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High-Order Decentralized Pricing Dynamics for Congestion Games:
Harnessing Coordination to Achieve Acceleration

Yilan Chen, Daniel E. Ochoa, Jason R. Marden, Jorge I. Poveda

Abstract— We introduce a class of decentralized high-order
pricing dynamics (HOPD) for the solution of optimal in-
centive problems in affine congestion games with full re-
source utilization. The dynamics incorporate momentum and
decentralized coordinated resets to achieve better transient
performance compared to traditional first-order gradient-based
pricing algorithms. The proposed dynamics are studied using
tools from graph theory, game theory, and hybrid dynamical
systems theory. Our main results establish suitable stability
and convergence properties with respect to the set of incentives
that generate Nash flows that also maximize the social welfare
function of the game. The theoretical results are illustrated via
numerical examples in two different types of communication
graphs, highlighting the effect of the communication topology
and the coordination between players on the transient perfor-
mance of the HOPD.

I. INTRODUCTION

In recent years, there has been a growing interest in the
study of decentralized resource allocation problems with
competitive users in large-scale network systems, including
transportation networks, power grids, and the internet [1]—
[3]. The growth in the scale of such networks difficulties
the implementation of centralized solutions to problems
that involve trade-offs between social system-level efficiency
and selfish individual performance. Many efforts have been
devoted to address these issues, and to the design of localized
control laws that ensure desirable global system performance
under the presence of self-interested agents [4]-[7]. Game
theory provides a collection of mathematical tools that are
instrumental for the analysis and design of such systems [2],
[8]-[10]. In games, self-interested rational decision-makers
are usually referred to as players with a strategy set, or
resource set, and an individual payoff function. Players often
use a distributed learning algorithm to iteratively update
their actions until convergence to a suitable equilibrium point
is achieved. The most common equilibrium of interest is
the so-called Nash Equilibrium (NE) [8], which describes a
profile of actions where players have no unilateral incentive
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to deviate. However, it is well-known that while NEs can
provide a notion of individual optimality for the players, they
can lead to poor social outcomes as measured by networked-
wide welfare functions. Therefore, to maximize the perfor-
mance of multi-agent engineering systems controlled via
local feedback laws, it is essential to align the emerging Nash
equilibria with the socially optimal point of the system. In
the static scenario (i.e., no iterative learning dynamics), this
methodology is referred to in the literature as mechanism
design [9], [11].

In this paper, we focus on a particular class of games
referred to as congestion games, where a fixed amount of
resources must be allocated among n different strategies,
and the payoff related to each strategy depends on the total
allocation. In such types of games, the notion of Nash flow,
or Wardrop equilibria, has been used to characterize resource
allocations that are optimal from the individual strategy point
of view. However, since Wardrop equilibria might not be
socially optimal, social planners are faced with the challenge
of designing suitable incentives (e.g., tolls in transportation
systems, prices in power systems, etc) such that the emerging
Nash flows are also socially optimal. To solve this challenge,
different types of dynamic pricing algorithms have been
considered in the literature [12]-[16]. To guarantee that the
system continuously operates at its optimal point, pricing
algorithms must react quickly to changes in traffic demand,
weather conditions, road accidents, etc. This adaptability
requirement, similar to the “alertness” property of feedback
control systems, has motivated the development of different
recursive algorithms that iteratively update the incentives as
the system operates [17]-[22].

Recently, in [23] the authors introduced a class of de-
centralized gradient-based pricing dynamics (G-PD) that
achieve global convergence to socially optimal incentives in
a class of affine congestion games. As shown in [23], these
distribued welfare gradient dynamics guarantee exponential
convergence, with a rate of convergence of order O(k),
where x defines the strong monotonicity properties of the
flow map. However, this convergence rate can be quite
slow in problems where x < 1. In such situations, one
may hypothesize that high-order dynamics that incorporate
momentum might achieve a better transient performance
compared to first-order gradient-based algorithms. However,
to the best of our knowledge, this conjecture has not been
fully explored in decentralized incentive dynamics, let alone
when stability and robustness properties are sought after.

