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Abstract—Ultrawideband (UWB) radar sensors are an emerg-
ing biosensing modality that can be used to assess the dielectric
properties of internal tissues. Antenna effects, including antenna
body interactions limit the sensors ability to isolate the weak
returns from the internal tissues. In this paper we develop a
data driven calibration method for recovering Green’s function
of the multilayered media model of the tissue profiles using an
Invertible Neural Network (INN). The proposed INN structure is
trained to invert the antenna transfer function to form estimates
of the Green’s function modeling returns from internal tissues.
We use simulation experiments to assess the effectiveness of the
trained INN in antenna transfer function inversion.

I. INTRODUCTION

Ultrawideband (UWB) radar sensor is an emerging biosens-
ing modality that provides a viable and noninvasive alternative
for monitoring changes in internal tissue profiles indicative
of chronic and acute disease states such as peripheral and
pulmonary edema [1]. However, antenna effects, including
antenna body interactions limit the sensors ability to isolate
the weak returns from the internal tissues. Therefore, effective
calibration methods are required to recover the underlying
forward propagation model (i.e., Green’s function) of the
multilayered tissue profiles through estimating and inversion
of antenna transfer function. Existing calibration methods
typically use nonlinear optimization approaches to estimate the
antenna transfer function from controlled measurements in the
far field setting [2], [3]. In typical bio-sensing applications the
sensor operates in close proximity of the body and therefore
need to be calibrated in situ.

In this paper, we present an antenna calibration methodol-
ogy to recover multilayered media Green’s function using an
Invertible Neural Network (INN) from training data collected
in situ. We use simulation experiments to assess the effective-
ness of the trained INN in antenna transfer function inversion.

II. PROPAGATION MODEL AND GREEN’S FUNCTION

A. Antenna Propagation Model

In this paper, following [2], we consider the following an-
tenna model for the observed frequency-domain measurements
S12(ω), with frequency dependent factors to model direct
coupling, transmit and receive components.

S12(ω) = Hi(ω) +Ht(ω)Gxx(ω)Hr(ω) (1)

where ω represents the frequency, Gxx(ω) is the Green’s
function for the multilayered media; Hi(ω), Ht(ω), and
Hr(ω) represent return, transmitting, and receiving losses of

the antenna, respectively. The expression can be simplified by
combining Ht(ω) and Hr(ω) as H(ω).

B. Green’s Function of Multilayered Media

We consider a simplified forward propagation model under
plane-wave assumption where the Green’s function of the
multilayered media is represented by the Riccati equations pa-
rameterized by local reflection coefficients. The full derivation
of the Green’s function can be found in [4].

C. Dataset

A synthetic dataset is created containing time domain pass-
band Gxx(ω) and associated S12(ω) based on equation (1).
To obtain realistic values for Hi(ω) and H(ω) to use in
our simulation experiments, we made measurements against
stacked layers of Rogers Corporation TMM Laminates with
known permittivity profiles using a Keysight N5242A VNA
configured for step frequency measurements in the range of
0.5 - 6.0 GHz at 50 MHz steps.
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Fig. 1. Illustration of (a) data flow and cost function in INN training, (b)
an example of Green’s functions gxx(t) and ĝxx(t), and (c) an example
of measurements s(t) and ŝ(t). Lfwd(·), Lrev1(·), and Lrev2(·) represent
forward (fwd) and reverse (rev) losses.

The dataset consists of training and testing, with the first
(top) layer fixed to have a relative permittivity ε0r of 13 and a
thickness d0 of 10 mm. The training dataset contains 75,767
tissue profiles (gxx(t)) generated from 2-layer and 3-layer
models, and the test dataset contains 18,286 tissue profiles
generated from 3-layer and 4-layer models. εsr, εer, ds, and de

represent the start and end relative permittivity and thickness
for the i’th-layer. The stepsize of relative permittivity and
thickness are denoted by ∆εr and ∆d. The details of the
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configuration is given in Table I. Gxx(ω) and S12(ω) are
calculated using the frequency range consists with the actual
measurements. The time domain passband data gxx(t) and s(t)
are obtained through inverse Fourier transform.

TABLE I
SUMMARY OF DATASET

εsr εer ∆εr ds de ∆d
Training 2-layer 2.0 21.0 0.025 5.0 50 1.0
Training 3-layer 2.0 21.0 1.0 5.0 50 5.0
Testing 3-layer 2.5 20.5 1.0 7.5 25 5.0
Testing 4-layer 3.5 19.5 3.0 6.0 40 2.0

III. INVERTIBLE NEURAL NETWORK (INN)

INN is a family of Artificial Neural Network (ANN) using
Normalizing Flow that has been used in image generation and
biomedical imaging tasks [5]–[7]. Unlike conventional ANNs,
individual components of INNs are fully invertible between
input and output.

We construct an INN that contains seven identical blocks
where each block contains a sequence of fully invertible
operations including affine coupling, permutation, and global
affine transformation. In forward path, the INN produces sam-
ples from p(s(t)|gxx(t)), which is identical to a conventional
feedforward NN. In reverse path, the INN creates samples
from p(gxx(t)|s(t)). Fig. 1 illustrates the training data flow
and loss function design. The invertibility is enforced by
regularizing mean squared losses (MSE) in both forward and
reverse paths. The forward loss is defined between s(t) and its
estimate ŝ(t), and the reverse loss is defined between gxx(t)
and its estimate ĝxx(t). An additional reverse loss is added
between gxx(t) and ˆ̂gxx(t) = INN−1(ŝ(t)) to discourage over-
fitting. The total loss L is expressed as follows,

L = λ1||s− ŝ||2 + λ2||gxx − ĝxx||2 + λ3||gxx − ˆ̂gxx||2 (2)

where λ1,2,3 are weights of the individual losses.

IV. EXPERIMENT SETUP AND RESULTS

A. Experiment Setup

We used a PyTorch based FrEIA framework [8] for the INN
implementation. The training and testing are performed on a
single Nvidia Quadro RTX 6000 GPU and Intel Xeon CPU
server. Additive white Gaussian noise (AWGN) is added to
s(t) to 40 dB signal to noise ratio (SNR) to improve model
generalization capacity and stability. The Adam optimizer with
learning rate set to 0.001 is used throughout the training.

B. Results

Performance of the INN is evaluated by the normalized
mean squared error (NMSE), expressed as

NMSE =
||gxx(t)− ĝxx(t)||2

||gxx(t)||2
(3)

where ĝxx(t) = INN−1[s(t) + n(t)], and n(t) is AWGN. We
also provide the lower bound of the NMSE using a genie-
aided estimator that assumes H(ω) and Hi(ω) are known. We

evaluate the results from 10 to 80 dB SNR, and the results are
presented in Fig. 2.

The results confirm the feasibility of using INNs to recover
gxx(t) from s(t). The model achieves near-optimal perfor-
mance at SNR regime of 10 − 30 dB, while there is a gap
in the performance at high SNR regime.
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Fig. 2. NMSE of INN estimates ĝxx(t) from noisy measurements at 10 to 80
dB SNR for profiles in the training and test sets. A lower bound to performance
is computed through inversion with known antenna transfer function.

V. CONCLUSION

We proposed an INN approach for estimating and inverting
antenna transfer functions from in situ measurements of mul-
tilayer profiles. Our empirical results show that the INN can
successfully recover the Green’s function of previously unseen
multilayer profiles in the testset from noisy measurements.
In future work, we will consider inversion of more complex
antenna models with feedback. We also plan to investigate near
field modeling of returns from 3D tissue profiles and inversion
of transfer function of directional patch antennas.
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