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A Stochastic Binary Vertex-Triggering Resetting
Algorithm for Global Synchronization of

Pulse-Coupled Oscillators
Muhammad Umar Javed , Jorge I. Poveda , and Xudong Chen , Member, IEEE

Abstract—In this article, we propose a novel stochastic
binary resetting algorithm for networks of pulse-coupled
oscillators (or, simply, agents) to reach global synchroniza-
tion. The algorithm is simple to state: Every agent in a
network oscillates at a common frequency. Upon complet-
ing an oscillation, an agent generates a Bernoulli random
variable to decide whether it sends pulses to all of its
out-neighbors or it stays quiet. Upon receiving a pulse, an
agent resets its state by following a binary phase update
rule. We show that such an algorithm can guarantee global
synchronization of the agents almost surely as long as the
underlying information flow topology is a rooted directed
graph. The proof of the result relies on the use of a stochas-
tic hybrid dynamical system approach. Toward the end of
this article, we present numerical demonstrations for the
validity of the result and numerical studies about the units
of time needed to reach synchronization for networks with
various information flow topologies.

Index Terms—Hybrid dynamical systems (HDSs), net-
worked systems, stochastic processes, synchronization of
multiagent systems.

I. INTRODUCTION

I
N THIS article, we consider a network of N pulse-coupled

oscillators (PCOs), characterized by periodic resetting dy-

namics, sharing information with their neighbors where the

neighboring relations are described by a directed graph (di-

graph). Each agent has an individual state τi ∈ R, which evolves

according to the following continuous-time dynamics:

τi ∈ [0, 1) ⇒ τ̇i =
1

T
∀ i ∈ {1, 2, . . . , N} (1)

where T > 0 is the period of oscillation, and [0,1) is a nor-

malized unit interval. When the state of an agent i finishes an
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Fig. 1. Illustration of our stochastic binary resetting algorithm: When

agent 1 satisfies τ1 = 1, it updates its state by τ+
1

= 0. Meanwhile, it
draws a Bernoulli random variable to decide whether to send a pulse
to its out-neighbors (in this case, only agent 2). If the pulse is sent,
then upon receiving the pulse, agent 2 will update its state by following
the binary update rule described in (3). In this example, since τ2 >

r2, agent 2 updates its state by τ+
2

= 1. Note that once all agents are
synchronized, they remain synchronized under our algorithm (1)–(3).

oscillation, i.e., τi = 1, it will instantaneously reset its individual

state back to zero

τi = 1 ⇒ τ+i = 0. (2)

Simultaneously, the agent sends a pulse, with a certain proba-

bility p ∈ (0, 1) to trigger all of its (out-)neighbors j. Each out-

neighbor j of agent i, upon receiving the pulse, instantaneously

updates its state τj using a set-valued binary phase update rule

τ+j ∈ Rj(τj) =

⎧

⎨

⎩

{0}, τj ∈ [0, rj)
{0, 1}, τj = rj
{1}, τj ∈ (rj , 1]

(3)

where the constant rj ∈ (0, 1) partitions the unit interval.

Among others, in this article, we show that if the underlying

information flow topology is a rooted directed graph, then for any

p and any r := [r1, . . . , rN ]⊤, the network of PCOs will reach

synchronization almost surely from all initial conditions. Since

each individual state τi is confined to evolve in the normalized

interval [0,1], one can view the state as flowing in a unit circle

(that is formed by identifying the two endpoints 0 and 1 with

each other), in the counterclockwise direction, with frequency

1/T . In this way, global synchronization of PCOs can be cast as

a consensus problem on the N -torus (e.g., see [1], [2], and [3]).

See Fig. 1 for an illustration of our algorithm on the 2-torus.

Synchronization of PCOs using deterministic resetting algo-

rithms has been widely investigated in the literature, and we

refer the reader to [2], [4], [5], [6], [7], [8], [9], [10], [11],
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Fig. 2. Two different random triggering models “vertex-triggering” and “edge-triggering.” We present possible events when agent 1 hits value 1

(i.e., the agent satisfies τ1 = 1, τ+
1

= 0) for both models. An out-neighbor of agent 1 updates its state to either 0 or 1 when it receives a pulse from
agent 1; otherwise, the out-neighbor will retain its state.

[12], [13], [14], [15], and [16]. However, in none of these

works, has global synchronization been shown to achieve overall

rooted digraphs using deterministic resetting algorithms. Some

works have relaxed the global convergence requirement to either

local convergence (e.g., [4], [14], and [15]) or almost global

convergence (e.g., [12], [13], and [16]) while other works have

restrictions on the underlying information flow topologies [2],

[5], [6], [7], [8], [9], [10], [11]. Recently, we have shown

in [2] that a certain deterministic binary resetting algorithm

cannot achieve global synchronization over all rooted digraphs.

Whether or not there exists a deterministic resetting algorithm

that can achieve global synchronization of PCOs over all rooted

digraphs still remains open.

The problem of global synchronization of PCOs using

stochastic resetting algorithms has also been investigated in the

literature [2], [3], [17], [18], [19]. Our study on the problem,

as well as the main results established in the article, is dif-

ferent from the ones in those existing works, as we elaborate

ahead.

First, we mention the works [3] and [17]. In these works, the

authors have considered a similar stochastic resetting algorithm.

A key difference is that their phase update rule is described by

a piecewise continuous function (the only discontinuity is at rj ,

which is set to be 0.5 for all the agents), with each piece being

strictly monotonically increasing, whereas ours is piecewise

constant. Although the difference in the phase update rule seems

to be moderate, the analyses of the two resulting systems differ

significantly. In particular, the arguments developed in [3] and

[17] do not apply to our case; certain key results, such as

[17, Lemma 8], do not hold anymore. For example, the authors

there have considered the arc of minimum length that covers

all the agents on the unit circle and shown that the number of

agents on the boundary points of the arc cannot increase over

time. This is not true if one uses the binary phase update rule.

Besides the difference in the phase update rule, there is also a

difference in the underlying information flow topology. Using

their resetting algorithm, the authors have established almost

sure global synchronization over undirected connected graphs

(i.e., communications between agents are reciprocal) in [3] and

over strongly connected digraphs in [17]. The class of rooted

digraphs considered in this article is more general.

Next, in the work [18], Pagliari and Scaglione have considered

a different type of triggering: Upon hitting 1, an agent i will

generate multiple independent, identically distributed (i.i.d.)

Bernoulli random variables, with the number of random vari-

ables matching the number of its neighbors (that is, the un-

derlying information flow topology is undirected), so as to

decide individually whether or not it sends a pulse to each

of its neighbors. This is in contrast to the triggering model

considered in this article where an agent, upon hitting 1, draws

only a single Bernoulli random variable and broadcasts to all

of its (out-)neighbors. Because of this, we call our trigger-

ing model vertex-triggering and theirs edge-triggering. See

Fig. 2 for an illustration of both models. Note that our previous

work [2] has also considered edge-triggering. An advantage of

“vertex-triggering” over “edge-triggering” is that the former re-

quires fewer Bernoulli random variables drawn at a time, making

it easier for the agents to implement the resetting algorithm. The

difference between the two algorithms will also be carried over

to the analysis: For edge-triggering, the underlying information

flow topology can be viewed as an Erdős–Rényi type random

graph whenever an agent hits 1 (since the edges are drawn

independently). In [2], we relied on such a probability model

to establish almost sure global synchronization. However, this

probability model cannot be used here to describe the informa-

tion flow topology for the case of vertex-triggering. Due to the

difference between the two probability models, we will have

different sample paths of random graphs along the dynamics of

the two systems. Consequently, the characterizations of the so-

called “synchronization strings” (roughly speaking, these are the

strings in a sample path that can lead to global synchronization

as we will introduce in Definition 3.2) will also be different.

We further mention the work of Hartman et al. [19] where they

have considered a completely different stochastic resetting algo-

rithm. There, the dynamics of the agents are not pulse-coupled;

instead, the authors have assumed that every agent can access the

mean of the states and uses that information to make decisions

and to take actions.
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Our method to establish almost sure global synchroniza-

tion relies on the use of stochastic hybrid dynamical systems

(SHDSs) [20], where the set-valued binary update rule will be

used to define the jump maps of the system. Indeed, the combi-

nation of continuous-time dynamics, describing the continuous

evolution of the PCOs, and discrete-time dynamics, describing

the resets, naturally lead to a hybrid dynamical system (HDS).

