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A Stochastic Binary Vertex-Triggering Resetting
Algorithm for Global Synchronization of
Pulse-Coupled Oscillators

Muhammad Umar Javed

Abstract—In this article, we propose a novel stochastic
binary resetting algorithm for networks of pulse-coupled
oscillators (or, simply, agents) to reach global synchroniza-
tion. The algorithm is simple to state: Every agent in a
network oscillates at a common frequency. Upon complet-
ing an oscillation, an agent generates a Bernoulli random
variable to decide whether it sends pulses to all of its
out-neighbors or it stays quiet. Upon receiving a pulse, an
agent resets its state by following a binary phase update
rule. We show that such an algorithm can guarantee global
synchronization of the agents almost surely as long as the
underlying information flow topology is a rooted directed
graph. The proof of the result relies on the use of a stochas-
tic hybrid dynamical system approach. Toward the end of
this article, we present numerical demonstrations for the
validity of the result and numerical studies about the units
of time needed to reach synchronization for networks with
various information flow topologies.

Index Terms—Hybrid dynamical systems (HDSs), net-
worked systems, stochastic processes, synchronization of
multiagent systems.

[. INTRODUCTION

N THIS article, we consider a network of N pulse-coupled
I oscillators (PCOs), characterized by periodic resetting dy-
namics, sharing information with their neighbors where the
neighboring relations are described by a directed graph (di-
graph). Each agent has an individual state 7; € R, which evolves
according to the following continuous-time dynamics:

1
nel0,1)=5=7Vie{l2,. .. N} (1)

where T' > 0 is the period of oscillation, and [0,1) is a nor-
malized unit interval. When the state of an agent ¢ finishes an
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Fig. 1. llustration of our stochastic binary resetting algorithm: When
agent 1 satisfies 71 = 1, it updates its state by 7‘1+ = 0. Meanwhile, it
draws a Bernoulli random variable to decide whether to send a pulse
to its out-neighbors (in this case, only agent 2). If the pulse is sent,
then upon receiving the pulse, agent 2 will update its state by following
the binary update rule described in (3). In this example, since m» >
ro, agent 2 updates its state by 7'2+ = 1. Note that once all agents are
synchronized, they remain synchronized under our algorithm (1)—(3).

oscillation, i.e., 7; = 1, it will instantaneously reset its individual
state back to zero

=1=71"=0. 2)

Simultaneously, the agent sends a pulse, with a certain proba-
bility p € (0, 1) to trigger all of its (out-)neighbors j. Each out-
neighbor j of agent ¢, upon receiving the pulse, instantaneously
updates its state 7; using a set-valued binary phase update rule

{0}7 Tj € [07Tj)
7 e Ri(my) = ¢ {0,1},  Ti=my 3)
{1}7 Tj € (ij 1]

where the constant 7; € (0, 1) partitions the unit interval.
Among others, in this article, we show that if the underlying
information flow topology is arooted directed graph, then for any
pand any r := [rq,...,7x]", the network of PCOs will reach
synchronization almost surely from all initial conditions. Since
each individual state 7; is confined to evolve in the normalized
interval [0,1], one can view the state as flowing in a unit circle
(that is formed by identifying the two endpoints 0 and 1 with
each other), in the counterclockwise direction, with frequency
1/T. In this way, global synchronization of PCOs can be cast as
a consensus problem on the N-torus (e.g., see [1], [2], and [3]).
See Fig. 1 for an illustration of our algorithm on the 2-torus.
Synchronization of PCOs using deterministic resetting algo-
rithms has been widely investigated in the literature, and we
refer the reader to [2], [4], [5], [6], [7], [8], [9], [10], [11],
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Fig. 2. Two different random triggering models “vertex-triggering” and “edge-triggering.” We present possible events when agent 1 hits value 1

(i.e., the agent satisfies 1 = 1, 1-1+ = 0) for both models. An out-neighbor of agent 1 updates its state to either 0 or 1 when it receives a pulse from

agent 1; otherwise, the out-neighbor will retain its state.

[12], [13], [14], [15], and [16]. However, in none of these
works, has global synchronization been shown to achieve overall
rooted digraphs using deterministic resetting algorithms. Some
works have relaxed the global convergence requirement to either
local convergence (e.g., [4], [14], and [15]) or almost global
convergence (e.g., [12], [13], and [16]) while other works have
restrictions on the underlying information flow topologies [2],
[5]1, [6], [7], [8], [9], [10], [11]. Recently, we have shown
in [2] that a certain deterministic binary resetting algorithm
cannot achieve global synchronization over all rooted digraphs.
Whether or not there exists a deterministic resetting algorithm
that can achieve global synchronization of PCOs over all rooted
digraphs still remains open.

The problem of global synchronization of PCOs using
stochastic resetting algorithms has also been investigated in the
literature [2], [3], [17], [18], [19]. Our study on the problem,
as well as the main results established in the article, is dif-
ferent from the ones in those existing works, as we elaborate
ahead.

First, we mention the works [3] and [17]. In these works, the
authors have considered a similar stochastic resetting algorithm.
A key difference is that their phase update rule is described by
a piecewise continuous function (the only discontinuity is at 7,
which is set to be 0.5 for all the agents), with each piece being
strictly monotonically increasing, whereas ours is piecewise
constant. Although the difference in the phase update rule seems
to be moderate, the analyses of the two resulting systems differ
significantly. In particular, the arguments developed in [3] and
[17] do not apply to our case; certain key results, such as
[17, Lemma 8], do not hold anymore. For example, the authors
there have considered the arc of minimum length that covers
all the agents on the unit circle and shown that the number of
agents on the boundary points of the arc cannot increase over
time. This is not true if one uses the binary phase update rule.
Besides the difference in the phase update rule, there is also a
difference in the underlying information flow topology. Using
their resetting algorithm, the authors have established almost
sure global synchronization over undirected connected graphs
(i.e., communications between agents are reciprocal) in [3] and

over strongly connected digraphs in [17]. The class of rooted
digraphs considered in this article is more general.

Next, in the work [ 18], Pagliari and Scaglione have considered
a different type of triggering: Upon hitting 1, an agent ¢ will
generate multiple independent, identically distributed (i.i.d.)
Bernoulli random variables, with the number of random vari-
ables matching the number of its neighbors (that is, the un-
derlying information flow topology is undirected), so as to
decide individually whether or not it sends a pulse to each
of its neighbors. This is in contrast to the triggering model
considered in this article where an agent, upon hitting 1, draws
only a single Bernoulli random variable and broadcasts to all
of its (out-)neighbors. Because of this, we call our trigger-
ing model vertex-triggering and theirs edge-triggering. See
Fig. 2 for an illustration of both models. Note that our previous
work [2] has also considered edge-triggering. An advantage of
“vertex-triggering” over “‘edge-triggering” is that the former re-
quires fewer Bernoulli random variables drawn at a time, making
it easier for the agents to implement the resetting algorithm. The
difference between the two algorithms will also be carried over
to the analysis: For edge-triggering, the underlying information
flow topology can be viewed as an Erdés—Rényi type random
graph whenever an agent hits 1 (since the edges are drawn
independently). In [2], we relied on such a probability model
to establish almost sure global synchronization. However, this
probability model cannot be used here to describe the informa-
tion flow topology for the case of vertex-triggering. Due to the
difference between the two probability models, we will have
different sample paths of random graphs along the dynamics of
the two systems. Consequently, the characterizations of the so-
called “synchronization strings” (roughly speaking, these are the
strings in a sample path that can lead to global synchronization
as we will introduce in Definition 3.2) will also be different.

