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In brief

Electronic health records (EHRs) are used
in clinical risk prediction to enhance early
patient care. Ensuring promising
performance, however, generally requires
large-scale data for training predictive
models. Unfortunately, EHRs are
susceptible to temporal data shifts that
negatively affect predictive performance,
causing challenges in directly leveraging
large-scale data. To address this issue,
the authors propose a method to mitigate
data shifts and their associated impact
and experimentally validate that their
approach effectively leverages the shifted
data, resulting in improved predictive
performance.
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THE BIGGER PICTURE Artificial intelligence (Al) methods that rely on large electronic health record data-
sets have proved effective at predicting different kinds of “clinical risk,” the likelihood of a disease or
adverse outcome given past clinical history. While these methods can help improve patient care, there
are still substantial obstacles to their widespread use. In particular, studies have shown that these kinds
of Al models perform more poorly after several years of deployment due to shifts in the underlying data dis-
tributions, caused by, for example, changes in patient populations or medical practice. Here, the authors
propose a method that reweights patients from older data sources and show that this can substantially
reduce the impact of these “temporal shifts” on model performance. Methods like this one may ultimately
help make Al risk prediction models a more regular and reliable part of clinical care.

92800

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

The availability of large-scale electronic health record datasets has led to the development of artificial intel-
ligence (Al) methods for clinical risk prediction that help improve patient care. However, existing studies have
shown that Al models suffer from severe performance decay after several years of deployment, which might
be caused by various temporal dataset shifts. When the shift occurs, we have access to large-scale pre-shift
data and small-scale post-shift data that are not enough to train new models in the post-shift environment. In
this study, we propose a new method to address the issue. We reweight patients from the pre-shift environ-
ment to mitigate the distribution shift between pre- and post-shift environments. Moreover, we adopt a
Kullback-Leibler divergence loss to force the models to learn similar patient representations in pre- and
post-shift environments. Our experimental results show that our model efficiently mitigates temporal shifts,
improving prediction performance.

INTRODUCTION Many deep-learning models have been proposed to predict

future diagnoses and have achieved promising results. Choi

The availability of large-scale electronic health record (EHR) da-
tasets has led to the development of machine-learning methods
for clinical risk prediction that help improve patient care.'”?
Patients’ health records included in EHRs provide useful infor-
mation for personal health tracking and monitoring®® in various
tasks in the medical domain.” In this study, we focus on clinical
risk prediction, which predicts the risks of future diseases by
analyzing previously observed EHR information.

Gheck for
Updates

et al.® developed a recurrent neural-network-based model with
reverse time attention modules (RETAIN) to model reverse
time-ordered EHR sequences and learn weights for all medical
codes, which are used to analyze the codes’ contributions to
the prediction. Ma et al.® proposed a bidirectional recurrent neu-
ral network (RNN)-based model using different attention mecha-
nisms (Dipole) to model patients’ visits in both time-ordered and
reverse time-ordered ways and calculate the weights for
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Figure 1. lllustrations of sample reweighting, clinical risk prediction, and the proposed method

(A) Diagram of clinical risk prediction.

(B) Changes in the distribution of medical codes after sample reweighting to mitigate the distribution shift.

(C) Architecture of the proposed method for sample reweighting.

previous visits with the attention. Ma et al."® incorporated RNN
and multi-head self-attention to consider the personal patient’s
health context, extracting interdependencies between clinical
features to learn the personal health context. Choi et al.'" con-
structed a graph-based attention model using RNN to model pa-
tient visits in the sequential context. Gao et al.® developed a
model composed of an RNN and a convolutional module to
model disease-stage information for risk prediction. Luo
et al."”? proposed a time-aware transformer model for health
risk prediction. Figure 1A presents a basic diagram of clinical
risk prediction using a neural-network-based model. In this dia-
gram, the historical EHRs are fed as input to the model, which
then predicts the future diagnosis as an output.

