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Abstract—Generative models learned from training using deep
learning methods can be used as priors in under-determined
inverse problems, including imaging from sparse set of mea-
surements. In this paper, we present a novel hierarchical deep-
generative model MrSARP for SAR imagery that can synthesize
SAR images of a target at different resolutions jointly. MrSARP
is trained in conjunction with a critic that scores multi resolution
images jointly to decide if they are realistic images of a target at
different resolutions. We show how this deep generative model
can be used to retrieve the high spatial resolution image from
low resolution images of the same target. The cost function of
the generator is modified to improve its capability to retrieve the
input parameters for a given set of resolution images. We evaluate
the model’s performance using three standard error metrics used
for evaluating super-resolution performance on simulated data
and compare it to upsampling and sparsity based image super-
resolution approaches.

Index Terms—Deep Learning, Super-Resolution, Compressive
sensing.

I. INTRODUCTION

Synthetic aperture radar (SAR) imagery captures the phys-
ical aspects of the target differently compared to the optical
imagery because of multi-path reflections, specular nature of
reflectors, and imaging geometry effects leading to overlay
as well as shadowing. Traditional approaches that utilize the
sparsity in the image domain captures the effects of dominant
reflectors that account for only the specular nature of reflec-
tors [1], [2]. In this work, we present a data-driven generative
model that captures several aspects of SAR phenomenology
at different resolutions exhibited by SAR magnitude imagery.
Specifically, we propose a specialized hierarchical architecture
of the generative model, called MrSARP, that jointly models
the data manifold of multiple-resolutions of a SAR image.
We show that such a generative model acts as the projection
operator to a lower dimensional manifold and can be directly
used for super-resolving magnitude SAR images from low res-
olution magnitude images. The super-resolution performance
of MrSARP is evaluated by comparing it with LASSO (or Ly
recovery) and Nearest Neighbor Upsampling using empirical
data.

Next, we describe important notation used throughout the
text. The lower-case character x represents a fixed sample
value of a random vector (rv) X (the corresponding upper-case
character), M : N is the enumeration of natural numbers from
M to N, g(X;.ny;w) denotes function g of rv’s Xy, with
deterministic parameters w and an index-based x[v] represents
the v®" value from the ordered set {x[i] : i € {1 : N}}. Formal

definitions of terms Generative Modeling and Compressed
Sensing, as used in the context of this paper, are stated below.

Definition 1 (Generative Modeling). Generative Modeling
aims to estimate the distribution p(X) using a parameterized
distribution family q(X;w) and a set D of samples from the
distribution p(X). The stochasticity in sampling is typically
achieved by sampling a low-dimensional latent rv Z, internal
to q(X;w), from a simple distribution (e.g. standard gaus-
sian). Therefore, the goal is to generate N realistic samples
{X[v]}N_, from q(X;w) as if they were from p(X).

Definition 2 (Compressed Sensing). Given measurements
y € C? obtained using a known measurement (or forward)
operator F of an underlying signal = € CP, Compressed
Sensing seeks to recover this underlying signal under the
model [3]

y=F(z) +n, T €, (1)
where n is the measurement noise and ) represents the
constraint set that is non-convex. It is an under-determined
system of equations, i.e., the no. of measurements are less
than the signal dimension and so the signal structure must be
exploited through appropriate constraints to obtain a unique
solution for the problem [4]:

min  L(F(z);y) (2)

Where L(F(x);y) is an appropriate loss function to be
minimized.

We want to use the range space of the generative model
q(X;w) as the constraint set €2 that can super-resolve SAR
data as well as potentially be used to solve a compressed
sensing problem for SAR data. Specifically, we want to
find a prior function as an Artificial Neural Network (ANN)
based generative model G with parameters w¢, that generates
random samples of X (SAR magnitude images) using a low-
dimensional latent rv Z, ie. sampling from G(Z;w¢g) is a
good approximation of sampling from p(X'). This implicitly
constrains samples X on a low-dimensional manifold while
having the flexibility to adapt the basis to any dataset, unlike
commonly used sparsity priors. Therefore, G' can be used as
the learned projection function Pq in a Projected Gradient
Descent optimization to find the solution in the constraint set
2. We show that a specially designed G can itself be used for
super-resolving SAR images directly. The dataset of all sam-
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ples is split into 3 subsets Dirain, Dyar and Dieqr for model
training, cross-validation and evaluation of G respectively.