We further mention the work of Hartman et al. [19] where they
have considered a completely different stochastic resetting algo-
rithm. There, the dynamics of the agents are not pulse-coupled;
instead, the authors have assumed that every agent can access the
mean of the states and uses that information to make decisions
and to take actions.
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Our method to establish almost sure global synchroniza-
tion relies on the use of stochastic hybrid dynamical systems
(SHDSs) [20], where the set-valued binary update rule will be
used to define the jump maps of the system. Indeed, the combi-
nation of continuous-time dynamics, describing the continuous
evolution of the PCOs, and discrete-time dynamics, describing
the resets, naturally lead to a hybrid dynamical system (HDS).
Moreover, since the pulse-triggering of an agent (upon hitting 1)
is atrandom and since only the (out-)neighbors of the agent could
receive the pulse (if the pulse is generated and sent), the jump
maps of the SHDS are stochastic and depend on the underlying
information flow topology. Formally, to establish the SHDS, we
will first introduce a family of infinite sequences of i.i.d random
digraphs, sampled from a finite set, called the set of feasible
digraphs. Roughly speaking, a digraph is feasible if every agent
is connected to either all or none of its out-neighbors. Every
such random digraph corresponds to an occurrence of an agent
hitting 1, and it indicates whether the agent sends a pulse or
not. We then use such a sequence of random digraphs to define
the sequence of jump maps of the SHDS. We analyze random
solutions of the SHDS by analyzing solutions of an HDS over
a fixed, but arbitrary, infinite sequence of feasible digraphs. We
present a novel condition on the sequence that can guarantee
global synchronization of the HDS. We then establish almost
sure global synchronization of the SHDS by showing that the
condition can be satisfied almost surely. Toward the end of this
article, we have conducted numerical studies for validation of
the main result and for comparison of our algorithm with an
existing vertex-triggering algorithm [17].

The rest of this article is organized as follows. Section II
presents some preliminaries. The main results for the deter-
ministic and stochastic settings are presented and established in
Sections III and IV, respectively. Section V is about numerical
studies. Finally, Section VI concludes this article.

Notations: Given a vector z in R™, let |z| be the standard
Euclidean norm of z. For a compact set A C R”, let |z|4 :=
minge 4 |z — y|. We also use | - | to denote the cardinality of
a finite set. We use c¢,, € R™ to denote a constant vector with
all entries equal to ¢ € R. We use (a1, az) = (b1, bs) to denote
a; > by and as > bs. The floor function is denoted by | - |. Given
aset B, we use BY to denote the N-Cartesian product of B, i.e.,
BN := B x B x --- x B (N times). A function « is said to be
of class-K if itis strictly increasing in its argument and «(0) = 0.
Additionally, if a(r) — oo as r — oo, then « belongs to class-
K. We denote by B (respectively, B°) the closed (respectively,
open) ball of radius one centered at zero. A set-valued mapping
M : R™ = R™ is said to be locally bounded (LB) at x € R™
if there exists a neighborhood K, of x such that M (K,) is
bounded. Given a set X C R™, the mapping M is LB relative
to X if the set-valued mapping from R™ to R™ defined by M
forz € X,and by @ forx ¢ X,is LB ateach x € X. The graph
of a set-valued mapping G is defined as graph(G) := {(z,y) €
R™ x R™ : y € G(x)}. Given a measurable space (€2, F), a set-
valued map G : {2 = R" is said to be F-measurable [21, Def.
14.1], if for each open set O C R™, the set G 1(0) == {w €
N:Gw)NO=g}eF.

Il. PRELIMINARIES

In this section, we present basic notions from graph theory,
and deterministic and SHDSs.

A. Graph Theory

A directed graph, or digraph, is denoted by G := (V, &), with
V:={1,2,...,N} the set of vertices and £ C V x V the set
of edges. In this article, we consider only simple digraphs, i.e.,
digraphs without self-arcs. We denote by (7, j) an edge of G; we
call 7 an in-neighbor of j, and j an out-neighbor of 7. We denote
the set of out-edges of vertex 7 as £, . A path from a vertex 7 to a
vertex j is a sequence {ig, 1, . .., %m I, With ig = 7 and i,,, = 7,
in which each pair (i;,4;41) € € forall [ € {0,1,...,m — 1}
and all the vertices are pairwise distinct. The length of a path is
defined to be the number of edges in that path. A vertex ¢ € V
is said to be a root of G if for any other vertex j € V), there
exists a path from i to j. A digraph G with at least one root is
a rooted digraph. We denote the set of all the root vertices of
G as Vg. In a rooted digraph G, the depth of a vertex j with
respect to a given root vertex ¢* is defined to be the length of the
minimum path from ¢* to j. We denote by V,(i*) the vertices
at depth ¢, and ¢* the maximum depth. The depth of a rooted
digraph G is defined to be dep(G) := max;-cy,, ¢*. A d-regular
digraph G(V, E'),ford < N,isadigraph where each vertex i has
d out-neighbors ((¢ +7) mod N)+1, for j=0,...,d— 1.
Note, in particular, 1- and (N — 1)-regular digraphs are cycle
and complete digraphs, respectively.

B. HDS With Random Inputs

An SHDS with state z € R" and random input v € R™ is
characterized by the following set of equations [20], [22]:

&= f(z)

T € Gz, vh), v~ pu(-)

reCC, (4a)

x €D, (4b)

where the function f : R™ — R™, called the flow map, describes
the continuous-time dynamics of the system; the set C' C R",
called the flow set, describes the points in the space where
x is allowed to evolve according to the differential equation
(4a); G : R™ x R™ = R", called the jump map, is a set-valued
mapping that characterizes the discrete-time dynamics of the
system; and D C R", called the jump set, describes the points
in the space where z is allowed to evolve according to the
stochastic difference inclusion (4b). We use v as a place holder
for a sequence of i.i.d. input random variables {vi}72, with
probability distribution p, derived from an abstract probability

space (2, F,P).
Definition 2.1: An SHDS (4) is said to satisfy the Basic

Conditions if the following holds.

1) The sets C' and D are closed, C' C dom(f), and D C

dom(G).

2) The function f is continuous.

3) The set-valued mapping G : R™ x R™ = R" is LB
and the mapping v +— graph(G(-,v)) := {(z,y) €
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R™ x R":y € G(x,v)} is measurable with closed
values.
For further details of SHDS (4) (concept of solution, causality
assumption, etc), we refer the reader to Appendix B.
When the discrete-time dynamics (4b) does not depend on
random inputs, the SHDS (4) is reduced to a standard HDS [23]

zelC, &= f(x)

zt e G(x).

(5a)

reD, (5b)

Solutions of hybrid systems are parameterized by both
continuous- and discrete-time indices ¢t € R>g and k € Z>.
The index ¢ increases continuously during flows (4a) or (5a),
and the index k increases by one when a jump occurs via (4b) or
(5b). Solutions to (5) are defined on hybrid time domains, which
are characterized by a pair of time indices (¢, k). For further
details on the concept of solution to (5) and hybrid time domains,
we refer the reader to Appendix A. A solution is said to be
1) maximal if its time domain is not a proper subset of the domain
of other solution; 2) complete if its time domain is unbounded;
3) uniformly non-Zeno if there exists T,K € Rsq such that
for every (1, k1), (ta, ko) € dom(z), ty — t; < T implies that
ko — k1 < K.

C. Stability and Convergence Notions

In this article, we will consider the following properties for
the solutions of the SHDS (4) and the HDS (5).

Definition 2.2: The HDS (5) is said to render a closed set
A strongly forward invariant [23] if every complete solution z,
with 2(0,0) € A, satisfies z(t, k) € A for all (¢, k) € dom(x).
Similarly, the SHDS (4) is said to render the set A surely
strongly forward invariant if every random solution z,, to (4)
with z,,(0,0) € A stays surely in A.