In this paper, we provide a positive answer to the above
thesis. Our main contribution is the introduction of a class
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of high-order decentralized pricing dynamics that incor-
porate momentum to achieve better transient performance,
and which are also coupled with a suitable coordinated
restarting mechanism to guarantee robust stability properties.
The proposed dynamics build on recent results developed in
the context of accelerated optimization and learning using
hybrid control theoretic tools [24]-[27], but specialized here
to the setting of congestion games over graphs. The stability
properties of the dynamics are studied using tools from
hybrid dynamical systems, game theory, and graph theory.
Ilustrative numerical examples are presented to showcase
the advantages of the proposed method compared to existing
first-order gradient-based pricing dynamics.

The rest of this paper is organized as follows: Section
II presents the preliminaries. Section III describes the pric-
ing problem in congestion games. Section IV presents the
high-order pricing mechanism and their stability certificates.
Section V presents simulation examples, and finally Section
VI ends with the conclusions.

II. PRELIMINARIES

In this section, we introduce the notation used throughout
this paper, as well as some preliminaries on hybrid dynamical
systems.

A. Notation

Given a closed set A C R™ and a vector z € R™, we use
|2|4 = infsc4 ||z — s]|2 to denote the minimum distance of
z to A. We use A° to denote the interior of the set A, and
rB to denote a closed ball in the Euclidean space, of radius
r > 0, and centered at the origin. The vector of ones in R"
is denoted by 1,,, and the identity matrix in R”*" is denoted
by I,. Given z,y € R", we denote their concatenation by
(z,y) = [#7,y"]", where 7 and y' are the transpose
of x and y, respectively. The function diag(k) represents
a diagonal matrix with diagonal given by the entries of a
vector k € R™. We use k; to refer to the i-th component of
a vector k € R”, and let k := max; k; and k := min; k;.
The set of singular values of a matrix A € R™*™ is denoted
by {0i(A)}._,; we always assume that ¢ < j implies
0'1(14) < O'j(A). A function 6 : Rzo X Rzo — Rzo is said
to be of class ICL if it is non-decreasing in its first argument,
decreasing in its second argument, and lim,_, o, B(r,s) =0
for each r € R>.

B. Hybrid Dynamical Systems

To study the different dynamics present in this paper, we
consider hybrid dynamical systems (HDS) with state z € R",
whose evolution in time is described by

&= F(x)
zt € G(z),

x e C,
z €D,

(1a)
(1b)

where x € R”™ is the state of the system, F' : R" —
R™ is called the flow map, G : R =% R" is a set-valued
mapping called the jump map, and C C R™ and D C R" are
closed sets, called the flow set and the jump set, respectivel.

We use H = (C, F,D,G) to denote the data of the HDS.
Solutions « : dom(z) — R™ to system (1) are indexed by a
continuous time parameter ¢, which increases continuously
during flows, and a discrete-time index j, which increases by
one during jumps. Therefore, solutions z : dom(z) — R”
to system (1) are defined on hybrid time domains. Solutions
with an unbounded time domain are said to be complete.
For a precise definition of hybrid time domains and solutions
to HDS of the form (1), we refer the reader to [28, Ch.2].
The following definitions will be instrumental to study the
stability properties of systems of the form (1).