A. Related Work

A survey of trained and untrained DL methods to solve the
Inverse problems is given in [5]. Data-driven models can be
broadly classified as end-to-end models that are agnostic to the
measurement operator and deep generative priors that model
the distribution representing the constraint set estimated from
a corpus of data. We will discuss the approaches based on the
latter briefly.

Theoretical guarantees are established on the number of
measurements and conditions on the generator network for
successful reconstruction in [6]. A generative model is esti-
mated on a large corpus of natural images in [7]. Given the
generator, which is implemented as a generative adversarial
network or variational auto-encoder and the measurements, we
can infer the image by solving (2). The projection operator Pq
for the set of natural images (2 is learned from a large corpus
of data using an adversarial network in [8]. This projection
operator is used in solving any inverse problem in a plug and
play manner since the projection operator has enough capacity
to model the complicated non-convex set of natural images.
Theoretical guarantees for the generative prior are established
in [9]. It is shown that if the entries of the generator function is
near-random and the number of weights in each layer increases
with the width then the loss function landscape contains
descent directions to the global optima. The deep-geometric
prior is extended to MR imaging in [10] where authors use
invertible generators. Since the dimensionality of the latent
code is large and equivalent to the signal dimension, a block-
wise structure is imposed on the structure of the latent variable.
The idea of generative prior is extended to video-sequences in
a novel way to synthesize video from a sub-sample of image
frames in [11]. The image sequences in time are denoted by
X = Xq1,Xg,--- ,Xp. It is shown that if all the images are
obtained from the same generator, then the network parameters
# can be fixed and for each image in the sequence, a latent code
can be estimated to succinctly represent the video. The latent
code sequence Z = [z1, 22, - - , Zr] compactly represents the
images. The smoothness in the image sequences of a video can
be imposed by imposing a smoothness constraint or a low-rank
constraint on the latent code Z while jointly estimating in the
prediction step. Furthermore if images are dissimilar, then the
network parameters @ can also be re-trained to capture the
variability. It is shown that missing frames can be synthesized
using interpolation in the latent space. Next, we consider the
regime when no or limited training data is available, where
the generator is estimated for each image.

Deep image prior [12] presents a non-trained version of
the generator discussed in previous section. The latent code
is assumed fixed and can be chosen arbitrarily but the net-
work parameters are optimized to represent the image. It is
hypothesized that the structure of the network imposes a strong
regularizer or prior on the image. This strong prior is shown

to have high impedance to noise and uncorrelated samples.
Therefore, the optimization problem solved is

minL(g(2,0),y, F) G)

The main problem is over-fitting and it is shown that early-
stopping is necessary to capture the de-noised image. Various
ANN architectures are explored and it is empirically shown
that as the network is over-parameterized, the performance
improves because the capacity of the network to learn the
image is increased.

The works in [13], and [14] propose an alternative loss
function termed as the backprojection loss and demonstrate
the efficacy theoretically as well as empirically for multiple
imaging linear inverse problems such as de-blurring and
super-resolution as a function of the condition-number of the
measurement operator. The loss function considered is

L(9) = |F*(y — Fg(x,0))I1%, 4)

where F* denotes the pseudo-inverse of the linear measure-
ment operator. Theoretical guarantees for compressive sensing
are established for deep priors for [15], and [16]. It is shown
that the number of measurements required are similar to the
traditional requirements established in compressive sensing.
Empirically, these methods are shown to perform better than
¢, and TV norm regularization on fastMRI dataset.

II. METHOD

Building upon eq. 2, squared Euclidean Ly norm is com-
monly used for the loss function, ie., L(F(z);y) = |y —
F(z)||2 under the assumption that 7 is additive Gaussian noise.
Sparsity in some known basis @, such as Fourier or Wavelet
basis, is the most widely used constraint on z, achieved by
adding L, regularization to sparse vector £ where & is such
that z = ®z. This derivation involves a convex relaxation as
well as @ must follow the restricted isometry property and [17]
can be referred for details. Instead of this sparsity assumption,
we follow a different approach. The problem in eq. 2 can also
be solved by finding a convex relaxation of the constraint set
2 and using a projected gradient method as

