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Abstract

Artificial Intelligence (Al) and machine learning
have advanced healthcare by defining relationships
in complex conditions. Out-of-hospital cardiac
arrest (OHCA) is a medically complex condition
with several etiologies.  Survival for OHCA has
remained static at 10% for decades in the United
States. Treatment of OHCA requires the coordination
of numerous interventions, including the delivery of
multiple medications. Current resuscitation algorithms
follow a single strict pathway, regardless of fluctuating
cardiac physiology. OHCA resuscitation requires a
real-time biomarker that can guide interventions to
improve outcomes. End tidal capnography (ETCO?2) is
commonly implemented by emergency medical services
professionals in resuscitation and can serve as an ideal
biomarker for resuscitation. However, there are no
effective conceptual frameworks utilizing continuous
ETCO?2 data. In this manuscript, we detail a conceptual
framework using Al and machine learning techniques to
leverage ETCO?2 in guided resuscitation.
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1. Introduction

Half a million Americans suffer from out-of-hospital
cardiac arrest (OHCA) annually, with only 7 — 10%
surviving to hospital discharge.”™? Cardiac arrest
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is a dynamic process3'?); where the effectiveness

of interventions varies as time elapses and cardiac
physiology evolves. Current resuscitation algorithms
rigidly dictate defined interventions at fixed time
intervals regardless of individual patient characteristics
or evolving cardiac pathophysiology. Customizing
resuscitation interventions based on the dynamic state
of the arrested heart and the individual characteristics
of the patients with EMS interventions has the strongest
potential to improve outcomes.

2. Defining End Tidal Capnography

Real-time, quantitative feedback or biomarkers
are needed to guide intra-arrest efforts toward clear
benchmarks during resuscitation. End-tidal carbon
dioxide (ETCQ?2) fits the profile of an ideal continuous
biomarker for guiding resuscitation as it is the tecnique
of continuously measuring carbon dioxide exhaled
from the lungs. ETCO@ is widely recognized,
easy to use, and is commonly implemented by
emergency medical services (EMS) professionals in
resuscitation.? End-tidal carbon dioxide (ETCO2) has
been historically reserved for confirming endotracheal
tube placement during resuscitation and monitoring a
patient’s respiratory status>*2*. Correlative studies have
shown large variability in measured blood gas PaCO2
and ETCO2; %6 thus, it is important to clarify that
ETCO2 capnography is not just a representation of
blood gas CO2. It is a dynamic real-time monitor of the
multiple pathophysiologic derangements during cardiac
arrest. ETCO2 capnography is dependent on three
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Figure 1. Pathophysiology underlying ETCO2 capnography during OHCA resuscitation. Capnography (blue)
reflects multiple changes that occur during resuscitation. ECG (red) reflects changes in cardiac electrical rhythm.

main pathways: (1) CO2 Production or “Metabolism”,
(2) CO2 Transportation to Alveoli for Exchange or
“Circulation”, and (3) CO2 elimination through alveolar
diffusion or “Ventilation”. Cardiopulmonary arrest
dysregulates all three pathways altering ETCO2 values
and capnography waveforms as described in Figure 1.
Cardiac arrhythmias, mechanical failure, etiology of
arrest, resuscitation drugs, and chest compression efforts
all impact ETCQ2 15:29%:28:13:12

3. ETCO2in Cardiac Arrest and Barriers
to Analysis

Complex dynamic ETCO2 features must be fully
defined in order to leverage ETCO2 in guided
resuscitation. During cardiac arrest ETCO2 values
are typically low; this is because in the immediate
aftermath of the heart stopping, there is very little
blood flow to circulate carbon dioxide from the
body to the lungs. Even CPR chest compressions
do not result in circulation equivalent to normal
physiologic cardiac output, which results in decreased
CO2 delivery to the lungs. ' CO2 production continues
throughout the body through aerobic metabolism.
With the establishment of circulation, return of
spontaneous circulation (ROSC), and corresponding
dramatic improvements in cardiac output, we and
others have shown ETCO2 dramatically increases
and produces an ETCO2 spike.!'*!%® With continued
ventilation, CO2 is eliminated, and ETCO2 values
approach a new steady-state-level. Despite continuous
ETCO2 availability recordings for decades, its full