Definition 2.1: The compact set A C C' U D is said to be
uniformly globally asymptotically stable (UGAS) for system
(1) if 3 B € KL such that every solution x satisfies:

[2(t, )| < B(12(0,0) 4, t +7), V (t,7) € dom(z). (2)

When ((r,s) = cire”“2® for some c1,co > 0, the set A
is uniformly globally exponentially stable (UGES). When 3
T* > 0 such that B(r,s) =0,V s > T* r > 0, the set A is
said to be uniformly globally fixed-time stable (UGFxS). [J

III. PROBLEM STATEMENT

In this paper, we consider a congestion game [29] with
n possible strategies, where ¢ € V := {1,...,n} denotes
the i*" strategy of the game. Additionally, we assign to each
strategy ¢ a node in a graph G = (V, £), where £ is the set of
edges or links. These links capture information restrictions
in problems where each node implements an algorithm that
makes use of information from other strategies j € A. We
let z; € [0,1] be the proportion of a fixed resource that is
allocated to the i'" strategy. The vector of allocations is then
defined as z := (21, ..., 2,), which belongs to the simplex
A= {z eR™ lzz =1, z > O}. Moreover, we consider
that each strategy has an associated cost of the form:

¢i(zi,qi) = ci(zi) + 0 - @i, 3)

with (z;, ;) € A xR, and where ¢; represents the incentive-
free cost of choosing strategy 7, the scalar ¢; € R denotes an
external incentive input, and § € R+ is a sensitivity parame-
ter. We define the vector of incentives as ¢ := (g1, - ,qn) €
R™, and we use &(z,q) = (C1(21,q1)s--+,Cn(2n,qn)) tO
denote the vector of costs of the congestion game under the
influence of the external input q. Under suitable monotonic-
ity properties on the cost functions, congestion games are
potential games with potential function [30, Sec 2.4]

P‘J(Z):Z/O iéi((;fh)dﬁ‘ €]
i1

For every fixed exogenous value ¢ € R", a Nash flow of
the congestion game corresponds to a particular resource
allocation z({ € A that minimizes P,. Hence, by the KKT
conditions, a Nash flow must satisfy

(5a)
(5b)

—Ei<z£q7q>+,u+)\i20 VieV

e, Nl=0, >0 Viev
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In general, Nash flows might not be socially optimal. To
formally quantify the social optimality of a given allocation
z, the concept of social welfare is introduced.

Social welfare: The social welfare is defined as:

n

W(z) = 726,(2’1)21 (6)

i=1

Consequently, a socially optimal flow z* corresponds to the
social state that maximizes (6). Thus, by the KKT conditions,
z* satisfies:

—g?@ﬂﬁ—gwﬂ+ﬂ—Af:Q VieV, (7a)
e, Nzi=0, \>0, VieV (7b)

In this paper, we design a class of dynamic pricing mech-
anism to render Nash flows socially optimal with fast
transient-performance. To this end, we consider a subclass
of congestion games that satisfy the following assumption.

Assumption 3.1: For the congestion game with n € Zsg
strategies, the following conditions are satisfied:

(i1) Affine costs: There exists a positive definite diagonal
matrix A € R™*™ and b € R™ such that ¢(z) = Az +b
for all z € R"™.

(iz) Full utilization: For every incentive ¢ € R”, the
corresponding Nash flow zJ € A°, ie, (2]). # 0 for
all7 € V.

O

Remark 3.1: While Assumption 3.1 is conservative, affine
congestion games are commonly found in various societal
systems, including parallel network routing and traffic prob-
lems [11]. Moreover, since sets of incentives are bounded
in most practical applications, it is reasonable to assume
that every strategy ¢« € V will receive a positive allocation,
resulting in the full utilization scenario. |

Assumption 3.1 ensures the strong convexity of the poten-
tial function in (4), which implies that conditions (5) hold
for a unique Nash Flow zg for every ¢ € R™. We refer to the
mapping O(q) == z,{ as the oracle mapping. The following
lemma provides a characterization of the oracle mapping for
the types of games that satisfy Assumption 3.1. Proofs are
omitted due to lack of space.

