
High-Order Decentralized Pricing Dynamics for Congestion Games:

Harnessing Coordination to Achieve Acceleration

Yilan Chen, Daniel E. Ochoa, Jason R. Marden, Jorge I. Poveda

AbstractÐ We introduce a class of decentralized high-order
pricing dynamics (HOPD) for the solution of optimal in-
centive problems in affine congestion games with full re-
source utilization. The dynamics incorporate momentum and
decentralized coordinated resets to achieve better transient
performance compared to traditional first-order gradient-based
pricing algorithms. The proposed dynamics are studied using
tools from graph theory, game theory, and hybrid dynamical
systems theory. Our main results establish suitable stability
and convergence properties with respect to the set of incentives
that generate Nash flows that also maximize the social welfare
function of the game. The theoretical results are illustrated via
numerical examples in two different types of communication
graphs, highlighting the effect of the communication topology
and the coordination between players on the transient perfor-
mance of the HOPD.

I. INTRODUCTION

In recent years, there has been a growing interest in the

study of decentralized resource allocation problems with

competitive users in large-scale network systems, including

transportation networks, power grids, and the internet [1]±

[3]. The growth in the scale of such networks difficulties

the implementation of centralized solutions to problems

that involve trade-offs between social system-level efficiency

and selfish individual performance. Many efforts have been

devoted to address these issues, and to the design of localized

control laws that ensure desirable global system performance

under the presence of self-interested agents [4]±[7]. Game

theory provides a collection of mathematical tools that are

instrumental for the analysis and design of such systems [2],

[8]±[10]. In games, self-interested rational decision-makers

are usually referred to as players with a strategy set, or

resource set, and an individual payoff function. Players often

use a distributed learning algorithm to iteratively update

their actions until convergence to a suitable equilibrium point

is achieved. The most common equilibrium of interest is

the so-called Nash Equilibrium (NE) [8], which describes a

profile of actions where players have no unilateral incentive
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to deviate. However, it is well-known that while NEs can

provide a notion of individual optimality for the players, they

can lead to poor social outcomes as measured by networked-

wide welfare functions. Therefore, to maximize the perfor-

mance of multi-agent engineering systems controlled via

local feedback laws, it is essential to align the emerging Nash

equilibria with the socially optimal point of the system. In

the static scenario (i.e., no iterative learning dynamics), this

methodology is referred to in the literature as mechanism

design [9], [11].

In this paper, we focus on a particular class of games

referred to as congestion games, where a fixed amount of

resources must be allocated among n different strategies,

and the payoff related to each strategy depends on the total

allocation. In such types of games, the notion of Nash flow,

or Wardrop equilibria, has been used to characterize resource

allocations that are optimal from the individual strategy point

of view. However, since Wardrop equilibria might not be

socially optimal, social planners are faced with the challenge

of designing suitable incentives (e.g., tolls in transportation

systems, prices in power systems, etc) such that the emerging

Nash flows are also socially optimal. To solve this challenge,

different types of dynamic pricing algorithms have been

considered in the literature [12]±[16]. To guarantee that the

system continuously operates at its optimal point, pricing

algorithms must react quickly to changes in traffic demand,

weather conditions, road accidents, etc. This adaptability

requirement, similar to the ªalertnessº property of feedback

control systems, has motivated the development of different

recursive algorithms that iteratively update the incentives as

the system operates [17]±[22].

Recently, in [23] the authors introduced a class of de-

centralized gradient-based pricing dynamics (G-PD) that

achieve global convergence to socially optimal incentives in

a class of affine congestion games. As shown in [23], these

distribued welfare gradient dynamics guarantee exponential

convergence, with a rate of convergence of order O(κ),
where κ defines the strong monotonicity properties of the

flow map. However, this convergence rate can be quite

slow in problems where κ ≪ 1. In such situations, one

may hypothesize that high-order dynamics that incorporate

momentum might achieve a better transient performance

compared to first-order gradient-based algorithms. However,

to the best of our knowledge, this conjecture has not been

fully explored in decentralized incentive dynamics, let alone

when stability and robustness properties are sought after.