fimp = arg minlly — F(2)[3

= arg minfly — F(m © exp(jp))|l3 (5)
tq = Pa(imp) = arg min||Zmp — =3 6)
=}

Where m, p are magnitude and phase of complex-valued
x respectively alongwith subscripts (if any), P denotes the
projection operator onto set {2 Alternating between these two
steps will find the desired solution if {2 and F' were convex
starting from an appropriate initial condition xp. However,
like most signals of interest =, we don’t know {2 for SAR
data. Therefore, similar to Projected Gradient Descent GAN
by Shah and Hegde [18], we propose to learn 2 as the range-
space of an ANN based Generative model G(Z;w¢). Here,
Z as much lower dimensionality than z. Moreover, we only
constrain the magnitude m of z using G(Z;w¢) and allow
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phase p to be unconstrained without projection. Assuming that
we have obtained such a G(Z; wg) that well approximates the
probability distribution P(m), projection £ becomes

To = pn(’!ﬁmp O] GXP(jﬁmp)) = Pc (ﬁ"'MP) © eXP(jﬁmp)
= 1 © exp(jPmp) ™

Where m¢ is the projection of magnitude 77,5, derived
using G. Here, the magnitude m of the structured signal x
is assumed to be sampled from a low-dimensional manifold
with a latent variable z. To find /¢, we first optimize over z
starting from initial condition zp = 0 as

z} = arg mziIlH’!ﬁmp - G(zwe)ll3 ®)

However, since G is a non-linear ANN, range-space of
G(Z;wg) is non-convex. Therefore, solving optimization
problem in eq. 8 only guarantees local-minima. Hence, it
will be sensitive to initialization and may yield inconsistent
projections. Motivated from works of Bojanowski et al. [19]
and Wu et al. [20], we attempt to alleviate this problem
by making G(Z;w¢) aware of this inversion task during its
training phase. This is described in section III.

Additionally, we borrow important ideas from similar work
of IAGAN [21]. Even after significant progress in Deep Gen-
erative Modeling, such models are still an approximation of
the true distribution due to limited representation capabilities
of ANN. Therefore, magnitudes m of many samples = may
not even belong to the range-space of G(Z; wg). To mitigate
this, IAGAN proposes to do image-adaptive projections, i.e.
optimizing over both latent vector z and ANN weights w when
projecting. This adds the following step to eq. 8 as

(et ws) = arg minllivm, — Gzw) )

Where z, w are initialized as zp = z}, wy = wg respectively
while optimizing eq. 9. Finally, the magnitude projection
required for eq. 7 is g = Pa(fiimp) = G(25,,; wg). We call
our complete algorithm as Image Adaptive Projected Gradient
Descent WGAN and it is mentioned in algorithm 1.

Algorithm 1 TAPGD WGAN

Require: n,nmp,n.,n.0 > 0,9, F, G(z; we), zo
1: while n #£ 0 do
Emp ¢ [arg minm,plly — F(m © exp(jip))[13],,
Tnp < |Zmpl
zo0+— 0
2t [arg min |1y — G(z3 we)|3],,
(20, wo) ¢ (27, wc)
(2, wE) « [arg win ullimy — G(z3w) 3]
e — Glaty;ws)
To zﬁc © exp(jPmp)
Ig < In
11: n+—n—1
12: end while

Tzw

R A A i

—
=

Where the notation [arg ming £(z)],, refers to minimizing
the loss L£(zx) for ng steps iteratively using a variant of
Stochastic Gradient Descent (SGD).

We propose a special hierarchical architecture of a WGAN
that jointly generates magnitude of multiple resolutions of
the same SAR image. This idea of jointly modeling multiple
resolutions was inspired from the Progressive GAN by Karras
et al. [22] though their motivations were different. We aim
to exploit this hierarchical structure for super-resolution i.e.
to find a higher resolution image given its lower resolutions.
Suppose we are given a dataset containing 4 exponentially
increasing resolution images’ magnitude m™, m"2,m", m"™
where resolution of is twice of m™. Then our
WGAN G(Z;wg) models the joint probability distribution
P(m™,m"™ ,m"™ m™). Now if we are given a new sample
from P(m"™,m",m") ie. of the 3 lower resolutions, we can
use G(Z; wg) and steps 4 to 8 of algorithm 1 to project it onto
the joint data manifold of P(m™,m"™,m"™ m"™) by finding
a common (z%,,, w) pair. The highest resolution 74 image is
then obtained by a simple forward pass 5 = G(z},, w§).
The overall algorithm is therefore Projecting from a Multi-
Resolution SAR Prior (or MrSARP) and is summarized in
algorithm 2. Note that G(z;wg)™ denotes r; resolution output
from G(z;wg) and G(z;wg)™ is simply dropped in step 2.