Moreover, since the pulse-triggering of an agent (upon hitting 1)

is at random and since only the (out-)neighbors of the agent could

receive the pulse (if the pulse is generated and sent), the jump

maps of the SHDS are stochastic and depend on the underlying

information flow topology. Formally, to establish the SHDS, we

will first introduce a family of infinite sequences of i.i.d random

digraphs, sampled from a finite set, called the set of feasible

digraphs. Roughly speaking, a digraph is feasible if every agent

is connected to either all or none of its out-neighbors. Every

such random digraph corresponds to an occurrence of an agent

hitting 1, and it indicates whether the agent sends a pulse or

not. We then use such a sequence of random digraphs to define

the sequence of jump maps of the SHDS. We analyze random

solutions of the SHDS by analyzing solutions of an HDS over

a fixed, but arbitrary, infinite sequence of feasible digraphs. We

present a novel condition on the sequence that can guarantee

global synchronization of the HDS. We then establish almost

sure global synchronization of the SHDS by showing that the

condition can be satisfied almost surely. Toward the end of this

article, we have conducted numerical studies for validation of

the main result and for comparison of our algorithm with an

existing vertex-triggering algorithm [17].

The rest of this article is organized as follows. Section II

presents some preliminaries. The main results for the deter-

ministic and stochastic settings are presented and established in

Sections III and IV, respectively. Section V is about numerical

studies. Finally, Section VI concludes this article.

Notations: Given a vector x in Rn, let |x| be the standard

Euclidean norm of x. For a compact set A ⊂ Rn, let |x|A :=
miny∈A |x− y|. We also use | · | to denote the cardinality of

a finite set. We use cn ∈ Rn to denote a constant vector with

all entries equal to c ∈ R. We use (a1, a2) � (b1, b2) to denote

a1 ≥ b1 and a2 ≥ b2. The floor function is denoted by ⌊·⌋. Given

a setB, we useBN to denote theN -Cartesian product ofB, i.e.,

BN := B ×B × · · · ×B (N times). A function α is said to be

of class-K if it is strictly increasing in its argument andα(0) = 0.

Additionally, if α(r) → ∞ as r → ∞, then α belongs to class-

K∞. We denote by B (respectively, B◦) the closed (respectively,

open) ball of radius one centered at zero. A set-valued mapping

M : Rm ⇒ Rn is said to be locally bounded (LB) at x ∈ Rm

if there exists a neighborhood Kx of x such that M(Kx) is

bounded. Given a set X ⊂ Rm, the mapping M is LB relative

to X if the set-valued mapping from Rm to Rn defined by M
for x ∈ X , and by ∅ for x /∈ X , is LB at each x ∈ X . The graph

of a set-valued mapping G is defined as graph(G) := {(x, y) ∈
Rm × Rn : y ∈ G(x)}. Given a measurable space (Ω,F), a set-

valued map G : Ω ⇒ Rn is said to be F-measurable [21, Def.

14.1], if for each open set O ⊂ Rn, the set G−1(O) := {ω ∈
Ω : G(ω) ∩ O = ∅} ∈ F .

II. PRELIMINARIES

In this section, we present basic notions from graph theory,

and deterministic and SHDSs.

A. Graph Theory

A directed graph, or digraph, is denoted by G := (V, E), with

V := {1, 2, . . . , N} the set of vertices and E ⊂ V × V the set

of edges. In this article, we consider only simple digraphs, i.e.,

digraphs without self-arcs. We denote by (i, j) an edge of G; we

call i an in-neighbor of j, and j an out-neighbor of i. We denote

the set of out-edges of vertex i as E−
i . A path from a vertex i to a

vertex j is a sequence {i0, i1, . . . , im}, with i0 = i and im = j,

in which each pair (il, il+1) ∈ E for all l ∈ {0, 1, . . . ,m− 1}
and all the vertices are pairwise distinct. The length of a path is

defined to be the number of edges in that path. A vertex i ∈ V
is said to be a root of G if for any other vertex j ∈ V , there

exists a path from i to j. A digraph G with at least one root is

a rooted digraph. We denote the set of all the root vertices of

G as VR. In a rooted digraph G, the depth of a vertex j with

respect to a given root vertex i∗ is defined to be the length of the

minimum path from i∗ to j. We denote by Vq(i
∗) the vertices

at depth q, and q∗ the maximum depth. The depth of a rooted

digraph G is defined to be dep(G) := maxi∗∈VR
q∗. A d-regular

digraphG(V, E ′), ford < N , is a digraph where each vertex ihas

d out-neighbors ((i+ j) mod N) + 1, for j = 0, . . . , d− 1.

Note, in particular, 1- and (N − 1)-regular digraphs are cycle

and complete digraphs, respectively.

B. HDS With Random Inputs

An SHDS with state x ∈ Rn and random input v ∈ Rm is

characterized by the following set of equations [20], [22]:

x ∈ C, ẋ = f(x) (4a)

x ∈ D, x+ ∈ G(x, v+), v ∼ µ(·) (4b)

where the function f : Rn → Rn, called the flow map, describes

the continuous-time dynamics of the system; the set C ⊂ Rn,

called the flow set, describes the points in the space where

x is allowed to evolve according to the differential equation

(4a); G : Rn × Rm ⇒ Rn, called the jump map, is a set-valued

mapping that characterizes the discrete-time dynamics of the

system; and D ⊂ Rn, called the jump set, describes the points

in the space where x is allowed to evolve according to the

stochastic difference inclusion (4b). We use v+ as a place holder

for a sequence of i.i.d. input random variables {vk}
∞
k=1 with

probability distribution µ, derived from an abstract probability

space (Ω,F ,P).
Definition 2.1: An SHDS (4) is said to satisfy the Basic

Conditions if the following holds.

1) The sets C and D are closed, C ⊂ dom(f), and D ⊂
dom(G).

2) The function f is continuous.

3) The set-valued mapping G : Rn × Rm ⇒ Rn is LB

and the mapping v �→ graph(G(·, v)) := {(x, y) ∈
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Rn × Rn : y ∈ G(x, v)} is measurable with closed

values.

For further details of SHDS (4) (concept of solution, causality

assumption, etc), we refer the reader to Appendix B.

When the discrete-time dynamics (4b) does not depend on

random inputs, the SHDS (4) is reduced to a standard HDS [23]

x ∈ C, ẋ = f(x) (5a)

x ∈ D, x+ ∈ G(x). (5b)

Solutions of hybrid systems are parameterized by both

continuous- and discrete-time indices t ∈ R≥0 and k ∈ Z≥0.

The index t increases continuously during flows (4a) or (5a),

and the index k increases by one when a jump occurs via (4b) or

(5b). Solutions to (5) are defined on hybrid time domains, which

are characterized by a pair of time indices (t, k). For further

details on the concept of solution to (5) and hybrid time domains,

we refer the reader to Appendix A. A solution is said to be

1) maximal if its time domain is not a proper subset of the domain

of other solution; 2) complete if its time domain is unbounded;

3) uniformly non-Zeno if there exists T̃ , K̃ ∈ R>0 such that

for every (t1, k1), (t2, k2) ∈ dom(x), t2 − t1 ≤ T̃ implies that

k2 − k1 ≤ K̃.

C. Stability and Convergence Notions

In this article, we will consider the following properties for

the solutions of the SHDS (4) and the HDS (5).

Definition 2.2: The HDS (5) is said to render a closed set

A strongly forward invariant [23] if every complete solution x,

with x(0, 0) ∈ A, satisfies x(t, k) ∈ A for all (t, k) ∈ dom(x).
Similarly, the SHDS (4) is said to render the set A surely

strongly forward invariant if every random solution xω to (4)

with xω(0, 0) ∈ A stays surely in A.

We next introduce the following notions from [23] and [24]

Definition 2.3: The HDS (5) renders a closed set A.

1) Uniformly Globally Stable (UGS) if there exists a class-

K∞ function α such that any solution x to (5) satisfies

|x(t, k)|A ≤ α(|x(0, 0)|A) for all (t, k) ∈ dom(x);
2) Globally Finite-Time Attractive (GFTA) if for each

solution x of (5) there exists T̄ (x(0, 0)) > 0 such

that |x(t, k)|A = 0 for all (t, k) ∈ dom(x) and t+ k ≥
T̄ (x(0, 0));

3) Globally Fixed-Time Attractive (GFxTA) if A is GFTA

and, additionally, T̄ > 0 is a constant independent of

x(0, 0).
We further have the following definition from [20], which

applies to systems of the form (4).

