 , 𝐹 = [𝐴̄, 𝐵; 0, 0] and 𝐽 = [𝐼, 0;𝐾, 0], it follows

that Assumptions 6.1 and 6.2 hold, and by Goebel et al. (2012, pp.
57) the average hybrid dynamics satisfy Assumption 6.3. Consequently,
by Theorem 6.1, there exists 𝜀⋆ > 0 such that for all 𝜀 ∈ (0, 𝜀⋆) the
solutions of the HDS (6.12) satisfy a bound of the form (6.8).

To numerically illustrate this result, consider the matrix 𝐴(𝜏) =
2[cos(𝜔𝜏)2 + cos(𝜔𝜏),−𝑒−𝜏 sin(𝜔𝜏) − sin(𝜔𝜏)2; 𝑒−𝜏 sin(𝜔𝜏) + sin(𝜔𝜏)2,
cos(𝜔𝜏)2 + sin(𝜔𝑡𝜏)], 𝜔 = 100, and 𝐵 = [1; 1]. This matrix-valued
function admits a well-defined average 𝐴̄ = [1,−1; 1, 1]. By choosing
𝑃 = [25.25,−51.97, 0; −51.97, 162.54, 0; 0, 0, 1] ≻ 0, 𝐾 = [1; −8], and
𝑇 = 0.25, it follows that 𝑀⊤𝑃𝑀−𝑃 = −𝐼 ≺ 0, ensuring that the closed-
loop system satisfies the above assumptions. Simulated trajectories of
the closed-loop system are shown in Fig. 6, showing the convergence
of the plant’s state 𝑥1 to the origin under the action of the input 𝑥2. □

Averaging theory is commonly used in adaptive systems to study
stability under suitable excitation conditions on signals of interest (An-
derson et al., 1986; Sastry & Bodson, 1989). Adaptive dynamics with
resets (e.g., covariance resetting) have also been studied to prevent
instabilities in least-squares parameter estimation problems (Ioannou
& Sun, 2012). Motivated by some of these results, as well as by
recent accelerated optimization and estimation dynamics studied in
the literature of machine learning (Wilson, Recht, & Jordan, 2021),
the following example studies a higher-order gradient-based parameter
estimation algorithm with momentum, similar to those studied in Gau-
dio, Annaswamy, Bolender, Lavretsky, and Gibson (2020), Le and Teel
(2022) and Moreu and Annaswamy (2021), but implementing resets
to improve transient performance. In contrast to existing results in the
literature of concurrent learning (Chowdhary & Johnson, 2010; Ochoa
et al., 2021), we do not assume the existence of ‘‘sufficiently rich’’ past
recorded data.

Example 6.3 (Hybrid Parameter Identification with Momentum and Re-

sets). Consider a standard linear regression problem where the goal is
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to estimate a parameter 𝜃∗ ∈ R𝑛 using real-time measurements of the
oisy signal

(𝜏) = 𝜉(𝜏)⊤𝜃∗ + 𝜂(𝜏),

here 𝜉 ∶ R≥0 → R𝑛 is a known regressor that is assumed to be
ontinuous, uniformly bounded, and persistently exciting (PE) (Sastry
Bodson, 1989, pp. 72), with time-variation due to the state 𝜏̇ = 1

𝜀 , and
here the noise is assumed to satisfy |𝜂(𝜏)| ≤ 𝜂̄ for all 𝜏 ≥ 0. A typical
pproach to estimating 𝜃∗ is to use the estimation error 𝑒 ∶= 𝜉(𝜏)⊤𝜃 − 𝑦
nd the gradient algorithm 𝜃̇ = − 𝑘

2∇𝜃𝑒
2, 𝑘 > 0, which, in the error

oordinates 𝑥1 = 𝜃−𝜃∗, can be written as 𝑥̇1 = −𝑘𝜉(𝜏)𝜉(𝜏)⊤𝑥1+𝑘𝜉(𝜏)𝜂(𝜏).
hen 𝜂 = 0, the gradient algorithm guarantees exponential conver-

ence to the true parameter 𝜃∗ (Praly, 2016). When 𝜂 ≠ 0, the algorithm
chieves convergence to a neighborhood of the true parameter. To
mprove transient performance, we can consider a higher-order hybrid
radient algorithm that incorporates momentum during the flows and
esets during the jumps, see Ochoa et al. (2021) for similar hybrid
lgorithms that use past recorded values of 𝜉 instead of PE time-varying
egressors. In particular, when 𝜂 = 0, we consider a hybrid system with
low set:

𝜃, 𝑝, 𝑞, 𝜏) ∈ 𝐶 = R𝑛 × R𝑛 × 𝐶𝑞 × R≥0, 𝐶𝑞 = [0, 𝑇 ],

nd continuous-time dynamics given by:

̇ = 𝑘
(𝑝 − 𝜃)
𝛾(𝑞)

, 𝑝̇ = −𝑘𝛾(𝑞)𝜉(𝜏)𝑒(𝜏), 𝑞̇ = 𝜌, 𝜏̇ = 1,

with 𝜌 ∈ (0, 1), and 𝛾(𝑞) = 𝑞0 + 𝑞, with 𝑞0 > 0. The jump set is defined
as:

(𝜃, 𝑝, 𝑞, 𝜏) ∈ 𝐷 = R𝑛 × R𝑛 ×𝐷𝑞 × R≥0, 𝐷𝑞 = {𝑇 },

where 𝑇 > 0, and the discrete-time dynamics are given by:

𝜃+ = 𝜃, 𝑝+ = 𝜃, 𝑞+ = 0, 𝜏+ = 𝜏.

Using the error coordinates 𝑥1 = 𝜃 − 𝜃∗ and 𝑥2 = 𝑝 − 𝜃∗, the
continuous-time dynamics of the hybrid system can be written as (6.1):

̇=𝑓 (𝑥, 𝑞, 𝜏) =
⎛

⎜

⎜

⎝

𝑘
𝛾(𝑞)

(𝑥2 − 𝑥1)

−𝑘𝛾(𝑞)𝜉(𝜏)𝜉(𝜏)⊤𝑥1

⎞

⎟

⎟

⎠

, (6.13a)

𝑞̇ = 𝜌, 𝜏̇ = 1
𝜀
, (6.13b)

with discrete-time dynamics

𝑥+1 = 𝑥1, 𝑥+2 = 𝑥1, 𝑞+ = 0, 𝜏+ = 𝜏, (6.13c)

To compute the average map 𝑓 along 𝜏, it suffices to compute
the average of the vector field 𝑓2(𝑥, 𝑞, 𝜏) = −𝛾(𝑞)𝜉(𝜏)𝜉(𝜏)⊤𝑥1. Indeed,
by Sastry and Bodson (1989, Sec. 4.3), the average of this mapping
with respect to 𝜏 is 𝑓2(𝑥, 𝑞) = −𝛾(𝑞)𝑅𝜉 (0)𝑥1, where 𝑅𝜉 (0) is the auto-
covariance matrix of 𝜉(⋅) evaluated at 0. Therefore, the average system
has continuous-time dynamics

̇̄𝑥 =
⎛

⎜

⎜

⎝

𝑘
𝛾(𝑞)

(𝑥̄2 − 𝑥̄1)

−𝑘𝛾(𝑞)𝑅𝜉 (0)𝑥̄1

⎞

⎟

⎟

⎠

, ̇̄𝑞 = 𝜌, (𝑥̄, 𝑞) ∈ R2𝑛 × 𝐶𝑞 .

and discrete-time dynamics:

̄+1 = 𝑥̄1, 𝑥̄+2 = 𝑥̄1, 𝑞+ = 0, (𝑥̄, 𝑞) ∈ R2𝑛 ×𝐷𝑞 .

By Sastry and Bodson (1989, Prop. 2.7.1), 𝑅𝜉 (0) is positive definite
if and only if 𝜉 is PE. Therefore, under the PE assumption on 𝜉, the
Lyapunov function 𝑉 (𝑥̄, 𝑞) = 1

4 |𝑥̄2 − 𝑥̄1|
2 + 1

4 |𝑥̄2|
2 + 𝑞2𝑥̄⊤1𝑅𝜉 (0)𝑥̄1 can

e used to study the stability of the set  = {0} × {0} × [0, 𝑇 ] for
he average hybrid dynamics. Indeed, by Poveda and Li (2021, Lemma
.4), and using 𝑘 = 2, 𝜌 = 1

2 , all the conditions of Assumption 6.3 are
atisfied, provided 𝑇 2−𝑞20 ≥ 1

2𝜆min(𝑅𝜉 (0))
, where 𝜆min(𝑅𝜉 (0)) is the smallest

⋆

19

igenvalue of the matrix 𝑅𝜉 (0). By Theorem 6.1, there exists 𝜀 > 0 such
Fig. 7. Error-trajectories generated by the standard gradient estimation dynamics and
the hybrid dynamics with momentum and resets.

that for all 𝜀 ∈ (0, 𝜀⋆) the solutions of the HDS (6.13) satisfy a bound
of the form (6.8).

Fig. 7 compares error trajectories of two parameter estimation
dynamics: the standard gradient algorithm and the proposed hybrid
dynamics with momentum and resets. Using the same PE regressor
vector 𝜉, the hybrid approach can improve the transient performance
over the standard gradient algorithm. □

6.3. Relaxations for semi-global practical stability

Similar to the ODE case (Teel et al., 2003), if local or semi-global
stability results are sought-after, it is possible to significantly relax
Assumptions 6.1–6.3, thus enabling the synthesis and analysis of more
complex multi-time scale algorithms. For example, in Wang et al.
(2012a), singular perturbation and averaging theory were studied using
a unifying framework, where the states of the boundary layer dynamics
do not necessarily converge to a quasi-steady state manifold, but rather
to a periodic orbit or a limit cycle that induces a reduced system via
averaging. To illustrate this idea in the context of model-free hybrid
control and optimization, we consider the framework of Wang et al.
(2012a), which studies HDS of the form:

(𝑥, 𝑧) ∈ 𝐶 × 𝛹,

{

𝑥̇ = 𝑓 𝛿𝑥 (𝑥, 𝑧)

𝑧̇ = 1
𝜀𝑓𝑧 (𝑥, 𝑧)

(6.14a)

𝑥, 𝑧) ∈ 𝐷 × 𝛹,

{

𝑥+ ∈ 𝐺𝑥(𝑥)

𝑧+ = 𝑧
(6.14b)

here 𝑥 ∈ R𝑛1 models the main state of the system, 𝑧 ∈ R𝑛2 models the
fast states (e.g., a dynamic oscillator), the sets 𝐶,𝐷 ⊂ R𝑛1 characterize
the flow and jump sets, 𝛹 ⊂ R𝑛2 is the set where 𝑧 evolves, the mapping
𝑓 𝛿𝑥 ∶ R𝑛1×R𝑛2 → R𝑛1 is allowed to be parameterized by a constant 𝛿 > 0,
𝐺𝑥 ∶ R𝑛1 × R𝑛2 ⇉ R𝑛1 is a set-valued mapping describing the jumps
of the system, and 𝜀 > 0 is a small parameter inducing multiple time
scales in the flows of (6.14). This system is studied under the following
regularity assumptions:

Assumption 6.4. The sets 𝐶,𝐷 are closed, and 𝛹 is compact. For all
𝛿 > 0 the functions 𝑓 𝛿𝑥 and 𝑓𝑧 are continuous, 𝐺𝑥 is OSC and LB relative
to 𝐷, and for each (𝑥, 𝑧) ∈ 𝐷 × 𝛹 the set 𝐺𝑥(𝑥) is not empty. □

The average map of (6.14a) is defined similarly to Definition 6.1,
but restricting the slow states to compact sets, which removes the
linear dependence on |𝑥| in the right-hand side of (6.5). Also, the
average is now computed along the trajectories of the boundary-layer

dynamics, which are obtained by keeping 𝑥 constant in the flows of
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(6.14a), i.e., with 𝑥̇ = 0. This average mapping is used in the following
assumption, which is common in the literature of averaging (Sastry &
Bodson, 1989; Wang et al., 2012a):

Assumption 6.5. There exists a continuous function 𝑓 𝛿 ∶ R𝑛1 → R𝑛1
uch that for each compact set 𝐾 ⊂ R𝑛1 there exists a class- function
𝐾,𝛿 such that the following inequality holds:
|

|

|

|

|

1
𝑇 ∫

𝑇

0

(

𝑓 𝛿𝑥 (𝑥, 𝑧𝑏𝑙(𝑠)) − 𝑓
𝛿(𝑥)

)

𝑑𝑠
|

|

|

|

|

≤ 𝜎𝐾,𝛿(𝑇 ). (6.15)

for each 𝑇 > 0, 𝑥 ∈ 𝐶 ∩ 𝐾, and each 𝑧𝑏𝑙 ∶ [0, 𝑇 ] → 𝛹 satisfying
̇ 𝑏𝑙(𝑡) = 𝑓𝑧(𝑥, 𝑧𝑏𝑙(𝑡)), for 𝑡 ∈ [0, 𝑇 ]. □

Similar to Definition 6.2, the average dynamics of (6.14) are defined
n terms of the average map 𝑓 𝛿 .

Definition 6.3. The average HDS of (6.14) has state 𝑥̄ ∈ R𝑛1 , and
dynamics

̇̄ = 𝑓 𝛿(𝑥̄), 𝑥̄ ∈ 𝐶, 𝑥̄+ ∈ 𝐺̄(𝑥̄), 𝑥̄ ∈ 𝐷, (6.16)

where 𝐺̄(𝑥̄) = 𝐺𝑥(𝑥̄). □

In (6.14) it is possible to allow the jump map 𝐺𝑥 to also depend on
the fast state 𝑧, but such dependence usually leads to an average jump
map 𝐺̄ with a more complex structure, see Wang et al. (2012a, Eq. (17)
and Ex. 4). Since in most of our applications 𝐺𝑥 does not depend on 𝑧,
we restrict our attention to this setting.

Finally, we assume that the average system (6.16) satisfies the
following semi-global practical stability property with respect to the
compact set 𝑥, and in a certain basin of attraction 𝑥

. In this case,
the uniform convergence properties in 𝑥

are characterized via a
proper indicator2 𝜛, which is sometimes referred to as a ‘‘distance
function’’ (Sontag, 2022).

Assumption 6.6. There exists a non-empty compact set 𝑥 ⊂ R𝑛1 , an
open set 𝑥

⊃ 𝑥, and a class  function 𝛽 such that for each proper
indicator 𝜛(⋅) for 𝑥 on 𝑥

, each compact set 𝐾0 ⊂ 𝑥
, and each

𝜈 > 0, there exists a 𝛿∗ > 0 such that for all 𝛿 ∈ (0, 𝛿∗), all solutions of
(6.16) with 𝑥̄(0, 0) ∈ 𝐾0 satisfy the bound:

𝜛(𝑥̄(𝑡, 𝑗)) ≤ 𝛽(𝜛(𝑥̄(0, 0)), 𝑡 + 𝑗) + 𝜈. (6.17)

for all (𝑡, 𝑗) ∈ dom(𝑥̄). □

In (6.17), the residual term 𝜈 provides flexibility to study multi-
time scale systems with average dynamics (6.16) being a 𝛿-perturbed
version of a nominal HDS with suitable uniform asymptotic stability
and regularity properties. In that case, by Goebel et al. (2012, Lemma
7.20), the average system satisfies Assumption 6.6.

The following theorem links the stability properties of (6.14) to the
stability properties of the average hybrid dynamics (6.16). It follows as
a particular case of Poveda and Li (2021, Thm. 7), which is an extension
of Wang et al. (2012a, Thm. 2) for HDS having a 𝛿-perturbed average
system.

Theorem 6.2. Suppose that Assumptions 6.4, 6.5, and 6.6 hold. Then,
for each proper indicator 𝜛 for 𝑥 on 𝑥

, each compact set 𝐾0 ⊂ 𝑥
and each 𝜈 > 0 there exists 𝛿∗ > 0 such that for each 𝛿 ∈ (0, 𝛿∗) there exists
𝜀⋆ > 0 such that for all 𝜀 ∈ (0, 𝜀⋆) all solutions of (6.14) with 𝑥(0, 0) ∈ 𝐾0
satisfy:

𝜛(𝑥(𝑡, 𝑗)) ≤ 𝛽(𝜛(𝑥(0, 0)), 𝑡 + 𝑗) + 𝜈.

for all (𝑡, 𝑗) ∈ dom(𝑥, 𝑧). □

2 A proper indicator of 𝑥 on 𝑥
is a continuous function 𝜛 ∶ 𝑥

→ R≥0
satisfying 𝜛(𝑥) = 0 if and only if 𝑥 ∈ 𝑥, and such that 𝜛(𝑥𝑖) → ∞ when
𝑖 → ∞ if either |𝑥𝑖| → ∞ or the sequence {𝑥𝑖}𝑛𝑖=1 approaches the boundary of
 .
20

𝑥
We finish this section by pointing out that averaging theory has
also been recently developed for HDS with bounded exogenous in-
puts (Wang, Nesic and Teel, 2012) using the notion of input-to-state
stability, and by distinguishing between strong and weak averages,
as studied for ODEs in Nešić and Teel (1999). Other multi-time scale
models studied in the literature include SP-HDS with hybrid boundary
layer dynamics (Wang et al., 2012b), ODEs with average systems
that lead to differential inclusions (Deghat et al., 2021), averaging on
Riemannian manifolds and Lie groups (Bullo, 2002; Taringoo, 2017;
Taringoo, Dower, Nesic, & Tan, 2018), and averaging methods that use
Poincare maps (De, Burden, & Koditschek, 2018), which are commonly
used in legged mechanical systems.

In the next Section, we illustrate the previous results via four
novel applications in the context of model-free optimization using hybrid
extremum-seeking, and model-free stabilization using hybrid vibrational
control.

6.4. Applications in model-free control and optimization

We present four examples demonstrating the application of aver-
aging and singular perturbation theory to solve model-free stabiliza-
tion and optimization problems using multi-time scale hybrid control
systems.