We next introduce the following notions from [23] and [24]

Definition 2.3: The HDS (5) renders a closed set A.

1) Uniformly Globally Stable (UGS) if there exists a class-
Ko function « such that any solution z to (5) satisfies
lz(t, k)|a < a(|z(0,0)].4) for all (¢, k) € dom(z);

2) Globally Finite-Time Attractive (GFTA) if for each
solution z of (5) there exists T(z(0,0)) > 0 such
that |z(t, k)| 4 = 0 for all (¢,k) € dom(x) and t + k >
T(2(0,0));

3) Globally Fixed-Time Attractive (GFXTA) if A is GFTA
and, additionally, T >0 is a constant independent of
x(0,0).

We further have the following definition from [20], which
applies to systems of the form (4).

Definition 2.4: The SHDS (4) renders a compact set .A.

1) Uniformly Lyapunov stable in probability if for each
e >0 and p > 0 there exists a § > 0 such that for all
x,(0,0) € A+ B, every maximal random solution x,,
from x,, (0, 0) satisfies the inequality
P(x,(t, k) € A+eB° V(t, k) € dom(xy)) > 1—p.

(6)

2) Uniformly Lagrange stable in probability if for each § >
0 and p > 0, there exists € > 0 such that the inequality
(6) holds.

3) Uniformly globally attractive in probability if for each
e>0,p>0, and R > 0, there exists v > 0 such that
for all random solutions x,, with x,,(0,0) € A + RB the
following holds:

P(x,(t, k) € A+eB° Vi+k>~,(t, k) € dom(xy))
>1—p.

System (4) is said to render a compact set A C R™ Uniformly
Globally Asymptotically Stable in Probability (UGASp) if it
satisfies conditions (1), (2), and (3).

For an SHDS of the form (4), UGASp of a compact set can
be established via the stochastic hybrid invariance principle [22,
Th. 8], see Theorem 1.1.

[lI. DETERMINISTIC RESETTING ALGORITHM WITH
TIME-VARYING JUMP MAPS

In this section, we first introduce a deterministic HDS, with
time-varying jump maps, for analyzing the asymptotic behav-
ior of a typical random solution of the networked system of
PCOs described in Section I. The results of this section will
be used later to establish almost sure global synchronization in
Section IV.

A. Well-Posed HDS

To formalize the HDS, we start by introducing a notion about
feasible subgraphs of a given digraph.

Definition 3.1: Let G = (V, &) be an arbitrary digraph. A
subgraph ¢ = (V,£’), on the same vertex set V, is feasible if
the edge set &’ satisfies the following condition: For any vertex
ieV,eitherE, CEorE NE = 0.

Let ® be the collection of feasible subgraphs of G and = be the
collection of infinite sequences of the feasible subgraphs, i.e.,
any element £ € = is given by £ := ¢1¢203 - - -, where each
¢; € @ is feasible. We note that both ® and = are implicitly de-
pendent of G. Now, for a given £ € =, we define a corresponding
HDS

He = (C, [, D,G). )

The state of the HDS is z:=(7,1) € RYy x Z>o. The
continuous-time dynamics of this system are given by

fT(T) _ l]-N
A [To ] ®

where the state 2 evolves in the set C defined as

= f(z):= [

C:=Cr x Lsy, Cr:=1[0,1]". 9)

The discrete-time dynamics are given by

Gita(7)

T € G(z) =
A+1

(10)
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where the state x evolves in the set D defined as

D:=D; xZso, Dy :={r€C; imax;eyp7; =1}. (11)

In other words, the set D, comprises all points 7 € C', such
that 7, = 1 for at leastone 7 € {1,..., N}

Note that in (8)—(11), the substate A can be viewed as a
discrete-time counter that increases by one every time there
is a jump in the system. For each A, the set-valued map G
in (10) is defined as the outer-semicontinuous hull of the

mapping
G)(r)={geRN 19, =0,9; € Rjs(r) Vj#i} (12)

where the set-valued map R;, is defined over the feasible
digraph ¢; := (V, &) as

0, 7, €[0,r5) (i,7) €&
{01}, 7m=r; (i) €&

+ : = '
e R () : 1,  me@pl] (i,)) €&
Tjy (ZJ) gg)“

For any r € (0,1)"V, and for any ¢ € =, every solution of the
HDS (7) is complete and uniformly non-Zeno. The completeness
follows from the following facts.

1) By construction, the HDS (7) satisfies the Basic Condi-
tions of Definition 2.1 (noting that G is independent of
V).

2) fr(r)=1/T1x >0 for all z € C'\ D, which guaran-
tees the existence of nontrivial solutions from C'\ D.

3) The HDS has no finite escape times.

4) G(D) C C U D, so solutions of the HDS cannot stop due
to jumps leaving C' U D, [23, Prop. 6.10].

Lack of Zeno behavior follows from the next result.

Lemma 3.1: Consider an HDS #H, as in (7). Let
7 := min;cy r;. Then, the number of jumps in any period of
length T is bounded below and above by 1 and N(|1/r] + 1),
respectively.

Proof: We first establish the lower bound. Pick an arbitrary
agent i and let 7;(¢, k) be its state at time (¢, k). We consider the
period [t,t + T']. There are two cases: 1) During this period, no
in-neighbor of agent ¢ hits 1 and triggers it. In this case, by the
continuous-time dynamics of the HDS (8), agent ¢ will reach the
value 1 in at most 7' seconds and, then, jumps to 0; (2) during
that period, there exists at least one in-neighbor of agent ¢ that
hits 1 and jumps. In either case, the total number of jumps of the
entire network that occur during the period [¢, ¢ 4+ 7] is bounded
below by 1.

We now establish the upper bound. For each individual agent,
we will evaluate an upper bound for the number of times it can
hit 1. To do so, we note that if an agent ¢ hits 1 and jumps at
a certain time (¢, k) (so that 7;(¢, k 4+ 1) = 0), then for the next
r; 1" seconds, the agent cannot hit 1. This holds because the least
time for the agent ¢ to hit value 1 is to first flow for r;7" seconds
and, then, to have one of its in-neighbors to hit 1 and trigger
it. The above arguments then show that the number of times
the agent 4 can hit 1 during the period [t,t + T is bounded
above by (1/r; + 1) and, hence, |1/r;] + 1. Finally, because
the number of jumps of the entire network that occur during the
period [t, ¢ + T is equal to the number of times the agents hit 1

during the same period, we conclude that the number of jumps
is bounded above by -~ | ([1/r;] +1) < N([1/r] +1). ®

B. Stability Analysis

We study the stability properties of the HDS, introduced in
(7), with respect to the closed set A defined as follows:

A=Ay X Zsg, Ag = {pln - p € [0,1]} U {0, 1}, (13)

It should be clear that € A if and only if 7 € A,. We say
that the HDS (7) reaches synchronization if (¢, k) enters A (or,
equivalently, 7(¢, k) enters .A;) for some hybrid time (¢, k). To
proceed, we first have the following result, which says that the
system remains synchronized once it achieves synchronization.
The proof can be found in [25, Appendix Al].

Lemma 3.2: For any ¢ € Z, the HDS H¢, introduced in (7),
renders the set A (resp. A) strongly forward-invariant for the
substate 7 (resp. the state x).