Definition 2.4: The SHDS (4) renders a compact set A.

1) Uniformly Lyapunov stable in probability if for each

ε > 0 and ρ > 0 there exists a δ > 0 such that for all

xω(0, 0) ∈ A+ δB, every maximal random solution xω

from xω(0, 0) satisfies the inequality

P (xω(t, k) ∈ A+ εB◦ ∀ (t, k) ∈ dom(xω)) ≥ 1− ρ.
(6)

2) Uniformly Lagrange stable in probability if for each δ >
0 and ρ > 0, there exists ε > 0 such that the inequality

(6) holds.

3) Uniformly globally attractive in probability if for each

ε > 0, ρ > 0, and R > 0, there exists γ ≥ 0 such that

for all random solutions xω with xω(0, 0) ∈ A+RB the

following holds:

P (xω(t, k) ∈ A+ εB◦ ∀ t+ k ≥ γ, (t, k) ∈ dom(xω))

≥ 1− ρ.

System (4) is said to render a compact set A ⊂ Rn Uniformly

Globally Asymptotically Stable in Probability (UGASp) if it

satisfies conditions (1), (2), and (3).

For an SHDS of the form (4), UGASp of a compact set can

be established via the stochastic hybrid invariance principle [22,

Th. 8], see Theorem 1.1.

III. DETERMINISTIC RESETTING ALGORITHM WITH

TIME-VARYING JUMP MAPS

In this section, we first introduce a deterministic HDS, with

time-varying jump maps, for analyzing the asymptotic behav-

ior of a typical random solution of the networked system of

PCOs described in Section I. The results of this section will

be used later to establish almost sure global synchronization in

Section IV.

A. Well-Posed HDS

To formalize the HDS, we start by introducing a notion about

feasible subgraphs of a given digraph.

Definition 3.1: Let G = (V, E) be an arbitrary digraph. A

subgraph φ = (V, E ′), on the same vertex set V , is feasible if

the edge set E ′ satisfies the following condition: For any vertex

i ∈ V , either E−
i ⊆ E ′ or E−

i ∩ E ′ = ∅.

LetΦ be the collection of feasible subgraphs ofG andΞ be the

collection of infinite sequences of the feasible subgraphs, i.e.,

any element ξ ∈ Ξ is given by ξ := φ1φ2φ3 · · · , where each

φi ∈ Φ is feasible. We note that both Φ and Ξ are implicitly de-

pendent of G. Now, for a given ξ ∈ Ξ, we define a corresponding

HDS

Hξ := (C, f,D,G). (7)

The state of the HDS is x := (τ, λ) ∈ RN
≥0 × Z≥0. The

continuous-time dynamics of this system are given by

ẋ = f(x) :=

[

fτ (τ)

fλ(λ)

]

=

[

1
T
1N

0

]

(8)

where the state x evolves in the set C defined as

C := Cτ × Z≥0, Cτ := [0, 1]N . (9)

The discrete-time dynamics are given by

x+ ∈ G(x) :=

[

Gλ+1(τ)

λ + 1

]

(10)
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where the state x evolves in the set D defined as

D := Dτ × Z≥0, Dτ := {τ ∈ Cτ : maxi∈V τi = 1} . (11)

In other words, the set Dτ comprises all points τ ∈ Cτ , such

that τi = 1 for at least one i ∈ {1, . . . , N}.

Note that in (8)–(11), the substate λ can be viewed as a

discrete-time counter that increases by one every time there

is a jump in the system. For each λ, the set-valued map Gλ

in (10) is defined as the outer-semicontinuous hull of the

mapping

G0
λ
(τ) =

{

g ∈ RN : gi = 0, gj ∈ Rj,λ(τ) ∀j �= i
}

(12)

where the set-valued map Rj,λ is defined over the feasible

digraph φλ := (V, Eλ) as

τ+j ∈ Rj,λ(τ) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0, τj ∈ [0, rj) (i, j) ∈ Eλ

{0, 1}, τj = rj (i, j) ∈ Eλ

1, τj ∈ (rj , 1] (i, j) ∈ Eλ

τj , (i, j) �∈ Eλ.

For any r ∈ (0, 1)N , and for any ξ ∈ Ξ, every solution of the

HDS (7) is complete and uniformly non-Zeno. The completeness

follows from the following facts.

1) By construction, the HDS (7) satisfies the Basic Condi-

tions of Definition 2.1 (noting that G is independent of

v).

2) fτ (τ) = 1/T1N > 0 for all x ∈ C \D, which guaran-

tees the existence of nontrivial solutions from C \D.

3) The HDS has no finite escape times.

4) G(D) ⊂ C ∪D, so solutions of the HDS cannot stop due

to jumps leaving C ∪D, [23, Prop. 6.10].

Lack of Zeno behavior follows from the next result.

Lemma 3.1: Consider an HDS Hξ as in (7). Let

r := mini∈V ri. Then, the number of jumps in any period of

length T is bounded below and above by 1 and N(⌊1/r⌋+ 1),
respectively.

Proof: We first establish the lower bound. Pick an arbitrary

agent i and let τi(t, k) be its state at time (t, k). We consider the

period [t, t+ T ]. There are two cases: 1) During this period, no

in-neighbor of agent i hits 1 and triggers it. In this case, by the

continuous-time dynamics of the HDS (8), agent i will reach the

value 1 in at most T seconds and, then, jumps to 0; (2) during

that period, there exists at least one in-neighbor of agent i that

hits 1 and jumps. In either case, the total number of jumps of the

entire network that occur during the period [t, t+ T ] is bounded

below by 1.

We now establish the upper bound. For each individual agent,

we will evaluate an upper bound for the number of times it can

hit 1. To do so, we note that if an agent i hits 1 and jumps at

a certain time (t, k) (so that τi(t, k + 1) = 0), then for the next

riT seconds, the agent cannot hit 1. This holds because the least

time for the agent i to hit value 1 is to first flow for riT seconds

and, then, to have one of its in-neighbors to hit 1 and trigger

it. The above arguments then show that the number of times

the agent i can hit 1 during the period [t, t+ T ] is bounded

above by (1/ri + 1) and, hence, ⌊1/ri⌋+ 1. Finally, because

the number of jumps of the entire network that occur during the

period [t, t+ T ] is equal to the number of times the agents hit 1

during the same period, we conclude that the number of jumps

is bounded above by
∑N

i=1(⌊1/ri⌋+ 1) ≤ N(⌊1/r⌋+ 1). �

B. Stability Analysis

We study the stability properties of the HDS, introduced in

(7), with respect to the closed set A defined as follows:

A := As × Z≥0, As := {µ1N : µ ∈ [0, 1]} ∪ {0, 1}N . (13)

It should be clear that x ∈ A if and only if τ ∈ As. We say

that the HDS (7) reaches synchronization if x(t, k) enters A (or,

equivalently, τ(t, k) enters As) for some hybrid time (t, k). To

proceed, we first have the following result, which says that the

system remains synchronized once it achieves synchronization.

The proof can be found in [25, Appendix A].

Lemma 3.2: For any ξ ∈ Ξ, the HDS Hξ, introduced in (7),

renders the set As (resp. A) strongly forward-invariant for the

substate τ (resp. the state x).

Recall that for a root i∗ of G, the set of vertices at depth

q is denoted by Vq(i
∗). We will now introduce the notion of

synchronization string:

Definition 3.2: Let G = (V, E) be a rooted digraph and i∗ ∈
VR be a root. Let q∗ be the depth of G with respect to i∗. For any

q = 0, . . . , q∗, we let Gq := (V, Eq) be a feasible subgraph of G
with the edge set Eq := ∪i∈Vq(i∗)E

−
i . Then, the synchronization

string ζ with respect to i∗ is a finite string of feasible subgraphs

of G

ζ := G0 · · · G0G1 · · · G1 · · · Gq∗−1, · · · Gq∗−1 (14)

where each subgraph Gq is repeated contiguously in the string

for ℓ∗ times, where ℓ∗ := N(⌊1/r⌋+ 1). Correspondingly, the

length of the string ζ is L∗ := ℓ∗q∗.

With the definition above, we will now state the first main

result of the article:

Theorem 3.3: Let G be a rooted digraph and r ∈ (0, 1)N .