Lemma 3.1: Under Assumption 3.1 the oracle mapping O(-)
satisfies:

Oq) = -Qb+6-q) + o, (®)
where
A711,
o= —

174-11,°
and where Q € R™*"™ is the Laplacian matrix of a graph
with adjacency matrix
A7t,1 A

A =
1rA-11,

that is
1,1}

Q;:(I—u4*1TA;qn>Afﬁ 9)
O

In this paper, we assume that the dynamics describing the
convergence to the Nash flow under a given incentive ¢ are
instantaneous, and therefore can be omitted. This assumption
can be justified using singular perturbation techniques for
multi-time scale dynamical systems. Now, note that As-
sumption 3.1-(i;) guarantees strong concavity of the welfare
function W, which implies that the system of equations (7)
are satisfied for a unique socially optimal flow z*. However,
according to the following lemma, the incentives ¢ that
generate this resource allocation state may not be unique,
see also [11], [23].

Lemma 3.2: Suppose that Assumption 3.1 holds. Then, the
set of incentives that generate socially optimal Nash flows
via the costs (3) is given by

Ag={q€R" : ¢=¢" +ul,, peR}, (10)
b

where ¢* = 3. (]
IV. HIGH-ORDER PRICING DYNAMICS FOR
CONGESTION GAMES

To control the incentives, we assume that the dynamic
pricing mechanism has access to on-the-fly measurements of
the information tuple

7= {ow.c(0). 500}

z

where O(-) was defined in (8). Due to the large-scale nature
of congestion games, it may not be practical to measure 7
centrally. Instead, we assume that each node ¢ has access to
its own information and to the information of the neighboring
nodes characterized by the communication graph G. In this
way, each node will implement individual dynamics based on
the received information to influence the Nash Flow of the
congestion game. To simplify our presentation, we make the
following assumption on the graph G. However, we stress
that this assumption can be relaxed.

Assumption 4.1: G is connected and undirected. (|

For games satisfying Assumption 3.1 and a graph satisfy-
ing Assumption 4.1, the work in [23] introduced the so-called
distributed welfare-gradient dynamics, given by

q=v£LG%(q), (11)

where v > 0 is a scalar gain, and where G : R™ — R™ and
G9 : R™ — R™ are defined as:

G(z) =c(2) + ag(;)z (12)
G%(g) = (G0 0) (q)- (13)

As shown in [23], these dynamics render the set A, ex-
ponentially stable. However, in some cases, the exponential
convergence can be prohibitively slow since it is dictated
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by the strong monotonicity constant of the mapping q —
£go(q). To address this issue, and to achieve better transient
performance in a decentralized fashion, we take inspiration
from the hybrid regularized version of Nesterov’s ODE
studied in [25]. In particular, we introduce the high-order
pricing dynamics (HOPD), described by a hybrid dynamical
system with data H; = (C1,F1,D1,G1) and state © =
(q,p,7) € R3", where p € R" is a momentum state, and 7 €
R™ corresponds to a set of timers {7;},,, which coordinate
the evolution of the distributed dynamics. Specifically, the
flow map F} of the proposed HOPD is given by

q 27 (p—q)
p | =F@) = 29LTG6%«q) |, 14
7 i1,

2

where v € Ry is again a tunable gain, and 7 := diag(7).
Note that the p-dynamics maintain the sparsity of the com-
munication infrastructure imposed by the graph G. The flow
set (' is defined as

Cl ::Rn X ker (E)J_ X [TO7T]n7 (15)

where (Tp,T) are tunable parameters which satisfy 7' >
Ty > 0. The proposed HOPD algorithm also employs a
restarting mechanism given by

qt pi
=T = p;r =R;(z;) = Pi ) (16)
Tr To

2

which is triggered by the condition 7; = 7. While a fully
decentralized implementation of these dynamics might seem
appealing due to its simplicity, as demonstrated in Section V,
ensuring coordinated and synchronized restarting is crucial
to achieve good transient performance and to fully exploit
the advantages of incorporating momentum. To achieve this
coordinated behavior, we adopt the synchronization dynam-
ics of [31] and we employ a coordination mechanism where
the updates of node j € V make use of a set-valued mapping
C; : R>9 =3 R, defined as:

T iij E(To-i-’l“j,T]
{To,T} if T; :T0+Tj R
TO if Tj S [To,To—F’r‘j)