Recall that for a root ¢* of G, the set of vertices at depth
g is denoted by V,(i*). We will now introduce the notion of
synchronization string:

Definition 3.2: Let G = (V, £) be a rooted digraph and i* €
Vg be aroot. Let ¢* be the depth of G with respect to i*. For any
g=0,...,¢", weletG, := (V, &,) be afeasible subgraph of G
with the edge set &, := Ujey, ()&, - Then, the synchronization
string ¢ with respect to ¢* is a finite string of feasible subgraphs

of G
C:=Go-GoG1--G1--Gg1, - Gg1

where each subgraph G, is repeated contiguously in the string
for ¢* times, where ¢* := N(|1/r| + 1). Correspondingly, the
length of the string ¢ is L* := £*¢*.

With the definition above, we will now state the first main
result of the article:

Theorem 3.3: Let G be a rooted digraph and r € (0,1)".
Suppose that £ € = contains a synchronization string ¢, de-
fined in (14), with respect to a root ¢* € Vg; then, for every
maximal solution x of the corresponding HDS H¢, defined in
(7), with 1(0,0) = 0 and 7(0,0) € [0,1]", there exists a hybrid
time (t*,k*) € dom(z), uniformly bounded above, such that
7(t, k) € Ag forall (¢, k) = (t*, k*).

We establish Theorem 3.3. To proceed, we will first introduce
afew subsets Aq(i*), forqg =0,...,q", thatdescribe partial syn-
chronizations in the network. For each ¢, let 7(9) € [0, 1]/Va(®")]
be the vector that collects the states of vertices of depth ¢, with
respect to ¢* (so that 70 = 7;+). Next, we relabel (if necessary)
the vertices in the rooted digraph G so that

(14)

= O, 0, ) (15)

In the sequel, we fix the root ¢* and the corresponding label-

ing. Let Uy (1*) := UJ_Ve(¢*) and My := |Uy(i*)|. Then, the
subsets A, (:*) are defined as follows:

A, (i) == ({,uMq s [0,1]} U o, 1}Mq> x [0, 1]V "Ma,

(16)
Note, in particular, thatif ¢ = 0, then A, (i*) = C andif ¢ = ¢*,
then Ay (i*) = A,, where A; is defined in (13). It should be
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T(tl, k?l — 1) (tQ, k2 — ) (t’; ]Cg — 1)
7(0,0) (to, ko) c A T(t1, k1) € A 7(ta, ko c A3 A
G 5@' Dy
won D O
SN CaNCHE @-
) Go
T (repeated (* times) (repeated f* times) rcpcatod Z* times)
¢
Fig. 3. To illustrate Theorem 3.3, we consider a network of four PCOs of depth ¢* = 3 with vertices Vo = {1}, V1 = {2}, V> = {3}, V3 = {4},

edge set {(1,2),(2,3), (3,2

),(3,4)}, and r = 1/8. Correspondingly, £* = 36 and the length of the synchronization string ¢ becomes 108. For the
initial condition 7(0, 0) and infinite sequence of graphs &, (t4—1,kq-1) and (tq, kq —

1), for ¢ = 1,2, 3, are, respectively, the hybrid time of the first

and the last appearance of G, in a synchronization string ¢ contained in . Since G, only contains the out-edges of vertices V,, this leads to

T(tqv kll -

clear that if the sub-state 7 belongs to one of these compact
sets, say A, (%) at a certain time, then the vertices in U, (¢*) are
synchronized at that time. By definition, we have the following
chain of inclusions:

Ag (i) € Apa (i) €

Let £ = ¢1¢2 - -- be given in the statement of Theorem 3.3.
Because ¢ contains the synchronization string (, there exists a

CCAG) C A aT)

ko € Z>y such that { = ¢y, - - - d,.—1, Where (kg — ko) is the
length of (. Furthermore, foreachq =1,...,¢" — 1, we let
kq == ko + qt* (18)

where ¢* is the depth of G with respect to the root i* and ¢*
is defined in Definition 3.2. It should be clear that £k, can
be expressed as k- = ko 4+ ¢*¢*. From the definition of syn-
chronization string, we have that for any ¢ = 0,...,¢* — 1, the
digraphs ¢, ..., ¢x,., 1 are the same given by G,.

Now, let = be an arbitrary maximal solution of the HDS H,¢
and we fix this solution in the sequel. Since (0, 0) = 0, we have
that A(-, k) = k, for all (¢, k) € dom(x).

Let to := min{t € R>q : (t, ko) € dom(x)}, i.e., to is the
continuous time-instant that corresponds to the occurrence of
the koth jump of the HDS H,. Note that such ¢ is well-defined
and, in fact, uniformly bounded above. Indeed, to see this, note
that by Lemma 3.1, the number of jumps in any period of T is
lower bound by 1. It thus implies that ¢ty < ko 7. Similarly, for
any other ¢ = 1,...,¢", we let

ty = min{t € Rxq : (¢, ky) € dom(x)}. (19)

Again, from Lemma 3.1, there is a uniform upper bound for ¢,
as ty < tog+ ql*T. See Fig. 3 for an illustration of (¢4, k).
With the sets A, (¢*) and the hybrid times (¢4, k,) defined
above, we establish the following result:
Proposition 3.4: Let x be a maximal solution of the
HDS H¢ (7) and (t4,kq), for ¢ =0,...,¢", be the hybrid

1) € A, for every q. Because, for such a &, each A, is strongly forward-invariant, we have that 7 (t3, k3 — 1) € As.

times defined as above. Then, under the assumption of The-
orem 3.3, the following holds: For each ¢ =0,...,¢" — 1,
there exists a hybrid time (t], k;) € dom(z), with (t,,kq) =<
(ths k) = (tge1, kg1 — 1), such that 7(t],k;) € Ag1(i"),
where A,1q(¢*) is defined in (16). Moreover, 7(t. k) €
Ag41(3%) for all (¢, k) € dom(x) with (¢, k) = (t;, k).

Proof: ~We will show that there exist hybrid times
(ty,ky), for q=0,. =1, with (tg, k) = (t3, ky) =<
(tg+1,kg+1 — 1), such that if (t,, k) = (k) = (tyr1, Kyia)s
for ¢ = O ,q¢" —2, then 7(t, k) € Ay+1(i*). Moreover,
(g1, kg _1) € Ay (i*) = As. Note that if this holds, then
by the chain of 1nclu510n (17) and the strong forward invari-
ance of A, established in Lemma 3.2, we have that for any
(t k) = (t,, ky), T(t, k) € Agyy forallg=0,...,¢" — 1.

Starting from the hybrid time (to, ko), all elements in the
string ¢y, - - - ¢r,—1 are the same given by the digraph G,
which induce the set-valued mappings Gy, . . . , G, -1 defined
in (12). Since the root vertex ¢* has no in-neighbor in G, for any
state 7(to, ko), ¢* will hit 1 in less than or equal to 7" seconds
(in continuous-time) after ¢y, i.e., there exists a hybrid time
(th, kb — 1) such that 7O (¢, k) — 1) = 1 with 0 <t — tg <
T and 7 (#), kj)) = 0. Furthermore, by Lemma 3.1, the number
of jumps over any period of length 7" is bounded above by ¢*
(defined in Definition 3.2), we have that ko < k{ < k1 — 1.
Because Gy contains only the out-edges of the root vertex i*,
each of the set-valued mapping Gy, . . ., Gk, 1 maps 7(tg, k()
to {0, 1} x [0, 1]V -1, where we recall that M is the car-
dinality of the set U, (i*) = {¢*} U V1 (i*). Thus, we have that
7(ty, ky) € Aq(i%).