Suppose that ξ ∈ Ξ contains a synchronization string ζ, de-

fined in (14), with respect to a root i∗ ∈ VR; then, for every

maximal solution x of the corresponding HDS Hξ, defined in

(7), with λ(0, 0) = 0 and τ(0, 0) ∈ [0, 1]N , there exists a hybrid

time (t∗, k∗) ∈ dom(x), uniformly bounded above, such that

τ(t, k) ∈ As for all (t, k) � (t∗, k∗).
We establish Theorem 3.3. To proceed, we will first introduce

a few subsetsAq(i
∗), for q = 0, . . . , q∗, that describe partial syn-

chronizations in the network. For each q, let τ (q) ∈ [0, 1]|Vq(i
∗)|

be the vector that collects the states of vertices of depth q, with

respect to i∗ (so that τ (0) = τi∗ ). Next, we relabel (if necessary)

the vertices in the rooted digraph G so that

τ = [τ (0); τ (1); · · · ; τ (q
∗)]. (15)

In the sequel, we fix the root i∗ and the corresponding label-

ing. Let Uq(i
∗) := ∪q

ℓ=0Vℓ(i
∗) and Mq := |Uq(i

∗)|. Then, the

subsets Aq(i
∗) are defined as follows:

Aq(i
∗) :=

(

{µ1Mq
: µ ∈ [0, 1]} ∪ {0, 1}Mq

)

× [0, 1]N−Mq .

(16)

Note, in particular, that if q = 0, thenA0(i
∗) = Cτ and if q = q∗,

then Aq∗(i
∗) = As, where As is defined in (13). It should be
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Fig. 3. To illustrate Theorem 3.3, we consider a network of four PCOs of depth q∗ = 3 with vertices V0 = {1},V1 = {2},V2 = {3},V3 = {4},
edge set {(1, 2), (2, 3), (3, 2), (3, 4)}, and r = 1/8. Correspondingly, ℓ∗ = 36 and the length of the synchronization string ζ becomes 108. For the
initial condition τ(0, 0) and infinite sequence of graphs ξ, (tq−1, kq−1) and (tq , kq − 1), for q = 1, 2, 3, are, respectively, the hybrid time of the first
and the last appearance of Gq in a synchronization string ζ contained in ξ. Since Gq only contains the out-edges of vertices Vq , this leads to
τ(tq , kq − 1) ∈ Aq for every q. Because, for such a ξ, each Aq is strongly forward-invariant, we have that τ(t3, k3 − 1) ∈ As.

clear that if the sub-state τ belongs to one of these compact

sets, say Aq(i
∗) at a certain time, then the vertices in Uq(i

∗) are

synchronized at that time. By definition, we have the following

chain of inclusions:

Aq∗(i
∗) � Aq∗−1(i

∗) � · · · � A1(i
∗) � A0(i

∗). (17)

Let ξ = φ1φ2 · · · be given in the statement of Theorem 3.3.

Because ξ contains the synchronization string ζ, there exists a

k0 ∈ Z≥1 such that ζ = φk0
· · ·φkq∗−1, where (kq∗ − k0) is the

length of ζ. Furthermore, for each q = 1, . . . , q∗ − 1, we let

kq := k0 + qℓ∗ (18)

where q∗ is the depth of G with respect to the root i∗ and ℓ∗

is defined in Definition 3.2. It should be clear that kq∗ can

be expressed as kq∗ = k0 + q∗ℓ∗. From the definition of syn-

chronization string, we have that for any q = 0, . . . , q∗ − 1, the

digraphs φkq
, . . . , φkq+1−1 are the same given by Gq .

Now, let x be an arbitrary maximal solution of the HDS Hξ

and we fix this solution in the sequel. Since λ(0, 0) = 0, we have

that λ(·, k) = k, for all (t, k) ∈ dom(x).
Let t0 := min{t ∈ R≥0 : (t, k0) ∈ dom(x)}, i.e., t0 is the

continuous time-instant that corresponds to the occurrence of

the k0th jump of the HDS Hξ. Note that such t0 is well-defined

and, in fact, uniformly bounded above. Indeed, to see this, note

that by Lemma 3.1, the number of jumps in any period of T is

lower bound by 1. It thus implies that t0 ≤ k0 T . Similarly, for

any other q = 1, . . . , q∗, we let

tq := min{t ∈ R≥0 : (t, kq) ∈ dom(x)}. (19)

Again, from Lemma 3.1, there is a uniform upper bound for tq
as tq ≤ t0 + qℓ∗T . See Fig. 3 for an illustration of (tq, kq).

With the sets Aq(i
∗) and the hybrid times (tq, kq) defined

above, we establish the following result:

Proposition 3.4: Let x be a maximal solution of the

HDS Hξ (7) and (tq, kq), for q = 0, . . . , q∗, be the hybrid

times defined as above. Then, under the assumption of The-

orem 3.3, the following holds: For each q = 0, . . . , q∗ − 1,

there exists a hybrid time (t′q, k
′
q) ∈ dom(x), with (tq, kq) �

(t′q, k
′
q) � (tq+1, kq+1 − 1), such that τ(t′q, k

′
q) ∈ Aq+1(i

∗),
where Aq+1(i

∗) is defined in (16). Moreover, τ(t, k) ∈
Aq+1(i

∗) for all (t, k) ∈ dom(x) with (t, k) � (t′q, k
′
q).

Proof: We will show that there exist hybrid times

(t′q, k
′
q), for q = 0, . . . , q∗ − 1, with (tq, kq) � (t′q, k

′
q) �

(tq+1, kq+1 − 1), such that if (t′q, k
′
q) � (t, k) � (t′q+1, k

′
q+1),

for q = 0, . . . , q∗ − 2, then τ(t, k) ∈ Aq+1(i
∗). Moreover,

τ(t′q∗−1, k
′
q∗−1) ∈ Aq∗(i

∗) = As. Note that if this holds, then

by the chain of inclusion (17) and the strong forward invari-

ance of As established in Lemma 3.2, we have that for any

(t, k) � (t′q, k
′
q), τ(t, k) ∈ Aq+1 for all q = 0, . . . , q∗ − 1.

Starting from the hybrid time (t0, k0), all elements in the

string φk0
· · ·φk1−1 are the same given by the digraph G0,

which induce the set-valued mappings Gk0
, . . . , Gk1−1 defined

in (12). Since the root vertex i∗ has no in-neighbor in G0, for any

state τ(t0, k0), i
∗ will hit 1 in less than or equal to T seconds

(in continuous-time) after t0, i.e., there exists a hybrid time

(t′0, k
′
0 − 1) such that τ (0)(t′0, k

′
0 − 1) = 1 with 0 ≤ t′0 − t0 ≤

T and τ (0)(t′0, k
′
0) = 0. Furthermore, by Lemma 3.1, the number

of jumps over any period of length T is bounded above by ℓ∗

(defined in Definition 3.2), we have that k0 ≤ k′0 ≤ k1 − 1.

Because G0 contains only the out-edges of the root vertex i∗,

each of the set-valued mapping Gk0
, . . . , Gk1−1 maps τ(t′0, k

′
0)

to {0, 1}M1 × [0, 1]N−M1 , where we recall that M1 is the car-

dinality of the set U1(i
∗) = {i∗} ∪ V1(i

∗). Thus, we have that

τ(t′0, k
′
0) ∈ A1(i

∗).
Since τ(t′0, k

′
0) ∈ A1(i

∗) and since φk′
0
+1, . . . , φk1−1 contain

only the out-edges of the root i∗, we have that

τ(t, k) ∈ A1(i
∗), for all (t, k) ∈ dom(τ) such that

(t′0, k
′
0) � (t, k) � (t1, k1 − 1). (20)
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Starting from the hybrid time (t1, k1), all elements in the

string φk1
· · ·φk2−1 are the same given by the digraph G1,

which induce the set-valued mappings Gk1
, . . . , Gk2−1 defined

in (12). By construction of G1, only vertices in V1(i
∗) have

out-neighbors. Thus, if there is a jump at a hybrid time (t, k),
with (t1, k1) � (t, k) � (t2, k2 − 1), then only the vertices in

V1(i
∗) can trigger. On one hand, by Lemma 3.1, the number of

jumps that can occur during any period of length T is bounded

above by ℓ∗ = k2 − k1. On the other hand, since the vertices in

U1(i
∗) are synchronized at (t1, k1 − 1), starting from t1 these

vertices will hit 1 simultaneously (in continuous-time) in less

than or equal to T seconds. The above arguments imply that

there exists a hybrid time (t′1, k
′
1), with t1 ≤ t′1 ≤ t′1 + T and

k1 ≤ k′1 ≤ k2 − 1, such that [τ (0), τ (1)](t′1, k
′
1) = 0M1

. Fur-

thermore, each of the set-valued mappings Gk1
, . . . , Gk2−1

maps τ(t′1, k
′
1) to {0, 1}M2 × [0, 1]N−M2 , where M2 is the

cardinality of the set U2(i
∗) = {i∗} ∪ V1(i

∗) ∪ V2(i
∗). Thus, we

have that τ(t′1, k
′
1) ∈ A2(i

∗). Note that by the above arguments,

we have also shown that τ(t, k) ∈ A1(i
∗) for (t′0, k

′
0) � (t, k) �

(t′1, k
′
1).