Despite their successes, a fundamental challenge in EHR
studies that has not been addressed in previous works is distri-
bution shift. Most machine-learning models are tentatively based
on the strong assumption that training and test data points are
independently and identically distributed. However, this
assumption could be violated for real-world applications, where
out-of-distribution (OOD) problems often occur (i.e., the clinical
data distribution changes over time). The OOD problems cause
significant performance degradation in the testing environ-
ment,'®>~"® which raises serious concern for the application of
machine-learning models in the real-world clinical setting.

The distribution shift could appear on EHRs in various ways:
(1) difference in the patient population; (2) changes in the prac-
tice of medical care; and (3) difference in data formats.'”” We
investigate whether the distribution shift exists in the real-world
EHR dataset with respect to the aforementioned ways in Figure 2.
Figures 2A and 2B show the distribution of patient demographics
(i.e., gender and age). Figure 2C shows that the occurrence rates
of some diseases gradually change over time. The accumulation
of the changes could cause a critical data shift after several
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years. Moreover, the transition of the International Classification
of Diseases (ICD) codes (e.g., from ICD-9-CM to ICD-10-CM)
could also cause data shifts. ICD codes are widely used and
play important roles in clinical risk prediction models.” The
list of potential diagnosis codes in ICD-10-CM is five times larger
than its ICD-9-CM counterpart currently used in practice. When
mapping the codes from ICD-9-CM to ICD-10-CM, 27% of the
diagnosis codes were convoluted and 3% were found to have
no mapping.'® Figures 3A and 3B show that the occurrence rates
of some diseases change suddenly after the transition from
ICD-9 to ICD-10. The frequencies of CEI, CIH, and DMD codes
have increased by approximately two times or more since the
ICD transition. It is not advisable to apply decision models
from previous EHRs that were coded in ICD-9 directly to the lat-
est EHRs without considering the changes in distribution. These
changes can result in data shifts and performance decay, lead-
ing to inaccurate predictions. Therefore, it is necessary to
address the temporal and/or ICD version shifts inherent in
EHRs to effectively utilize historical data for predictive models.
Several studies have addressed the OOD problems in medical
environments. For instance, Ulmer et al.'® investigated uncer-
tainty estimation methods for detecting OOD samples in medical
tabular data. However, the study demonstrated that uncertainty
estimation methods may not be reliable for OOD detection, since
the data are high-dimensional, complex, and noisy. In another
work, Luo et al.® proposed a causal representation learning
model based on variable decorrelation for diagnosis prediction.
This model discovers stable correlations that reflect the causal
effect of each feature in different environments, resulting in miti-
gating bias caused by the distribution shifts between training and
inference. Some existing works have focused on data shifts in
medical environments. Guo et al.?° proposed a domain general-
ization (DG)*'-based model that leverages time information as
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Figure 2. Statistical analysis
(A) Gender distribution.
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(C) Occurrence rates of important diseases that gradually change over time. DOR, dorsalgia; EH, essential (primary) hypertension; DLML, disorders of lipoprotein
metabolism and other lipidemias; CIHD, chronic ischemic heart disease; SSD, segmental and somatic dysfunction.

the domain to learn robust and domain-invariant properties
across time to mitigate temporal shift. Zhang et al.??> proposed
AdaDiag, which is based on domain adaption (DA), to handle
domain shift. AdaDiag consists of a joint feature extractor that
maps input from the source and target domain to the shared
feature space, a classifier that performs predictions, and a
discriminator for distinguishing the source and target domain.

In this paper, we propose a new method for stable clinical risk
prediction to tackle these challenges. We treat the observed
EHRs before October 2015 (when the codes are recorded as
ICD-9-CM) as pre-shift data and the EHRs observed after
October 2015 (when the codes are recorded as ICD-10-CM) as
post-shift data. We reweight training patients’ records in pre-
shift data to mitigate the distribution shift between the pre- and
post-shift data. Figure 1 illustrates the main concepts of the pro-
posed method. Figure 1B presents an example of a distribution
shift of medical codes in the post-shift data. After sample re-
weighting, the distribution changes toward mitigating the distri-
bution shift. Figure 1C shows an architecture of the proposed
model for sample reweighting. The proposed model not only
directly equalizes the occurrence rate of codes in pre- and
post-shift data using mean squared error but also equalizes
the probability distribution in the latent space using Kullback-
Leibler divergence (KL-divergence).