potential for use in resuscitation was previously not
attainable. Prior studies used crude, discrete, and
random time point ETCO2 measures to correlate
with ROSC?23%1627  These measurements were likely
simplistically performed due to the sheer volume of
waveforms that are available for analysis in continuous
ETCO2 capnography recordings during resuscitation.
This resulted in disagreement on the discrete level
of ETCO2 that predicts return of circulation, and
reported ROSC detection as low as 20 — 33%.'® The
most comprehensive data analysis was compiled by
an International Liaison Committee On Resuscitation
systematic review that stated continuous ETCO2
capnography through trending ETCO2 may be a better
predictor of cardiac arrest outcomes.?*%%!4 However,
continuous dimensions of ETCO2 capnography -such as
the temporal trends - have yet to be fully characterized in
resuscitation. 21021 Manual CPR interpretation is time
intensive; thus, use of automated signal processing
techniques of continuous chest compression and
ETCO?2 capnography are needed to analyze continuous
CPR process data files. Through automated signal
processing, vital ETCO2 information such as ETCO2
value change, rate of change, chest compression,
and ventilation qualities can quickly be assessed.
Further connecting temporal trends in ETCO2 with
time-sensitive interventions such as medications during
resuscitation thus far has been too complex for linear
regression models.
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4. Preliminary Model Building: Defining
ETCO2 real-time values in relation to
Cardiac Arrest State

The use of machine learning to differentiate
resuscitation interventions, patient specific
characteristics, and ETCO2 capnography patterns
will free us from the constraints of conventional
statistical approaches, while allowing a novel approach
to resuscitation in an equitable dynamic way. There
are plausible physiologic connections between ETCO2
capnography, resuscitation interventions, and OHCA
outcomes.In this conceptual paper we detail the
framework for modeling continuous ETCO?2 in guided
resuscitation.

As an initial step, we applied previously validated
signal processing techniques'® to analyze ETCO2
waveforms to first determine if there was a trend in
ETCO?2 in patients who achieved ROSC in comparison
to those who did not achieve ROSC as shown in
Figure 2. We observed a significant upward trend
in ETCO2 in ROSC patients that does not occur in
non-ROSC patients (p < 0.01). This emphasizes the
deeper analysis of ETCO?2 required to causally define
ETCO2 trends in relation to patient demographics,
resuscitation interventions and outcomes.
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Figure 2. Preliminary Analysis of 1000 cases in
PART trial. ROSC cases have a positive trend of
ETCO2 that begins several minutes before ROSC
(red dashed line). No ROSC cases have a static

ETCO2 that remains until end of CPR.

The use of advanced machine learning (ML)
techniques to characterize ETCO2 capnography
variability may offer key insights into the dynamics
of ETCO2 in resuscitation. We propose to model
the dynamics of cardiac states during resuscitation
as a directed probabilistic graphical model as shown
in figure 3. Motivated by the previously suggested
Markovian model for the evolution of the cardiac state
during resuscitation,* we will jointly model EMS
actions, physiological measurements, and ventilation
quality metrics for the underlying cardiac states
described in Table 1.!7 The causal relationship between

Treatment

é

Patient

Figure 3. Dynamic model representing the evolution
of cardiac state S in CPR process with treatments A
and indirectly observed through measurements M.