One can iterate the above arguments to obtain sequentially

the hybrid times (t′q, k
′
q), for all q = 0, . . . , q∗ − 1, as described

in the beginning of the proof. �

Theorem 3.3 follows immediately from Proposition 3.4.

Proof of Theorem 3.3: Let x = (τ, λ) be a maximal solution.

Then, by Proposition 3.4, there is a hybrid time (t′q∗−1, k
′
q∗−1)

such that τ(t, k) ∈ As for all (t, k) � (t′q∗−1, k
′
q∗−1). We then

set (t∗, k∗) := (t′q∗−1, k
′
q∗−1). Furthermore, since (t∗, k∗) �

(tq∗ , kq∗) and since (tq∗ , kq∗) is uniformly bounded above,

(t∗, k∗) is uniformly bounded above as well. �

Toward the end of the section, we consider the scenario where

ξ contains the synchronization string infinitely often. Precisely,

we have the following definition.

Definition 3.3: An infinite sequence ξ ∈ Ξ contains a syn-

chronization string infinitely often if it has infinitely many dis-

joint finite strings that are the synchronization string. The infinite

sequence ξ contains a synchronization string uniformly infinitely

often if there exists a positive integer n such that every string of

length n in ξ contains a synchronization string.

With Definition 3.3, we will now strengthen Theorem 3.3:

Theorem 3.5: Let G be a rooted digraph and r ∈ (0, 1)N . Let

the HDS Hξ be given as in (7) and the set A be defined in (13).

Suppose that ξ contains the synchronization string ζ infinitely

often (resp. uniformly infinitely often); then, Hξ renders the set

A UGS and GFTA (resp. UGS and GFxTA).

Proof: We show that Hξ renders the set A uniformly glob-

ally stable and globally finite-time attractive (resp. globally

fixed-time attractive) when ξ contains ζ infinitely often (resp.

uniformly infinitely often):

Proof of uniform global stability of A: Consider the function

V : [0, 1]N → R≥0 defined as the infimum of all the arcs that

cover all agents on the unit circle, where the points 0 and 1 are

identified to be the same. The mathematical expression of V can

be given as follows [17]:

V (τ) := 1− max
1≤i≤N

{

τγi+1
− τγi

for i < N

1− τγi
+ τγ1

for i = N
(21)

where γi, for i ∈ {1, . . . , N}, is an index permutation such

that τγi
≤ τγi+1

for all i. This function satisfies the following

properties.

a) It is positive definite with respect to the compact set As

defined in (13).

b) It remains constant during flows because all the oscillators

have the same frequency 1
T

.

c) It does not increase at jumps since jumps never increase

the number of distinct positions of the agents.

Next, we define a Lyapunov function candidateW : [0, 1]N ×
Z≥0 → R≥0 for the HDS Hξ as follows: For any x = (τ, λ), let

W (x) := V (τ) + |λ|Z≥0
. Since λ ∈ Z≥0, we have that W (x) =

V (τ) and |x|A = |τ |As
for all x ∈ C ∪D. Thus, it suffices to

show that the HDS Hξ renders the set As uniformly globally

stable for the substate τ ∈ Cτ . We establish this fact below.

Since Cτ is compact and since V is continuous, V is bounded;

in fact, it is known [2] thatV (τ) ≤ 1− 1
N

. BecauseV is positive

definite with respect to compact set As, there exists two class K
functions α1, α2 such that the condition α1(|τ |As

) ≤ V (τ) ≤
α2(|τ |As

) holds for all τ ∈ Cτ [23, Ch. 3]. Next, we know

from properties (b) and (c) above that V is nonincreasing, i.e.,

V (τ(t, k)) ≤ V (τ(0, 0)) for all (t, k) ∈ dom(x). Thus, we have

from above inequalities that |τ(t, k)|As
≤ α−1

1 (α2(|τ(0, 0)|As
))

for all (t, k) ∈ dom(x). Since α−1
1 α2 is a K-function, we have

that the HDSHξ renders the setAuniformly globally stable [23].

Proof of global finite-time attractivity of A: Let x = (τ, λ) be

an arbitrary maximal solution of Hξ. We first establish global

finite-time attractivity under the assumption that ξ contains the

synchronization string ζ infinitely often. Specifically, we need

to show that there exists a T̄ (x(0, 0)) such that

|x(t, k)|A = 0 ∀ t+ k ≥ T̄ (x(0, 0)), (t, k) ∈ dom(x).
(22)

Given ξ, letσi be the index of ξ corresponding to the first digraph

of the ith appearance of ζ. Since ξ contains ζ infinitely often,

there exists an integer i > 0 such that σi > λ(0, 0) and σj ≤
λ(0, 0) for all j < i. In words, the integer i is such that the ith
appearance of ζ in the sequence ξ is its first appearance after

index λ(0, 0). If, further, ξ contains ζ uniformly infinitely often,

then, by Definition 3.3, σi − λ(0, 0) ≤ n. Now, let

k̄0 := σi − λ(0, 0), t̄0 := min{t ∈ R≥0 : (t, k̄0) ∈ dom(x)}.

Then, (t̄0, k̄0) is the hybrid time of the solution x corresponding

to the first digraph of the first appearance of ζ. By Lemma 3.1,

we have that t̄0 ≤ k̄0 T . Next, similar to (tq, kq) defined in (18)

and (19), we let

k̄q := k̄0 + qℓ∗, t̄q := min{t ∈ R≥0 : (t, k̄q) ∈ dom(x)}.

Using again Lemma 3.1, we have that t̄q − t̄0 ≤ qℓ∗T . Thus, all

the hybrid times (t̄q, k̄q) are bounded above. Furthermore, by the

same arguments of Proposition 3.4, we have that |x(t, k)|A = 0
for all (t, k) � (t̄q∗ , k̄q∗), with (t, k) ∈ dom(x). The proof of

global finite-time attractivity is then done by setting

T̄ (x(0, 0)) := t̄q∗ + k̄q∗ . (23)

Finally, we assume that ξ contains ζ uniformly infinitely often

and establish global fixed-time attractivity. We do so by showing
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that the quantity T̄ (x(0, 0)) in (23) is uniformly bounded above.

By the above arguments, we have the following two facts:

1) Since k̄0 = σi − λ(0, 0) ≤ n and k̄q∗ = k̄0 + q∗ℓ∗, we have

that k̄q∗ ≤ n+ q∗ℓ∗; 2) since t̄0 ≤ k̄0 T ≤ nT and since t̄q∗ ≤
t̄0 + q∗ℓ∗T , we have that t̄q∗ ≤ (n+ q∗ℓ∗)T . Thus, for any

x(0, 0), T̄ (x(0, 0)) ≤ (n+ q∗ℓ∗)(T + 1). �

IV. STOCHASTIC RESETTING ALGORITHM

In this section, we consider networks of PCOs with the under-

lying information flow topology being a random digraph: Every

time an agent hits 1, it will generate a single Bernoulli random

variable, independent of others, to decide whether or not to send

pulses to all of its out-neighbors. This stochastic model differs

from the one in our previous work [2]; there, whenever an agent

hits 1, it will generate multiple i.i.d. Bernoulli random one for

each of its out-neighbors.

A. Well-Posed SHDS

We start by showing that the feasible subgraphs of a given

digraphG can be mapped one-to-one to certain binary sequences.