6.4.1. Robust model-free stabilization under obstacle avoidance and un-
known control directions

Consider the model of a 2-dimensional vehicle with dynamics

𝑥̇ = 𝐴𝑥 + 𝑏𝑢, 𝑥 ∈ R2, (6.18)

where 𝑥 = (𝑥1, 𝑥2) is the position in the plane, 𝑢 ∈ R2 is the input,
and 𝑏 ≠ 0 is an unknown scalar whose sign describes the effect of the
control signal 𝑢 on the dynamics of the vehicle. The main objective
is to stabilize the vehicle at a desired target position 𝑥⋆ ∈ R2, while
simultaneously avoiding an obstacle  ⊂ R2 in the space, and subject
to the fact that the sign of 𝑏 is unknown. As discussed in Sanfelice
et al. (2006) and Sontag (1999), even when 𝑏 = 1 and 𝐴 = 0, this
problem cannot be robustly solved using smooth feedback controllers
due to the topological obstructions introduced by the obstacle. On the
other hand, when 𝑏 = 1, robust hybrid controllers able to achieve
obstacle avoidance and robust target stabilization have been studied
in Casau, Cunha, Sanfelice, and Silvestre (2020) and Sanfelice et al.
(2006) for cases where the target’s position is known a priori, and also
in Poveda et al. (2021) for applications where the position of the target
is ‘‘discovered’’ in real-time by maximizing a potential field. However,
the case when the sign of 𝑏 is unknown (or time-varying) has received
little attention in the hybrid control literature.

To achieve obstacle avoidance and robust stabilization of the target
𝑥⋆ in systems of the form (6.18), we consider the oscillatory hybrid
control law

𝑢𝑞 = 𝑎𝜔R𝜇 − 𝑘 2
𝑎
𝑉𝑞(𝑥)𝜇, 𝜇̇ = 𝜔R𝜇, 𝜇 ∈ S1. (6.19)

where 𝜔 = 2𝜋
𝜀 , R ∶= [0 1; −1 0] ∈ R2×2, 𝑘, 𝑎 ∈ R>0 are tunable

parameters, 𝜇 is the state of a linear oscillator evolving on a faster
time scale, and 𝑞 ∈ 𝑄 = {1, 2} is a logic state that parameterizes the
control law via the functions 𝑉𝑞 , which are to be designed. This logic
state will switch between the two values (1 and 2) depending on the
current position of the vehicle. To introduce this switching law, we first
need to partition the operational space of the vehicle. As in Poveda
et al. (2021), we restrict our attention to admissible obstacles  ⊂ R𝑛
for which there exists 𝑥0 = (𝑥0,1, 𝑥0,2) ∈ R2, 𝜌 ∈ R>0 and 𝛿 ∈ R>0 such
that  ⊂ 𝑥0 + 𝜌B and (𝑥0 + 2𝜌

√

2B) ∩ (𝑥⋆ + 𝛿B) = ∅. In other words, the
bstacle  is assumed to be contained in a ball of radius 𝜌, centered at
he point 𝑥0, and located sufficiently far away from the target 𝑥⋆.

Consider the set

∶=
{

𝑥 ∶ ‖𝑥 − 𝑥 ‖ ≤ 2𝜌
√

2
}

, (6.20)
𝑥0 ,𝜌 0 1
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Fig. 8. The left plot shows the trajectories of the vehicle (6.18) controlled via (6.19), evolving over the operational space defined by the logic state 𝑞 = 1. Similarly, the right plot
corresponds to 𝑞 = 2. The trajectory with the color blue corresponds to 𝑏 = 15. The green trajectory corresponds to 𝑏 = −15, and the black trajectory is obtained when 𝑏(𝑡) = 15 sin(𝑡).
The purple trajectory shows the instability obtained when using the model-based hybrid controller of Sanfelice et al. (2006) (which assumes 𝑏 > 0) with 𝑏 = −15. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
𝑥

𝑥

𝑥

which satisfies {𝑥0}+𝜌B ⊂ 𝑥0 ,𝜌 ⊂ {𝑥0}+2𝜌
√

2B. Additionally, consider
the following subsets of R2 ∶

𝐿1𝑎 ∶=
{

𝑥 ∶ 𝑥2 < −𝑥1 + 𝑥0,2 + 𝑥0,1 − 2𝜌
√

2
}

,

𝐿1𝑏 ∶=
{

𝑥 ∶ 𝑥2 < 𝑥1 + 𝑥0,2 + 𝑥0,1 + 2𝜌
√

2
}

,

𝐿2𝑎 ∶=
{

𝑥 ∶ 𝑥2 > 𝑥1 + 𝑥0,2 + 𝑥0,1 − 2𝜌
√

2
}

,

𝐿2𝑏 ∶=
{

𝑥 ∶ 𝑥2 > −𝑥1 + 𝑥0,2 + 𝑥0,1 + 2𝜌
√

2
}

,

and let 1 ∶= 𝐿1𝑎∪𝐿1𝑏, 2 ∶= 𝐿2𝑎∪𝐿2𝑏,  ∶= 1∪2. Fig. 8 illustrates
the construction of the sets 1 and 2, which satisfy 𝑥⋆ ∈ 1 ∩2, and
also 1∩ = ∅, 2∩ = ∅. In fact,  = R2∖𝑥0 ,𝜌. To control the vehicle
in each of the sets 𝑖, 𝑖 ∈ 𝑄, we will exploit a mode-dependent control-
like Lyapunov function 𝑉𝑞 , similar to those studied in the stabilization
of ODEs (Scheinker & Krstić, 2017). Specifically, we assume that the
functions 𝑉𝑞 satisfy the following properties:

(a) For each 𝑞 ∈ 𝑄, the map 𝑉𝑞 ∶ R2 → R≥0 ∪ {∞} is continuously
differentiable in 𝑞 , and as 𝑥 → ∞ or 𝑥 → bd(𝑞) we have
𝑉𝑞(𝑥) → ∞. Moreover, for every 𝑥 ∈ R2∖𝑞 , we define 𝑉𝑞(𝑥) = ∞.

(b) For each 𝑞 ∈ 𝑄, there exist functions 𝛼1,𝑞 , 𝛼2,𝑞 ∈ ∞, and proper
indicators 𝜛̃𝑞 of 𝑥⋆ on 𝑞 , such that

𝛼1,𝑞(𝜛̃𝑞(𝑥)) ≤ 𝑉𝑞(𝑥) ≤ 𝛼2,𝑞(𝜛̃𝑞(𝑥)), ∀ 𝑥 ∈ 𝑞 .

(c) There exists 𝜌 ∈ , such that for each 𝑞 ∈ 𝑄:
⟨

∇𝑉𝑞(𝑥), 𝐴𝑥 − 𝑘𝑏2∇𝑉𝑞(𝑥)
⟩

≤ −𝜌(𝑉𝑞(𝑥)),

for all 𝑥 ∈ 𝑞 . □

When 𝑞 = R2, the above conditions recover the ‘‘strong stabilizability’’
assumption used in Scheinker and Krstić (2017, Assumption 1). This
stabilizability assumption (and its extensions to nonlinear systems) is
key in the context of model-free stabilization in R𝑛 via oscillatory
control in ODEs (Scheinker & Krstić, 2017). However, when there are
obstacles in the space, this stabilizability assumption cannot be satisfied
in R2∕. To relax this requirement, conditions (a)–(c) ask for the strong
stabilizability property to hold only in the subsets 𝑞 . In practice, this
can be achieved by considering a function 𝑉𝑞 that involves a quadratic
term that is positive definite with respect to 𝑥⋆, and an additional
𝑞-dependent barrier function that grows to infinity as 𝑥 → bd(𝑞).
Examples of these constructions are presented in Sanfelice et al. (2006)
and Poveda et al. (2021).

Using the functions 𝑉𝑞 , we can now introduce the flow and jump set
for the state (𝑥, 𝑞) of the hybrid controller:

𝐶𝑥,𝑞 ∶=
{

(𝑥, 𝑞) ∈  ×𝑄 ∶ 𝑉𝑞(𝑥) ≤ 𝜒𝑉3−𝑞(𝑥)
}

,

𝐷𝑥,𝑞 ∶=
{

(𝑥, 𝑞) ∈  ×𝑄 ∶ 𝑉𝑞(𝑥) ≥ (𝜒 − 𝜆)𝑉3−𝑞(𝑥)
}

,

21
where 𝜒 ∈ (1,∞) and 𝜆 ∈ (0, 𝜒 − 1) are tunable parameters that induce
suitable robustness properties. The set 𝐶𝑥,1 describes the points in the
space where the controller 𝑢1 is implemented by the vehicle. Similarly,
the set 𝐶𝑥,2 describes the points where the controller 𝑢2 is used. The
sets 𝐷𝑥,1 and 𝐷𝑥,2 indicate ‘‘switching zones’’ for the controller, where
the vehicle toggles the logic state as 𝑞+ = 3 − 𝑞. By construction, this
switching behavior will take place whenever the value of the current
function 𝑉𝑞 exceeds a threshold compared to the other function 𝑉3−𝑞 .
In particular, the construction of the flow and jump sets imposes a
hysteresis property in the switching controller. The red and blue lines
in Fig. 8 illustrate the boundaries of 𝐷𝑥,𝑞 and 𝐶𝑥,𝑞 respectively.

To study the closed-loop multi-time scale hybrid dynamics, we
consider the change of variable 𝑥̂ = 𝑥−𝑎𝑏𝜇, which leads to the following
continuous-time dynamics:

̇̂ = 𝐴𝑥̂ − 2𝑏𝑘
𝑎
𝑉𝑞(𝑥̂ + 𝑎𝑏𝜇)𝜇 + 𝐴𝑎𝑏𝜇, 𝑞̇ = 0, 𝜇̇ = 2𝜋

𝜀
R𝜇,

flowing whenever (𝑥̂+𝑒𝑎, 𝑞, 𝜇) ∈ 𝐶𝑥,𝑞 ×S1, where 𝑒𝑎 = 𝑎𝑏𝜇 ∈ (𝑎) can be
seen as a small bounded disturbance because |𝜇(𝑡, 𝑗)| ≤ 1 for all hybrid
times, and 𝑎 is a small constant. The discrete-time dynamics are 𝑥̂+ = 𝑥̂,
𝑞+ = 3 − 𝑞, 𝜇+ = 𝜇, which are executed when (𝑥̂ + 𝑒𝑎, 𝑞, 𝜇) ∈ 𝐷𝑥,𝑞 × S1.
When 𝜀 is small, the above system has the form of (6.14) with 𝜇 playing
the role of the fast variable. Using the Taylor expansion 2

𝑎𝑉𝑞(𝑥̂+𝑎𝑏𝜇)𝜇 =
2
𝑎𝑉𝑞(𝑥̂)𝜇 + 𝑏𝜇𝜇⊤∇𝑉𝑞(𝑥̂) +(𝑎) and the periodicity of 𝜇, we can compute
the average mapping:

̇̄ = 𝐴𝑥̄ − 𝑘𝑏2∇𝑉𝑞(𝑥̄) + (𝑎), ̇̄𝑞 = 0,

which is also an (𝑎)-perturbed-version of a nominal dynamical system
̇̄ = 𝐴𝑥̄−𝑘𝑏2∇𝑉𝑞(𝑥̄), for which 𝑉𝑞 is a suitable Lyapunov function in 𝐶𝑥,𝑞 .
We can now use the same Lyapunov-based arguments of Sanfelice et al.
(2006) to conclude that, under the conditions (a)–(c) of the functions
𝑉𝑞 , a hybrid Lyapunov function will decrease along the solutions of this
nominal average hybrid dynamics, rendering the set  = {𝑥⋆} × 𝑄
asymptotically stable with a basin of attraction  × 𝑄. Since this
nominal system satisfies the hybrid basic conditions of Assumption 2.1,
the same set  is SGpAS as 𝑎→ 0+ for the average hybrid dynamics. By
using Theorem 6.2, we can conclude that the multi-time scale hybrid
controller renders SGpAS as (𝑎, 𝜀) → 0+ the set  × S1.

Fig. 8 shows three different trajectories of the vehicle (6.18) under
the highly oscillatory hybrid control law (6.19). The green trajectory
is obtained with 𝑏 = 15, and the blue trajectory with 𝑏 = −15. The
divergent trajectory, shown in the color magenta, is obtained when us-
ing the model-based hybrid controller of Sanfelice et al. (2006), which
assumes that 𝑏 > 0 in (6.18). We also tested the performance of the
controller for 𝑏(𝑡) = 15 sin(𝑡). The resulting trajectory is shown in black
color. As observed, the hybrid controller is able to (practically) stabilize
the target even when the control direction periodically vanishes, but
is positive ‘‘on average’’. Future work will delve into this interesting
case by leveraging existing results for ODEs (Scheinker & Krstić, 2017).
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Fig. 9. Scheme of the source-seeking controller under sporadic measurements and
persistent spoofing.

Extensions to non-holonomic systems (Morin & Samson, 2009), which
require the use of hybrid tools (Hespanha, Liberzon, & Morse, 1999),
are also possible.

6.4.2. Source seeking under spoofing and intermittent feedback
We consider a class of 2-dimensional source-seeking problems,

where a mobile robot seeks the extremum of a potential field 𝜙 ∶
R2 → R, using only intensity measurements of this signal. This type of
source-seeking problem has been extensively studied using traditional
averaging techniques (Cochran & Krstić, 2009; Ghods & Krstić, 2010;
Zhang, Siranosian, & Krstić, 2007), Lie bracket averaging (Dürr et al.,
2015, 2013), and averaging in hybrid systems (Poveda et al., 2021). In
these works, the mobile robot is assumed to operate in environments
where it has continuous access to the intensity signal. However, in
many practical applications, such measurements can be intermittently
interrupted due to sensor failures (Labar, Ebenbauer, & Marconi, 2022),
or corrupted due to external spoofing. To study whether or not source-
seeking is still possible in these scenarios, we consider a vehicle
modeled with simple point-mass dynamics of the form

̇ = 𝑢, 𝑥 ∈ R2, 𝑢 ∈ R2, (6.21)

where 𝑥 = (𝑥1, 𝑥2) indicates the position of the vehicle in the plane. As
shown in the scheme of Fig. 9, and inspired by the controller studied
in the previous section, we consider again the control law

𝑢𝑞 = 𝑎𝜔R𝜇 − 𝑘 2
𝑎
𝛷𝑞(𝑥)𝜇, 𝜇̇ = 𝜔R𝜇, 𝜇 ∈ S1, (6.22)

where 𝑅 is the same matrix used in (6.19) to generate the periodic
dither signals, 𝜔 = 2𝜋

𝜀 , 𝑘, 𝑎 ∈ R>0 are tunable parameters, and 𝛷𝑞 is
now the intensity signal measured by the controller, given by

𝛷𝑞(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝜙(𝑥) under nominal operation (𝑞 = 1)
0 under no measurements (𝑞 = 0)

−𝜙(𝑥) under spoofing (𝑞 = −1).

In this way, the state 𝑞 ∈ {−1, 0, 1} now captures the current operating
mode of the controller. To simplify our presentation, we assume that
the potential field 𝜙 ∶ R2 → R≥0 is continuously differentiable and
𝑐𝜙-strongly convex, with a global minimizer 𝑥∗. Moreover, ∇𝜙 is 𝐿𝜙-
globally Lipschitz. This assumption is standard in the literature of
source seeking and it is satisfied if, for example, 𝜙 is a quadratic map
with a positive definite Hessian matrix.

To analyze the stability properties of the source-seeking dynamics
under intermittent feedback and spoofing, we consider the change of
variable 𝑥̂ ∶= 𝑥−𝑎𝜇 and the definition of 𝛷, and we write the resulting
dynamics as

(𝑥̂, 𝜇) ∈ R2 × S1, ̇̂𝑥 = −𝑞𝑘 2
𝑎
𝜙(𝑥̂ + 𝑎𝜇)𝜇, 𝜇̇ = 𝜔R𝜇, (6.23)

This system has the form of (6.14) with 𝜇 acting as the fast variable.
Moreover, since 𝑞 ∈ {−1, 0, 1} switches between three operating modes
(spoofing, no-measurement, nominal), system (6.23) can be seen as
a switched system with the signal 𝑞 being generated by the hybrid
automaton (6.10). Therefore, the resulting HDS can be written in the
22
Fig. 10. Trajectories of the vehicle converging to a neighborhood of the source 𝑥⋆,
under spoofing and intermittent feedback.

Fig. 11. Trajectory of the error between the position of the vehicle 𝑥 and the source
of the potential field 𝑥∗.

form of (6.14), which satisfies the hybrid basic conditions of Assump-
tion 2.1. To compute the average dynamics, we consider the Taylor
expansion 2

𝑎𝜙(𝑥̂+𝑎𝜇)𝜇 = 2
𝑎𝜙(𝑥̂)𝜇+2𝜇𝜇⊤∇𝜙(𝑥̂)+(𝑎2), and the identities

∫ 𝐿0 𝜇(𝑠)𝑑𝑠 = 0, 1
𝐿 ∫ 𝐿0 𝜇(𝑠)𝜇(𝑠)⊤𝑑𝑠 = 1

2 , where 𝐿 is one period of 𝜇. It
follows that the average continuous-time dynamics of 𝑥̂ are given by

̇̄ = 𝑓 (𝑥̄, 𝑞) = −𝑘𝑞∇𝜙(𝑥̄) +  (𝑎) , (6.24)

which is an (𝑎)-perturbation of a nominal switching dynamical system
̇̄ = −𝑘𝑞∇𝜙(𝑥̄), with 𝑞 being generated by the same hybrid automaton
(6.10) with auxiliary states 𝑞2 ∈ [0, 𝑁] and 𝑞3 ∈ [0, 𝑇 ]. As in Galarza
et al. (2021, Lemma 6), the nominal average hybrid system can be
studied using the Lyapunov-like function 𝑉1(𝑥̄) = 𝑉0(𝑥̄) = 𝑉−1(𝑥̄) =
|𝑥̄ − 𝑥∗|2 =∶ 𝑉 (𝑥̄). Indeed, using the smoothness and strong convexity
of 𝜙, we have that:

For 𝑞 = 1 ∶ ⟨∇𝑉 , ̇̄𝑥⟩ ≤ −2𝑘(𝑥̄−𝑥∗)⊤∇𝜙(𝑥̄) ≤ −2𝑘𝑐𝜙𝑉 (𝑥̄),

For 𝑞 = 0 ∶ ⟨∇𝑉 , ̇̄𝑥⟩ ≤ 0 ≤ 𝑉 (𝑥̄),

For 𝑞 = −1 ∶ ⟨∇𝑉 , ̇̄𝑥⟩ ≤ 2𝑘(𝑥̄−𝑥∗)⊤∇𝜙(𝑥̄) ≤ 2𝑘𝐿𝜙𝑉 (𝑥̄).