mf'nt+1

Algorithm 2 Projecting from MrSARP

Require: n,,n,, > 0,m™, m"™, m™, G(z;wg)
1: z0+< 0

2} ¢ [arg min; B}, [|m" — G(z;we)"™ 3]

(20, wo) < (27, we)

(23, wg) + [arg min o B4 [|m"™ — G(z;w)™|3],,

g  G(z7w;wg)™

Tz

ITII. MODEL

MrSARP consists of a WGAN-GP [23] with a Hierarchical
architecture. Our architecture is inspired from the CIFAR-
10 ResNet architecture used by Gulrajani et al. [23] and
ProGAN [22]. We use the ResNet block from the former
and the idea of FromImage/Tolmage layers at various ResNet
input/output features from latter. The schematic of the hi-
erarchical model is shown in figure 1. The output shapes
of layers are specified. The ResNet blocks in the generator
use Batch-Normalization layers and have nearest-neighbour
upsampling after the input. The ResNet blocks in the critic
uses Layer-Normalization layers and have an average pooling
based downsampling before the final output, and channel-
wise concatenation in case of multiple inputs. The FromImage
layer is a 2D convolution layer with 1 channel input (image)
and 2 channel output (features). The Tolmage layer comprises
slicing first 2 channels of input features, Batch-Normalization,
ReLU activation and 2D convolution layer with 1 channel
output (image) after tanh activation. All convolutional layers
in the generator have kernel-size as 3 and ReLU activation
function. All convolutional layers in the critic have kernel-
size as 3 and LeakyReLU activation function with 0.2 slope.
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Fig. 1: Hierarchical Model Architecture of MrSARP

The dense (or fully-connected) layers in both, generator and
critic have linear activation and the GAP referes to Global Av-
erage Pooling operation. The generator G(Z; wg) of MrSARP
generates samples from the unconditional joint distribution of
4 resolutions of SAR images P(m™,m", m"™, m™) where
resolution of m,._ is 2173 x2+3 and bandwidth is 125.2° M hz..

WGAN-GP was chosen because of its advantages over
traditional GANs, especially meaningful loss curves for cross-
validation and reliable training as demonstrated by Gulrajani
et al. [23]. WGAN-GP, like all GANSs, require an extra critic
ANN D(-,-;wp) to be learned simultaneously to aid the
learning of the generator. Both, the critic and generator are
trained alternately using gradient descent steps. Latent variable
Z ~ N(0,I) as in a conventional GAN.

Since MrSARP would primarily be used for inverting and
projecting on data-manifold instead of sampling, we think it
is essential to inform the generator GG about this task during
training. Inspired from Wu et al’s work [20], we add Model
Agnostic Meta Learning (MAML) based regularizing loss term
to the overall loss functions used for training G. Proposed by
Finn et al. [24], MAML is a general-purpose meta-learning
method to adapt parameters w of a statistical model to a
number of tasks as long as the loss function £(7;w) for the
task 7 is differentiable. Since our primary task is inversion
using step 2 of algorithm 2, we perform a small number
n, = 5 iterations of this optimization step to get z* and use
residual error on all 4 channels as our MAML loss Laranr-
Since the Z ~ AN(0,I) with high dimensionality dz, the
samples lie near the hypersphere of \/dy. To enforce such
a constraint on z*, we additionally project z* on to the v/dz
hypersphere after every SGD step using projection operator
Ps. The complete loss functions are as follows.

for D

(10)
Lw 4+ MLaramr for G

B {—ﬁw +MLcp

Lw = Em [D(m); wp] — Ez [D(G(Z;wg); wp)]

Lep = En(|VaD(m;wp)|l, — 1)
Ps(2") =

4
A/ d
min(|[z*],,vdz) ¥
2% = [Ps (arg min T3, m"™ — G(z we)™ 3]
(12)
(13)

Where m ~ P(m™,m™ m"™ ,m™), m ~ r(M) is
uniform-sampling along straight lines between pairs of sam-
pled points m, G(z;wg). All expectations are approximated
using corresponding empirical means. Motivated by [23], we
employ negative critic loss as our primary metric for model
selection. Hence, the weights of the final model are set to their
values corresponding to the epoch where the smallest negative
critic loss on Dyq; was achieved. For the hyperparameters, we
use Ay = 10 (as in [23]) and set Ay = 1000 to approximately
balance the two regularizing loss term Ljpsaprp with the
WGAN loss term Ly in magnitude.