Note that all the ICD-9-CM codes are mapped to ICD-10-CM
codes according to General Equivalence Mappings developed
by the Centers for Medicare & Medicaid Services (CMS).>*> We
conduct a comprehensive empirical study on a real-world EHR
dataset with different scenarios to demonstrate our hypothesis
and to evaluate the effectiveness of our method. To demonstrate
our hypothesis that the distribution differences between pre- and
post-shift data exist, we first conduct experiments with the
following scenarios: (1) we train the existing clinical risk predic-
tion models (e.g., RETAIN, Dipole) for heart failure and stroke
risk prediction tasks only with patients in the pre-shift training
data, and report the performance on the post-shift test data;
(2) we apply our method to the models to evaluate whether our
method reduces the distribution shift and improves the perfor-
mance on the post-shift test data. Experimental results demon-
strate our hypothesis and show that our method improves all the
baselines.

Our contributions are summarized as follows.

® We investigate the temporal distribution shift on medical
codes and the performance differences caused by
the shift.

® We design a new method that reweights the pre-shift sam-
ples to reduce the distribution shift between the pre- and

A 404 B Figure 3. Changes in the occurrence rates of
ICD9 251 ICD9 diseases after the transition from ICD-9-CM
35 4 ICD 10 ICD 10 to ICD-10-CM
;5 20 (A) Changes in important diseases for stroke pa-
= 301 tients.
] 25 4 (B) Changes in important diseases for heart failure
; 15 patients.
g 2.0 CEl, general examination and investigation; CIH,
g 15 10 - chronic ischemic heart disease; SMN, encounter for
3 screening for malignant neoplasms; DOR, dorsal-
5 10 4 gia; DMD, dependence on enabling machines and
05 4 devices; AMC, encounter for other aftercare and
051 medical care.
0 0 T T T T O 0 T T T T
GEI CIH SMN DOR GEI CIH DMD AMC
Disease Disease
Stroke Heart failure
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Figure 4. Settings to construct the experi-
mental EHR data for clinical risk prediction
tasks

The operation criterion date refers to the date of
the EHR diagnosed with target diseases (case

patients) or the end date of the EHR (control pa-

Yo
Observation window

post-shift samples, learning stable representations for
both the pre- and post-shift samples.

® We show that the proposed method not only boosts the
prediction performance by sample reweighting but also
efficiently leverages the pre-shift historical data through
stable learning.

® We conduct a comprehensive experiment to demonstrate
our hypothesis and to evaluate the effectiveness of our
method.

Experimental results show that our method improves existing
predictive models for heart failure and stroke risk, mitigating the
distribution shift in diagnosis codes between the pre- and post-
shift samples.

RESULTS

Data

We conduct our experiments on a real clinical EHR data ware-
house, MarketScan Commercial Claims and Encounters
(CCAE),** which contains individual-level and de-identified
healthcare claims information. MarketScan claims data are pri-
marily used to evaluate health utilization and services. We iden-
tify coronary artery disease (CAD) cohorts for which criteria are
defined based on ICD codes. There are 1,178,997 patients in to-
tal. All patients have a set of medical records including demo-
graphic characteristics, time information, drugs, procedures, di-
agnoses, and other clinically relevant indicators. We consider
three categories, namely demographic characteristics, diag-
nosis, and procedure codes, for study variables. Demographic
characteristics consist of age and gender information. Diagnosis
codes are defined as ICD codes and consist of 57,089 unique
ICD-9/10 codes in MarketScan data.

Study design
CAD represents a major risk factor for both heart failure and
stroke.?”?® In this work, we focus on clinical risk prediction of
whether a patient will suffer heart failure or stroke in the future.
The definitions of heart failure and stroke are presented in
Tables S1 and S2. We conduct a case-control study, a type of
epidemiological observational study, on clinical risk prediction
tasks. The case-control study identifies two groups of subjects
with different diseases but similar conditions and compares
them to discover factors that contribute to the differences. Pa-
tients diagnosed with heart failure or stroke are collected as
case patients. Then, for each case patient, a control patient
with the same demographics and characteristics, such as the
same age, gender, and number of visits, is selected.