Since 7(tg, ky) € A1(i*) and since ¢y 11, - - -
only the out-edges of the root ¢*, we have that

, ¢, —1 contain

7(t, k) € Ay (%), for all (¢, k) € dom(7) such that

(to, ko) = (t, k) = (t1, k1 — 1), (20)
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Starting from the hybrid time (t1,%1), all elements in the
string ¢p, - - - Pr,—1 are the same given by the digraph G,
which induce the set-valued mappings Gy, , . . ., G,—1 defined
in (12). By construction of Gy, only vertices in V;(i*) have
out-neighbors. Thus, if there is a jump at a hybrid time (¢, k),
with (t1,k1) < (¢, k) = (t2, ks — 1), then only the vertices in
V) (i*) can trigger. On one hand, by Lemma 3.1, the number of
jumps that can occur during any period of length 7" is bounded
above by * = ko — k1. On the other hand, since the vertices in
U, (%) are synchronized at (t1,k; — 1), starting from ¢; these
vertices will hit 1 simultaneously (in continuous-time) in less
than or equal to 7" seconds. The above arguments imply that
there exists a hybrid time (¢}, k}), with t; <, <} + T and
ky < Ky < ks —1, such that [r( +(D](#, k}) = 0y,. Fur-
thermore, each of the set-valued mappings Gy, ,...,Gr,—1
maps 7(t},k}) to {0,1}M2 x [0,1]V~M2, where M, is the
cardinality of the set Uz (i*) = {i*} U V1 (i) U Vo (*). Thus, we
have that 7(#/, k}) € A3(i*). Note that by the above arguments,
we have also shown that 7(¢, k) € A; (i*) for (¢, k() = (¢, k) =
(t1, k).

One can iterate the above arguments to obtain sequentially
the hybrid times (t;,, k), forallg = 0, ..., ¢" — 1, as described
in the beginning of the proof. |

Theorem 3.3 follows immediately from Proposition 3.4.

Proof of Theorem 3.3: Let x = (7, 1) be a maximal solution.
Then, by Proposition 3.4, there is a hybrid time (¢._,kj._;)
such that 7(¢, k) € A, for all (t,k) = (t._q,k;._1). We then
set (t*,k*):= (t;._q,ky._1). Furthermore, since (t*,k") <
(tg,kq) and since (tq,kq) is uniformly bounded above,
(t*, k*) is uniformly bounded above as well. |

Toward the end of the section, we consider the scenario where
& contains the synchronization string infinitely often. Precisely,
we have the following definition.

Definition 3.3: An infinite sequence ¢ € = contains a syn-
chronization string infinitely often if it has infinitely many dis-
joint finite strings that are the synchronization string. The infinite
sequence £ contains a synchronization string uniformly infinitely
often if there exists a positive integer n such that every string of
length n in £ contains a synchronization string.

With Definition 3.3, we will now strengthen Theorem 3.3:

Theorem 3.5: Let G be arooted digraph and r € (0, 1)V, Let
the HDS H, be given as in (7) and the set A be defined in (13).
Suppose that £ contains the synchronization string ¢ infinitely
often (resp. uniformly infinitely often); then, . renders the set
A UGS and GFTA (resp. UGS and GFxTA).

Proof: We show that H¢ renders the set .A uniformly glob-
ally stable and globally finite-time attractive (resp. globally
fixed-time attractive) when £ contains ( infinitely often (resp.
uniformly infinitely often):

Proof of uniform global stability of A: Consider the function
V :10,1]N — Rsq defined as the infimum of all the arcs that
cover all agents on the unit circle, where the points O and 1 are
identified to be the same. The mathematical expression of V' can
be given as follows [17]:

fori < N
V(r):=1- max ore =

Tyizr — Ty QD
I<isN |1 -7y, + 7, fori=N

where ~;, for i € {1,..., N}, is an index permutation such
that 7,, < 7,,,, for all ¢. This function satisfies the following
properties.
a) It is positive definite with respect to the compact set A,
defined in (13).
b) Itremains constant during flows because all the oscillators
have the same frequency %
c¢) It does not increase at jumps since jumps never increase
the number of distinct positions of the agents.

Next, we define a Lyapunov function candidate W : [0, 1]V x
Zxo — Ry for the HDS ¢ as follows: For any x = (7, 1), let
W(x) := V(1) + |A|z.,. Since A € Z>(, we have that W (z) =
V(7) and |z|4 = |7|4, for all z € C'U D. Thus, it suffices to
show that the HDS H renders the set A, uniformly globally
stable for the substate 7 € C.. We establish this fact below.
Since C is compact and since V' is continuous, V' is bounded,
in fact, itisknown [2] that V' (7) < 1 — +-. Because V is positive
definite with respect to compact set A, there exists two class X
functions a1, a such that the condition a4 (|7]4.) < V(1) <
as(|7|4,) holds for all 7 € C; [23, Ch. 3]. Next, we know
from properties (b) and (c) above that V' is nonincreasing, i.e.,
V(r(t,k)) < V(7(0,0))forall (¢, k) € dom(x). Thus, we have
from above inequalities that |7 (, k)| 4. < a7 (aa(|7(0,0)]4.))
for all (t, k) € dom(z). Since a; ' ay is a K-function, we have
that the HDS H ¢ renders the set A uniformly globally stable [23].

Proof of global finite-time attractivity of A: Letx = (7, 1) be
an arbitrary maximal solution of H.. We first establish global
finite-time attractivity under the assumption that £ contains the
synchronization string ¢ infinitely often. Specifically, we need
to show that there exists a T'(x(0,0)) such that

lz(t, k)[4 =0 Vt+k>T(x(0,0)), (t,k) € dom(z).

(22)
Given &, let o; be the index of £ corresponding to the first digraph
of the ith appearance of (. Since £ contains ( infinitely often,
there exists an integer ¢ > 0 such that o; > 4(0,0) and 0; <
2(0,0) for all j < 4. In words, the integer ¢ is such that the ith
appearance of ¢ in the sequence ¢ is its first appearance after
index A(0, 0). If, further, £ contains ¢ uniformly infinitely often,
then, by Definition 3.3, o; — A(0,0) < n. Now, let

ko := o; — 1(0,0), o := min{t € Rxq : (¢, ko) € dom(z)}.

Then, (%, ko) is the hybrid time of the solution z corresponding
to the first digraph of the first appearance of (. By Lemma 3.1,
we have that 7, < ko T Next, similar to (tq, kq) defined in (18)
and (19), we let

kg == ko + ql*, t, := min{t € R>¢ : (t,k,) € dom(z)}.

Using again Lemma 3.1, we have that £, — ¢ < ¢¢*T" Thus, all
the hybrid times (¢4, k) are bounded above. Furthermore, by the
same arguments of Proposition 3.4, we have that |x(t, k)[4 = 0

for all (¢,k) = (t4, kg ), with (¢, k) € dom(z). The proof of
global finite-time attractivity is then done by setting
T(x(0,0)) :=ty + kg (23)

Finally, we assume that £ contains ( uniformly infinitely often
and establish global fixed-time attractivity. We do so by showing
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that the quantity 7'(x(0, 0)) in (23) is uniformly bounded above.
By the above arguments, we have the following two facts:

1) Since ko = o; — A(0,0) < n and k- = ko + ¢*¢*, we have
that k, < n -+ ¢*0*; 2) since tg < ko T < nT and since , <
to + ¢*0*T, we have that t,- < (n+ ¢*¢*)T. Thus, for any
z(0,0), T(2(0,0)) < (n+ ¢"¢*)(T + 1). [ ]

IV. STOCHASTIC RESETTING ALGORITHM

In this section, we consider networks of PCOs with the under-
lying information flow topology being a random digraph: Every
time an agent hits 1, it will generate a single Bernoulli random
variable, independent of others, to decide whether or not to send
pulses to all of its out-neighbors. This stochastic model differs
from the one in our previous work [2]; there, whenever an agent
hits 1, it will generate multiple i.i.d. Bernoulli random one for
each of its out-neighbors.