(11)

Lyramr =Em [E;:L=1||'”'1Ti - G(zg;we)"™ ||§]

IV. EXPERIMENTAL SETUP

We use the Tensorflow (2.1) [25] deep-learning Python
library for our ANN implementations. Unless mentioned oth-
erwise, the Adam optimizer from Tensorflow with default
parameters is used for most optimizations. We use NVIDIA
GeForce RTX 2080 Ti GPU alongwith Intel Xeon CPU as our
primary computation hardware.

A. CVDomes Dataset

We use the phase histories obtained from simulation of
back-scattered energy from civilian vehicles in [26]. We con-
sider only the HH polarization measurement in our experi-
ment. The image at a bandwidth B and azimuth span A# is
obtained by backprojection method using a Hamming window
to suppress the side-lobes. We spotlight on a square patch of
9m x 9m. To generate 4 different resolutions 71 : 4, we repeat
this process for 4 bandwidths 125.2" and corresponding pixel
resolutions 2'+3 x 2743 for i € 1,2, 3, 4.
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B. Pre-Processing

We work with magnitude images only for MrSARP. Hence,
we first find the absolute values of complex-valued SAR
images and then perform min-max normalization of every
image individually to restrict their values in range [—1,1].
We then upsample all lower resolution images to the highest
resolution of 128 x 128 with nearest-neighbor upsampling and
combine all 4 resolutions into a single 4 channel image. The
lower resolution images are appropriately downsampled using
average pooling before their input into the critic. This is only
done to simplify multi-resolution architecture implementation
and is based on the simple fact that nearest-neighbor upsam-
pling followed by average-pooling gives identity function.

V. RESULTS

We present some results of this study in this section.
After training generator G as described in section III above,
we use algorithm 2 to find the super-resolved images 7}
for the unseen lower resolution samples in Dyeqr. We com-
pare these images with the available ground truth images
m™ qualitatively as well as using three quantitative metrics
viz. PSNR (Peak Signal-to-Noise Ratio), NMSE (Normalised
Mean Squared Error) as defined in [27] and SSIM (Structural
Similarity Index) proposed in [28]. The use of these metrics
is motivated from the evaluation schemes used in existing
literature on super-resolution of SAR images e.g. [29]. These
metric used are defined as follows.

1 Ta ~ra)|2
MSEZN—m"m — "™z

Tay 3 T4 2
PSNR = 10logyq ((ma"(m i{ S’;’m(m ) ) (14)
ra _ poral|?
vmsg = Im™ e (15)
|||
SSIM = l(z,y)-c(z,y)-5(z, y) (16)

Co=zrg+a

(z,y) = 2050y + Ca
clr,y) = 0—%+J§+CZ

s(z,y) = ( ozy +C3 )

g0y + C3

where N, are total number of pixels in image m™, pg, fiy
are empirical means of patches x,y respectively, o,,0, are
sample standard deviations of patches z,y respectively, oy
is sample cross-correlation of «,y after mean subtraction
and Cy.3 are small constants added for numerical stability.
SSIM is calculated on smaller local patches z,y of size
7 x 7 and the mean SSIM is calculated for every image
comparison pair m™,m"™. We also compare r4 resolution
estimate 1y obtained from nearest neighbor upsampling of
m™ and estimates 7n}* obtained from using the popular
LASSO method. The LASSO method is used to obtain the
sparse scattering center representation of the vehicle at the

resolution r3. The sparse representation is projected back into

TABLE I: Quantitative evaluation of Super-resolution perfor-
mance.