To predict the diagnosis of heart failure or stroke at some future
time, it is necessary to set operation criterion and prediction

25,26

4 Patterns 4, 100828, September 8, 2023

Y
Prediction window

tients). The prediction date represents the date
before the prediction window, tracking from the
operation criterion date.

dates. Figure 4 shows the settings to construct the experimental
EHR data from the large database for early prediction tasks.
The operation criterion date indicates the date of the future diag-
nosis to be predicted. The prediction date refers to the date before
the prediction window from the operation criterion date to make a
prediction for future diagnosis. Each patient’s EHR data are then
split into an observation window and a prediction window. The
prediction window includes the medical records for the last 360,
180, or 90 days tracing back from the operation criterion date.
The observation window contains all the records before the pre-
diction window and is used for analysis. For example, if a patient
is diagnosed with heart failure on October 5, 2014, the records up
to October 1, 2013 are included in the observation window for pre-
dicting heart failure with a prediction window of 360 days. In the
case of the case patients, the date of the EHR diagnosed with
heart failure or stroke is set as the operation criterion date. In
the case of the control patients, the last date of the EHR is set
as the operation criterion date. When selecting control patients
for the case-control study, the prediction date is also included
in the characteristics similar to those of the case patients to accu-
rately analyze EHR data over time. In addition, to ensure that there
are sufficient medical events to predict the future diagnosis, only
patients with more than ten records (visits) in the observation win-
dow are selected for analysis.

Data pre-processing

We pre-process the EHR data by chronologically concatenating
the medical records for each patient according to previous
works,”*° as the temporal information is critical. Thus, all pa-
tients are represented as a variable-length sequence of records
equal to the corresponding number of visits. For convenience, all
patients’ records are padded to the same size based on the
maximum number of visits, and the padding records are not
medically meaningful. For equivalence between codes of ICD-
9-CM and ICD-10-CM versions, all medical codes in the dataset
originally coded as ICD-9-CM are pre-converted into ICD-10-
CM’s codes before the experiments according to General Equiv-
alence Mappings developed by CMS.?® In our study we only
consider the first three letters, which are representative cate-
gories including more detailed codes, to reduce the number of
diagnosis codes. To address the potential loss of information re-
sulting from reducing ICD codes to a low number of letters, we
conducted a validation process to ensure that the codes re-
tained sufficient granularity to capture meaningful differences
between patients’ diagnoses. Specifically, we compared the
performances of models trained with full-length ICD codes and
shortened codes, ranging from 5-letter to 1-letter codes. Our re-
sults show that using the full-length codes led to a lower area un-
der the receiver-operating characteristics curve (AUROC)
compared to the shortened codes. The results can be attributed
to the lower frequency of 5-letter codes, which may pose
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Figure 5. Visualization of performance per month for heart failure and stroke risk prediction

The x axis indicates the months and the y axis represents AUROC scores. The model is trained only with patients up to 2013. HF, heart failure; ST, stroke,

challenges in effectively learning their embeddings. Conversely,
using shortened codes did not adversely impact the model’s
performance. For the heart failure prediction problem with a
360-day prediction window, the number of unique codes is
6,629 for full-length codes and 1,474 for three-letter codes. We
found that using the first three or two letters of the ICD codes re-
sulted in optimal performance. However, since 3-letter codes
include category information about the disease codes, we
decided to use only the first three letters of the ICD codes in
our study. The results of the experiment can be found in
Table S3.