A. Well-Posed SHDS

We start by showing that the feasible subgraphs of a given
digraph G can be mapped one-to-one to certain binary sequences.
To that end, let N* < N be the number of vertices in G with at
least one out-neighbor. Without loss of generality, we will label
these verticesas 1,..., N*andletV* := {1,..., N*}. Consider
binary sequences vy . . . vy« of length N*, witheach v; € {0,1}.
One can assign to each feasible digraph G’ = (V,£’) such a
binary sequence: Foreachi =1,..., N*, set

L,
V; = 07

Conversely, each binary sequence gives rise to a feasible digraph.
Thus, with the labeling of the vertices in V* and the above
correspondence, we can use a binary sequence vp...vn- tO
represent a feasible digraph. Consequently, the set & can be
realized as the collection of all binary sequences of length N*,
denoted as ¥ := {0, 1}V,

We next introduce a simple model that can generate a random
feasible digraph. Let the digits vy, . . . , v+ of a binary sequence
v be i.i.d. Bernoulli (p) random variables, i.e., the probability
that v; takes value 1 (resp. 0) is p (resp. (1 — p)). We denote by
1 the corresponding probability measure on ®. It follows that
for any feasible digraph ¢ € ® represented by a binary sequence
VI=U]... UN+

if & C &
otherwise.

p(g) =pN' (1 —p)N

where N’ is the total number of 1°s in the binary sequence.
With the above random model, we can now construct an

SHDS. First, we consider set-valued mappings S;; : [0, 1] x

U = [0, 1], defined for each edge (i,j) € £ of G as follows:

(24)

Sij(j,v) = viR;(15) + (1 — vi)75 (25)

where ﬁj is the outer semicontinuous hull of mapping R;,
defined in (3), and wv; is the digit in a binary sequence that
corresponds to the vertex ¢ in V*. Next, using (25), we define a

new set-valued mapping G : [0, 1]V x ¥ = R¥ as follows:

(i,j) €€ }

e 26
Gigef | @
where g; is defined for all j # i and the mapping G%(7,v) is
nonempty only when 7; = 1 for some ¢ € V and 7; € [0, 1) for
Jj # i. We used the subindex S to indicate that the mapping G%

is stochastic. Finally, the jump map for the SHDS is defined as
the outer-semicontinuous hull of G2, i.e.,

Sii(15,v)
eRY g =0, -e{ AR
{9 PTEIE Uk

Gs(t,v) := GY(r,v). 27)

Note that when a jump occurs and a random digraph ¢y, € P is
drawn, not every edge of ¢, plays a role in the jump map Gs.
Only the edges (7, j) with 7; = 1 for some i € V, matter.

Letw := wjwsows - - - beasequence of i.i.d. random variables,
with each w; ~ u(-) a feasible digraph. We denote by 2 the
collection of sample paths w. Each sample path w will be used
to determine the sequence of jump maps at all discrete times
through (27).

It follows that the resulting SHDS depends on three param-
eters, namely, the parameter p associated with the Bernoulli
random variable, the partition vector r, and the digraph G. We
will thus write the SHDS with state 7 as

HS(p, Tag> = (CTa fT7DT;GS)

where f;, C;, D, are defined in (8), (9), and (11) and again the
subindex .S indicates that the overall system is stochastic.

Note that the HDS in (7), parameterized by an infinite string of
feasible digraphs &, is the deterministic counterpart of the SHDS
(28) where the sample path w is realized as £. It should be clear
from our probability model that w contains the synchronization
string ( infinitely often almost surely.

To proceed, we first have the following fact.

Lemma 4.1: For any p € (0,1), any r € (0,1)V, and any
digraph G, the SHDS Hs(p, 7, G) satisfies the basic conditions.
Every maximal random solution of Hg is surely complete and
uniformly non-Zeno and, moreover, the number of jumps in any
period of length T is surely bounded below and above by 1 and
N(|1/r] + 1), respectively.

Proof: The fact that H g satisfies the basic conditions follows
directly from construction. Completeness of solutions (surely)
follows by the same arguments presented before Lemma 3.1,
and the fact that Gg(7,v) C C; U D, for all 7 € D, and for
all v € ¥, which guarantees that all random solutions cannot
stop due to jumps. Finally, note that each realization of w in Hg
corresponds to a sequence of subgraphs of G in the deterministic
HDS H¢, defined in (7). By Lemma 3.1, any such sequence
leads to solutions of (7) that are uniformly non-Zeno hybrid
arcs, with a number of jumps in any period of length 7" bounded
below and above by 1 and N(|1/r] + 1), respectively. Since
for every 7,,(0,0) € C U D, and every random solution of g
there exists a solution of H¢ such that their hybrid time domains
are identical and their 7-components agree with each other, it
follows that the above properties hold surely for every random
solution of Hg. [ |

(28)
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B. Global Synchronization With Probability One

We start by noting the following fact: For any p € (0,1),r €
(0,1)", and any digraph G, the SHDS Hs(p, 7, G) renders the
set A surely strongly forward invariant. We omit the proof of
such a fact as it uses the same arguments as the ones in the proof
of Lemma 3.2.

Next, similar to our earlier work in [2], we introduce the
following definition of the sync-triplet for the SHDS Hg.

Definition 4.1: Let A, be given in (13). Let p € (0,1), r €
(0,1)", and G be a digraph of N vertices. Then, (p,r,G) is a
sync-triplet if the following two items hold.

1) Forevery initial condition in C' U D, there exist nontrivial
random solutions almost surely, and every maximal ran-
dom solution of Hg(p,r,G) is complete and uniformly
non-Zeno almost surely.

2) The SHDS Hs(p,r,G) renders A, UGASp (see Defini-
tion 2.4).

Arandom solution of Hg(p, r, G) depends on w and we denote
it by 7,,. Note that there may exist multiple random solutions
even if we fix w and the initial condition, which is due to the
set-valued nature of the jump map in the SHDS (28). For each
random solution 7,, we define

T*(1y,) = inf {t | 7o, (tw, ko) € As, (tw, ke) € dom(7y,)}
(29)

which is the first (continuous) time that the random solution 7,
enters the compact set A, defined in (13). We call T*(7,,) the
sync-time of the random solution.

Now, we will present the main result of this section.

Theorem 4.2: For any p € (0,1), any » € (0,1)", and any
rooted digraph G, (p,r,G) is a sync-triplet. Moreover, for any
initial condition (0, 0), the following holds for all positive

integers n and all random solutions 7, of the SHDS:
P(T*(1y,) > nT") < p" (30)

where T* := (dep(G)¢* + 1)T, with ¢* defined in Definition
3.2,and p € (0,1) is a constant given by

pi=1—(p(1—p)IP@HN

Remark 4.1: Theorem 4.2 can further be generalized to the
case where agents have heterogeneous probabilities p; € (0, 1).
Correspondingly, the constant p on the right-hand side of (30)
changes to 1 — (p (1 — p)4eP@-1)N" where p := min;ey- p;
and D := max;cy- p;. With slight modification, the arguments
ahead can be used to establish the heterogeneous case.

Before presenting the proof of Theorem 4.2, we need a few
preliminary results. First, we let S(7.,(0,0)) be the set of all
maximal random solutions of (28) from the initial condition
7,(0,0) € [0,1]. For each initial condition, we define the
following event:

2 (7,(0,0)) = {w € Q[ V7, € S(7,(0,0)),3i" € Vi,
I(te,, ke,) € dom(ry) with ¢, < T s.t.7y, 30 (85, k) = 1}

w? W

3D

In other words, the above event is about having a certain root
vertex ¢ in the network hitting 1 before continuous-time 7.
Similar to [2, Lemma 6], the following result holds.