Ci(ry) = an

where the individual parameter r; > 0 satisfies r; €
(0, %) Using C;, the coordination mechanism works as
follows: whenever the timer of the " node satisfies 7; = T,
the following two events occur: 1) Node ¢ resets its own state
x; using the dynamics (16), and 2) node ¢ sends a pulse to
their neighbors j € N;, who proceed to update their state
x; = (g;,p;,7;) as follows:

o =q,  pf=p;, T €Cn). 1Y)

Since node ¢ can only signal their neighbors, the rest of
the nodes j ¢ N will keep their states constant after the
above two events, i.e., x;L = x;, for all j ¢ N;. To formally
describe this behavior, we introduce the set-valued mapping
GO : R* = R3", which is defined to be non-empty only

when 7, = T and 7; € [Ty, T) with j # i, for each i € V,
and satisfies

GO(z) = {(01702703) € R : (v1,4,v9,,v3,:) = Ri(x:),
U1j = G5, V2,5 = pj, V3,5 € Ci(75), ¥V jEN,
v =% €N, (19)

where © = (z1,22, - ,Zn), and where the reset map R;
and the coordination mapping C; are defined in (16) and
(17), respectively. Using the construction (19), the overall
coordination mechanism is characterized by the the jump
map

T e Gi(z) = GOx), (20)

where GO(z) represents the outer-semi-continuous hull of
the map GP. Finally, the jump set is defined as

Dy =R" x ker (£)* x D, Q1)

where D, = {r € R"
Remark 4.1: Distributed momentum-based hybrid dynamics
with flow and jump maps resembling (14) and (20) have
been recently studied in distributed optimization problems
[32], and non-cooperative games [27]. However, they have
remained unexplored in the context of congestion games and
dynamic pricing. (]

: max;ey 7 =T}

Remark 4.2: The use of the resetting parameters 7;, as
well as the construction of the jump map GO(z) from the
individual coordination mapping C; and the reset map R,
are fundamental for the formulation of well-posed hybrid
dynamical systems [28, Ch. 6] with suitable robust stability
certificates for the synchronization of timers [33]. O

A. Main Results

The following Lemma characterizes the synchronization
certificates for the timer variable 7 under the HOPD.

Lemma 4.1: Let
Ar = [To, T11, U ({To, T}")

represent the set of points in the set [T, T]™ where the timer
variables are synchronized with a common value in (T, T),
and, where the value of the timers can only differ from each
other during jumps by taking values in the set {7, T'}. Then,
H1 renders the set

Agyne = ker (Li)l x ker (.C)l x A,
UGFxS with convergence bound 7% := 2 (T — Tp) +n. O

By leveraging Lemma (4.1), the following theorem, cor-
responding to the main result of this paper, characterizes
stability certificates for the the hybrid dynamics #H; with
respect to the set A, defined in (10).

Theorem 4.2: Suppose that Assumption 3.1 is satisfied, and
assume that the tunable parameters (Tp,T) satisfy:
1

T2 - T8 > ———
0> 205 (L) 6’

(22)
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where o2(L) is the minimum non-zero singular value of L.
Then, the HDS #; renders UGES the set

A={(¢,p,7) €ER® : p=gq, g€ A, TEA}.

Additionally, for every ¢ € V), and for all solutions z, the

following bound holds during flows

T [on(L)

T i
TO UQ(E)( 77) 0

2
‘Q(tm])'Aq S

where M is a constant that depends on the initial conditions,
7 =max{0, | ="}, and

n

T3 1

=10 -
g T2 2T2~d04 (L)

O

Remark 4.3: Theorem 4.2 guarantees exponential stability
to A, with convergence rate conditioned by 1 — 1. By
following similar ideas to the literature on centralized ac-
celerated optimization [25], [34]-[36], we can find a “quasi-

optimal” restarting parameter 7' = e m + T¢, which
guarantees exponential convergence of order O (e‘ % "2(’5))
as Ty — 0F. O