Method NMSE ] | PSNRT | SSIM T
Nearest-Neighbor Upsampling 0.071 21.27 0.931
L1 recovery 8.608 27.638 0.937
MrSARP 6.92 29.785 0.9
Image-Adaptive MrSARP 6.003 30.963 0.918

the phase history measurement domain using the SAR forward
operator. These measurements are converted to SAR imagery
using the backprojection method with the hamming window
at resolution r4. All the evaluations are done on 504 images
from the unseen Di.gt.

Figure 2 shows some samples from Dy that are super-
resolved using different methods. There is a qualitative simi-
larity between the Nearest Neighbor upsampled and L; recov-
ered images. Both methods differ significantly from resulting
images of MrSARP. The corresponding quantitative results
are presented in table 1. Addition of Image-Adaptive steps
to MrSARP improves performance quantitatively for all 3
metrics. In fact, among all the methods tested, Image-Adaptive
MrSARP results perform best in terms of both, NMSE and
PSNR. However, they are inferior to both Nearest Neighbor
Upsampling and Lq recovery in terms of SSIM indicating
potential bias in amplitude for MrSARP.

VI. CONCLUSION

In this paper, we showed how a GAN with hierarchical
architecture can jointly model the distribution of multiple
resolutions of magnitude SAR images. We further showed
how this GAN, called MrSARP, be used to for super-resolving
SAR images. We saw some improvements over baselines of
nearest neighbor upsampling as well as L; recovery in terms
of NMSE and PSNR values but there is significant scope
of further improvements in terms of perceptual quality. This
was indicated by MrSARP’s inferior performance in terms of
SSIM. Furthermore, we plan to utilize this generative model
and the proposed algorithm 1 to regularize inverse problems
in SAR imaging with structured interrupted measurements.

ACKNOWLEDGEMENTS

This research was partially supported by NSF grants CNS-
1823070 CBET-2037398 and NIH Grant P41EB028242

REFERENCES

[1] N. Sugavanam, E. Ertin, and R. Burkholder, “Approximating bistatic sar
target signatures with sparse limited persistence scattering models,” in
Int. Conf. on Radar, Brisbane, 2018.

[2] N. Sugavanam and E. Ertin, “Models of anisotropic scattering for 3d
sar reconstruction,” in 2022 IEEE Radar Conference (RadarConf22).
IEEE, 2022, pp. 1-6.

[3] N. Sugavanam, E. Ertin, and R. Burkholder, “Compressing bistatic sar
target signatures with sparse-limited persistence scattering models,” IET
Radar, Sonar & Navigation, vol. 13, no. 9, pp. 1411-1420, 2019.

[4] N. Sugavanam, S. Baskar, and E. Ertin, “High resolution mimo radar
sensing with compressive illuminations,” IEEE Transactions on Signal
Processing, vol. 70, pp. 1448-1463, 2022.

[5]1 G. Ongie, A. Jalal, C. A. M. R. G. Baraniuk, A. G. Dimakis, and
R. Willett, “Deep learning techniques for inverse problems in imaging,”
IEEE Journal on Selected Areas in Information Theory, 2020.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 19,2024 at 02:07:06 UTC from IEEE Xplore. Restrctions apply.



MrSARP

True 1A MrSARP

NN Upsampling

(a) [rnage 1

True NN Upsampling MrSARP A MrSARP

(b) Image 2

True NN Upsampling MrSARP A MrSARP

(c) Image 3

Fig. 2: Qualitative comparison of samples super-resolved using different methods

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Z. Liu and J. Scarlett, “Information-theoretic lower bounds for compres-
sive sensing with generative models,” IEEE Journal on Selected Areas
in Information Theory, 2020.

A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing
using generative models,” in International Conference on Machine
Learning, 2017, pp. 537-546.

1. H. R. Chang, C. Li, B. Péczos, B. V. K. Vijaya Kumar, and
A. C. Sankaranarayanan, “One network to solve them all — Solving
linear inverse problems using deep projection models,” in 2017 IEEE
International Conference on Computer Vision (ICCV), 2017, pp. 5889—
5898.

P. Hand and V. Voroninski, “Global guarantees for enforcing deep
generative priors by empirical risk,” IEEE Transactions on Information
Theory, vol. 66, no. 1, pp. 401-418, 2019.

V. A. Kelkar, S. Bhadra, and M. A. Anastasio, “Compressible latent-
space invertible networks for generative model-constrained image re-
construction,” arXiv preprint arXiv:2007.02462, 2020.