the treatment option denoted by A, quality metrics
denoted by M, and the underlying cardiac state denoted
by S is captured by the joint probability distribution
dictated by the edges of the graph. Specifically, the
action set A will be enumerated by a finite discrete
set of options such as intubation time, epinephrine
time, or quality metrics like chest compression depth.
The measurements consist of the ETCO2 capnograph,
blood pressure, and ECG. The underlying state space
comprises the clinically labeled cardiac health states
such as ROSC. We hypothesize that the transition
between states is a semi-Markov process where the
time taken in a particular state is also stochastic
and is a function of the current state.! “Hidden” or
unrecognized patterns may emerge; for example, the
shape of the ETCO2 capnography waveform may
provide pertinent information. The probabilistic model
can be either constructed using parametric methods
or by composing the dependence and causal structure
in the deep learning framework. We will utilize deep
learning algorithms to identify these hidden patterns
and estimate the probability distribution by composing
the graphical model from the features learned by
neural networks.? The deep learning architecture with
attention mechanism will help with the delineation
of the capnogram of each ventilation. We will use
ML methods to characterize the dynamic relation
between resuscitation actions—as quantified by chest
compression quality metrics—and ETCO02 capnograhy
variables. We will define chest compression quality
metrics as quantitative measures of Actions and ETCO2
capnography changes as Observation

5. Developing reward-based algorithm
guided by ETCO2

The model proposed in Figure 4 can be used as
a framework for predicting the trajectory of evolution
of cardiac state for a given set of treatment options.
We will define 1) ML models and 2) deep learning
models to predict outcome (ROSC, survival, re-arrest
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Table 1. Parameters to model the evolution of the Cardiac states during OHCA.

Blood Pressure
ECG

Observations EMS interventions Cardiac states
Raw ETCO2 Value Advanced Airway placement Asystole
Change in ETCO2 Chest Compressions (Rate, Depth) Ventricular Tachycardia/ Ventricular
ETCO2 Plateau duration and | Medicines (Epinephrine, Sodium Fibrillation
waveform shape Bicarbonate, Amiodarone) PEA
Ventilation Rate Defibrillation Pseudo-PEA
Thoracic Impedance Amplitude | Mechanical CPR Transient ROSC
and Duration Sustained ROSC
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Figure 4. Probabilistic Graphical model representing
the underlying state S that comprises the cardiac
state during resuscitation with treatments A
performed by EMS and incorporating continuous
indirect physiological measurements M. The model
includes the time the patient spends in each state as
part of the stochastic model.

and death). In (1) models, the mean values of
the ETCO2 characteristics will be used alongside
support vector machines, random forests, and other
regressive binary classifiers. The model should show
the combination of features associated with positive
and negative outcomes. Additionally, patient-specific
clinical information (type of airway device, initial
rhythm, bystander CPR, age, or other classic Utstein
criteria) can be included. In (2), the time evolution
of the ETCO2 features and the sequence of actions
will be directly fed into our model, and the likelihood
of the termination state will be determined. The
maximum likelihood estimator will be used to classify
the termination state or health outcome of the CPR
process. We will evaluate the classification accuracy
of the models using receiver operative characteristic
curve measures such as sensitivity, specificity, accuracy,
and area-under-the-curve. Cross validation techniques
will be used to train and validate the predictive
models. Finally, we propose a reinforcement-based

— = — = Measurement dynamics

———  Cardiac arrest State and
Measurement dynamics

Cardiac arrest state
dynamics
Duration of a particular state

Re
at
p:

? 327

——_———
act

Figure 5. Partially observable semi-Markov decision
process representing Dynamic Treatment algorithm
for guiding resuscitation strategy. The reward function
maps the current cardiac state and the treatment
options. The objective is to choose feasible treatment
strategies that lead to favorable outcomes indicated
by accumulated rewards over the treatment epoch.

learning strategy for finding the treatment procedure
that guarantees favorable survival outcomes®?. The
dynamics of cardiac health is paired with factors
estimated to design reward functions that promote
equitable and positive outcomes. We will extend
the neural network structure utilized in Figure 5 to
incorporate reward structures to estimate the sequence
of optimal treatment options®!!

6. Conclusions

Al has advanced healthcare by relating previously
complex conditions with novel treatment modalities
that promote favorable outcomes. Leveraging ML
methods to define the complex relationship of ETCO2
in resuscitation can lead to personalized resuscitation.
ETCO2 guided resuscitation that is responsive to
fluctuating cardiac pathophysiology has the most
promise in improving outcomes from OHCA.
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