To that end, let N ∗ ≤ N be the number of vertices in G with at

least one out-neighbor. Without loss of generality, we will label

these vertices as 1, . . . , N ∗ and letV∗ := {1, . . . , N ∗}. Consider

binary sequences v1 . . . vN ∗ of lengthN ∗, with each vi ∈ {0, 1}.

One can assign to each feasible digraph G ′ = (V, E ′) such a

binary sequence: For each i = 1, . . . , N ∗, set

vi :=

{

1, if Ei ⊆ E ′

0, otherwise.

Conversely, each binary sequence gives rise to a feasible digraph.

Thus, with the labeling of the vertices in V∗ and the above

correspondence, we can use a binary sequence v1 . . . vN ∗ to

represent a feasible digraph. Consequently, the set Φ can be

realized as the collection of all binary sequences of length N ∗,

denoted as Ψ := {0, 1}N
∗
.

We next introduce a simple model that can generate a random

feasible digraph. Let the digits v1, . . . , vN ∗ of a binary sequence

v be i.i.d. Bernoulli (p) random variables, i.e., the probability

that vi takes value 1 (resp. 0) is p (resp. (1− p)). We denote by

µ the corresponding probability measure on Φ. It follows that

for any feasible digraph φ ∈ Φ represented by a binary sequence

v := v1 . . . vN ∗

µ(φ) = pN
′

(1− p)N
∗−N ′

(24)

where N ′ is the total number of 1’s in the binary sequence.

With the above random model, we can now construct an

SHDS. First, we consider set-valued mappings Sij : [0, 1]×
Ψ ⇒ [0, 1], defined for each edge (i, j) ∈ E of G as follows:

Sij(τj , v) = viR̄j(τj) + (1− vi)τj (25)

where R̄j is the outer semicontinuous hull of mapping Rj ,

defined in (3), and vi is the digit in a binary sequence that

corresponds to the vertex i in V∗. Next, using (25), we define a

new set-valued mapping G0
S : [0, 1]N ×Ψ ⇒ RN as follows:

{

g ∈ RN : gi = 0, gj ∈

{

Sij(τj , v), (i, j) ∈ E
{τj}, (i, j) /∈ E

}

}

(26)

where gj is defined for all j �= i and the mapping G0
S(τ, v) is

nonempty only when τi = 1 for some i ∈ V and τj ∈ [0, 1) for

j �= i. We used the subindex S to indicate that the mapping G0
S

is stochastic. Finally, the jump map for the SHDS is defined as

the outer-semicontinuous hull of G0
S , i.e.,

GS(τ, v) := G0
S(τ, v). (27)

Note that when a jump occurs and a random digraph φk ∈ Φ is

drawn, not every edge of φk plays a role in the jump map GS .

Only the edges (i, j) with τi = 1 for some i ∈ V , matter.

Letω := ω1ω2ω3 · · · be a sequence of i.i.d. random variables,

with each ωi ∼ µ(·) a feasible digraph. We denote by Ω the

collection of sample paths ω. Each sample path ω will be used

to determine the sequence of jump maps at all discrete times

through (27).

It follows that the resulting SHDS depends on three param-

eters, namely, the parameter p associated with the Bernoulli

random variable, the partition vector r, and the digraph G. We

will thus write the SHDS with state τ as

HS(p, r,G) := (Cτ , fτ , Dτ , GS) (28)

where fτ , Cτ , Dτ are defined in (8), (9), and (11) and again the

subindex S indicates that the overall system is stochastic.

Note that the HDS in (7), parameterized by an infinite string of

feasible digraphs ξ, is the deterministic counterpart of the SHDS

(28) where the sample path ω is realized as ξ. It should be clear

from our probability model that ω contains the synchronization

string ζ infinitely often almost surely.

To proceed, we first have the following fact.

Lemma 4.1: For any p ∈ (0, 1), any r ∈ (0, 1)N , and any

digraph G, the SHDS HS(p, r,G) satisfies the basic conditions.

Every maximal random solution of HS is surely complete and

uniformly non-Zeno and, moreover, the number of jumps in any

period of length T is surely bounded below and above by 1 and

N(⌊1/r⌋+ 1), respectively.

Proof: The fact that HS satisfies the basic conditions follows

directly from construction. Completeness of solutions (surely)

follows by the same arguments presented before Lemma 3.1,

and the fact that GS(τ, v) ⊂ Cτ ∪Dτ for all τ ∈ Dτ and for

all v ∈ Ψ, which guarantees that all random solutions cannot

stop due to jumps. Finally, note that each realization of ω in HS

corresponds to a sequence of subgraphs of G in the deterministic

HDS Hξ, defined in (7). By Lemma 3.1, any such sequence

leads to solutions of (7) that are uniformly non-Zeno hybrid

arcs, with a number of jumps in any period of length T bounded

below and above by 1 and N(⌊1/r⌋+ 1), respectively. Since

for every τω(0, 0) ∈ Cτ ∪Dτ and every random solution of HS

there exists a solution of Hξ such that their hybrid time domains

are identical and their τ -components agree with each other, it

follows that the above properties hold surely for every random

solution of HS . �
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B. Global Synchronization With Probability One

We start by noting the following fact: For any p ∈ (0, 1), r ∈
(0, 1)N , and any digraph G, the SHDS HS(p, r,G) renders the

set As surely strongly forward invariant. We omit the proof of

such a fact as it uses the same arguments as the ones in the proof

of Lemma 3.2.

Next, similar to our earlier work in [2], we introduce the

following definition of the sync-triplet for the SHDS HS .

Definition 4.1: Let As be given in (13). Let p ∈ (0, 1), r ∈
(0, 1)N , and G be a digraph of N vertices. Then, (p, r,G) is a

sync-triplet if the following two items hold.

1) For every initial condition inC ∪D, there exist nontrivial

random solutions almost surely, and every maximal ran-

dom solution of HS(p, r,G) is complete and uniformly

non-Zeno almost surely.

2) The SHDS HS(p, r,G) renders As UGASp (see Defini-

tion 2.4).

A random solution ofHS(p, r,G)depends onω and we denote

it by τττω . Note that there may exist multiple random solutions

even if we fix ω and the initial condition, which is due to the

set-valued nature of the jump map in the SHDS (28). For each

random solution τττω , we define

T ∗T ∗T ∗(τττω) = inf {t | τττω(tω, kω) ∈ As, (tω, kω) ∈ dom(τττω)}
(29)

which is the first (continuous) time that the random solution τττω
enters the compact set As defined in (13). We call T ∗T ∗T ∗(τττω) the

sync-time of the random solution.

Now, we will present the main result of this section.

Theorem 4.2: For any p ∈ (0, 1), any r ∈ (0, 1)N , and any

rooted digraph G, (p, r,G) is a sync-triplet. Moreover, for any

initial condition τττω(0, 0), the following holds for all positive

integers n and all random solutions τττω of the SHDS:

P(TTT ∗(τττω) > nT ∗) ≤ ρn (30)

where T ∗ := (dep(G)ℓ∗ + 1)T , with ℓ∗ defined in Definition

3.2, and ρ ∈ (0, 1) is a constant given by

ρ := 1− (p (1− p)dep(G)−1)Nℓ∗ . (31)

Remark 4.1: Theorem 4.2 can further be generalized to the

case where agents have heterogeneous probabilities pi ∈ (0, 1).
Correspondingly, the constant ρ on the right-hand side of (30)

changes to 1− (p (1− p)dep(G)−1)Nℓ∗ where p := mini∈V∗ pi
and p := maxi∈V∗ pi. With slight modification, the arguments

ahead can be used to establish the heterogeneous case.

Before presenting the proof of Theorem 4.2, we need a few

preliminary results. First, we let S(τττω(0, 0)) be the set of all

maximal random solutions of (28) from the initial condition

τττω(0, 0) ∈ [0, 1]N . For each initial condition, we define the

following event:

Ω1(τττω(0, 0)) := {ω ∈ Ω | ∀τττω ∈ S(τττω(0, 0)), ∃ i
∗ ∈ VR,

∃ (t∗ω, k
∗
ω) ∈ dom(τττω)with t∗ω ≤ T s.t.τττω,i∗(t

∗
ω, k

∗
ω) = 1} .

In other words, the above event is about having a certain root

vertex i∗ in the network hitting 1 before continuous-time T .

Similar to [2, Lemma 6], the following result holds.