Lemma 4.3: For any 7,,(0,0) € [0,1]",Q4(7,(0,0)) = Q.

For a positive integer ¢ and a root vertex i* of G, we define
an event Q5 (¢, i*), by using the synchronization string ¢ from
Definition 3.2, as follows:

Do (0,i") i ={w e Q|wer1 - werr =} (32)

where L* is the length of the string (. We compute ahead the
probability of this event.
Lemma 4.4: Let {* be given in Definition 3.2. Then

P(Qa(6,i)) = (p (1 — p)IP@HNE,

Proof: Recall from Definition 3.2 that each digraph G, in ¢
is a subgraph of the rooted digraph G with the same vertex set
but contains only the out-edges of the vertices at depth k& with
respect to the root vertex i*. Also, each G, is a feasible digraph
and it follows from (24) that

1(Gq) =

where we recall that V, (%) is the set of vertices at depth ¢ with
respect to the root vertex ¢*. Using the fact that the random
variables w,, for ¢ > 1, are i.i.d., we evaluate the probability of
the event (¢, 7*) as follows:

(33)

)\(1_ ) N* =Yy ()]

q -1

P(Q(4i7) = ] (p“’"(”)' (1 —p)N*—\vq@*)\)‘*

q=0

S V@] () pyNa T mu*n)”

-Dp

0*

quN)

p

(PN*
( dep(g) 1) N

where the third equality follows from the fact that
gzol [Vq(i*)] = N* and the last inequality follows from the
fact that N* < N and ¢* < dep(G). [ ]

With the above preliminary results, we prove Theorem 4.2.

Proof of Theorem 4.2: We again consider the function V :
[0,1]Y — R as introduced in (21), i.e., the infimum of all
arcs that cover all agents on the unit circle. Using three properties
described in the proof of Theorem 3.5, we have that V' (positive
definite w.r.t. A;) is nonincreasing on average along the random
solutions of (28) and, hence, serves as a valid Lyapunov function
for the SHDS (c.f. Appendix B).

By Lemma 4.1, the SHDS (28) satisfies the basic conditions
and every maximal random solution T, of the SHDS is surely
complete and uniformly non-Zeno. Thus, by the stochastic hy-
brid invariance principle (c.f. Theorem 1.1), in order to show
that the set A, is UGASPp, it suffices to show that there does not
exist a complete random solution 7, that remains in a nonzero
level set of the Lyapunov function almost surely.

To establish the above fact, we will show that there exists
positive constants 17 and 7 such that for any sample path w and
for any initial condition 7,,(0, 0), the following holds:

P(Q3(7.,(0,0))) > n (34)
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Fig. 4. To illustrate Theorem 4.2, we consider the same network of PCOs from Fig. 3. For the initial condition 7,,(0, 0), the root vertex hits 1 at

(t5,, k%) where t, < T. Followed by that, the synchronization string ¢ appears in w from indices k}, + 1 to k, + L* where L* = 108. This leads to

T (t5, kL, + L*) € As where intermediate steps are shown in Fig. 3.

where the event Q3(7,,(0,0)) is given by
Q3(1,(0,0)) :={w e Q| V1, € S(1,(0,0))
k) € dom(1y,), V(Tw(tw, ky)) =0} .

We show ahead that n and 7™ can be chosen to be the fol-
lowing values 7 :=1— p, where p is defined in (31), and
T* = (dep(G)¢* + 1)T

By Lemma 4.3, for any random solution 7, there exists a
hybrid time (¢}, k%), with t, < T, and a root i* of G such that
Tw,i- (5, k) = 1. Conditioning on the fact that 7, ;- (¢, k) =
1, we consider the event 25 (&}, ¢*). For convenience, we let ¢
be the continuous-time instant corresponding to the (k) + L*)th
jump. By Lemma 4.1, the number of jumps in a period of length
T is surely bounded below by 1. Then, for the discrete-time to
increase from £, to k7, + L*, the continuous-time will increase
by at most L*T surely, i.e., we have that ¢ — ¢, < L*T for
every sample path w and every solution 7,,. Next, by defini-
tion of the event Qs (kY *), the underlying digraphs between
hybrid times (¢}, k) and (t:, kY + L*) are given by the syn-
chronization string ¢ (see Fig. 4 for an illustration). Thus, by
the same arguments of Theorem 3.3, the random solution T,
will reach synchronization before (¢:, kf, + L*) provided that
event Qo (k,,4%) is true. Since ¢!, < T and 7 — t}, < L'T <
dep(G)¢*T and since Ay is forward invariant, we have that
V(Tu(tw, ko)) =0, for all t,, > T*. Thus, to establish (34), it
now remains to show that the probability of the event Q5(j;;, i*)
is nonzero; by Lemma 4.4, P(Q(57,, 7)) = n. Thus, the triplet
(p,7,G) is a sync-triplet.

Finally, we show that (30) holds. First, by the Bayes rule

Vi, >T"
s.t. (L,

P (T*(r.) > nT*) = P(T* (1) > (n — 1)T7). ..
X P(T*(1y) > nT" | T*(1,) > (n — 1)T*).

The conditional probability on the right-hand side of the above
expression can further be simplified as P(T™* (7/,/) > T*), where
7/, is a new random solution with the initial condition 7/, (0, 0)

0
a
s, /@
1 a, ’ \
— “a —@
= 2 ‘., - @
b s, ®
A 3 ., @/ (D
/E &.‘. ] \@ @
= -4 b, O~
E .,‘..‘ (@)
=S o o
= : Sa.0-008
2 6 “a,

.._“

7 a
5 15 25 35 45 55 65 75 85 95 105 115 125 135
Number of units (5n)

Fig. 5. Plot of log []P)(T*(Tw) > 5n)| versus the number of units 5n

needed for a sample path to achieve synchronization. There are 1000
random solutions simulated.

given by 7/,(0,0) = Tw((n - 1)T*, k), for some kw and
W' = Wy, +1Wk,,+2 - - - - Note that by definition of Q3(7/, (0, 0))
and (34), we have that

P (T*('r'wr) > T*) =1-P(Q3(7),
It then follows that:

B(T*(r,) > nT") < pB (T*(r,,) >

/(0,0))) <1=n=p.

(n—1)T").

The above recursive formula then implies that (30) holds. W

V. SIMULATION RESULTS

In this section, we present numerical studies of the proposed
algorithm (28). We set 7' =1 and p = 0.5.

First, we verify the validity of Theorem 4.2 and investigate the
sync-time T (7, ) defined in (29). For this purpose, we consider
arooted network of N = 12 PCOs, as shown in Fig. 5. Next, we
let the parameters r; be chosen uniformly randomly from (0, 1)~
and then choose 1000 random initial conditions uniformly from
(0,1)". For each initial condition, we simulate the SHDS (28)
and let (5(n — 1), 5n], for n > 1, be the interval that contains
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We plot the averages of sync-times of our algorithm with binary jump map (28) (depicted by the dashed, green curves) and the algorithm

in [17] with piecewise linear jump map (35) (depicted by the dotted, red curves) as functions of the number N of agents. The information flow
topologies, from left to right, are chosen to be complete-, path-, cycle-, and 5-regular digraphs. For every such information flow topology and for
every number N, the simulation results demonstrate that our algorithm synchronizes faster than the one proposed in [17].

the sync-time. In Fig. 5, we plot (in log scale) the empirical
version of P(T*(7,,) > 5n) for different units 5n, n > 1, i.e.,
weplot P(T*(1,,) > 5n) :==1 - >7_, Frf(?ég) where Freq(k) is
the total number of times that T (7, ) belongs to (5(n — 1), 5n).