In this paper, we provide a positive answer to the above

thesis. Our main contribution is the introduction of a class
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of high-order decentralized pricing dynamics that incor-

porate momentum to achieve better transient performance,

and which are also coupled with a suitable coordinated

restarting mechanism to guarantee robust stability properties.

The proposed dynamics build on recent results developed in

the context of accelerated optimization and learning using

hybrid control theoretic tools [24]±[27], but specialized here

to the setting of congestion games over graphs. The stability

properties of the dynamics are studied using tools from

hybrid dynamical systems, game theory, and graph theory.

Illustrative numerical examples are presented to showcase

the advantages of the proposed method compared to existing

first-order gradient-based pricing dynamics.

The rest of this paper is organized as follows: Section

II presents the preliminaries. Section III describes the pric-

ing problem in congestion games. Section IV presents the

high-order pricing mechanism and their stability certificates.

Section V presents simulation examples, and finally Section

VI ends with the conclusions.

II. PRELIMINARIES

In this section, we introduce the notation used throughout

this paper, as well as some preliminaries on hybrid dynamical

systems.

A. Notation

Given a closed set A ⊂ R
n and a vector z ∈ R

n, we use

|z|A := infs∈A ∥z − s∥2 to denote the minimum distance of

z to A. We use A◦ to denote the interior of the set A, and

rB to denote a closed ball in the Euclidean space, of radius

r > 0, and centered at the origin. The vector of ones in R
n

is denoted by 1n, and the identity matrix in R
n×n is denoted

by In. Given x, y ∈ R
n, we denote their concatenation by

(x, y) := [x⊤, y⊤]⊤, where x⊤ and y⊤ are the transpose

of x and y, respectively. The function diag(k) represents

a diagonal matrix with diagonal given by the entries of a

vector k ∈ R
n. We use ki to refer to the i-th component of

a vector k ∈ R
n, and let k := maxi ki and k := mini ki.

The set of singular values of a matrix A ∈ R
n×n is denoted

by {σi (A)}ni=1; we always assume that i ≤ j implies

σi(A) ≤ σj(A). A function β : R≥0 × R≥0 → R≥0 is said

to be of class KL if it is non-decreasing in its first argument,

decreasing in its second argument, and lims→∞ β(r, s) = 0
for each r ∈ R≥0.

B. Hybrid Dynamical Systems

To study the different dynamics present in this paper, we

consider hybrid dynamical systems (HDS) with state x ∈ R
n,

whose evolution in time is described by

x ∈ C, ẋ = F (x) (1a)

x ∈ D, x+ ∈ G(x), (1b)

where x ∈ R
n is the state of the system, F : R

n →
R

n is called the flow map, G : Rn ⇒ R
n is a set-valued

mapping called the jump map, and C ⊂ R
n and D ⊂ R

n are

closed sets, called the flow set and the jump set, respectivel.

We use H = (C,F,D,G) to denote the data of the HDS.

Solutions x : dom(x) → R
n to system (1) are indexed by a

continuous time parameter t, which increases continuously

during flows, and a discrete-time index j, which increases by

one during jumps. Therefore, solutions x : dom(x) → R
n

to system (1) are defined on hybrid time domains. Solutions

with an unbounded time domain are said to be complete.

For a precise definition of hybrid time domains and solutions

to HDS of the form (1), we refer the reader to [28, Ch.2].

The following definitions will be instrumental to study the

stability properties of systems of the form (1).

Definition 2.1: The compact set A ⊂ C ∪ D is said to be

uniformly globally asymptotically stable (UGAS) for system

(1) if ∃ β ∈ KL such that every solution x satisfies:

|x(t, j)|A ≤ β(|x(0, 0)|A, t+ j), ∀ (t, j) ∈ dom(x). (2)