It follows that, if 𝜏𝑑 > 0 and 𝜏𝑎 > 1 + max{1,2𝑘𝐿𝜙}
2𝑘𝑐𝜙

, then, the average
hybrid dynamics render the set  = {𝑥∗} × 𝑄 × [0, 𝑁] × [0, 𝑇 ] UGAS,
if (𝑎) = 0, and SGpAS as 𝑎 → 0+, if (𝑎) ≠ 0, thus verifying
Assumption 6.6. By Theorem 6.2, the hybrid source-seeking dynamics
render the set ×S1 SGPAS as (𝑎, 𝜀) → 0+. As discussed in Example 6.1,
the conditions on 𝜏𝑎 and 𝜏𝑑 translate into average dwell-time and
average activation-time constraints on the switching signal 𝑞.

To numerically verify this result, we use 𝜙(𝑥) = |𝑥 − 𝑥∗|2, 𝑥∗ = 0,
𝑘 = 5, 𝑎 = 0.1, and 𝜔 = 200. The hybrid automaton (6.10) that
describes the state 𝑞 evolves with 𝑇0 = 1, 𝑁0 = 1.25, 𝜏𝑎 = 5, and
𝜏 = 0.5. Figs. 10 and 11 display the phase plane trajectories and the
𝑑
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Fig. 12. Scheme of ES controller with hybrid filters.

rror-trajectories, of the vehicle, respectively. As shown, the vehicle
onverges to a neighborhood of the source 𝑥∗, even under persistent

spoofing or intermittence on the measurements of the potential 𝜙.

6.4.3. Model-free feedback optimization of dynamical systems using hybrid
filters

Consider the problem of maximizing the steady-state
input-to-output map of the following dynamical system

𝜀1𝑝̇1 = −𝑝2 + 𝑝1

(

𝑢 −
√

𝑝21 + 𝑝
2
2

)

(6.25a)

𝜀1𝑝̇2 = 𝑝1 + 𝑝2

(

𝑢 −
√

𝑝21 + 𝑝
2
2

)

(6.25b)

ℎ(𝑝) = (𝑝21 + 𝑝
2
2)

1
2 , (6.25c)

here 𝑝 = (𝑝1, 𝑝2) ∈ 𝐶𝑝 ⊂ R2∖{0} is the state, 𝑢 ∈ 𝐶𝑢 ⊂ R+ is the
input, and ℎ is the output. System (6.25) describes an oscillator with
oscillating amplitude given by ℎ(𝑝) = (𝑝21 + 𝑝22)

1
2 . Indeed, for every

fixed and positive input 𝑢, every complete solution 𝑝 to (6.25) rapidly
converges to the set (𝑢) ∶= {𝑝 ∈ R2 ∶ ℎ(𝑝)2 = 𝑢2}. Therefore, the
steady-state input-to-output map of system (6.25) is given by ℎ((𝑢)) =
𝑢. Based on this observation, we study the problem of tuning the
amplitude 𝑢 toward a desired value 𝑢∗ by minimizing the steady-state
cost function 𝜙(𝑢) ∶= (ℎ((𝑢)) − 𝑢∗)2, using real-time output feedback
via the signal 𝓁(𝑝) = (ℎ(𝑝) − 𝑢∗)2.

To solve this problem, we can consider a standard extremum-
seeking controller (Ariyur & Krstić, 2003; Nes̆ić et al., 2012; Tan et al.,
2006) with input 𝑢 = 𝑥 + 𝑎𝜇1 and dynamics:

𝑥̇ = −𝑘0𝜁1, (6.26a)

𝜁̇1 = −𝑘1
(

𝜁1 − 𝐹𝐺(𝓁(𝑝), 𝜇)
)

, (6.26b)

where 𝑘1 > 0 and 𝑘0 ∈ R are tunable scalars, 𝜇1 is the first component
of the state 𝜇 ∈ S1, which is generated by the same oscillator considered
in (6.19) and (6.23), now with frequency 𝜔 = 2𝜋∕𝜀2, and where 𝐹𝐺 is
given by

𝐹𝐺(𝓁(𝑝), 𝜇) =
2
𝑎
𝓁(𝑝)𝜇1, (6.27)

with 𝜀1 ≪ 𝜀2 ≪ 𝑎 to induce multiple time scales in the closed-loop
dynamics. In (6.26), when 𝑘0 > 0 the low-pass filter with state 𝜁1 ∈ R
can be used to reduce oscillations and improve the transient (Ariyur
& Krstić, 2003; Nes̆ić et al., 2012; Tan et al., 2006) . However, in
certain cases, it is also possible to improve the transient behavior by
considering hybrid filters or compensators with time-triggered resets,
given by

𝜁2 ∈ [0, 𝑇 ], 𝜁̇1 = 𝑓𝜁 (𝓁(𝑝), 𝜁 , 𝜇), 𝜁̇2 = 1, (6.28a)

𝜁2 ∈ [𝑇 , 𝑇 ], 𝜁+1 = 𝑔𝜁 (𝑥, 𝜁), 𝜁+2 = 0, (6.28b)

here 𝜁2 acts as a resetting timer, 0 < 𝑇 ≤ 𝑇̄ < ∞ are tunable
arameters, and 𝜁 = (𝜁1, 𝜁2) ∈ R2 × [0, 𝑇 ]. Fig. 12 shows a block

diagram of the resulting closed-loop system with hybrid filters, where
𝐶 = R × [0, 𝑇̄ ], and 𝐷 = R × [𝑇 , 𝑇̄ ].
23

𝜁 𝜁
Fig. 13. Evolution in time of the error |𝑢 − 𝑢∗|, with 𝑢∗ = 0, using ES dynamics with
hybrid filters (6.29) (orange trajectory) and (6.30) (blue trajectory), as well as the
traditional low-pass filter (6.26) (black trajectory). The trajectory in the inset shows
the evolution of the norm of 𝑝 for the filter with the best transient performance. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

The hybrid dynamics (6.28) have non-unique solutions since they
enable resets of 𝜁1 whenever 𝜁2 ≥ 𝑇 , but not later than when 𝜁2 = 𝑇 .
Different choices of continuous functions (𝑓𝜁 , 𝑔𝜁 ) can be considered to
influence the transient performance of the system. For example, the
functions

𝑓𝜁 (𝓁(𝑝), 𝜁 , 𝜇) = −
𝑘1
𝛾(𝜁2)

𝜁1 − 𝑘2𝐹𝐺(𝓁(𝑝), 𝜇), 𝑔𝜁 (𝑥, 𝜁) = 0, 𝑘2 > 0, (6.29)

odel a low-pass filter with dynamic cut-off frequency regulated by
he strictly positive and increasing continuous function 𝛾 ∶ R≥0 → R>0,
esetting the filter state to zero whenever 𝜁+2 = 0. Interestingly, when
0 = −1, the dynamics (6.26a), (6.28), and (6.29) can be interpreted
s a momentum-based optimization algorithm with restarting. Simi-
ar dynamics have been recently studied in the context of machine
earning (Su, Boyd, & Candes, 2016).

Alternatively, we could also consider the filter dynamics:

′
𝜁 (𝓁(𝑝), 𝜁 , 𝜇) = −

(

𝑘1
𝛾(𝜁2)

+ 𝐹𝐻 (𝓁(𝑝), 𝜇)
)

𝜁1 −
(

𝑘2+
𝑘3
𝛾(𝜁2)

)

𝐹𝐺(𝓁(𝑝), 𝜇),

(6.30)

here 𝑘3 > 0, which incorporates Hessian-like-driven damping via
he term 𝐹𝐻 (𝓁(𝑝), 𝜇) ∶= 16

𝑎2
𝓁(𝑝)(𝜇21 − 1

2 ), and using the same reset rule
𝜁 (𝑥, 𝜇) = 0. In this case, the choice 𝑘0 = −1 and the interconnection
f (6.26a) and (6.30) also leads to a momentum-based algorithm with
estarting (Poveda & Li, 2021; Poveda & Teel, 2020).

The stability properties of the closed-loop dynamics (6.25), (6.26a),
6.28) can be studied using singular perturbations and averaging theory
or hybrid systems. In particular, by neglecting the plant dynamics and
ubstituting the output feedback signal 𝓁(𝑝) in (6.27) and (6.30) by
he steady-state input-to-output map 𝜙(𝑢), the resulting system can be
tudied via averaging theory leading to the following average maps of
6.29) and (6.30):

𝜁̄ (𝑥̄, 𝜁 ) = −
𝑘1
𝛾(𝜁2)

𝜁1 − 𝑘2∇𝜙(𝑥̄) + (𝑎),

𝑓 ′
𝜁 (𝑥̄, 𝜁 ) = −

(

𝑘1
𝛾(𝜁2)

+ ∇2𝜙(𝑥̄)
)

𝜁1 −
(

𝑘2 +
𝑘3
𝛾(𝜁2)

)

∇𝜙(𝑥̄) + (𝑎).

Thus, if (𝑎) = 0, and 𝜙 is continuously differentiable, 𝑐𝜙-strongly
convex with a global minimizer 𝑥∗, ∇𝜙 is 𝐿𝜙-globally Lipschitz, and
𝑘3 = 0, then it can be shownn that the Lyapunov-like function 𝑉 (𝑥̄, 𝜁 ) =
𝜁 |2 + 𝑘2(𝜙(𝑥̄) − 𝜙(𝑥∗)) does not increase during flows and jumps of
he average nominal system, and asymptotic stability of the set  =
{𝑥∗} × {0} × [0, 𝑇 ] can be obtained via the hybrid invariance principle
(see Example 5.2). Since the average hybrid dynamics satisfy the hybrid
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Fig. 14. Scheme of a uniting hybrid ES algorithm that implements Newton-like ES and
gradient-like ES in different regions of the state space.

basic conditions, the set  is actually SGpAS as 𝑎→ 0+ whenever (𝑎)
s not neglected. Theorem 6.2 can now be invoked to establish SGpAS
or the original closed-loop system interconnected with the hybrid ES
ontroller.

The impact of the hybrid filters on the transient performance of
he system is shown in Fig. 13, where we used (6.29) and (6.30)
ith 𝑔𝜁 (𝑥, 𝜁) = 0. We also show in black color the trajectories ob-

ained when using the classic low-pass filter of (6.26). All simulations
ere implemented using the same frequency, amplitude, and gain
arameters.

.4.4. Newton-gradient-like switched extremum seeking for enhanced tran-
ient performance

Consider the following optimization problem

min 𝜙(𝑥), 𝑥 ∈ R2, (6.31)

where 𝜙 is available to the optimization algorithm only via measure-
ments or evaluations. This setting describes a zeroth-order optimization
problem that can be addressed via averaging-based techniques. In
particular, when 𝜙 is continuously differentiable, 𝜅𝜙-strongly convex
with a global minimizer 𝑥∗, and ∇𝜙 is 𝐿𝜙-globally Lipschitz, problem
6.31) can be efficiently solved using Newton-like extremum-seeking
lgorithms that achieve better transient performance (i.e., with user-
ssignable convergence rates) compared to traditional gradient-like ES
ethods (Galarza et al., 2021; Ghaffari et al., 2012). However, the

eal-time estimation and inversion of the Hessian of 𝜙 in Newton-like
S algorithms can be very sensitive to measurement noise and prone
o instabilities when the dynamics are initialized far from the set of
inimizers of (6.31). While these issues can be addressed by increasing

he frequency of the dither signals, doing so might require smaller
ampling intervals to mitigate aliasing. This, in turn, can complicate
he implementation of the algorithms in systems with computational
imitations.

An intuitive solution to address the above issue is to use the less
ensitive gradient-like ES algorithm whenever the trajectories are far
rom the optimizer, and to switch to a Newton-like ES method to
ine-tune the convergence near the optimal point; see Martens and
utskever (2012, pp. 23) for a discussion of this approach in the
ontext of training neural networks. To formalize this scheme, shown
n Fig. 14, let 𝜀2 ≫ 𝜀1 > 0, and consider the three-time scale HDS with
ontinuous-time dynamics:

𝑥̇ = −𝑞𝜁1 − (1 − 𝑞)𝜁2𝜁1, 𝑞̇ = 0, (6.32a)

𝜀2𝜁̇1 = −𝜁1 + 𝐹𝐺(𝜙, 𝜇) (6.32b)

𝜀2𝜁̇2= 𝜁2 − 𝜁2𝐹𝐻 (𝜙, 𝜇)𝜁2 (6.32c)

𝜀1𝜀2𝜇̇ = 2𝜋𝜔𝜇, (6.32d)

where 𝑞 ∈ {0, 1} is a logic state, 𝜔 is now a 2-block diagonal matrix
with diagonal blocks 𝜔 𝑅, where 𝑅 is the same matrix of (6.19), and
24

𝑖

Fig. 15. Illustration of flow and jump sets associated with the uniting hybrid ES
algorithm.

𝜔𝑖 are positive rational numbers satisfying 𝜔1 ≠ 𝜔2. The mappings 𝐹𝐺
and 𝐹𝐻 are the following gradient and Hessian estimators:

𝐹𝐺(𝜙, 𝜇) ∶=
2
𝑎
𝜙(𝑥 + 𝑎𝜇̃)𝜇̃, 𝐹𝐻 (𝜙, 𝜇) ∶= 𝜙(𝑥 + 𝑎𝜇̃)𝑁(𝜇̃),

here 𝑎 > 0 is small, 𝜇̃ = (𝜇1, 𝜇3), and 𝑁 ∶ R2 → R2×2 is a matrix-valued
unction with entries satisfying 𝑁11 = 16

𝑎2
(𝜇21 − 1

2 ), 𝑁22 = 16
𝑎2
(𝜇23 − 1

2 ),
𝑁12 =

4
𝑎2
𝜇1𝜇3, and 𝑁12 = 𝑁21.

Since the role of the logic state 𝑞 in Eq. (6.32a) is to enable switching
between the vector fields −𝜉1 and −𝜉2𝜉1 in (6.32a), the discrete-time
ynamics of the system are given by
+ = 𝑥, 𝑞+ = 1 − 𝑞, 𝜁+ = 𝜁, 𝜇+ = 𝜇, (6.33)

To define the sets 𝐶 and 𝐷, we follow a uniting control approach (San-
felice, 2021), where the logic state 𝑞 is switched whenever the value of
the cost function 𝜙 is sufficiently small with respect to 𝜙∗. We note that
this approach might require a reasonable knowledge of the value (or
range) of 𝜙∗, which is usually informed by the physics of the particular
problem of interest. In certain applications, we have 𝜙∗ = 0, which can
simplify the implementation. Based on this, let 0 < 𝑐10 < 𝑐0 be tunable
parameters of the algorithm, and consider the sets

𝐶0 ∶= {𝑥 ∈ R2 ∶ 𝜙(𝑥) − 𝜙∗ ≤ 𝑐0}, (6.34a)

𝐶1 ∶= R𝑛∖{𝑥 ∈ R2 ∶ 𝜙(𝑥) − 𝜙∗ < 𝑐10}, (6.34b)

s well as the sets

0 ∶= R𝑛∖{𝑥 ∈ R2 ∶ 𝜙(𝑥) − 𝜙∗ < 𝑐0}, (6.35a)

𝐷1 ∶= {𝑥 ∈ R2 ∶ 𝜙(𝑥) − 𝜙∗ ≤ 𝑐10}. (6.35b)

Using (6.34) and (6.35), the set 𝐶 and 𝐷 are given by

𝐶 ∶=
(

𝐶0 × {0}
)

∪
(

𝐶1 × {1}
)

, (6.36a)

𝐷 ∶=
(

𝐷0 × {0}
)

∪
(

𝐷1 × {1}
)

, (6.36b)

see Fig. 15. Since in practice the ES dynamics only have access to
measurements of 𝜙(𝑥 + 𝑎𝜇), the hybrid dynamics (6.32)–(6.33) are
implemented under the following (perturbed) flow and jump sets:
(

(𝑥 + 𝑒𝑎, 𝑞), (𝜁1, 𝜁2), 𝜇
)

∈ 𝐶 ×𝐾 × T
(

(𝑥 + 𝑒𝑎, 𝑞), (𝜁1, 𝜁2), 𝜇
)

∈ 𝐷 ×𝐾 × T,

where T ∶= S1 × S1, 𝐾 ⊂ R2 × R2×2 is a compact set that can be taken
arbitrarily large to encompass any solution of interest, and 𝑒𝑎 = 𝑎𝜇 ∈
(𝑎) is a small measurement perturbation since |𝜇(𝑡, 𝑗)| ≤ 1 for all
hybrid times. Since 𝜀1 > 0 acts as small parameter in (6.32), we can
compute the average continuous-time dynamics:

̇̄𝑥 = −𝑞𝜁1 − (1 − 𝑞)𝜁2𝜁1, ̇̄𝑞 = 0, (6.37a)

𝜀2 ̇̄𝜁1 = −𝜁1 + ∇𝜙(𝑥̄) + (𝑎) (6.37b)

𝜀2 ̇̄𝜁2 = 𝜁2 − 𝜁2∇2𝜙(𝑥̄)𝜁2 + (𝑎). (6.37c)
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Fig. 16. Trajectories generated by Newton-like ES (diverging) and the hybrid uniting
ES (converging to 𝑥∗), with 𝜙(𝑥) = 1

10

(

(𝑥1 − 1)2 + (𝑥2 − 5)2
)

, 𝑐0 = 6, and 𝑐10 = 5.

hich evolve in the set ((𝑥̄, 𝑞), (𝜁1, 𝜁2)) ∈ 𝐶 × 𝐾; and the average
iscrete-time dynamics:

̄+ = 𝑥̄, 𝑞+ = 1 − 𝑞, 𝜁+ = 𝜁, (6.38)

hich evolve in the set ((𝑥̄, 𝑞), (𝜁1, 𝜁2)) ∈ 𝐷 × 𝐾. This HDS is an (𝑎)-
erturbed version of a nominal HDS that is singularly perturbed with
mall parameter 𝜀2. To study this nominal system, we consider its
oundary layer dynamics which are given by the low-pass filter (6.37b)
nd the differential Ricatti Eq. (6.37c). For each fixed 𝑥̄, these dynamics
ender locally exponentially stable the equilibrium points 𝜁∗1 = ∇𝜙(𝑥̄)

and 𝜁∗2 = ∇2𝜙(𝑥̄)−1. Thus, since by assumption ∇2𝜙(𝑥̄) ≻ 𝜅𝜙𝐼𝑛 for all
̄ ∈ R2, the nominal (𝑎 = 0) averaged reduced HDS is given by:

(𝑥̄, 𝑞) ∈ 𝐶,
{ ̇̄𝑥 = −𝑞∇𝜙(𝑥̄) − (1 − 𝑞)∇2𝜙(𝑥̄)−1∇𝜙(𝑥̄),
̇̄𝑞 = 0

(6.39a)

(𝑥̄, 𝑞) ∈ 𝐷,
{

𝑥̄+ = 𝑥̄
𝑞+ = 1 − 𝑞.