Next, we compare the performance of our binary resetting
algorithm (28) with the algorithm considered in [17] (where the
authors use a piece-wise linear jump map for numerical studies).
In the absence of delays, we reproduce their piecewise linear
jump map H (z) as follows:

H(z) = {hl(z) =mz,

0<2<05

35
05<2z<1 (33)

ho(z) = maoz + 1 — mao,

where my and my are tuning parameters with 0 < m; < 0.5
and 0 < mo < 0.5. To be consistent with their algorithm, we
let the parameters r; of our algorithm be 0.5. The metric of
performance is chosen to be the sync-time (29). Note that if
one uses the algorithm in [17], then reaching synchronization
is only asymptotic with probability one. Thus, we relax the
criterion of reaching synchronization such that the Lyapunov
function V' defined in (21) only needs to satisfy V(r,) <
0.05. Correspondingly, we modify the sync-time T*(7,,) to be
T .05(Tw) == ming>o{t : V(7,,) < 0.05}.

We first set m; = 0.3261 and mo = 0.46 as was done in the
numerical studies in [17]. We run simulations for both algo-
rithms for four different classes of information flow topologies:
1) complete digraphs, 2) path digraphs, 3) cycle digraphs, and
4) 5-regular digraphs (see Section II for definition). For each
class of digraphs, we increase the number N of agents from
10 to 100, with the step of increment being 10. Then, for each
N, we generate 50 initial conditions uniformly randomly from
(0, 1) used for both algorithms. In Fig. 6, we plot the averaged
sync-time for comparison.

Next, inspired by the use of piecewise linear jump mapin [17],
we investigate via simulations how the slopes m1, mo of the
linear maps affect the sync-time. Note that the binary jump map
can be viewed as an extremum case of the piecewise linear map
in a sense that the slopes of the two linear functions in (35) are
0, i.e. m; = mo = 0. Now, we set m; = my =: m and study
the average sync-time as a function of m. To this end, we fix
N = 50 vertices and consider again path-, cycle-, complete-,
S-regular digraphs. We increase m from 0 to 0.5 with the step
of increment being 0.05. For each digraph and for each m, we
generate 50 random initial conditions and run the simulations.

1000 0.04 - Path Digraph
! @ Cycle Digraph .
= 800 E "4»;“ 4 5-Regular Digraph . -
5, 0.02 4 P
2 cooloot =
2 600700ty 025 05 ’ y
%) Complete Digraph | . ® P
<] et .
>0 gt o
w400 e B
= R o s -
s = o
S i -~
= 200" A
-
qp--—-o-—--n-—-—o—---< B e
o= - D G e e oS
0 0.1 0.2 0.3 0.4 0.5

Slopé of Piece-wise Linear Jump map m

Fig. 7. Averaged sync-times versus the slope m; = mo = m of linear
jump map of vertex-triggering algorithm in [17] for N = 50.

We plot the averaged sync-time as a function of m in Fig. 7 for
each digraph. It is observed that the averaged sync-time is the
least when m = 0.

VI. CONCLUSION

In this article, we have presented a stochastic binary, vertex-
triggering resetting algorithm by which networks of PCOs can
achieve global synchronization over rooted digraphs almost
surely. The result is stated in Theorem 4.2. Its proof relies on
the use of a hybrid-system machinery and the analysis of the
asymptotic behavior of a typical random solution of an associ-
ated SHDS. Numerical studies have shown that our algorithm
outperforms (in terms of the time needed for synchronization)
an existing vertex-triggering algorithm over several different
classes of information flow topologies.

APPENDIX
A. Hybrid Dynamical Systems

Solutions of (5) are parameterized by both continuous-
and discrete-time indices ¢ € R>¢ and k € Z>¢. A compact
hybrid time domain is a subset of R>y X Z>( of the form
UK o ([tks trs1] x {k}) for some K € Z>( and real numbers
0=ty <t1 <---<tgyi1. A hybrid time domain is a set
E C Ry X Zso such that for each T, K, the set £ N ([0, 7] x
{0,1,2,..., K}) is a compact hybrid time domain. A function
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x: E — R" is said to be a hybrid arc if F is a hybrid time do-
main, and for each k such that the interval I;, = {t > 0: (¢, k) €
dom(z)} has nonempty interior, the function ¢ — x(t, k) is
locally absolutely continuous. A hybrid arc x is said to be a
solution to (5) if the following statements hold.

1) (0,0) € CUD.

2) If (¢4, k), (t2, k) € dom(m) with ¢; < t, then for almost

every t € [t1,t2], x(t, k) € C and (¢, k) = f(x(t, k)).

3) If (¢, k), (t,k+ 1) 6 dom(z), then x(t,k) € D and

x(t, k+1) € Gz(t, k).

B. Stochastic HDSs

Random solutions to SHDS (4) are functions of w € 2 de-
noted x(w), such that 1) w — x(w) has measurability properties
that are adapted to the minimal filtration of v; 2) for eachw € €2,
the sample path x(w) is a standard solution to the HDS (5)
with the appropriate causal dependence on the random input
v(w) through the jumps. To formally define these mappings,
for ¢ € Z>1, let F; denote the collection of sets {w € Q:
(vi(w),va(w),...,ve(w)) € F}, F € B(R™)"), which are
the sub-o-fields of F that form the minimal filtration of
v = {v¢}72,, which is the smallest o-algebra on (2, F) that
contains the preimages of B(R")-measurable subsets on R™
for times up to ¢. A stochastic hybrid arc is a mapping x from
) to the set of hybrid arcs, such that the set-valued mapping
from Q to R"™2, given by w ~ graph(x(w)) := {(¢, k, 2) :
T =x(w), (t, k) € dom(z), z = Z(t, k) },is F-measurable with
closed-values. Let graph(x(w))<, := graph(x(w)) N (R>q %
{0,1,...,0} xR™). An {F;}}2, adapted stochastic hybrid
arc is a stochastic hybrid arc x such that the mapping w —
graph(x(w))<, is Fy measurable for each ¢ € N. An adapted
stochastic hybrid arc x(w), or simply x,, is a solution to
SHDS (4), satisfying the basic conditions of Definition 2.1,
starting from xo denoted x,, € S, (o) if: (1) x,,(0,0) = xo;
(2) if (t1,k), (t2, k) € dom(x,,) with t; < ¢, then for all
t € [t1,t2], Xu(t, k) € C and %x,(t, k) = f(xu(t,k)); (3) if
(t, k), (t,k+ 1) € dom(x,,), then x,,(t, k) € D and x,,(t, k +
1) € G(xw(t, k), vi+1(w)). A random solution x,, is said to
be a) almost surely nontrivial if its hybrid time domain con-
tains at least two points almost surely; b) almost surely com-
plete if for almost every sample path w € €2 the hybrid arc
X,, has an unbounded time domain; and almost surely even-
tually discrete if for almost every sample path w € (2, the
hybrid arc x,, is eventually discrete. A continuous function
V : R™ — R is a Lyapunov function relative to a compact set
A C R™ for the SHDS (4) if V(x,) =0 < x,€ A, Vis
radially unbounded with respect to set .4, nonincreasing during
flows, and [, maxgec(x,,,0) V(9)pu(dv) < V(x,) Vx, € D.
The following stochastic hybrid invariance principle [22, Th. §]
is instrumental for our analysis of Theorem 4.2.

Theorem B.1: Let V be a Lyapunov function relative to
a compact set A C R™ for the SHDS system H. Then, A is
UGASPp if and only if there does not exist an almost surely
complete solution x,, that remains in a nonzero level set of the
Lyapunov function almost surely.
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