When β(r, s) = c1re
−c2s for some c1, c2 > 0, the set A

is uniformly globally exponentially stable (UGES). When ∃
T ∗ > 0 such that β(r, s) = 0, ∀ s ≥ T ∗, r > 0, the set A is

said to be uniformly globally fixed-time stable (UGFxS). □

III. PROBLEM STATEMENT

In this paper, we consider a congestion game [29] with

n possible strategies, where i ∈ V := {1, . . . , n} denotes

the ith strategy of the game. Additionally, we assign to each

strategy i a node in a graph G = (V, E), where E is the set of

edges or links. These links capture information restrictions

in problems where each node implements an algorithm that

makes use of information from other strategies j ∈ N . We

let zi ∈ [0, 1] be the proportion of a fixed resource that is

allocated to the ith strategy. The vector of allocations is then

defined as z := (z1, . . . , zn), which belongs to the simplex

∆ =
{

z ∈ R
n : 1

⊤
n z = 1, zi ≥ 0

}

. Moreover, we consider

that each strategy has an associated cost of the form:

c̃i(zi, qi) = ci(zi) + δ · qi, (3)

with (zi, qi) ∈ ∆×R, and where ci represents the incentive-

free cost of choosing strategy i, the scalar qi ∈ R denotes an

external incentive input, and δ ∈ R>0 is a sensitivity parame-

ter. We define the vector of incentives as q := (q1, · · · , qn) ∈
R

n, and we use c̃(z, q) = (c̃1(z1, q1), . . . , c̃n(zn, qn)) to

denote the vector of costs of the congestion game under the

influence of the external input q. Under suitable monotonic-

ity properties on the cost functions, congestion games are

potential games with potential function [30, Sec 2.4]

Pq(z) =

n
∑

i=1

∫ zi

0

c̃i(ζ, qi)dζ. (4)

For every fixed exogenous value q ∈ R
n, a Nash flow of

the congestion game corresponds to a particular resource

allocation zfq ∈ ∆ that minimizes Pq . Hence, by the KKT

conditions, a Nash flow must satisfy

−c̃i

(

zfi,q, q
)

+ µ+ λi = 0 ∀i ∈ V (5a)

zfq ∈ ∆, λiz
Nf
i,q = 0, λi ≥ 0 ∀i ∈ V. (5b)
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In general, Nash flows might not be socially optimal. To

formally quantify the social optimality of a given allocation

z, the concept of social welfare is introduced.

Social welfare: The social welfare is defined as:

W (z) := −
n
∑

i=1

ci(zi)zi. (6)

Consequently, a socially optimal flow z∗ corresponds to the

social state that maximizes (6). Thus, by the KKT conditions,

z∗ satisfies:

− ∂ci
∂zi

(z∗)z∗i − ci(z
∗
i ) + µ̃− λ̃i = 0, ∀i ∈ V, (7a)

z∗ ∈ ∆, λ̃iz
∗
i = 0, λ̃i ≥ 0, ∀i ∈ V. (7b)

In this paper, we design a class of dynamic pricing mech-

anism to render Nash flows socially optimal with fast

transient-performance. To this end, we consider a subclass

of congestion games that satisfy the following assumption.

Assumption 3.1: For the congestion game with n ∈ Z>0

strategies, the following conditions are satisfied:

(i1) Affine costs: There exists a positive definite diagonal

matrix A ∈ R
n×n and b ∈ R

n such that c(z) = Az + b
for all z ∈ R

n.

(i2) Full utilization: For every incentive q ∈ R
n, the

corresponding Nash flow zfq ∈ ∆◦, i.e,
(

zfq
)

i
̸= 0 for

all i ∈ V .

□

Remark 3.1: While Assumption 3.1 is conservative, affine

congestion games are commonly found in various societal

systems, including parallel network routing and traffic prob-

lems [11]. Moreover, since sets of incentives are bounded

in most practical applications, it is reasonable to assume

that every strategy i ∈ V will receive a positive allocation,

resulting in the full utilization scenario. □

Assumption 3.1 ensures the strong convexity of the poten-

tial function in (4), which implies that conditions (5) hold

for a unique Nash Flow zfq for every q ∈ R
n. We refer to the

mapping O(q) := zfq as the oracle mapping. The following

lemma provides a characterization of the oracle mapping for

the types of games that satisfy Assumption 3.1. Proofs are

omitted due to lack of space.