(6.39b)

By using the smoothness and strong convexity properties of 𝜙, the
function 𝑉 (𝑥̄) = 𝜙(𝑥̄) − 𝜙∗ is radially unbounded, and it satisfies:

⟨∇𝑉 (𝑥̄),−∇𝜙(𝑥̄)⟩ ≤ −|∇𝜙(𝑥̄)|2, ∀ 𝑥̄ ∈ R2,

and also
⟨

∇𝑉 (𝑥̄),−∇2𝜙(𝑥̄)−1∇𝜙(𝑥̄)
⟩

≤ −𝜅𝜙|∇𝜙(𝑥̄)|
2, ∀ 𝑥̄ ∈ R2.

Therefore the sub-level sets of 𝑉 are forward invariant for each fixed
̄. Since each operating mode 𝑞 renders the point 𝑥∗ UGAS, all the
assumptions of Sanfelice (2021, Thm. 4.6) are satisfied, and the hybrid
controller (6.39) renders UGAS the set  = {𝑥∗} × {0}. A repeated
application of Theorem 6.2 (with respect to 𝜀2 and 𝜀1), and Goebel et al.
(2012, Lemma 7.20), allows us to conclude SGpAS as (𝜀2, 𝑎, 𝜀1) → 0+ of
the set  ×𝐾 × T for the original hybrid ES dynamics (6.32)–(6.33).

We illustrate the uniting extremum-seeking algorithm (6.32)
through the simulation results in Fig. 16. The figure shows diverging
trajectories that emerge when using Newton-like extremum-seeking
dynamics far away from the optimal point. By incorporating the hybrid
uniting mechanism presented in this section, not only the instability
is removed, but also the transient performance of the controller is
improved, outperforming the less sensitive gradient-like extremum-
seeking dynamics.

Finally, we note that while the findings in this section were pre-
sented for the case of 𝑥 ∈ R2, these results can be naturally ex-
tended to the more general 𝑛-dimensional case using the uniting control
methodology (Goebel et al., 2012; Sanfelice, 2021)

7. Proofs

In this section, we present the proofs of the main results presented
25

in the paper. a
7.1. Proof of Proposition 3.5

Via direct computation, we obtain that:

[𝑤, 𝑓1](𝜉, 𝜏) =
𝑟
∑

𝑖,𝑗=1
[𝑏𝑖, 𝑏𝑗 ](𝜉) 𝑢𝑗 (𝜏)∫

𝜏

0
𝑢𝑖(𝜈) 𝑑𝜈.

Furthermore, the properties of the Lie bracket imply

[𝑏𝑖, 𝑏𝑗 ] = (𝛿𝑖𝑗 − 1)[𝑏𝑗 , 𝑏𝑖],

here 𝛿𝑖𝑗 is the Kronecker delta symbol. Therefore, we obtain that:
𝑟
∑

𝑖=1
𝑗=1

[𝑏𝑖, 𝑏𝑗 ] 𝑢𝑗 (𝜏)∫

𝜏

0
𝑢𝑖(𝜈) 𝑑𝜈 =

𝑟
∑

𝑖=1
𝑗>𝑖

[𝑏𝑖, 𝑏𝑗 ] 𝑢𝑗𝑖(𝜏),

here the function 𝑢𝑗𝑖 is given by:

𝑢𝑗𝑖(𝜏) = 𝑢𝑗 (𝜏)∫

𝜏

0
𝑢𝑖(𝜈) 𝑑𝜈 − 𝑢𝑖(𝜏)∫

𝜏

0
𝑢𝑗 (𝜈) 𝑑𝜈.

ence, the averaged vector field 𝑓2 is given by:

2̄(𝜉) = 𝑏0(𝜉) +
𝑟
∑

𝑖=1,𝑗>𝑖
[𝑏𝑖, 𝑏𝑗 ](𝜉)𝑣𝑗𝑖,

here the constants 𝑣𝑗𝑖 are defined by:

𝑗𝑖 =
1
2𝑇 ∫

𝑇

0

(

𝑢𝑗 (𝜏)∫

𝜏

0
𝑢𝑖(𝜈) 𝑑𝜈 − 𝑢𝑖(𝜏)∫

𝜏

0
𝑢𝑗 (𝜈) 𝑑𝜈

)

𝑑𝜏.

sing integration by parts, we observe that:
𝑇

0
𝑢𝑖(𝜏)∫

𝜏

0
𝑢𝑗 (𝜈) 𝑑𝜈 𝑑𝜏 = −∫

𝑇

0
𝑢𝑗 (𝜏)∫

𝜏

0
𝑢𝑖(𝜈) 𝑑𝜈 𝑑𝜏,

here the boundary term coming out of the integration by parts
anishes due to the properties of the functions 𝑢𝑖. Hence, the constants
𝑗𝑖 simplify to:

𝑗𝑖 =
1
𝑇 ∫

𝑇

0
𝑢𝑗 (𝜏)∫

𝜏

0
𝑢𝑖(𝜈) 𝑑𝜈 𝑑𝜏,

which establishes the result. ■

7.2. Proof of Theorem 4.3

We begin by applying the time scaling 𝑠 = 𝜀−2𝑡. In contrast to the
traditional Lyapunov-based singular perturbation analysis (e.g. Khalil
(2002, Chapter 11)), we augment the standard coordinate shift with a
near-identity part:

𝑦 = 𝑧 − 𝜑0(𝑥) −
2
∑

𝑖=1
𝜀𝑖𝜑𝑖(𝑥, 𝜏), (7.1)

here the maps 𝜑𝑖(𝑥, 𝜏) for 𝑖 ∈ {1, 2} are the solutions to the linear
on-homogeneous two point boundary value problems:

2𝜑𝑖(𝑥, 𝜏) = 𝐴(𝜏; 𝑥)𝜑𝑖(𝑥, 𝜏) + 𝑏𝑖(𝑥, 𝜏), (7.2a)

𝜑𝑖(𝑥, 𝜏) = 𝜑𝑖(𝑥, 𝜏 + 𝑇 ), (7.2b)

or 𝑖 ∈ {1, 2}, where:

1(𝑥, 𝜏) = 𝑏𝜑(𝑥, 𝜏),

2(𝑥, 𝜏) = 𝑓𝑧,2(𝑥, 𝜑0(𝑥), 𝜏) + 𝐽 2
2 𝑓𝑧,0(𝑥, 𝜑0(𝑥), 𝜏)[𝜑1(𝑥, 𝜏)]

− 𝐽1𝜑0(𝑥)𝑓𝑥,2(𝑥, 𝜑0(𝑥), 𝜏) − 𝐽1𝜑1(𝑥, 𝜏)𝑓𝑥,1(𝑥, 𝜑0(𝑥), 𝜏),

nd the map 𝐽 2
2 𝑓𝑧,0 is a vector-valued bi-linear form. The transforma-

ion (7.1) is akin to the composite expansion (4.15) in the Boundary
unction method, whereas the boundary condition (7.2b) parallels the
ondition (4.22).

The following lemma is a simple consequence of Assumptions 4.1
nd 4.2 and standard linear systems theory:
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Lemma 7.1. Let Assumptions 4.1 and 4.2 be satisfied. Then, the non-
omogeneous BVPs (7.2a)–(7.2b) have unique periodic solutions 𝜑𝑖 defined

by:

𝜑𝑖(𝑥, 𝜏) = ∫

𝜏+𝑇

𝜏
𝐸𝛷(𝜏, 𝜈)𝑏𝑖(𝑥, 𝜈) 𝑑𝜈.

for all 𝜏 ∈ R≥0 and for all 𝑥 ∈ R𝑛1 . □

We observe that under this coordinate change and time scaling, we
have that:

d𝑥
d𝑠 =

2
∑

𝑘=1
𝜀𝑘𝑓1,𝑘(𝑥, 𝑦, 𝜏) + 𝑂(𝜀3), (7.3a)

d𝑦
d𝑠 =

2
∑

𝑘=0
𝜀𝑘𝑓2,𝑘(𝑥, 𝑦, 𝜏) + 𝑂(𝜀3), (7.3b)

d𝜏
d𝑠 = 1, (7.3c)

here the functions 𝑓𝑗,𝑘 are given by:

2̃,0(𝑥, 𝑦, 𝜏) = 𝑓𝑧,0(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏),

1̃,1(𝑥, 𝑦, 𝜏) = 𝑓𝑥,1(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏),

1̃,2(𝑥, 𝑦, 𝜏) = 𝑓𝑥,2(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏) + 𝐽2𝑓𝑥,1(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏)𝜑1(𝑥, 𝜏),

𝑓2,1(𝑥, 𝑦, 𝜏) = 𝑓𝑧,1(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏) + 𝐽2𝑓𝑧,0(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏)𝜑1(𝑥, 𝜏)

− 𝐽𝜑0(𝑥)𝑓𝑥,1(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏) − ∇2𝜑1(𝑥, 𝜏),

𝑓2,2(𝑥, 𝑦, 𝜏) = 𝑓𝑧,2(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏) + 𝐽2𝑓𝑧,0(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏)𝜑2(𝑥, 𝜏)

+ 𝐽 2
2 𝑓𝑧,0(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏)[𝜑1(𝑥, 𝜏)] − 𝐽𝜑0(𝑥)𝑓𝑥,2(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏)

− 𝐽1𝜑1(𝑥, 𝜏)𝑓𝑥,1(𝑥, 𝑦 + 𝜑0(𝑥), 𝜏) − ∇2𝜑2(𝑥, 𝜏),

and the remainder terms are Lipschitz continuous and bounded on
every compact subset 𝐾 ⊂ R𝑛1 × R𝑛2 , uniformly in 𝜏 and 𝜀 ∈ [0, 𝜀0]
for some 𝜀0 > 0, with Lipschitz constants 𝐿𝑓1,𝑘 ,𝜓 , 𝐿𝑓2,𝑘 ,𝐾 > 0 and bounds
𝐵𝑓1,𝑘 ,𝐾 , 𝐵𝑓2,𝑘 ,𝐾 > 0.

Owing to the definition of the maps 𝜑𝑖(𝑥, 𝜏) for 𝑖 ∈ {1, 2}, we observe
that for all 𝑥 ∈ R𝑛1 , and for all 𝜏 ∈ R, we have that

𝑓1,1(𝑥, 0, 𝜏) = 𝑓1(𝑥, 𝜏),

𝑓1,2(𝑥, 0, 𝜏) = 𝑓2(𝑥, 𝜏),

𝑓2,1(𝑥, 0, 𝜏) = 𝑓2,2(𝑥, 0, 𝜏) = 0.

That is, the origin 𝑦 = 0 is an equilibrium point for the boundary layer
model:

d𝑦
d𝑠 =

2
∑

𝑘=0
𝜀𝑘𝑓2,𝑘(𝑥, 𝑦, 𝑠), (7.5)

when 𝑥 is treated as a parameter. From second-order averaging, we
know that there exists 𝜀0 ∈ (0,∞) such that for all 𝑥(0) ∈ 𝐾1, for all
𝜀 ∈ (0, 𝜀0), unique trajectories (𝑥̃, 𝜏) of the reduced order system (4.26)
exist and 𝑥̃(𝑡) ∈ 1 for all 𝑡 ∈ [0, 𝑇𝑓 ] for some compact subset 1 ⊃ .
Equivalently, we know that 𝑥̃(𝑠) ∈ 1 for all 𝑠 ∈ [0, 𝑇𝑓∕𝜀2].

Due to Assumption 4.1, we have that for all (𝑥(0), 𝑦(0)) ∈ 𝐾1 × 𝐾2,
and for all 𝜀 ∈ (0, 𝜀0), unique maximal trajectories of the system (7.3)
exist. Let [0, 𝑠𝑒) with 𝑠𝑒 > 0 be the maximal interval of existence and
uniqueness of a given solution (𝑥, 𝑦, 𝜏). For 𝑠 ∈ [0, 𝑠𝑒), define an open
neighborhood (𝑠) around 𝑥̃(𝑠) by:

(𝑠) = {𝑥 ∈ R𝑛1 ∶ |𝑥 − 𝑥̃(𝑠)| < 𝜖},

and observe that the 𝑥-component of the solution to (7.3) is initially
inside (0). Moreover, define the compact subset 1 = 1 + 𝜖B. From
Assumption 4.2, we know that there exists a continuously differentiable
function 𝑉 , and positive constants 𝜅𝑖, 𝑖 ∈ {1, 2, 3, 4} such that:

𝜅1|𝑦|
2 ≤ 𝑉 (𝑦, 𝜏) ≤ 𝜅2|𝑦|

2,

∇1𝑉
⊤𝑓2,0(𝑦, 𝜏) + 𝐽2𝑉 (𝑦, 𝜏) ≤ −𝜅3|𝑦|

2,

|∇1𝑉 (𝑦, 𝜏)| ≤ 𝜅4|𝑦|.
26
for all 𝑦 ∈ R𝑛2 and all 𝜏 ∈ R≥0. Let 𝑐 > 0 be such that the compact
2 = {𝑦 ∈ R𝑛2 ∶ |𝑦| ≤

√

𝑐∕𝜅2} contains the bounded set 𝐾2. Define the
compact set 2 = {𝑦 ∈ R𝑛2 ∶ |𝑦| ≤

√

𝑐∕𝜅1}, and let 𝐾 = 1 × 2.
Finally, define the time 𝑠𝜖 as follows: 𝑥(𝑠) ∈ (𝑠), for all 𝑠 ∈ [0, 𝑠𝜖), and
𝑥(𝑠𝜖) − 𝑥̃(𝑠𝜖)| = 𝜖, or 𝑠𝜖 = 𝑠𝑒 if 𝑥(𝑠) ∈ (𝑠), for all 𝑠 ∈ [0, 𝑠𝑒). Then,
e have the following lemma adapted from a portion of the proof of
emma 1 in Dürr et al. (2015):

emma 7.2 (Dürr et al., 2015). Let the assumptions of Theorem 4.3 be
atisfied. Then, there exist constants 𝜆 > 0, 𝜅 > 0, 𝛾 > 0, and 𝜀2 ∈ (0, 𝜀0)
uch that for all 𝜀 ∈ (0, 𝜀2), for all (𝑥(0), 𝑦(0)) ∈ 𝐾1 × 𝐾2, every solution
𝑥, 𝑦) to (7.3) stays inside 𝐾 for all 𝑠 ∈ [0, 𝑠𝜖], and:

𝑦(𝑠)| ≤ 𝛾 |𝑦(0)|e−𝜆 𝑠 + 𝜅𝜀
3
2 ,

or all 𝑠 ∈ [0, 𝑠𝜖]. □

The proof of this lemma is similar to that in Dürr et al. (2015), so we
o not replicate it here. We proceed to define 𝜀3 = min{𝜀1, 𝜀2}, and an
𝜀-dependent time 𝑠𝜀 by requiring that, for all 𝑦(0) ∈ 2, for all 𝑠 > 𝑠𝜀,
the following inequality is satisfied:

𝛾 |𝑦(0)|e−𝜆 𝑠 ≤ 𝜅𝜀
3
2 , (7.7)

We note that this is always possible for 𝜀 > 0. Indeed, it can
e shown that 𝑠𝜀 = max{(3∕(2𝜆)) log((𝛾

√

𝑐∕𝛼2)∕(𝛼 𝜀)), 0} satisfies the
inequality (7.7). Now, we show that there exists 𝜀4 ∈ (0, 𝜀3) such that
𝑠𝜀 < 𝑠𝜖 , for all 𝜀 ∈ (0, 𝜀4). To obtain a contradiction, suppose that there
xists a bounded subset 𝐾1 × 𝐾2 ⊂ R𝑛1 × R𝑛2 , and an 𝜖 ∈ (0,∞), such

that for all 𝜀4 ∈ (0, 𝜀3), there exists 𝜀 ∈ (0, 𝜀4) such that 𝑠𝜀 ≥ 𝑠𝜖 . We
estimate the difference:

|𝑥(𝑠𝜖) − 𝑥̃(𝑠𝜖)| ≤ ∫

𝑠𝜖

0
𝐵𝐾,𝑓1𝜀 𝑑𝜏 ≤ 𝐵𝐾,𝑓1𝑠𝜀 𝜀,

where 𝐵𝐾,𝑓1 > 0 is a uniform upper bound on the norm of the
integrand inside the compact subset 𝐾 whose existence is guaranteed
by Assumption 4.1. Now, observe that lim𝜀→0 𝑠𝜀 𝜀 = 0, and so there
exists 𝜀4 ∈ (0, 𝜀3) such that 𝐵𝐾,𝑓1𝑠𝜀 𝜀 ≤ 𝜖∕2, for all 𝜀 ∈ (0, 𝜀4). Hence,
we have that for all 𝜀 ∈ (0, 𝜀4), |𝑥(𝑠𝜖) − 𝑥̃(𝑠𝜖)| ≤ 𝜖∕2 which contradicts
the definition of 𝑠𝜖 Next, we show that there exists 𝜀5 ∈ (0, 𝜀4) such that
𝑇𝑓∕𝜀2 < 𝑠𝜖 , for all 𝜀 ∈ (0, 𝜀5). To obtain a contradiction, suppose that
for all 𝜀5 ∈ (0, 𝜀4), there exists 𝜀 ∈ (0, 𝜀5) such that 𝑇𝑓∕𝜀2 ≥ 𝑠𝜖 . Once
again, we estimate the difference |𝑥(𝑠) − 𝑥̃(𝑠)| on the interval [0, 𝑠𝜖]. We
ave that:

𝑥(𝑠) − 𝑥̃(𝑠)| = |

|

|

2
∑

𝑘=1
𝜀𝑘 ∫

𝑠𝜀

0
𝛥𝑓1,𝑘(𝜈)𝑑𝜈 + 𝜀𝑘 ∫

𝑠

𝑠𝜀
𝛥𝑓1,𝑘(𝜈)𝑑𝜈 + 𝑂(𝜀3)

|

|

|

,

here the integrands 𝛥𝑓1,𝑘(𝑠) are given by:

𝑓1,𝑘(𝑠) = 𝑓1,𝑘(𝑥(𝑠), 𝑦(𝑠), 𝜏(𝑠)) − 𝑓1,𝑘(𝑥̃(𝑠), 0, 𝜏(𝑠)),

hich leads to the estimate:

𝑥(𝑠) − 𝑥̃(𝑠)| ≤ 𝐵𝐾,𝑓1 (𝑠𝜀 + 𝑠𝜖𝜀
2)𝜀 + |𝐼1|, (7.8)

𝐼1 = ∫

𝑠

𝑠𝜀

2
∑

𝑘=1
𝜀𝑘𝛥𝑓1,𝑘(𝜈)𝑑𝜈, (7.9)

n the interval [0, 𝑠𝜖]. We proceed to estimate |𝐼1| as follows:

𝐼1| ≤ 𝜀(|𝐼2| + |𝐼3|) + 𝜀2(|𝐼4| + |𝐼5|), (7.10)

here 𝐼𝑖 for 𝑖 ∈ {2, 3, 4, 5} are given by:

2 = ∫

𝑠

𝑠𝜀
(𝑓1,1(𝑥(𝜈), 𝑦(𝜈), 𝜏(𝜈)) − 𝑓1,1(𝑥(𝜈), 0, 𝜏(𝜈))) 𝑑𝜈,

3 = ∫

𝑠

𝑠𝜀
(𝑓1,1(𝑥(𝜈), 0, 𝜏(𝜈)) − 𝑓1,1(𝑥̃(𝜈), 0, 𝜏(𝜈)))𝑑𝜈,

4 = ∫

𝑠

𝑠𝜀
(𝑓1,2(𝑥(𝜈), 𝑦(𝜈), 𝜏(𝜈)) − 𝑓1,2(𝑥(𝜈), 0, 𝜏(𝜈))) 𝑑𝜈,

𝐼5 =
𝑠
(𝑓1,2(𝑥(𝜈), 0, 𝜏(𝜈)) − 𝑓1,2(𝑥̃(𝜈), 0, 𝜏(𝜈)))𝑑𝜈.
∫𝑠𝜀
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

∫

|

w

𝛿

We estimate each of the integrals above, starting by 𝐼2, 𝐼4 and 𝐼5, which
can be estimated as follows:

|𝐼2| ≤ ∫

𝑠

𝑠𝜀
𝐿𝑓1 ,𝐾 |𝑦(𝜈)|𝑑𝜈, (7.11)

|𝐼4| ≤ ∫

𝑠

𝑠𝜀
𝐿𝑓2 ,𝐾 |𝑦(𝜈)|𝑑𝜈, (7.12)

|𝐼5| ≤ ∫

𝑠

𝑠𝜀
𝐿𝑓2 ,𝐾 |𝑥(𝜈) − 𝑥̃(𝜈)|𝑑𝜈, (7.13)

where 𝐿𝑓1 ,𝐾 , 𝐿𝑓2 ,𝐾 , 𝐿𝑓2 ,𝐾 > 0 are Lipschitz constants.
Next, we estimate |𝐼3|. We proceed by dividing the interval  =

[𝑠𝜀, 𝑠] into sub-intervals of length 𝑇 and a left over piece:

=

(𝑁(𝜀)
⋃

𝑖=1
[𝑇𝑖−1, 𝑇𝑖]

)

⋃

[𝑁(𝜀)𝑇 , 𝑠],

where 𝑇𝑖 = 𝑠𝜀 + 𝑖 𝑇 , and 𝑁(𝜀) is the unique integer such that 𝑁(𝜀)𝑇 ≤
𝑠 < 𝑁(𝜀)𝑇 + 𝑇 . Then, we divide 𝐼3 into a sum of sub-integrals:

𝐼3 =
𝑁(𝜀)
∑

𝑖=1
𝐼3,𝑖 + 𝐼3,𝑁(𝜀)+1,

where:

𝐼3,𝑖 = ∫

𝑇𝑖

𝑇𝑖−1
(𝑓1,1(𝑥(𝑠), 0, 𝜏(𝑠)) − 𝑓1,1(𝑥̃(𝑠), 0, 𝜏(𝑠))) 𝑑𝑠,

𝐼3,𝑁(𝜀)+1 = ∫

𝑠

𝑁(𝜀)𝑇
𝑓1,1(𝑥(𝜈), 0, 𝜏(𝜈)) − 𝑓1,1(𝑥̃(𝜈), 0, 𝜏(𝜈)) 𝑑𝜈.

The term 𝐼3,𝑁(𝜀)+1 can be bounded independently from 𝜀 as follows:
|

|

|

𝐼3,𝑁(𝜀)+1
|

|

|

≤ 2𝐵𝑓1 ,𝐾𝑇 .

Using Hadamard’s lemma, we obtain:

𝐼3,𝑖 = ∫

𝑇𝑖

𝑇𝑖−1
𝐹1(𝑥(𝑠), 𝑥̃(𝑠), 𝑠)(𝑥(𝑠) − 𝑥̃(𝑠))𝑑𝑠,

where the matrix valued map 𝐹1 is given by:

𝐹1(𝑥, 𝑥̃, 𝑠) = ∫

1

0
𝐽1𝑓1,1(𝑥̃ + 𝜆(𝑥 − 𝑥̃), 𝜏(𝑠))𝑑𝜆.

Through adding and subtracting a term, we may write:

𝐼3,𝑖 =∫

𝑇𝑖

𝑇𝑖−1
𝐹1(𝑥(𝑇𝑖−1), 𝑥̃(𝑇𝑖−1), 𝑠) (𝑥(𝑠) − 𝑥̃(𝑠))𝑑𝑠

+ ∫

𝑇𝑖

𝑇𝑖−1
𝛥𝑖
[

𝐹1
]

(𝑠) (𝑥(𝑠) − 𝑥̃(𝑠))𝑑𝑠,

where the term 𝛥𝑖[𝐹1] is given by:

𝛥𝑖
[

𝐹1
]

(𝑠) = 𝐹1(𝑥(𝑠), 𝑥̃(𝑠), 𝑠) − 𝐹1(𝑥(𝑇𝑖−1), 𝑥̃(𝑇𝑖−1), 𝑠).

Next, since the matrix-valued map 𝐹1 is periodic with zero average over
its third argument when the other arguments are fixed, we have that

∫

𝑇𝑖

𝑇𝑖−1
𝐹1(𝑥(𝑇𝑖−1), 𝑥̃(𝑇𝑖−1), 𝑠)𝑤𝑑𝑠 = 0,

for any fixed 𝑤. Thus, we may write:

𝐼3,𝑖 = ∫

𝑇𝑖

𝑇𝑖−1
𝛥𝑖
[

𝐹1
]

(𝑥(𝑠) − 𝑥̃(𝑠)) + ∫

𝑇𝑖

𝑇𝑖−1
𝐹1(𝑥(𝑇𝑖−1), 𝑥̃(𝑇𝑖−1), 𝑠)𝛥𝑖[𝑥 − 𝑥̃]𝑑𝑠,

where 𝛥𝑖[𝑥− 𝑥̃] = (𝑥(𝑠) −𝑥(𝑇𝑖−1)) − (𝑥̃(𝑠) − 𝑥̃(𝑇𝑖−1)). An application of the
fundamental theorem of calculus yields:

𝛥𝑖[𝑥 − 𝑥̃] =𝜀∫

𝑠

𝑇𝑖−1
(𝑓1,1(𝑥(𝜈), 𝑦(𝜈), 𝜈) − 𝑓1(𝑥̃(𝜈), 𝜈))𝑑𝜈 + 𝑂(𝜀2)

=𝜀∫

𝑠

𝑇𝑖−1
(𝑓1,1(𝑥(𝜈), 𝑦(𝜈), 𝜈) − 𝑓1,1(𝑥(𝜈), 0, 𝜈))𝑑𝜈

+ 𝜀∫

𝑠

𝑇𝑖−1
(𝑓1(𝑥(𝜈), 𝜈) − 𝑓1(𝑥̃(𝜈), 𝜈))𝑑𝜈 + 𝑂(𝜀2).
27
Through integration by parts, we obtain:

∫

𝑇𝑖

𝑇𝑖−1
𝐹1(𝑥(𝑇𝑖−1), 𝑥̃(𝑇𝑖−1), 𝑠)𝛥𝑖[𝑥 − 𝑥̃]𝑑𝑠 = 𝐼𝐹 ,𝑖(𝑠)𝛥𝑖[𝑥 − 𝑥̃]||

𝑠=𝑇𝑖
𝑠=𝑇𝑖−1

− 𝜀∫

𝑇𝑖

𝑇𝑖−1
𝐼𝐹 ,𝑖(𝑠)𝛥[𝑓1]𝑑𝑠

− 𝜀∫

𝑇𝑖

𝑇𝑖−1
𝐼𝐹 ,𝑖(𝑠)𝛥[𝑓1,1]𝑑𝑠 + 𝑂(𝜀2),

where 𝛥[𝑓1,1], 𝛥[𝑓1], and 𝐼𝐹 ,𝑖(𝑠) are defined by:

𝛥[𝑓1,1] = 𝑓1,1(𝑥(𝑠), 𝑦(𝑠), 𝜏(𝑠)) − 𝑓1,1(𝑥(𝑠), 0, 𝜏(𝑠)),

𝛥[𝑓1] = 𝑓1(𝑥(𝑠), 𝜏(𝑠)) − 𝑓1(𝑥̃(𝑠), 𝜏(𝑠)),

𝐼𝐹 ,𝑖(𝑠) = ∫

𝑠

𝑇𝑖−1
𝐹1(𝑥(𝑇𝑖−1), 𝑥̃(𝑇𝑖−1), 𝜈)𝑑𝜈.

The boundary term 𝐼𝐹 ,𝑖(𝑠)𝛥𝑖[𝑥 − 𝑥̃]||
𝑠=𝑇𝑖
𝑠=𝑇𝑖−1

coming out of the integration

by parts vanishes because the right factor vanishes at 𝑠 = 𝑇𝑖−1 and the
left factor vanishes at 𝑠 = 𝑇𝑖, leaving only the integral terms. Using
Lipschitz continuity and boundedness on compact subsets, we see that:
|

|

|

|

|

∫

𝑇𝑖

𝑇𝑖−1
𝐼𝐹 ,𝑖(𝑠)𝛥[𝑓1,1]𝑑𝑠

|

|

|

|

|

≤ ∫

𝑇𝑖

𝑇𝑖−1
𝑀𝐼𝐹 ,𝑓1,1 ,𝐾 |𝑦(𝑠)|𝑑𝑠,

|

|

|

|

|

∫

𝑇𝑖

𝑇𝑖−1
𝐼𝐹 ,𝑖(𝑠)𝛥[𝑓1]𝑑𝑠

|

|

|

|

|

≤ ∫

𝑇𝑖

𝑇𝑖−1
𝑀𝐼𝐹 ,𝑓1 ,𝐾 |𝛥[𝑥]|𝑑𝑠,

|

|

|

|

|

∫

𝑇𝑖

𝑇𝑖−1
𝛥𝑖
[

𝐹1
]

𝛥[𝑥]𝑑𝑠
|

|

|

|

|

≤ 𝜀∫

𝑇𝑖

𝑇𝑖−1
𝐿𝐹1 ,𝐾 |𝛥[𝑥]|𝑑𝑠,

where 𝛥[𝑥] = 𝑥(𝑠) − 𝑥̃(𝑠). By utilizing the above estimates, the integrals
𝐼3,𝑖 can be shown to satisfy the bound:

|

|

𝐼3,𝑖|| ≤𝑀𝐾 𝜀 ∫

𝑇𝑖

𝑇𝑖−1
(|𝛥[𝑥]| + |𝑦(𝑠)|) 𝑑𝑠,

for some constant 𝑀𝐾 . As a consequence, the integral term 𝐼3 satisfies
the bound:

|𝐼3| ≤𝑀𝐾 𝜀 ∫

𝑠

𝑠𝜀
(|𝛥[𝑥]| + |𝑦(𝜈)|) 𝑑𝜈 + 2𝐵𝑓1 ,𝐾𝑇 . (7.14)

Combining (7.8), (7.10), (7.11), (7.12), (7.13), and (7.14), in addition
to the fact that 𝑠𝜀 < 𝑠𝜖 , for all 𝜀 ∈ (0, 𝜀4), we can show that the following
estimate holds:
|𝑥(𝑠) − 𝑥̃(𝑠)| ≤ (𝑀𝐾,1 +𝑀𝐾,2𝑠𝜀 +𝑀𝐾,3𝑠𝜖𝜀

2)𝜀

+ 𝑀𝐾,4𝜀∫

𝑠

𝑠𝜀
|𝑦(𝜈)|𝑑𝜈 +𝑀𝐾,5𝜀

2
∫

𝑠

𝑠𝜀
|𝑥(𝜈) − 𝑥̃(𝜈)|𝑑𝜈,

for some positive constants 𝑀𝐾,𝑗 , 𝑗 ∈ {1,… , 5}. Using the fact that
|𝑦(𝑠)| < 2𝛼 𝜀

3
2 , for all 𝑠 ∈ [𝑠𝜀, 𝑠𝜖] by definition, we obtain that:

𝑠

𝑠𝜀
|𝑦(𝜈)|𝑑𝜈 ≤ 2𝛼 𝜏 𝜀

3
2 ≤ 2𝛼 𝑠𝜖 𝜀

3
2 .

Now, remember that in order to obtain a contradiction we assumed that
𝑠𝜖 ≤ 𝑇𝑓∕𝜀2, and so we will have:

𝑥(𝑠) − 𝑥̃(𝑠)| ≤ 𝛿(𝜀) + ∫

𝑠

𝑠𝜀
𝑀𝐾,5𝜀

2
|𝑥(𝜈) − 𝑥̃(𝜈)|𝑑𝜈,

here the function 𝛿(𝜀) is given by:

(𝜀) =𝑀𝐾,1𝜀 +𝑀𝐾,2𝑠𝜀𝜀 +𝑀𝐾,3𝑇𝑓 𝜀 + 2𝑀𝐾,4𝑇𝑓 𝜀
1
2 .

An application of Grönwall’s inequality yields:

|𝑥(𝑠) − 𝑥̃(𝑠)| ≤ 𝛿(𝜀)e𝑀𝐾,5𝜀2𝑠 ≤ 𝛿(𝜀)e𝑀𝐾,5𝜀2𝑠𝜖 ,

on the interval 𝑠 ∈ [𝑠𝜀, 𝑠𝜖]. Once again, recall that we assumed that
𝑠𝜖 ≤ 𝑇𝑓∕𝜀2, and so we have:

|𝑥(𝑠) − 𝑥̃(𝑠)| ≤ 𝛿(𝜀)e𝑀𝐾,5𝑇𝑓 .

Now, observe that lim𝜀→0 𝛿(𝜀) = 0, and so we are guaranteed the

existence of an 𝜀5 ∈ (0, 𝜀4) such that for all 𝜀 ∈ (0, 𝜀5) we have that
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|𝑥(𝑠𝜖) − 𝑥̃(𝑠𝜖)| ≤ 𝜖∕2, which contradicts the definition of 𝑠𝜖 . However,
his contradicts the assumption that 𝑠𝜖 ≤ 𝑇𝑓∕𝜀2, which implies the

existence of 𝜀5 ∈ (0, 𝜀4), such that for all 𝜀 ∈ (0, 𝜀5), for all (𝑥(0), 𝑦(0)) ∈
1 ×𝐾2, we have that 𝑇𝑓∕𝜀2 < 𝑠𝜖 .

To summarize, we have proven that for all 𝜀 ∈ (0, 𝜀5), (𝑥(0), 𝑦(0)) ∈
𝐾1 ×𝐾2, for all 𝑠 ∈ [0, 𝑇𝑓∕𝜀2] we have that:

|𝑥(𝑠) − 𝑥̃(𝑠)| ≤ 𝜖, |𝑦(𝑠)| ≤ 𝛾 |𝑦(0)|e−𝜆𝑠 + 𝛼 𝜀
3
2 .

he same statement is true if we replaced 𝜖 with 𝜖∕2:

|𝑥(𝑠) − 𝑥̃(𝑠)| ≤ 𝜖∕2, |𝑦(𝑠)| ≤ 𝛾 |𝑦(0)|e−𝜆𝑠 + 𝛼 𝜀
3
2 .