B. On the Role of Resets and Coordination

The key technical elements of the HOPD that allow us
to achieve the result of Theorem 4.2 are the resets and the
coordination of the resetting timers 7;. Indeed, as shown
in [25] for centralized optimization problems, when high-
order dynamics implement vanishing damping, the resulting
stability properties can be lost under arbitrarily small dis-
turbances. On the other hand, the incorporation of resets
induces suitable uniformity properties in the convergence,
which in turn, guarantees a minimum margin of robustness
against additive disturbances [28, Ch.7]. Moreover, the reset
condition (22) permits to leverage the decrease of a suitable
Lyapunov function during resets in order to achieve acceler-
ated convergence of order O(o9 (L)), which is particularly
advantageous when o3 (£) < 1.

Finally, we note that this result relies on achieving fixed-
time synchronization of the resetting timers 7; via the coor-
dination map (16). Without such a coordination mechanism,
the performance of the HOPD can be substantially inferior
when compared to traditional gradient-based algorithms. We
illustrate this phenomenon in Section (V) via numerical
examples.

V. NUMERICAL EXAMPLE

In this section, we illustrate our results with a simple
numerical example. We consider a total resource of 1 that
needs to be allocated among 4 different nodes, i.e., V =
{1,2,3,4}. The matrices and parameters that describe the
payoffs of the underlying game are:

A:2I47 b= 14, ’)/:01, 6=1.

HOPD + Resets + No Coordination

HOPD +

No Resets

G-PD

HOPD Resets + Coordination

0 20 40 ‘ 60 80

Fig. 1: Evolution of the incentives over time using a ring
communication graph.

0 5 10 15 20 25

Fig. 2: Coordinated (left) vs Uncoordinated (right) Resetting
Timers in the HOPD.

We first simulate the G-PD of [23] and the HOPD using
a communication graph characterized by a ring. Next we
consider three different scenarios for the HOPD: (a) First,
we consider the situation where the HOPD are implemented
without resets. (b) Second, we implement the HOPD with
uncoordinated resets; (c) Finally, we implement the complete
HOPD with coordinated resets. All the results are presented
in Figure 1, which shows the evolution in time of the
squared error of the incentive ¢q. As observed, the HOPD
with coordinated resets generate substantially better perfor-
mance compared to the standard G-PD of [23], achieving
the same ‘“steady state” error in half of the time. In this
case, the restarting frequency of the HOPD was selected to
be 4s. Another important observation from our numerical
experiments is that using HOPD with uncoordinated resets
generates substantially worse performance compared to the
standard first-order G-PD. This poor performance is shown
in the black curve of Figure 1. This observation highlights
the role of coordination whenever dynamics with momentum
and resets are implemented in multi-agent systems.

Finally, we repeat our numerical example in a system with
a communication graph characterized by a path. The results
are presented in Figure 3. The restarting frequency was
selected as 8s. As it can be observed, the graph’s structure
affects the transient performance of the HOPD. In particular,
in this case the difference between the performance of the
first-order G-PD dynamics and the HOPD algorithm is more
pronounced.

VI. CONCLUSIONS

In this paper, we introduced a class of high-order pricing
dynamics for the solution of dynamic incentive problems
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0
10 HOPD + Resets + No Coordination

HOPD + No Resets

10710

HOPD Resets + Coordination

10720 N
lq(t) — q*|?

-30
10 0 20 40

t

60

80 100

Fig. 3: Evolution of the incentives over time using a line
communication graph.

in congestion games under a full utilization assumption.
The dynamics incorporate momentum and, when combined
with coordinated resets, can achieve better transient perfor-
mance compared to first-order Welfare gradient dynamics.
The stability and convergence properties of the algorithms
were studied using tools from hybrid dynamical systems
theory. Numerical examples were presented to illustrate the
performance of the algorithms. Future research directions
will focus on the interconnection of the proposed dynamics
with dynamical systems in the loop modeling a class of social
dynamics.
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