Lemma 3.1: Under Assumption 3.1 the oracle mapping O(·)
satisfies:

O(q) = −Q(b+ δ · q) + α, (8)

where

α :=
A−1

1n

1⊤
nA

−11n

,

and where Q ∈ R
n×n is the Laplacian matrix of a graph

with adjacency matrix

A :=
A−1

1n1
⊤
nA

−1

1⊤
nA

−11n

,

that is

Q :=

(

I −A−1 1n1
⊤
n

1⊤
nA

−11n

)

A−1. (9)

□

In this paper, we assume that the dynamics describing the

convergence to the Nash flow under a given incentive q are

instantaneous, and therefore can be omitted. This assumption

can be justified using singular perturbation techniques for

multi-time scale dynamical systems. Now, note that As-

sumption 3.1-(i1) guarantees strong concavity of the welfare

function W , which implies that the system of equations (7)

are satisfied for a unique socially optimal flow z∗. However,

according to the following lemma, the incentives q that

generate this resource allocation state may not be unique,

see also [11], [23].

Lemma 3.2: Suppose that Assumption 3.1 holds. Then, the

set of incentives that generate socially optimal Nash flows

via the costs (3) is given by

Aq := {q ∈ R
n : q = q∗ + µ1n, µ ∈ R} , (10)

where q∗ = −b
2δ . □

IV. HIGH-ORDER PRICING DYNAMICS FOR

CONGESTION GAMES

To control the incentives, we assume that the dynamic

pricing mechanism has access to on-the-fly measurements of

the information tuple

I :=

{

O(q), c (O(q)) ,
∂c

∂z
O(q)

}

,

where O(·) was defined in (8). Due to the large-scale nature

of congestion games, it may not be practical to measure I
centrally. Instead, we assume that each node i has access to

its own information and to the information of the neighboring

nodes characterized by the communication graph G. In this

way, each node will implement individual dynamics based on

the received information to influence the Nash Flow of the

congestion game. To simplify our presentation, we make the

following assumption on the graph G. However, we stress

that this assumption can be relaxed.

Assumption 4.1: G is connected and undirected. □

For games satisfying Assumption 3.1 and a graph satisfy-

ing Assumption 4.1, the work in [23] introduced the so-called

distributed welfare-gradient dynamics, given by

q̇ = γLGO(q), (11)

where γ > 0 is a scalar gain, and where G : Rn → R
n and

GO : Rn → R
n are defined as:

G(z) := c(z) +
∂c(z)

∂z
z (12)

GO(q) := (G ◦ O) (q). (13)

As shown in [23], these dynamics render the set Aq ex-

ponentially stable. However, in some cases, the exponential

convergence can be prohibitively slow since it is dictated
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by the strong monotonicity constant of the mapping q 7→
LGO(q). To address this issue, and to achieve better transient

performance in a decentralized fashion, we take inspiration

from the hybrid regularized version of Nesterov’s ODE

studied in [25]. In particular, we introduce the high-order

pricing dynamics (HOPD), described by a hybrid dynamical

system with data H1 := (C1, F1, D1, G1) and state x =
(q, p, τ) ∈ R

3n, where p ∈ R
n is a momentum state, and τ ∈

R
n corresponds to a set of timers {τi}iV which coordinate

the evolution of the distributed dynamics. Specifically, the

flow map F1 of the proposed HOPD is given by




q̇
ṗ
τ̇



 = F1(x) =





2T −1(p− q)
2γLT GO(q)

1
21n



 , (14)

where γ ∈ R>0 is again a tunable gain, and T := diag(τ).
Note that the p-dynamics maintain the sparsity of the com-

munication infrastructure imposed by the graph G. The flow

set C1 is defined as

C1 :=R
n × ker (L)⊥ × [T0, T ]

n, (15)

where (T0, T ) are tunable parameters which satisfy T >
T0 > 0. The proposed HOPD algorithm also employs a

restarting mechanism given by

τi = T =⇒





q+i
p+i
τ+i



=Ri(xi) :=





pi
pi
T0



 , (16)

which is triggered by the condition τi = T . While a fully

decentralized implementation of these dynamics might seem

appealing due to its simplicity, as demonstrated in Section V,

ensuring coordinated and synchronized restarting is crucial

to achieve good transient performance and to fully exploit

the advantages of incorporating momentum. To achieve this

coordinated behavior, we adopt the synchronization dynam-

ics of [31] and we employ a coordination mechanism where

the updates of node j ∈ V make use of a set-valued mapping

Cj : R≥0 ⇒ R≥0, defined as:

Cj(τj) :=







T if τj ∈ (T0 + rj , T ]
{T0, T} if τj = T0 + rj

T0 if τj ∈ [T0, T0 + rj)
, (17)

where the individual parameter rj > 0 satisfies rj ∈
(

0, T−T0

n

)

. Using Cj , the coordination mechanism works as

follows: whenever the timer of the ith node satisfies τi = T ,

the following two events occur: 1) Node i resets its own state

xi using the dynamics (16), and 2) node i sends a pulse to

their neighbors j ∈ Ni, who proceed to update their state

xj = (qj , pj , τj) as follows:

q+j = qj , p+j = pj , τ+j ∈ Cj(τj). (18)

Since node i can only signal their neighbors, the rest of

the nodes j /∈ Ni will keep their states constant after the

above two events, i.e., x+
j = xj , for all j /∈ Ni. To formally

describe this behavior, we introduce the set-valued mapping

G0 : R3n ⇒ R
3n, which is defined to be non-empty only

when τi = T and τj ∈ [T0, T ) with j ̸= i, for each i ∈ V ,

and satisfies

G0(x) :=
{

(v1, v2, v3) ∈ R
3n : (v1,i, v2,i, v3,i) = Ri(xi),

v1,j = qj , v2,j = pj , v3,j ∈ Cj(τj), ∀ j ∈ Ni,

vj = xj , ∀ j /∈ Ni

}

, (19)

where x := (x1, x2, · · · , xn), and where the reset map Ri

and the coordination mapping Cj are defined in (16) and

(17), respectively. Using the construction (19), the overall

coordination mechanism is characterized by the the jump

map

x+ ∈ G1(x) := G0(x), (20)

where G0(x) represents the outer-semi-continuous hull of

the map G0. Finally, the jump set is defined as

D1 := R
n × ker (L)⊥ ×Dτ , (21)

where Dτ := {τ ∈ R
n : maxi∈V τi = T}.

Remark 4.1: Distributed momentum-based hybrid dynamics

with flow and jump maps resembling (14) and (20) have

been recently studied in distributed optimization problems

[32], and non-cooperative games [27]. However, they have

remained unexplored in the context of congestion games and

dynamic pricing. □

Remark 4.2: The use of the resetting parameters ri, as

well as the construction of the jump map G0(x) from the

individual coordination mapping Cj and the reset map Ri,

are fundamental for the formulation of well-posed hybrid

dynamical systems [28, Ch. 6] with suitable robust stability

certificates for the synchronization of timers [33]. □

A. Main Results

The following Lemma characterizes the synchronization

certificates for the timer variable τ under the HOPD.

Lemma 4.1: Let

Aτ := [T0, T ]1n ∪ ({T0, T}n)
represent the set of points in the set [T0, T ]

n where the timer

variables are synchronized with a common value in (T0, T ),
and, where the value of the timers can only differ from each

other during jumps by taking values in the set {T0, T}. Then,

H1 renders the set

Async := ker (L)⊥ × ker (L)⊥ ×Aτ ,

UGFxS with convergence bound T ∗ := 2 (T − T0) + η. □

By leveraging Lemma (4.1), the following theorem, cor-

responding to the main result of this paper, characterizes

stability certificates for the the hybrid dynamics H1 with

respect to the set Aq defined in (10).

Theorem 4.2: Suppose that Assumption 3.1 is satisfied, and

assume that the tunable parameters (T0, T ) satisfy:

T 2 − T 2
0 >

1

2σ2 (L) γδ
, (22)
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where σ2(L) is the minimum non-zero singular value of L.

Then, the HDS H1 renders UGES the set

A :=
{

(q, p, τ) ∈ R
3n : p = q, q ∈ Aq, τ ∈ Aτ

}

.

Additionally, for every i ∈ V , and for all solutions x, the

following bound holds during flows

|q(t, j)|2Aq
≤ T

T0

√

σn(L)
σ2(L)

(1− η)
j̃

2 M0,

where M0 is a constant that depends on the initial conditions,

j̃ := max{0, ⌊ j−n
n

⌋}, and

η := 1− T 2
0

T 2
− 1

2T 2γδσ2 (L)
.