Now recall the definition of 𝑦, which leads to the bound:

|𝑥2(𝑠) − 𝜑0(𝑥(𝑠))| ≤ 𝛾|𝑥2(0) − 𝜑0(𝑥(0))| + 𝛿(𝜀),

𝛿(𝜀) =𝑀𝜑,𝐾𝜀 + 𝛼 𝜀
3
2 ,

or some 𝑀𝜑,𝐾 > 0. Since lim𝜀→0 𝛿(𝜀) = 0, it follows that there exists
𝜀6 ∈ (0, 𝜀5) such that 𝛿(𝜀) ≤ 𝜖. Moreover, it follows from second-order
averaging with trade-off (Abdelgalil & Taha, 2022) that there exists
𝜀7 ∈ (0, 𝜀6) such that for all 𝑥(0) ∈ 𝐾1, for all 𝑠 ∈ [0, 𝑇𝑓∕𝜀2] we have:

|𝑥̄(𝑠) − 𝑥̃(𝑠)| ≤ 𝜖∕2.

Hence, the result follows after an application of the triangle inequality
and reversing the time scaling 𝑠 = 𝜀−2𝑡.

7.3. Proof of Theorems 5.1 and 5.2

In this section, we present the proofs of Theorems 5.1 and 5.2.

Proof of Theorem 5.1. Let 𝜓 ∶= (𝑥, 𝑦). Items (1) of Assumptions 5.2
and 5.3 imply the existence of class ∞ functions 𝛼̂1 and 𝛼̂2 such that

̂1(|𝜓|̃) ≤ 𝐸𝜃(𝜓) ≤ 𝛼̂2(|𝜓|̃), (7.18)

for all 𝜓 ∈ 𝐶̂ ∪ 𝐷̂ ∪ 𝐺̂(𝐷̂). By Clarke (1990, Prop. 2.2.6), 𝐸𝜃 is regular
for each 𝜃 > 0, which implies that 𝜕𝐸𝜃(𝜓) = (1 − 𝜃)𝜕𝑉 (𝑥) + 𝜃𝜕𝑊 (𝑥, 𝑦)
for all (𝑥, 𝑦) ∈ R𝑛 via (Clarke, 1990, Corollary 2 and 3, pp. 39–40).

By Clarke (1990, Prop. 2.3.15), the regularity of 𝑊 implies that
𝜕𝑊 (𝑥, 𝑦) ⊂ 𝜕𝑥𝑊 (𝑥, 𝑦) × 𝜕𝑦𝑊 (𝑥, 𝑦). Thus, we have that for all 𝜓 ∈ 𝐶̂:

max
𝑒∈𝜕𝐸𝜃 (𝜓)

⟨𝑒, 𝑓 ⟩ ≤ (1 − 𝜃) max
𝑣∈𝜕𝑥𝑉 (𝑥)

⟨𝑣, 𝑓𝑥⟩

+ 𝜃 max
𝑣∈𝜕𝑥𝑊 (𝑥,𝑦)

⟨𝑣, 𝑓𝑥⟩ + 𝜀−1𝜃 max
𝑣∈𝜕𝑦𝑊 (𝑥,𝑦)

⟨𝑣, 𝑓𝑦⟩

for all 𝑓 ∈ 𝐹𝜀(𝑥, 𝑦) ∶= 𝐹𝑥(𝑥, 𝑦)×
1
𝜀𝐹𝑦(𝑥, 𝑦, 𝜀), where 𝑓 = (𝑓𝑥,

1
𝜀𝑓𝑦). Adding

and subtracting terms, and using item (b) in Assumption 5.5, we obtain
that for all 𝜓 ∈ 𝐶̂:

max
𝑒∈𝜕𝐸𝜃 (𝜓)

⟨𝑒, 𝑓 ⟩ ≤ (1 − 𝜃) max
𝑣∈𝜕𝑥𝑉 (𝑥)

⟨𝑣, 𝑓𝑥⟩

+ 𝜃 max
𝑣∈𝜕𝑥𝑊 (𝑥,𝑦)

⟨𝑣, 𝑓𝑥⟩ + 𝜀−1𝜃 max
𝑣∈𝜕𝑦𝑊 (𝑥,𝑦)

⟨𝑣, 𝑓𝑦⟩

+ (1 − 𝜃)
(

max
𝑣∈𝜕𝑥𝑉 (𝑥)

⟨𝑣, 𝑓𝑥⟩ − max
𝑣∈𝜕𝑥𝑉 (𝑥)

⟨𝑣, 𝑓𝑥⟩
)

,

where 𝑓𝑥 ∈ 𝐹 (𝑥) comes from (5.7). By definition, if 𝑓𝑦 ∈ 𝐹𝑦(𝑥, 𝑦, 𝜀), then
𝑓𝑦 = 𝑓𝑧−𝜀𝐽𝜑0(𝑥)𝑓𝑥, where 𝑓𝑥 ∈ 𝐹𝑥(𝑥, 𝑦+𝜑0(𝑥)), and 𝑓𝑧 ∈ 𝐹𝑧(𝑥, 𝑦+𝜑0(𝑥)).
Therefore, the above inequalities imply that for all 𝜓 ∈ 𝐶̂:

max
𝑒∈𝜕𝐸𝜃 (𝜓)

⟨𝑒, 𝑓 ⟩ ≤ (1 − 𝜃) max
𝑣∈𝜕𝑥𝑉 (𝑥)

⟨𝑣, 𝑓𝑥⟩

+ 𝜃 max
𝑣∈𝜕𝑥𝑊 (𝑥,𝑦)

⟨𝑣, 𝑓𝑥⟩ + 𝜀−1𝜃 max
𝑣∈𝜕𝑦𝑊 (𝑥,𝑦)

⟨𝑣, 𝑓𝑧⟩

− 𝜃 max
𝑣∈𝜕𝑦𝑊 (𝑥,𝑦)

⟨𝑣, 𝐽𝜑0(𝑥)𝑓𝑥⟩

+ (1 − 𝜃)
(

max
𝑣∈𝜕𝑥𝑉 (𝑥)

⟨𝑣, 𝑓𝑥⟩ − max
𝑣∈𝜕𝑥𝑉 (𝑥)

⟨𝑣, 𝑓𝑥⟩
)

,

28
Since, by construction, 𝜓 ∈ 𝐶̂ implies 𝑥 ∈ 𝐶𝑥, we can use Assump-
tions 5.2, 5.3, and 5.5, to directly obtain:

max
𝑒∈𝜕𝐸𝜃 (𝜓)

⟨𝑒, 𝑓 ⟩ ≤ − (1 − 𝜃)𝑘𝑥𝜑2
𝑥(𝑥) − 𝜃

(𝑘𝑦
𝜀

− 𝑘2

)

𝜑2
𝑦(𝑦)

+ (𝜃𝑘1 + (1 − 𝜃)𝑘3)𝜑𝑦(𝑦)𝜑𝑥(𝑥),

for all 𝑓 ∈ 𝐹𝜀(𝑥, 𝑦) and all 𝜓 ∈ 𝐶̂. We can now use similar computations
s in Saberi and Khalil (1984) or Khalil (2002, pp.452) to conclude the
xistence of 𝜆 > 0 such that for all 𝜀 ∈ (0, 𝜀∗) the following holds:

max
∈𝜕𝐸𝜃∗ (𝜓)

⟨𝑒, 𝑓 ⟩ ≤ −𝜆
(

𝜑2
𝑥(𝑥) + 𝜑

2
𝑦(𝑦)

)

≤ −𝜌̃
(

𝜓
)

, (7.19)

for all 𝜓 ∈ 𝐶̂, and all 𝑓 ∈ 𝐹𝜀(𝑥, 𝑦), where 𝜌̃ ∈ (̃). Since, by
assumption, we have that:

𝐸𝜃∗ (𝑔) − 𝐸𝜃∗ (𝜓) ≤ −𝜌̂(𝜓), (7.20)

or all 𝑔 ∈ 𝐺̂(𝑥, 𝑦) and all (𝑥, 𝑦) ∈ 𝐷̂, it follows that the right hand
sides of (7.19) and (7.20) can be upper bounded with −𝜌(𝜓), where
𝜌(𝜓) ∶= min{𝜌̃(𝜓), 𝜌̂(𝜓)}. These two inequalities, combined with (7.18),
stablish that 𝐸𝜃∗ is a hybrid Lyapunov function for the shifted SP-HDS
5.2) with respect to the compact set ̃ via Sanfelice (2021, Thm 3.19).
herefore, ̃ is UGAS for the hybrid system (5.2). ■

roof of Theorem 5.2. Under the given assumptions, the function 𝐸𝜃∗
till satisfies (7.18). However, (7.19) now holds only with 𝜌̃ ∈ 𝑠(̃).
imilarly, and by construction, for all 𝜓 = (𝑥, 𝑦) ∈ 𝐷̂ we must have
∈ 𝐷𝑥. Moreover, also by construction of 𝐺̃, for all (𝑥, 𝑦) ∈ 𝐷̂ and all

𝑔̂ = (𝑔𝑥, 𝑔𝑧) ∈ 𝐺̂(𝑥, 𝑦) we have 𝑔𝑥 ∈ 𝐺̃(𝑥). Thus, using Assumptions 5.4
nd 5.6, we obtain:

𝜃∗ (𝑔̂) ≤ (1 − 𝜃∗)
(

𝑉 (𝑥) − 𝑐𝑥𝜌𝑥(𝑥)
)

+ 𝜃∗𝑊 (𝑥, 𝑦) + 𝜃∗𝑘4𝜌4(𝑥)

= 𝐸𝜃∗ (𝜓) − 𝑐𝜌𝑥(𝑥)

≤ 𝐸𝜃∗ (𝜓),

or all 𝑔̂ ∈ 𝐺̂(𝑥, 𝑦) and all (𝑥, 𝑦) ∈ 𝐷̂, where we used 𝑐 ∶= (1−𝜃∗)𝑐𝑥−𝜃∗𝑘4,
he definition of 𝜃∗, the assumption that 𝜌𝑥 = 𝜌4, and the fact that
> 0 due to condition (b)-(1) of the theorem. For the case when

ssumptions 5.7 and 5.8 hold with 𝜌𝑦 = 𝜌5, we have

𝜃∗ (𝑔̂) ≤ (1 − 𝜃∗)
(

𝑉 (𝑥) + 𝑘5𝜌5(𝑦)
)

+ 𝜃∗𝑊 (𝑥, 𝑦) − 𝜃∗𝑐𝑦𝜌𝑦(𝑦)

= 𝐸𝜃∗ (𝜓) − 𝑐𝜌5(𝑦)

≤ 𝐸𝜃∗ (𝜓),

or all 𝑔̂ ∈ 𝐺̂(𝑥, 𝑦) and all (𝑥, 𝑦) ∈ 𝐷̂, where 𝑐 ∶= 𝜃∗𝑐𝑦 − (1− 𝜃∗)𝑘5, which
is positive due to condition (b)-(2) of the theorem. Thus, in both of the
above cases we have

max
𝑒∈𝜕𝐸𝜃∗ (𝜓)

⟨𝑒, 𝑓⟩ ≤ 0, ∀ (𝑥, 𝑦) ∈ 𝐶̂, 𝑓 ∈ 𝐹𝜀(𝑥, 𝑦),

𝐸𝜃∗ (𝑔̂) − 𝐸𝜃∗ (𝜓) ≤ 0, ∀ (𝑥, 𝑦) ∈ 𝐷̂, 𝑔̂ ∈ 𝐺̂(𝑥, 𝑦),

for all 𝜀 ∈ (0, 𝜀∗), where as before 𝐹𝜀(𝑥, 𝑦) ∶= 𝐹𝑥(𝑥, 𝑦) × 𝜀−1𝐹𝑦(𝑥, 𝑦, 𝜀).
Since, by condition (c) of the theorem, there are no complete so-
lutions 𝜓 that remain in a non-zero level set of 𝐸𝜃∗ , UGAS of the
compact set ̃ follows by leveraging the fact that the HDS (5.2) satisfies
the hybrid basic conditions, and by invoking the hybrid invariance
principle Sanfelice (2021, Thm 3.23). ■

7.4. Proof of Theorem 6.1

To simplify notation, in this section we use 𝛤 ∶= 𝐶𝑞 ∪ 𝐷𝑞 , and
𝜓 ∶= (𝑥, 𝑞). The proofs follow similar ideas as in Sastry and Bodson
(1989) and Teel and Nes̆ić (2010), and rely on the 1 functions 𝜔𝜀, 𝜔0 ∶
(R𝑛 × 𝛤 ) × R≥0 → R𝑛, defined as follows:

𝜔𝜀(𝜓, 𝜏) ∶= ∫

𝜏

0
𝑑(𝜓, 𝑠)𝑒−𝜀(𝜏−𝑠)d𝑠, (7.21a)

𝜔0(𝜓, 𝜏) ∶=
𝜏
𝑑(𝜓, 𝑠)d𝑠, (7.21b)
∫0
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where 𝑑 was defined after Definition 6.1. Before presenting the proof
of Theorem 6.1, we establish a key technical lemma.

Lemma 7.1. Suppose that Assumptions 6.1–6.2 hold. Then, there exists
class  function 𝜉(⋅) such that:

𝜀𝜔𝜀(𝜓, 𝜏)| ≤ 𝜉(𝜀)|𝑥| (7.22a)
|

|

∇𝜏𝜔𝜀(𝜓, 𝜏) − 𝑑(𝜓, 𝜏)|| ≤ 𝜉(𝜀)|𝑥| (7.22b)
|

|

|

𝜀𝐽𝜓𝜔𝜀(𝜓, 𝜏)
|

|

|

≤ 𝜉(𝜀), (7.22c)

or all (𝜓, 𝜏) ∈ (R𝑛 ×𝛤 ) ×R≥0. Moreover, 𝜔𝜀(𝜓, 0) = 0, for all 𝜓 ∈ R𝑛 ×𝛤 .
□

The proof of Lemma 7.1 parallels the steps of Sastry and Bodson
(1989) and Teel and Nes̆ić (2010). We proceed to prove each of the
nequalities in (7.22) under the assumption that 𝜀 ∈ (0, 𝜀0).

roof of (7.22a). Using inequality (6.5), we have that ∀ (𝜓, 𝜏) ∈
R𝑛 × 𝛤 ) × R≥0 and all 𝜏′ ∈ R≥0, we have
|

|

|

|

|

∫

𝜏′+𝜏

𝜏′
𝑑(𝜓, 𝑠)d𝑠

|

|

|

|

|

≤ 𝛾(𝜏)𝜏|𝑥|. (7.23)

herefore, the difference 𝛥𝜔0(𝜏 + 𝜏′, 𝜏′) ∶= 𝜔0(𝜓, 𝜏 + 𝜏′) − 𝜔0(𝜓, 𝜏′)
atisfies

𝛥𝜔0(𝜏 + 𝜏′, 𝜏′)| =
|

|

|

|

|

∫

𝜏+𝜏′

0
𝑑(𝜓, 𝑠)d𝑠 − ∫

𝜏′

0
𝑑(𝜓, 𝑠)d𝑠

|

|

|

|

|

=
|

|

|

|

|

∫

𝜏+𝜏′

𝜏′
𝑑(𝜓, 𝑠)d𝑠

|

|

|

|

|

≤ 𝛾(𝜏)𝜏|𝑥|, (7.24)

for all 𝜏, 𝜏′ ≥ 0 and all 𝜓 ∈ R𝑛 × 𝛤 . Using integration by parts with the
choice of variables: 𝑣(𝑠) = ∫ 𝑠0 𝑑(𝜓, 𝑙)d𝑙,

d𝑣
d𝑠 (𝑠) = 𝑑(𝜓, 𝑠), 𝑢(𝑠) = 𝑒−𝜀(𝜏−𝑠),

and d𝑢(𝑠)
d𝑠 = 𝜀𝑒−𝜀(𝜏−𝑠), we can write (7.21a) as

𝜀(𝜓, 𝜏) = 𝜔0(𝜓, 𝜏) − 𝜀∫

𝜏

0
𝑒−𝜀(𝜏−𝑠)𝜔0(𝜓, 𝑠)d𝑠. (7.25)

Since 1 = 𝑒−𝜀𝜏 + 𝜀 ∫ 𝜏0 𝑒
−𝜀(𝜏−𝑠)d𝑠, it follows that 𝜔0(𝜓, 𝜏) = 𝜔0(𝜓, 𝜏)𝑒−𝜀𝜏 +

∫ 𝜏0 𝑒
−𝜀(𝜏−𝑠)𝜔0(𝜓, 𝜏)d𝑠. Then, (7.25) can be rewritten as

𝜀(𝜓, 𝜏) = 𝜔0(𝜓, 𝜏)𝑒−𝜀𝜏 + 𝜀∫

𝜏

0
𝑒−𝜀(𝜏−𝑠)𝛥𝜔0(𝜏, 𝑠)d𝜏.

Using (7.24) with the fact that 𝜔0(𝜓, 0) = 0, the above equality can be
used to upper-bound 𝜔𝜀 as follows

|𝜔𝜀(𝜓, 𝜏)| ≤ 𝛾(𝜏)𝜏|𝑥|𝑒−𝜀𝜏 + 𝜀∫

𝜏

0
𝑒−𝜀𝜈𝛾(𝜈)𝜈|𝑥|d𝜈, (7.26)

where we used the change of variables 𝜈 = 𝜏 − 𝑠. Using 𝜎 = 𝜀𝜏 and
̃ = 𝜀𝜈, we have

|𝜔𝜀(𝜓, 𝜏)| ≤ sup
𝜎≥0

𝛾
(𝜎
𝜀

) 𝜎
𝜀
𝑒−𝜎 |𝑥| + ∫

𝜀𝜏

0
𝛾
( 𝜎̃
𝜀

) 𝜎̃
𝜀
𝑒−𝜎̃ |𝑥|d𝜎̃

≤ sup
𝜎≥0

𝛾
(𝜎
𝜀

) 𝜎
𝜀
𝑒−𝜎 |𝑥| + ∫

∞

0
𝛾
( 𝜎̃
𝜀

) 𝜎̃
𝜀
𝑒−𝜎̃ |𝑥|d𝜎̃.

ultiplying both sides by 𝜀 > 0, we obtain

𝜀𝜔𝜀(𝜓, 𝜏)| ≤ sup
𝜎≥0

𝛾
(𝜎
𝜀

)

𝜎𝑒−𝜎 |𝑥| + ∫

∞

0
𝛾
( 𝜎̃
𝜀

)

𝜎̃𝑒−𝜎̃ |𝑥|d𝜎̃.