R. Hyder and M. S. Asif, “Generative models for low-dimensional
video representation and reconstruction,” IEEE Transactions on Signal
Processing, vol. 68, pp. 1688-1701, 2020.

V. Lempitsky, A. Vedaldi, and D. Ulyanov, “Deep image prior,” in 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2018, pp. 9446-9454.

T. Tirer and R. Giryes, “Back-projection based fidelity term for ill-
posed linear inverse problems,” IEEE Transactions on Image Processing,
vol. 29, pp. 6164-6179, 2020.

1. Zukerman, T. Tirer, and R. Giryes, “BP-DIP: A backprojection based
deep image prior,” arXiv preprint arXiv:2003.05417, 2020.

R. Heckel and M. Soltanolkotabi, “Compressive sensing with un-trained
neural networks: Gradient descent finds the smoothest approximation,”
arXiv preprint arXiv:2005.03991, 2020.

R. Heckel, “Regularizing linear inverse problems with convolutional
neural networks,” arXiv preprint arXiv:1907.03100, 2019.

R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-Based
Compressive Sensing,” IEEE Transactions on Information Theory,
vol. 56, no. 4, pp. 1982-2001, Apr. 2010. [Online]. Available:
http://arxiv.org/abs/0808.3572

V. Shah and C. Hegde, “Solving Linear Inverse Problems Using Gan
Priors: An Algorithm with Provable Guarantees,” in 2018 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), Apr. 2018, pp. 4609-4613.

[19]

[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

P. Bojanowski, A. Joulin, D. Lopez-Paz, and A. Szlam, “Optimizing the
Latent Space of Generative Networks,” May 2019. [Online]. Available:
http://arxiv.org/abs/1707.05776

Y. Wu, M. Rosca, and T. Lillicrap, “Deep Compressed Sensing,” May
2019. [Online]. Available: http://arxiv.org/abs/1905.06723

S. A. Hussein, T. Tirer, and R. Giryes, “Image-Adaptive GAN based
Reconstruction,” Nov. 2019. [Online]. Available: http://arxiv.org/abs/
1906.05284

T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive Growing
of GANs for Improved Quality, Stability, and Variation,” Feb. 2018.
[Online]. Available: http://arxiv.org/abs/1710.10196

L Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville,
“Improved Training of Wasserstein GANs,” arXiv:1704.00028 [cs,
stat], Dec. 2017. [Online]. Available: http://arxiv.org/abs/1704.00028
C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for
Fast Adaptation of Deep Networks,” arXiv:1703.03400 [cs], Jul. 2017.
[Online]. Available: http://arxiv.org/abs/1703.03400

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, ]J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga,
S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan,
P. Warden, M. Wicke, Y. Yu, and X. Zheng, “{TensorFlow}: A System
for {Large-Scale} Machine Learning,” in 12th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 16), 2016,
pp. 265-283. [Online]. Available: https:/fwww.usenix.org/conference/
osdil 6/technical-sessions/presentation/abadi

K. E. Dungan, C. Austin, J. Nehrbass, and L. C. Potter, “Civilian vehicle
radar data domes,” in Algorithms for Synthetic Aperture Radar Imagery
XVII, vol. 7699. SPIE, Apr. 2010, pp. 242-253. [Online]. Available:
http://www.spiedigitallibrary.org/conference-proceedings-of-spie/7699/
76990P/Civilian-vehicle-radar-data-domes/10.1117/12.850151 full

N. Karimi and M. R. Taban, “Nonparametric blind SAR image super
resolution based on combination of the compressive sensing and sparse
priors,” Journal of Visual Communication and Image Representation,
vol. 55, pp. 853-865, 2018.

Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli, “Image quality assess-
ment: From error visibility to structural similarity,” IEEE Transactions
on Image Processing, vol. 13, no. 4, pp. 600-612, Apr. 2004.

C. He, L. Liu, L. Xu, M. Liu, and M. Liao, “Learning Based Compressed
Sensing for SAR Image Super-Resolution,” IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, vol. 5, no. 4,
pp- 1272-1281, Aug. 2012.

Authorized licensed use limited to: The Ohio State University. Downloaded on February 19,2024 at 02:07:06 UTC from IEEE Xplore. Restrctions apply.