□

Remark 4.3: Theorem 4.2 guarantees exponential stability

to Aq with convergence rate conditioned by 1 − η. By

following similar ideas to the literature on centralized ac-

celerated optimization [25], [34]±[36], we can find a ªquasi-

optimalº restarting parameter T = e
√

1
2γδσ2(L) + T 2

0 , which

guarantees exponential convergence of order O
(

e−
√

σ2(L)
)

as T0 → 0+. □

B. On the Role of Resets and Coordination

The key technical elements of the HOPD that allow us

to achieve the result of Theorem 4.2 are the resets and the

coordination of the resetting timers τi. Indeed, as shown

in [25] for centralized optimization problems, when high-

order dynamics implement vanishing damping, the resulting

stability properties can be lost under arbitrarily small dis-

turbances. On the other hand, the incorporation of resets

induces suitable uniformity properties in the convergence,

which in turn, guarantees a minimum margin of robustness

against additive disturbances [28, Ch.7]. Moreover, the reset

condition (22) permits to leverage the decrease of a suitable

Lyapunov function during resets in order to achieve acceler-

ated convergence of order O(σ2 (L)), which is particularly

advantageous when σ2 (L) ≪ 1.

Finally, we note that this result relies on achieving fixed-

time synchronization of the resetting timers τi via the coor-

dination map (16). Without such a coordination mechanism,

the performance of the HOPD can be substantially inferior

when compared to traditional gradient-based algorithms. We

illustrate this phenomenon in Section (V) via numerical

examples.

V. NUMERICAL EXAMPLE

In this section, we illustrate our results with a simple

numerical example. We consider a total resource of 1 that

needs to be allocated among 4 different nodes, i.e., V :=
{1, 2, 3, 4}. The matrices and parameters that describe the

payoffs of the underlying game are:

A = 2I4, b = 14, γ = 0.1, δ = 1.

Fig. 1: Evolution of the incentives over time using a ring

communication graph.

Fig. 2: Coordinated (left) vs Uncoordinated (right) Resetting

Timers in the HOPD.

We first simulate the G-PD of [23] and the HOPD using

a communication graph characterized by a ring. Next we

consider three different scenarios for the HOPD: (a) First,

we consider the situation where the HOPD are implemented

without resets. (b) Second, we implement the HOPD with

uncoordinated resets; (c) Finally, we implement the complete

HOPD with coordinated resets. All the results are presented

in Figure 1, which shows the evolution in time of the

squared error of the incentive q. As observed, the HOPD

with coordinated resets generate substantially better perfor-

mance compared to the standard G-PD of [23], achieving

the same ªsteady stateº error in half of the time. In this

case, the restarting frequency of the HOPD was selected to

be 4s. Another important observation from our numerical

experiments is that using HOPD with uncoordinated resets

generates substantially worse performance compared to the

standard first-order G-PD. This poor performance is shown

in the black curve of Figure 1. This observation highlights

the role of coordination whenever dynamics with momentum

and resets are implemented in multi-agent systems.

Finally, we repeat our numerical example in a system with

a communication graph characterized by a path. The results

are presented in Figure 3. The restarting frequency was

selected as 8s. As it can be observed, the graph’s structure

affects the transient performance of the HOPD. In particular,

in this case the difference between the performance of the

first-order G-PD dynamics and the HOPD algorithm is more

pronounced.

VI. CONCLUSIONS

In this paper, we introduced a class of high-order pricing

dynamics for the solution of dynamic incentive problems
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Fig. 3: Evolution of the incentives over time using a line

communication graph.

in congestion games under a full utilization assumption.

The dynamics incorporate momentum and, when combined

with coordinated resets, can achieve better transient perfor-

mance compared to first-order Welfare gradient dynamics.

The stability and convergence properties of the algorithms

were studied using tools from hybrid dynamical systems

theory. Numerical examples were presented to illustrate the

performance of the algorithms. Future research directions

will focus on the interconnection of the proposed dynamics

with dynamical systems in the loop modeling a class of social

dynamics.
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