We can upper-bound this expression as follows:

|𝜀𝜔𝜀(𝜓,𝜏)| ≤
(

sup
𝜎∈[0,

√

𝜀]

(

𝛾
(𝜎
𝜀

)

𝑞𝑒−𝜎
)

+ sup
𝜎≥

√

𝜀

(

𝛾
(𝜎
𝜀

)

𝜎𝑒−𝜎
)

+ ∫

√

𝜀

0
𝛾
( 𝜎̃
𝜀

)

𝜎̃𝑒−𝜎̃d𝜎̃ + ∫

∞

√

𝜀
𝛾
( 𝜎̃
𝜀

)

𝜎̃𝑒−𝜎̃d𝜎̃
)

|𝑥|.

y the definition of a type  function, there exists 𝑘 > 0 such that
(𝜏) ≤ 𝑘 for all 𝜏 ≥ 0. Then, using 𝜎𝑒−𝜎 ≤ 𝑒−1 and 𝜎𝑒−𝜎 ≤ 𝜎, we obtain:

𝜀𝜔𝜀(𝜓, 𝜏)| ≤
(

𝑘
√

𝜀 + 𝛾

(

1
√

)

𝑒−1 + 𝑘∫

√

𝜀
𝜎̃d𝜎̃
29

𝜀 0
+𝛾

(

1
√

𝜀

)

∫

∞

√

𝜀
𝜎̃𝑒−𝜎̃d𝜎̃

)

|𝑥|

≤

(

𝑘
√

𝜀 + 𝛾

(

1
√

𝜀

)

(𝑒−1 + 1 +
√

𝜀) + 𝑘 𝜀
2

)

|𝑥| =∶ 𝜉(𝜀)|𝑥|,

where we used ∫ ∞
√

𝜀 𝜎̃𝑒
−𝜎̃d𝜎̃ = (

√

𝜀 + 1)𝑒−
√

𝜀 ≤ (
√

𝜀 + 1). Since 𝛾 is
ontinuous, decreasing, and lim𝜏→∞ 𝛾(𝜏) = 0, it follows that 𝜉(0) = 0,
(⋅) is continuous and increasing, and therefore that 𝜉 ∈ . ■

roof of (7.22b). The result follows by using the Differentiation under
he Integral Sign formula, which states that for any triple of smooth
unctions {𝑐(𝑦, 𝑥), 𝑎(𝑦), 𝑏(𝑦)}, with 𝑏(𝑦) ≥ 𝑎(𝑦), the following holds

𝑦 ∫

𝑏(𝑦)

𝑎(𝑦)
𝑐(𝑦, 𝑥)d𝑥 = 𝑐(𝑦, 𝑏(𝑦))∇𝑦𝑏(𝑦) − 𝑐(𝑦, 𝑎(𝑦))∇𝑦𝑎(𝑦) + ∫

𝑏(𝑦)

𝑎(𝑦)
∇𝑦𝑐(𝑦, 𝑥)d𝑥.

pplying this formula to (7.21), we directly obtain:

𝜏𝜔𝜀(𝜓, 𝜏) = ∇𝜏 ∫

𝜏

0
𝑑(𝜓, 𝑠)𝑒−𝜀(𝜏−𝑠)d𝑠

= 𝑑(𝜓, 𝜏) − 𝜀∫

𝜏

0
𝑑(𝜓, 𝑠)𝑒−𝜀(𝜏−𝑠)d𝑠

= 𝑑(𝜓, 𝜏) − 𝜀𝜔𝜀(𝜓, 𝜏). (7.27)

herefore, using (7.22a), we have:

∇𝜏𝜔𝜀(𝜓, 𝜏) − 𝑑(𝜓, 𝜏)|| ≤ |𝜀𝜔𝜀(𝜓, 𝜏)| ≤ 𝜉(𝜀)|𝑥|,

or all (𝜓, 𝜏) ∈ R𝑛 × 𝛤 × R≥0. ■

roof of (7.22c). The proof follows almost the same steps as in the
roof of inequality (7.22a), but now we leverage inequality (6.6) in-
tead of inequality (6.5). While the steps are repetitive (see also Sastry
Bodson, 1989), we present the proof for the purpose of completeness.
Consider the Jacobian matrices:

𝐽𝜓𝜔𝜀(𝜓, 𝜏) = ∫

𝜏

0
𝑒−𝜀(𝜏−𝑠)𝐽𝜓𝑑(𝜓, 𝑠)d𝑠, and

𝜓𝜔0(𝜓, 𝜏) = ∫

𝜏

0
𝐽𝜓𝑑(𝜓, 𝑠)d𝑠.

sing (6.6), we have that ∀ (𝜓, 𝑇 ) ∈ (R𝑛 × 𝛤 ) ×R≥0 and all 𝜏 ∈ R≥0 the
ollowing holds:
|

|

|

|

|

∫

𝜏+𝑇

𝜏
𝐽𝜓𝑑(𝜓, 𝜏)

|

|

|

|

|

≤ 𝑇 𝛾(𝑇 ). (7.28)

hus, we can bound 𝛥𝐽𝜓𝜔0(𝜏 + 𝜏′, 𝜏′) ∶= 𝐽𝜓𝜔0(𝜓, 𝜏 + 𝜏′) − 𝐽𝜓𝜔0(𝜓, 𝜏′)
s follows:

𝛥𝐽𝜓𝜔0(𝜏 + 𝜏′, 𝜏′)| =
|

|

|∫

𝜏+𝜏′

0
𝐽𝜓𝑑(𝜓, 𝜏)d𝜏 − ∫

𝜏′

0
𝐽𝜓𝑑(𝜓, 𝜏)d𝜏

|

|

|

=
|

|

|

|

|

∫

𝜏+𝜏′

𝜏′
𝐽𝜓𝑑(𝜓, 𝜏)d𝜏

|

|

|

|

|

≤ 𝛾(𝜏)𝜏, (7.29)

or all (𝜓, 𝜏) ∈ (R𝑛 × 𝛤 ) × R≥0 and all 𝜏′ ∈ R≥0. Using integration
y parts with the variables d𝑣

d𝑠 (𝑠) = 𝐽𝜓𝑑(𝜓, 𝑠), 𝑣(𝑠) = ∫ 𝑠0 𝐽𝜓𝑑(𝜓, 𝑙)d𝑙,
(𝑠) = 𝑒−𝜀(𝜏−𝑠), d𝑢(𝑠)

d𝑠 = 𝜀𝑒−𝜀(𝜏−𝑠), we now obtain:

𝐽𝜓𝜔𝜀(𝜓, 𝜏) = ∫

𝜏

0
𝐽𝜓𝑑(𝜓, 𝑠)d𝑠 − ∫

𝜏

0
𝜀𝑒−𝜀(𝜏−𝑠) ∫

𝑠

0
𝐽𝜓𝑑(𝜓, 𝑙)d𝑙d𝑠

= 𝐽𝜓𝜔0(𝜓, 𝜏) − 𝜀∫

𝜏

0
𝑒−𝜀(𝜏−𝑠)𝐽𝜓𝜔0(𝜓, 𝑠)d𝑠.

y using 𝐽𝜓𝜔0(𝜓, 𝜏) = 𝜀 ∫ 𝜏0 𝑒
−𝜀(𝜏−𝑠)𝐽𝜓𝜔0(𝜓, 𝜏)d𝑠+𝐽𝜓𝜔0(𝜓, 𝜏)𝑒−𝜀𝜏 , we can

rite the above expression as

𝜓𝜔𝜀(𝜓, 𝜏) = 𝐽𝜓𝜔0(𝜓, 𝜏)𝑒−𝜀𝜏 + 𝜀∫

𝜏

0
𝑒−𝜀(𝜏−𝑠)(𝐽𝜓𝜔0(𝜓, 𝜏) − 𝐽𝜓𝜔0(𝜓, 𝑠))d𝑠.

hen, using (7.29) and 𝐽𝜓𝜔0(𝜓, 0) = 0, we obtain:

𝐽𝜓𝜔𝜀(𝜓, 𝜏)| ≤ 𝛾(𝜏)𝜏𝑒−𝜀𝜏 + 𝜀
𝜏
𝑒−𝜀(𝜏−𝑠)(𝑡 − 𝜏)𝛾(𝜏 − 𝑠)d𝑠.
∫0
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From this point, the procedure follows the same steps as in the proof
of inequality (7.22a), with the substitution of 𝐽𝜓𝜔𝜀(𝜓, 𝜏) for 𝜔𝜀(𝜓, 𝜏) in
(7.26). ■

We are now ready to present the proof of Theorem 6.1. The proof
nvolves two main steps.

tep 1 (Near-Identity transformation): Let 𝜔𝜀 and 𝜉 come from
emma 7.1, and consider the transformation 𝑥 → 𝑥̂, given by 𝑥̂ =
𝑥 − 𝜀𝜔𝜀(𝑥, 𝑞, 𝜏). Moreover, define 𝛷(𝑥) = 𝑥̂ + 𝜀𝜔𝜀(𝑥, 𝑞, 𝜏), and note that
|𝛷(𝑥) −𝛷(𝑥′)| = |𝜀𝜔𝜀(𝑥, 𝑞, 𝜏) − 𝜀𝜔𝜀(𝑥′, 𝑞, 𝜏)| ≤ 𝜉(𝜀)|𝑥 − 𝑥′|, where we
used (7.22c). Let 0 < 𝜀1 < 𝜀0 be such that 𝜉(𝜀) < 1 for all 𝜀 ∈ (0, 𝜀1],
which exists since 𝜉 ∈ . Then, 𝛷(𝑥) is a contraction (Sastry & Bodson,
1989, pp. 347). Therefore, for all (𝑥̂, 𝑞, 𝜏) ∈ R𝑛 × 𝛤 ×R≥0, there exists a
unique fixed point 𝑥 satisfying 𝑥 = 𝛷(𝑥) = 𝑥̂+𝜀𝜔𝜀(𝑥, 𝑞, 𝜏). Therefore, the
inverse of the map 𝑥 → 𝑥̂ is well-defined for all (𝑥̂, 𝑞, 𝜏) ∈ R𝑛 ×𝛤 ×R≥0,
thus making the map a bijection. The smoothness properties of 𝜔𝜀 imply
that the bijection 𝑥→ 𝑥̂ is a homeomorphism for all 𝜀 ∈ (0, 𝜀1].

Now, using (7.22a) and the triangle inequality, we obtain |𝑥̂| ≤
|𝑥|+ |𝜀𝜔𝜀(𝑥, 𝑞, 𝜏)| ≤ |𝑥|+𝜉(𝜀)|𝑥| = (1+𝜉(𝜀))|𝑥|. Using the reverse triangle
inequality, and (7.22a), one has |𝑥| − |𝑥̂| ≤ |𝑥 − 𝑥̂| = |𝜀𝜔𝜀(𝑥, 𝑞, 𝜏)| ≤
𝜉(𝜀)|𝑥|, which implies |𝑥| − 𝜉(𝜀)|𝑥| ≤ |𝑥̂|. Thus, (1 − 𝜉(𝜀))|𝑥| ≤ |𝑥̂|.
Combining both bounds, we obtain:

(1 − 𝜉(𝜀))|𝑥| ≤ |𝑥̂| ≤ (1 + 𝜉(𝜀))|𝑥|, ∀ 𝑥, 𝑥̂ ∈ R𝑛. (7.30)

Step 2 (Lyapunov Analysis): Let (𝜓, 𝜏) be a solution to (6.1a)–(6.1b),
with 𝜓 = (𝑥, 𝑞), and consider the signal 𝜓̂ ∶ dom(𝜓) → R𝑛 × 𝛤 defined
by 𝜓̂(𝑡, 𝑗) ∶= (𝑥̂(𝑡, 𝑗), 𝑞(𝑡, 𝑗)), where
(

𝑥̂(𝑡, 𝑗)
𝑞(𝑡, 𝑗)

)

=
(

𝑥(𝑡, 𝑗) − 𝜀𝜔𝜀(𝑥(𝑡, 𝑗), 𝑞(𝑡, 𝑗), 𝜏(𝑡, 𝑗))
𝑞(𝑡, 𝑗)

)

, (7.31)

for all (𝑡, 𝑗) ∈ dom(𝜓̂) = dom(𝜓), and where we assume that 𝜀 ∈ (0, 𝜀1].
Since 𝜔𝜀(⋅) is continuously differentiable, it follows that 𝑥̂(⋅, 𝑗) is locally
absolutely continuous for every 𝑗 such that 𝐼𝑗 ∶= {𝑡 ∶ (𝑡, 𝑗) ∈ dom(𝜓̂)}
has nonempty interior, and, therefore, that 𝜓̂ is a hybrid arc.

Next, we evaluate the Lyapunov function 𝑉 , as defined in Assump-
tion 6.3, along the evolution of the hybrid arc 𝜓̂ , and we show that
it decreases outside an (𝜀)-neighborhood of the set . Indeed, for
all 𝑗 such that 𝐼𝑗 has nonempty interior, and all 𝑡 ∈ 𝐼𝑗 such that
(𝑡, 𝑗) ∈ dom(𝜓̂), we have:

𝑉̇ (𝜓̂(𝑡, 𝑗)) =
⟨

∇𝑉 (𝜓̂(𝑡, 𝑗)), ̇̂𝜓(𝑡, 𝑗)
⟩

. (7.32)

Due to (6.1a) and (7.31), it follows that

̇̂ (𝑡, 𝑗) = 𝑞̇(𝑡, 𝑗) ∈ 𝐹𝑞(𝑞(𝑡, 𝑗)) = 𝐹𝑞(𝑞(𝑡, 𝑗)), (7.33)

which holds for almost all 𝑡 ∈ 𝐼𝑗 . Additionally, we have that

̇̂ (𝑡, 𝑗) = 𝑥̇(𝑡, 𝑗) − 𝜀𝐽𝜓𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))𝜓̇(𝑡, 𝑗)

− 𝜀∇𝜏𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))𝜏̇(𝑡, 𝑗),

where 𝜓(𝑡, 𝑗) = (𝑥(𝑡, 𝑗), 𝑞(𝑡, 𝑗)). Using (6.1a) and (7.27), we obtain:

̇̂𝑥(𝑡, 𝑗) = 𝑓 (𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗), 𝜀) − 𝜀𝐽𝜓𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))𝜓̇(𝑡, 𝑗)

− ∇𝜏𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))

= 𝑓 (𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗), 𝜀) − 𝜀𝐽𝜓𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))𝜓̇(𝑡, 𝑗)

− 𝑓 (𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗), 0) + 𝑓 (𝜓(𝑡, 𝑗))

+ 𝜀𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗)).

Adding and subtracting 𝑓 (𝜓̂) and using (7.31):

̇̂𝑥(𝑡, 𝑗) = 𝑓 (𝜓̂(𝑡, 𝑗)) + 𝜀𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))

+ 𝑓
(

𝑥(𝑡, 𝑗), 𝑞(𝑡, 𝑗), 𝜏(𝑡, 𝑗), 𝜀
)

− 𝑓
(

𝑥(𝑡, 𝑗), 𝑞(𝑡, 𝑗), 𝜏(𝑡, 𝑗), 0
)

+ 𝑓 (𝑥̂(𝑡, 𝑗) + 𝜀𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗)), 𝑞) − 𝑓 (𝜓̂(𝑡, 𝑗))

− 𝜀𝐽𝜓𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))𝜓̇(𝑡, 𝑗),
30
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for almost all 𝑡 ∈ 𝐼𝑗 . Therefore, by matching terms, ̇̂𝑥(𝑡, 𝑗) can be written
in compact form as:

̇̂ (𝑡, 𝑗) = 𝑓 (𝑥̂(𝑡, 𝑗), 𝑞(𝑡, 𝑗)) + 𝑝𝐹 (𝑡, 𝑗), (7.34)

where 𝑝𝐹 (𝑡, 𝑗) ∶= 𝑝𝑎(𝑡, 𝑗) − 𝜀𝐽𝜓𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))𝜓̇(𝑡, 𝑗) Then, using (7.33)
and (7.34), it follows from (7.32) that

𝑉̇ (𝜓̂(𝑡, 𝑗)) =
⟨

∇𝑉 (𝜓̂(𝑡, 𝑗)),
(

𝑓 (𝜓̂(𝑡, 𝑗)), 𝑞̇(𝑡, 𝑗)
)⟩

+ ⟨∇𝑥̂𝑉 (𝜓̂(𝑡, 𝑗)), 𝑝𝑎(𝑡, 𝑗)⟩

+ 𝜀
⟨

∇𝑥̂𝑉 (𝜓̂(𝑡, 𝑗)), − 𝐽𝜓𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))𝜓̇(𝑡, 𝑗)
⟩

, (7.35)

for almost all 𝑡 ∈ 𝐼𝑗 . Note that (𝑓 (𝜓̂(𝑡, 𝑗)), 𝑞̇(𝑡, 𝑗)) ∈ 𝐹 (𝜓̂(𝑡, 𝑗)) and
that 𝜓̂(𝑡, 𝑗) ∈ 𝐶, since 𝐶 is invariant under the transformation (7.31).
Then, using Assumption 6.3-(b) and the Cauchy–Schwarz inequality,
from (7.35) we obtain that

𝑉̇ (𝜓̂(𝑡, 𝑗)) ≤ −𝑐4𝑉 (𝜓̂(𝑡, 𝑗)) + 𝑐3|𝜓̂(𝑡, 𝑗)|
𝑝−1
 |𝑝𝑎(𝑡, 𝑗)|

+ 𝜀𝑐3|𝜓̂(𝑡, 𝑗)|
𝑝−1
 |𝐽𝜓𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))𝜓̇(𝑡, 𝑗)|, (7.36)

for almost all 𝑡 ∈ 𝐼𝑗 . Using the Lipschitz properties in Assumptions 6.1-
(d) and 6.2, for all (𝑥, 𝑞, 𝜏, 𝜀) ∈ R𝑛 × 𝐶 × R≥0 × (0, 𝜀1]:

|𝑓 (𝑥, 𝑞, 𝜏, 𝜀) − 𝑓 (𝑥, 𝑞, 𝜏, 0)| ≤ 𝜀𝐿𝜀0 |𝑥|,

|𝑓 (𝑥̂ + 𝜀𝜔𝜀(𝑥, 𝑞, 𝜏), 𝑞) − 𝑓 (𝑥̂, 𝑞)| ≤ 𝐿ave|𝜀𝜔𝜀(𝑥, 𝑞, 𝜏)|

≤ 𝐿ave𝜉(𝜀)|𝑥|,

where the last inequality follows from (7.22a). Thus, using (7.30), the
term 𝑝𝑎 satisfies

|𝑝𝑎| ≤

(

(𝐿ave + 1)𝜉(𝜀) + 𝜀𝐿𝜀0
)