Lemma 4.3: For any τττω(0, 0) ∈ [0, 1]N ,Ω1(τττω(0, 0)) = Ω.

For a positive integer ℓ and a root vertex i∗ of G, we define

an event Ω2(ℓ, i
∗), by using the synchronization string ζ from

Definition 3.2, as follows:

Ω2(ℓ, i
∗) := {ω ∈ Ω | ωℓ+1 · · ·ωℓ+L∗ = ζ} (32)

where L∗ is the length of the string ζ. We compute ahead the

probability of this event.

Lemma 4.4: Let ℓ∗ be given in Definition 3.2. Then

P(Ω2(ℓ, i
∗)) ≥ (p (1− p)dep(G)−1)Nℓ∗ . (33)

Proof: Recall from Definition 3.2 that each digraph Gq in ζ
is a subgraph of the rooted digraph G with the same vertex set

but contains only the out-edges of the vertices at depth k with

respect to the root vertex i∗. Also, each Gq is a feasible digraph

and it follows from (24) that

µ(Gq) = p|Vq(i
∗)|(1− p)N

∗−|Vq(i
∗)|

where we recall that Vq(i
∗) is the set of vertices at depth q with

respect to the root vertex i∗. Using the fact that the random

variables ωq , for q ≥ 1, are i.i.d., we evaluate the probability of

the event Ω2(ℓ, i
∗) as follows:

P (Ω2 (ℓ, i
∗)) =

q∗−1
∏

q=0

(

p|Vq(i
∗)| (1− p)N

∗−|Vq(i
∗)|
)ℓ∗

=
(

p
∑q∗−1

q=0
|Vq(i

∗)| (1− p)N
∗q∗−

∑q∗−1

q=0
|Vq(i

∗)|
)ℓ∗

=
(

pN
∗

(1− p)N
∗q∗−N ∗

)ℓ∗

≥
(

p (1− p)dep(G)−1
)Nℓ∗

where the third equality follows from the fact that
∑q∗−1

q=0 |Vq(i
∗)| = N ∗ and the last inequality follows from the

fact that N ∗ ≤ N and q∗ ≤ dep(G). �

With the above preliminary results, we prove Theorem 4.2.

Proof of Theorem 4.2: We again consider the function V :
[0, 1]N → R≥0 as introduced in (21), i.e., the infimum of all

arcs that cover all agents on the unit circle. Using three properties

described in the proof of Theorem 3.5, we have that V (positive

definite w.r.t. As) is nonincreasing on average along the random

solutions of (28) and, hence, serves as a valid Lyapunov function

for the SHDS (c.f. Appendix B).

By Lemma 4.1, the SHDS (28) satisfies the basic conditions

and every maximal random solution τττω of the SHDS is surely

complete and uniformly non-Zeno. Thus, by the stochastic hy-

brid invariance principle (c.f. Theorem 1.1), in order to show

that the set As is UGASp, it suffices to show that there does not

exist a complete random solution τττω that remains in a nonzero

level set of the Lyapunov function almost surely.

To establish the above fact, we will show that there exists

positive constants η and T ∗ such that for any sample path ω and

for any initial condition τττω(0, 0), the following holds:

P(Ω3(τττω(0, 0))) > η (34)
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Fig. 4. To illustrate Theorem 4.2, we consider the same network of PCOs from Fig. 3. For the initial condition τω(0, 0), the root vertex hits 1 at
(t∗

ω
, k∗

ω
) where t∗

ω
≤ T . Followed by that, the synchronization string ζ appears in ω from indices k∗

ω
+ 1 to k∗

ω
+ L∗ where L∗ = 108. This leads to

τω(t
∗∗
ω
, k∗

ω
+ L∗) ∈ As where intermediate steps are shown in Fig. 3.

where the event Ω3(τττω(0, 0)) is given by

Ω3(τττω(0, 0)) := {ω ∈ Ω | ∀τττω ∈ S(τττω(0, 0)) ∀ tω ≥ T ∗

s.t. (tω, kω) ∈ dom(τττω), V (τττω(tω, kω)) = 0} .

We show ahead that η and T ∗ can be chosen to be the fol-

lowing values η := 1− ρ, where ρ is defined in (31), and

T ∗ = (dep(G)ℓ∗ + 1)T .

By Lemma 4.3, for any random solution τττω, there exists a

hybrid time (t∗ω, k
∗
ω), with t∗ω ≤ T , and a root i∗ of G such that

τττω,i∗(t
∗
ω, k

∗
ω) = 1. Conditioning on the fact that τττω,i∗(t

∗
ω, k

∗
ω) =

1, we consider the event Ω2(k
∗
ω, i

∗). For convenience, we let t∗∗ω
be the continuous-time instant corresponding to the (k∗ω + L∗)th
jump. By Lemma 4.1, the number of jumps in a period of length

T is surely bounded below by 1. Then, for the discrete-time to

increase from k∗ω to k∗ω + L∗, the continuous-time will increase

by at most L∗T surely, i.e., we have that t∗∗ω − t∗ω ≤ L∗T for

every sample path ω and every solution τττω . Next, by defini-

tion of the event Ω2(k
∗
ω, i

∗), the underlying digraphs between

hybrid times (t∗ω, k
∗
ω) and (t∗∗ω , k∗ω + L∗) are given by the syn-

chronization string ζ (see Fig. 4 for an illustration). Thus, by

the same arguments of Theorem 3.3, the random solution τττω
will reach synchronization before (t∗∗ω , k∗ω + L∗) provided that

event Ω2(k
∗
ω, i

∗) is true. Since t∗ω ≤ T and t∗∗ω − t∗ω ≤ L∗T ≤
dep(G)ℓ∗T and since As is forward invariant, we have that

V (τττω(tω, kω)) = 0, for all tω ≥ T ∗. Thus, to establish (34), it

now remains to show that the probability of the event Ω2(j
∗
ω, i

∗)
is nonzero; by Lemma 4.4, P(Ω2(j

∗
ω, i

∗)) = η. Thus, the triplet

(p, r,G) is a sync-triplet.

Finally, we show that (30) holds. First, by the Bayes rule

P (T ∗T ∗T ∗(τττω) > nT ∗) = P (T ∗T ∗T ∗(τττω) > (n− 1)T ∗) . . .

. . .× P (T ∗T ∗T ∗(τττω) > nT ∗ |T ∗T ∗T ∗(τττω) > (n− 1)T ∗) .

The conditional probability on the right-hand side of the above

expression can further be simplified asP(T ∗T ∗T ∗(τ ′τ ′τ ′ω′) > T ∗), where

τττ ′ω′ is a new random solution with the initial condition τ ′ω′(0, 0)

Fig. 5. Plot of log
[

P̂(T∗(τττω) > 5n)
]

versus the number of units 5n

needed for a sample path to achieve synchronization. There are 1000
random solutions simulated.

given by τ ′ω′(0, 0) = τω((n− 1)T ∗, kω), for some kω and

ω′ := ωkω+1ωkω+2 · · · . Note that by definition of Ω3(τ
′
ω′(0, 0))

and (34), we have that

P
(

T ∗T ∗T ∗(τ ′τ ′τ ′ω′) > T ∗
)

= 1− P(Ω3(τ
′
ω′(0, 0))) < 1− η = ρ.

It then follows that:

P (T ∗T ∗T ∗(τττω) ≥ nT ∗) < ρP (T ∗T ∗T ∗(τττω) ≥ (n− 1)T ∗) .

The above recursive formula then implies that (30) holds. �

V. SIMULATION RESULTS

In this section, we present numerical studies of the proposed

algorithm (28). We set T = 1 and p = 0.5.

First, we verify the validity of Theorem 4.2 and investigate the

sync-timeTTT ∗(τττω) defined in (29). For this purpose, we consider

a rooted network of N = 12 PCOs, as shown in Fig. 5. Next, we

let the parameters ri be chosen uniformly randomly from (0, 1)N

and then choose 1000 random initial conditions uniformly from

(0, 1)N . For each initial condition, we simulate the SHDS (28)

and let (5(n− 1), 5n], for n ≥ 1, be the interval that contains
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Fig. 6. We plot the averages of sync-times of our algorithm with binary jump map (28) (depicted by the dashed, green curves) and the algorithm
in [17] with piecewise linear jump map (35) (depicted by the dotted, red curves) as functions of the number N of agents. The information flow
topologies, from left to right, are chosen to be complete-, path-, cycle-, and 5-regular digraphs. For every such information flow topology and for
every number N , the simulation results demonstrate that our algorithm synchronizes faster than the one proposed in [17].

the sync-time. In Fig. 5, we plot (in log scale) the empirical

version of P(TTT ∗(τττω) > 5n) for different units 5n, n ≥ 1, i.e.,

we plot P̂(TTT ∗(τττω) > 5n) := 1−
∑n

k=1
Freq(k)
1000 where Freq(k) is

the total number of times thatTTT ∗(τττω) belongs to (5(n− 1), 5n].
Next, we compare the performance of our binary resetting

algorithm (28) with the algorithm considered in [17] (where the

authors use a piece-wise linear jump map for numerical studies).