1 − 𝜉(𝜀1)
|𝑥̂|. (7.37)

We proceed to bound the last term in (7.35). Using (6.1a), the fact
that 𝑓 (0, 𝑞, 𝜏, 𝜀) = 0, and Assumption 6.1-(c), we obtain |𝜓̇(𝑡, 𝑗)| ≤
|𝑥̇(𝑡, 𝑗)| + |𝑞̇(𝑡, 𝑗)| ≤ 𝐿𝑥|𝑥(𝑡, 𝑗)| + 𝑀 , where 𝑀 > 0 exists due to the
compactness of 𝐶 and the local boundedness of 𝐹𝑞(⋅). Therefore, using
(7.22c):
|

|

|

𝜀𝐽𝜓𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗))𝜓̇(𝑡, 𝑗)
|

|

|

≤ 𝜉(𝜀) |𝜓̇(𝑡, 𝑗)|

≤ 𝜉(𝜀)
1 − 𝜉(𝜀1)

𝐿𝑥|𝑥̂(𝑡, 𝑗)| + 𝜉(𝜀)𝑀. (7.38)

Thus, for all (𝑡, 𝑗) ∈ dom(𝜓̂) such that 𝐼𝑗 has non-empty interior, we
have that 𝑝𝐹 (𝑡, 𝑗) satisfies the bound

|𝑝𝐹 (𝑡, 𝑗)| ≤

(

(𝐿ave + 𝐿𝑥 + 1)𝜉(𝜀) + 𝜀𝐿𝜀0
1 − 𝜉(𝜀1)

)

|𝑥̂(𝑡, 𝑗)| + 𝜉(𝜀)𝑀

≤ 𝜂(𝜀)|𝑥̂(𝑡, 𝑗)| + 𝜉(𝜀)𝑀, (7.39)

or all 𝑡 ∈ 𝐼𝑗 , and all 𝑗 in the domain of the solution, and where 𝜂 ∈ 
ince 𝜉 and the identity function are of class . Using (7.39) together
ith Assumption 6.3-(a) in (7.36), we obtain that

̇ (𝜓̂(𝑡, 𝑗)) ≤ −𝑐4𝑉 (𝜓̂(𝑡, 𝑗)) +
𝑐3
𝑐1
𝜂𝐹 (𝜀)𝑉 (𝜓̂(𝑡, 𝑗)) + 𝜂𝐹 (𝜀)𝑀|𝜓̂(𝑡, 𝑗)|𝑝−1

≤ −
(

𝑐4
2

−
𝑐3
𝑐1
𝜂𝐹 (𝜀)

)

𝑉 (𝜓̂(𝑡, 𝑗))

−
𝑐4𝑐1
2

|𝜓̂(𝑡, 𝑗)|𝑝 + 𝜂𝐹 (𝜀)𝑀|𝜓̂(𝑡, 𝑗)|𝑝−1 , (7.40)

or almost all 𝑡 ∈ 𝐼𝑗 , and where 𝜂𝐹 (𝜀) ∶= max{𝜂(𝜀), 𝜉(𝜀)}.
Now, we study the change of the Lyapunov function 𝑉 along the

iscrete-time evolution of 𝜓̂ . To this end, note that 𝐶 ∪ 𝐷 is invariant
nder the transformation (7.31) for all 𝜀 ∈ (0, 𝜀1]. Therefore, using
ssumption 6.3-(a), for all (𝑡, 𝑗) ∈ dom(𝜓̂) such that (𝑡, 𝑗 +1) ∈ dom(𝜓̂),

t follows that

(𝜓̂(𝑡, 𝑗 + 1)) ≤ 𝑐2|𝜓̂(𝑡, 𝑗 + 1)|𝑝. (7.41)

ow, using (6.1b) and (7.31):
̂(𝑡, 𝑗 + 1) = 𝑞(𝑡, 𝑗 + 1) ∈ 𝐺𝑞(𝑞(𝑡, 𝑗)) = 𝐺𝑞(𝑞(𝑡, 𝑗)). (7.42)
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Similarly, using (7.31) and (6.1b), we obtain:

̂(𝑡, 𝑗 + 1) = 𝑥(𝑡, 𝑗 + 1) − 𝜀𝜔𝜀(𝜓(𝑡, 𝑗 + 1), 𝜏(𝑡, 𝑗 + 1))

= 𝑔(𝜓(𝑡, 𝑗)) − 𝜀𝜔𝜀(𝜓(𝑡, 𝑗 + 1), 𝜏(𝑡, 𝑗 + 1))

= 𝑔
(

𝑥̂(𝑡, 𝑗) + 𝜀𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗)), 𝑞(𝑡, 𝑗)
)

− 𝜀𝜔𝜀(𝜓(𝑡, 𝑗 + 1), 𝜏(𝑡, 𝑗 + 1)).

Adding and subtracting 𝑔(𝜓̂(𝑡, 𝑗)):

̂(𝑡, 𝑗 + 1) = 𝑔
(

𝑥̂(𝑡, 𝑗) + 𝜀𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗)), 𝑞(𝑡, 𝑗)
)

+ 𝑔(𝜓̂(𝑡, 𝑗)) − 𝑔(𝜓̂(𝑡, 𝑗)) − 𝜀𝜔𝜀(𝜓(𝑡, 𝑗 + 1), 𝜏(𝑡, 𝑗 + 1))

= 𝑔(𝜓̂(𝑡, 𝑗)) + 𝑝𝐽 (𝑡, 𝑗 + 1), (7.43)

where

𝑝𝐽 (𝑡, 𝑗 + 1) = 𝑔
(

𝑥̂(𝑡, 𝑗) + 𝜀𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗), 𝑞(𝑡, 𝑗))
)

− 𝑔(𝜓̂(𝑡, 𝑗)) − 𝜀𝜔𝜀
(

𝑔(𝜓(𝑡, 𝑗)), 𝑞(𝑡, 𝑗 + 1), 𝜏(𝑡, 𝑗)
)

. (7.44)

Using Jensen’s inequality we have

|𝜓̂(𝑡, 𝑗 + 1)|𝑝 ≤ 2𝑝−1
|

|

|

|

|

|

[

𝑔(𝜓̂(𝑡, 𝑗))

𝑞(𝑡, 𝑗 + 1)

]

|

|

|

|

|

|

𝑝



+ 2𝑝−1
|

|

|

|

|

|

[

𝑝𝐽 (𝑡, 𝑗 + 1)

0

]

|

|

|

|

|

|

𝑝



.

Using 𝑔̂(𝑡, 𝑗 + 1) ∶= (𝑔(𝜓̂(𝑡, 𝑗)), 𝑞(𝑡, 𝑗 + 1)), and since by Assumption 6.1-
(f) and the definition of the average jump map we have 𝑔̂(𝑡, 𝑗 + 1) ∈
𝐺̄(𝜓̂(𝑡, 𝑗)) ⊂ R𝑛 × (𝐶𝑞 ∪ 𝐷𝑞), by using the monomial bounds on 𝑉 we
obtain:

𝑉 (𝜓̂(𝑡, 𝑗 + 1)) ≤ 2𝑝−1
𝑐2
𝑐1
𝑉 (𝑔̂(𝑡, 𝑗 + 1)) + 2𝑝−1𝑐2|𝑝𝐽 (𝑡, 𝑗 + 1)|𝑝.

dditionally, since (𝑡, 𝑗 + 1) ∈ dom(𝜓̂), by the definition of solutions to
ybrid dynamical systems and (6.1b), it follows that 𝜓(𝑡, 𝑗) ∈ 𝐷, and,
hus, that 𝜓̂(𝑡, 𝑗) ∈ 𝐷. Then, by Assumption 6.3-(c), we have:

(𝜓̂(𝑡, 𝑗 + 1)) ≤ 2𝑝−1
𝑐2
𝑐1
𝑐5𝑉 (𝜓̂(𝑡, 𝑗)) + 2𝑝−1𝑐2|𝑝𝐽 (𝑡, 𝑗 + 1)|𝑝. (7.45)

We proceed to bound the last term of (7.45). Using (7.44) and Assump-
tion 6.1-(e):

|𝑝𝐽 (𝑡, 𝑗 + 1)| ≤ 𝐿𝑔|𝜀𝜔𝜀(𝜓(𝑡, 𝑗), 𝜏(𝑡, 𝑗), 𝑞(𝑡, 𝑗))|

+
|

|

|

|

𝜀𝜔𝜀
(

𝑔(𝜓(𝑡, 𝑗)), 𝑞(𝑡, 𝑗 + 1), 𝜏(𝑡, 𝑗)
)

|

|

|

|

. (7.46)

Additionally, using (7.22a) and (6.1b), the last term in (7.46) satisfies:
|

|

|

|

𝜀𝜔𝜀
(

𝑔(𝜓(𝑡, 𝑗)), 𝑞(𝑡, 𝑗 + 1), 𝜏(𝑡, 𝑗)
)

|

|

|

|

≤ 𝜉(𝜀)|𝑔(𝜓(𝑡, 𝑗))|

for all 𝜀 ∈ (0, 𝜀1]. Since 𝑔(0, 𝑞) = 0 for all 𝑞 ∈ 𝐷𝑞 , using (6.4) it follows
that |𝑔(𝜓(𝑡, 𝑗))| ≤ 𝐿𝑔|𝑥(𝑡, 𝑗)|. Therefore, we obtain that

|𝑝𝐽 (𝑡, 𝑗 + 1)| ≤ 2𝐿𝑔𝜉(𝜀)|𝑥(𝑡, 𝑗)|,

where we used (7.22a) again to upper bound the second term in (7.43).
Using (7.30) and 𝑐𝐽 ∶= 2𝐿𝑔

1−𝜉(𝜀1)
we obtain:

𝑝𝐽 (𝑡, 𝑗 + 1)| ≤ 𝜉(𝜀)𝑐𝐽 |𝑥̂(𝑡, 𝑗)| =∶ 𝜂𝐽 (𝜀)|𝑥̂(𝑡, 𝑗)|, (7.47)

holds for all (𝑡, 𝑗) ∈ dom(𝜓̂) such that (𝑡, 𝑗 + 1) ∈ dom(𝜓̂), and where
𝜂𝐽 ∈  since 𝜉 ∈ . Therefore, from (7.45), we obtain that

𝑉 (𝜓̂(𝑡, 𝑗 + 1)) ≤
(

2𝑝−1
𝑐2
𝑐1
𝑐5 + 2𝑝−1

𝑐2
𝑐1
𝜂𝐽 (𝜀)𝑝

)

𝑉 (𝜓̂(𝑡, 𝑗)) (7.48)

where in the last inequality we used Assumption 6.3-(a).
Let 𝜀⋆ ∈ (0, 𝜀1) be such that 𝑐4

2 − 𝜂𝐹 (𝜀)
𝑐3
𝑐1

> 0 and 2𝑝−1𝜆 +
2𝑝−1 𝑐2𝑐1

𝜂𝐽 (𝜀)𝑝 < 1 for all 𝜀 ∈ (0, 𝜀⋆]. Such 𝜀⋆ always exists because
𝜂𝐹 , 𝜂𝐽 ∈  and the assumption on 𝜆. Then, from (7.40), for almost all
(𝑡, 𝑗) ∈ dom(𝜓̂) it follows that

𝑉̇ (𝜓̂(𝑡, 𝑗)) ≤ −𝛼𝐹𝑉 (𝜓̂(𝑡, 𝑗)) −
𝑐4𝑐1
2

|𝜓̂(𝑡, 𝑗)|𝑝 + 𝜂𝐹 (𝜀⋆)𝑐3𝑀|𝜓̂(𝑡, 𝑗)|𝑝−1 ,

(7.49)
31
where 𝛼𝐹 ∶= ( 𝑐42 − 𝜂𝐹 (𝜀⋆)
𝑐3
𝑐1
) > 0.

Similarly, from (7.48), for all (𝑡, 𝑗) ∈ dom(𝜓̂) such that (𝑡, 𝑗 + 1) ∈
dom(𝜓̂), it follows that :

𝑉 (𝜓̂(𝑡, 𝑗 + 1)) ≤ 𝛼𝐽𝑉 (𝜓̂(𝑡, 𝑗)), (7.50)

where 𝛼𝐽 ∶=
(

2𝑝−1𝜆 + 2𝑝−1 𝑐2𝑐1
𝜓𝐽 (𝜀⋆)𝑝

)

∈ (0, 1).
Using (7.49) and (7.50), we conclude that for every hybrid arc 𝜓̂ ,

obtained through the transformation (7.31) from a solution (𝜓, 𝜏) to
(6.1a)–(6.1b), the function 𝑉 satisfies the following bounds:

𝑉̇ (𝜓̂(𝑡, 𝑗)) ≤ −𝛼𝐹𝑉 (𝜓̂(𝑡, 𝑗)),

for almost all (𝑡, 𝑗) ∈ dom(𝜓̂) such that |𝜓̂(𝑡, 𝑗)| ≥ 2𝑐3
𝑐4𝑐1

𝑀𝜂𝐹 (𝜀⋆), and

(𝜓̂(𝑡, 𝑗 + 1)) ≤ 𝛼𝐽𝑉 (𝜓̂(𝑡, 𝑗)),

for all (𝑡, 𝑗) ∈ dom(𝜓̂) such that (𝑡, 𝑗 + 1) ∈ dom(𝜓̂). Then, using the
comparison principle of Cai and Teel (2009, Lemma C.1), and following
the same ideas of Cai and Teel (2009, Appendix C), there exists 𝑘 > 0
and 𝛾 ∈  such that

𝑉 (𝜓̂(𝑡, 𝑗)) ≤ 𝑉 (𝜓̂(0, 0))𝑒−𝑘(𝑡+𝑗) + 𝛾
(

𝑀𝜂𝐹 (𝜀⋆)
)

,

for all (𝑡, 𝑗) ∈ dom(𝜓̂). Therefore, using Assumption 6.3-(a), it follows
that

|𝜓̂(𝑡, 𝑗)| ≤
(

𝑐2
𝑐1

)
1
𝑝
𝑒−

𝑘
𝑝 (𝑡+𝑗)

|𝜓̂(0, 0)| + 𝛾
(

𝑀𝜂𝐹 (𝜀⋆)
)

.

Then, using (7.30), for all 𝜀 ∈ (0, 𝜀⋆) and all solutions (𝜓, 𝜏) to
(6.1a)–(6.1b), the following bound holds:

|𝜓(𝑡, 𝑗)| ≤ 𝜅1𝑒
−𝜅2(𝑡+𝑗)

|𝜓(0, 0)| + 𝛾̃(𝑀𝜂𝐹 (𝜀⋆)) (7.51)

for all (𝑡, 𝑗) ∈ dom((𝜓, 𝜏)), where 𝜅1 = 1+𝜉(𝜀1)
1−𝜉(𝜀1)

(

𝑐2
𝑐1

)
1
𝑝 , 𝛾̃(⋅) = 1

1−𝜉(𝜀1)
𝛾(⋅),

and 𝜅2 = 𝑘
𝑝 . The bound (7.51) allows us to obtain Item (a) of Theo-

rem 6.1, by setting 𝜈 = 𝛾̃(𝑀𝜂𝐹 (𝜀⋆)).
Finally, if 𝐽𝑞𝑓 (𝑥, 𝑞, 𝜏, 𝜀)𝑞̇ = 0 for all (𝑥, 𝑞, 𝜏, 𝜀) ∈ R𝑛 × 𝐶 × R≥0 × R≥0,

hen the last term in (7.38) is zero, and (7.51) holds with 𝛾̃ ≡ 0. Thus,
e obtain Item (b) of Theorem 6.1. This concludes the proof. ■

. Conclusions

In this paper, we have studied different emerging techniques in
he areas of averaging and singular perturbation for the control and
ptimization of dynamical systems. In particular, higher-order averag-
ng and singular perturbation methods were introduced for dynamical
ystems modeled as multi-time scale ordinary differential equations.
ifferent academic and biologically inspired examples were presented

o illustrate the techniques. For dynamical systems that also incorporate
iscrete-time dynamics, namely, hybrid dynamical systems, we studied
lobal stability results via first-order singular perturbation and aver-
ging theory based on Lyapunov-like conditions. The different results
ere illustrated in analytical and numerical examples in the areas of op-

imization, adaptive systems, sampled-data systems, switching systems,
ybrid extremum-seeking control, and hybrid vibrational control. The
esults and discussions can provide guidelines for future research in this
ield and for the study of open research questions that could be tackled
n the future. Examples include the development of higher-order aver-
ging and singular perturbation methods for hybrid dynamical systems,
he systematic design and analysis of novel multi-time scale controllers
hat leverage these techniques, the incorporation of stochastic phenom-
na, as well as the synergistic use of hybrid control and vibrational
ontrol for the solution of model-free stabilization problems in systems
hat do not admit a single smooth globally stabilizing feedback law.
reliminary results in some of these directions have been pursued
n Abdelgalil and Poveda (2023). Moreover, given the ubiquitous na-
ure of multi-time scale dynamics across various practical engineering
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A

and biological systems, the analytical techniques discussed in the pa-
per could also find fruitful applications in diverse domains such as
cyber-genetics, robotics, power systems, and learning-based decision-
making algorithms, where inherent time scale separations could enable
the development of reductions and decompositions that facilitate the
synthesis and analysis of algorithms and control systems with provable
stability guarantees.
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