In the absence of delays, we reproduce their piecewise linear

jump map H(z) as follows:

H(z) =

{

h1(z) = m1z, 0 ≤ z ≤ 0.5

h2(z) = m2z + 1−m2, 0.5 < z ≤ 1
(35)

where m1 and m2 are tuning parameters with 0 < m1 ≤ 0.5
and 0 < m2 ≤ 0.5. To be consistent with their algorithm, we

let the parameters ri of our algorithm be 0.5. The metric of

performance is chosen to be the sync-time (29). Note that if

one uses the algorithm in [17], then reaching synchronization

is only asymptotic with probability one. Thus, we relax the

criterion of reaching synchronization such that the Lyapunov

function V defined in (21) only needs to satisfy V (τττω) ≤
0.05. Correspondingly, we modify the sync-time TTT ∗(τττω) to be

TTT ∗
0.05(τττω) := mint≥0{t : V (τττω) ≤ 0.05}.

We first set m1 = 0.3261 and m2 = 0.46 as was done in the

numerical studies in [17]. We run simulations for both algo-

rithms for four different classes of information flow topologies:

1) complete digraphs, 2) path digraphs, 3) cycle digraphs, and

4) 5-regular digraphs (see Section II for definition). For each

class of digraphs, we increase the number N of agents from

10 to 100, with the step of increment being 10. Then, for each

N , we generate 50 initial conditions uniformly randomly from

(0, 1)N used for both algorithms. In Fig. 6, we plot the averaged

sync-time for comparison.

Next, inspired by the use of piecewise linear jump map in [17],

we investigate via simulations how the slopes m1,m2 of the

linear maps affect the sync-time. Note that the binary jump map

can be viewed as an extremum case of the piecewise linear map

in a sense that the slopes of the two linear functions in (35) are

0, i.e. m1 = m2 = 0. Now, we set m1 = m2 =: m and study

the average sync-time as a function of m. To this end, we fix

N = 50 vertices and consider again path-, cycle-, complete-,

5-regular digraphs. We increase m from 0 to 0.5 with the step

of increment being 0.05. For each digraph and for each m, we

generate 50 random initial conditions and run the simulations.

Fig. 7. Averaged sync-times versus the slope m1 = m2 = m of linear
jump map of vertex-triggering algorithm in [17] for N = 50.

We plot the averaged sync-time as a function of m in Fig. 7 for

each digraph. It is observed that the averaged sync-time is the

least when m = 0.

VI. CONCLUSION

In this article, we have presented a stochastic binary, vertex-

triggering resetting algorithm by which networks of PCOs can

achieve global synchronization over rooted digraphs almost

surely. The result is stated in Theorem 4.2. Its proof relies on

the use of a hybrid-system machinery and the analysis of the

asymptotic behavior of a typical random solution of an associ-

ated SHDS. Numerical studies have shown that our algorithm

outperforms (in terms of the time needed for synchronization)

an existing vertex-triggering algorithm over several different

classes of information flow topologies.

APPENDIX

A. Hybrid Dynamical Systems

Solutions of (5) are parameterized by both continuous-

and discrete-time indices t ∈ R≥0 and k ∈ Z≥0. A compact

hybrid time domain is a subset of R≥0 × Z≥0 of the form

∪K
k=0([tk, tk+1]× {k}) for some K ∈ Z≥0 and real numbers

0 = t0 ≤ t1 ≤ · · · ≤ tK+1. A hybrid time domain is a set

E ⊂ R≥0 × Z≥0 such that for each T,K, the set E ∩ ([0, T ]×
{0, 1, 2, . . . ,K}) is a compact hybrid time domain. A function
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x : E → Rn is said to be a hybrid arc if E is a hybrid time do-

main, and for each k such that the interval Ik = {t ≥ 0 : (t, k) ∈
dom(x)} has nonempty interior, the function t �→ x(t, k) is

locally absolutely continuous. A hybrid arc x is said to be a

solution to (5) if the following statements hold.

1) x(0, 0) ∈ C ∪D.

2) If (t1, k), (t2, k) ∈ dom(x) with t1 < t2, then for almost

every t ∈ [t1, t2], x(t, k) ∈ C and ẋ(t, k) = f(x(t, k)).
3) If (t, k), (t, k + 1) ∈ dom(x), then x(t, k) ∈ D and

x(t, k + 1) ∈ G(x(t, k)).

B. Stochastic HDSs

Random solutions to SHDS (4) are functions of ω ∈ Ω de-

noted x(ω), such that 1)ω �→ x(ω) has measurability properties

that are adapted to the minimal filtration ofv; 2) for eachω ∈ Ω,
the sample path x(ω) is a standard solution to the HDS (5)

with the appropriate causal dependence on the random input

v(ω) through the jumps. To formally define these mappings,

for ℓ ∈ Z≥1, let Fℓ denote the collection of sets {ω ∈ Ω :
(v1(ω),v2(ω), . . . ,vℓ(ω)) ∈ F}, F ∈ B(Rm)ℓ), which are

the sub-σ-fields of F that form the minimal filtration of

v = {vℓ}
∞
ℓ=1, which is the smallest σ-algebra on (Ω,F) that

contains the preimages of B(Rm)-measurable subsets on Rm

for times up to ℓ. A stochastic hybrid arc is a mapping x from

Ω to the set of hybrid arcs, such that the set-valued mapping

from Ω to Rn+2, given by ω �→ graph(x(ω)) := {(t, k, z) :
x̃ = x(ω), (t, k) ∈ dom(x̃), z = x̃(t, k)}, isF-measurable with

closed-values. Let graph(x(ω))≤ℓ := graph(x(ω)) ∩ (R≥0 ×
{0, 1, . . . , ℓ} × Rn). An {Fℓ}

∞
ℓ=0 adapted stochastic hybrid

arc is a stochastic hybrid arc x such that the mapping ω �→
graph(x(ω))≤ℓ is Fℓ measurable for each ℓ ∈ N. An adapted

stochastic hybrid arc x(ω), or simply xω , is a solution to

SHDS (4), satisfying the basic conditions of Definition 2.1,

starting from x0 denoted xω ∈ Sr(x0) if: (1) xω(0, 0) = x0;

(2) if (t1, k), (t2, k) ∈ dom(xω) with t1 < t2, then for all

t ∈ [t1, t2], xω(t, k) ∈ C and ẋω(t, k) = f(xω(t, k)); (3) if

(t, k), (t, k + 1) ∈ dom(xω), then xω(t, k) ∈ D and xω(t, k +
1) ∈ G(xω(t, k),vk+1(ω)). A random solution xω is said to

be a) almost surely nontrivial if its hybrid time domain con-

tains at least two points almost surely; b) almost surely com-

plete if for almost every sample path ω ∈ Ω the hybrid arc

xω has an unbounded time domain; and almost surely even-

tually discrete if for almost every sample path ω ∈ Ω, the

hybrid arc xω is eventually discrete. A continuous function

V : Rn → R≥0 is a Lyapunov function relative to a compact set

A ⊂ Rn for the SHDS (4) if V (xω) = 0 ⇐⇒ xω ∈ A, V is

radially unbounded with respect to set A, nonincreasing during

flows, and
∫

Rm maxg∈G(xω,v) V (g)µ(dv) ≤ V (xω) ∀xω ∈ D.

The following stochastic hybrid invariance principle [22, Th. 8]

is instrumental for our analysis of Theorem 4.2.

Theorem B.1: Let V be a Lyapunov function relative to

a compact set A ⊂ Rn for the SHDS system H. Then, A is

UGASp if and only if there does not exist an almost surely

complete solution xω that remains in a nonzero level set of the

Lyapunov function almost surely.
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