Data shift

We observe that the occurrence rates of some important dis-
eases gradually change over time and also change suddenly af-
ter the transition from ICD-9 to ICD-10 in Figures 2 and 3. These
changes could cause distribution shifts and severe performance
decay. To demonstrate the existence of the distribution shift in
EHRs and how it affects the model performance, we report the
prediction performance trend over time with a neural-network-
based model that is trained and optimized only for patients
whose prediction date is up to December 31, 2013. Figure 5
shows the prediction performance per month based on the pre-
diction date for heart failure and stroke risk prediction tasks. The
predictive model is trained only with patients whose prediction
date is up to 2013. The x axis indicates the months and the y
axis represents AUROC scores. As illustrated on the graph, the
score gradually decreases over time, with a rapid decline

Pre-shift data POSt.-S.hlft Post-shift test
. training X
I I kT3 %5 Prediction date
2012-01-01 2015-10-01 2015-12-31

Figure 6. Experimental settings for the data shift

We use the EHRs with the prediction date prior to 2015-10-01 as the pre-shift
data. The EHRs with the prediction date from 2015-10-01 to 2015-12-31 are
used as the post-shift training data to reweight the pre-shift data, and EHRs
with the prediction date after 2016-01-01 are used as the post-shift test data to
evaluate the prediction performance.

observed from October to December 2015. This finding indi-
cates that there is a significant distribution shift before and after
October 2015, highlighting the need to address temporal shifts
when working with EHRs. To further investigate the potential in-
fluence of gender distribution on clinical risk prediction, we also
compare the average AUROC scores for the overall population,
males, and females by year. Figure S1 shows the results for the
model trained with patients up to 2013. Our analysis reveals that
there is no significant difference in performance based on
gender. As a result, we focus on the data shift rather than the
gender distribution.

Experimental setting

Based on our findings, we treat EHRs before and after October
2015 as pre-shift and post-shift data, respectively. Aiming to
decrease the significant performance difference between the
pre-shift and post-shift data, we design our model with the
following settings. Figure 6 shows the experimental settings of
clinical risk prediction tasks for our model. The EHRs with the
prediction date prior to October 1, 2015 are used as the pre-shift
data. The pre-shift data are further split into the pre-shift training,
validation, and test data to train, optimize, and evaluate the pre-
dictive model, respectively. To mitigate the distribution shift be-
tween the pre-shift and post-shift data, the post-shift data with
the prediction date from October 1, 2015 to December 31,
2015 are used as the post-shift training data to reweight the
pre-shift training data. The post-shift data with the prediction
date after January 1, 2016 are then used as the post-shift test
data to evaluate the prediction performance. The statistics of
the dataset for heart failure and stroke risk prediction tasks are
described in Tables 1 and 2.

We compare the prediction performances of models trained
with the original pre-shift training data and the reweighted pre-
shift training data, respectively. We apply our method to existing
clinical risk prediction models. Our method reweights the pre-
shift patients’ EHRs to make their distributions similar to that of
the post-shift patients, mitigating the distribution shift between
them for stable learning. Moreover, we adopt KL loss to learn
stable and similar patient representation extracted from the
pre-shift and post-shift data. In Tables 3, 4, and 5, Basic and

Patterns 4, 100828, September 8, 2023 5
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Table 1. Statistics of the dataset for heart failure prediction

Prediction window
Data

No. of unique codes
Avg. no. of visits

No. of patients
per patient

No. of visits
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Weighted represent the results of the existing methods and the
proposed method, respectively. Accuracy, area under the preci-
sion-recall curve (AUPRC), and AUROC are used as perfor-
mance measurements.

Results for clinical risk prediction

Tables 3 and 4 show the performances of clinical risk prediction
on the post-shift test set as measured by AUPRC and accuracy
scores for heart failure and stroke, respectively. The proposed
method (marked as weighted in the tables) improves all base-
lines (marked as basic) on both AUPRC and accuracy scores.
The results demonstrate that the proposed method mitigates
the distribution shift and thus provides more robust performance
for new patients that differ from training patients. Such findings
indicate the advantage of the proposed method to learn stable
representations for the post-shift data by sample reweighting.
When comparing the performance of baseline models, the
advanced models generally exhibit better overall performance
than the simpler models such as GRU and LSTM. Specifically,
ConCare and StageNet achieve superior performance across
the board. The results of the experiment on other metrics,
including AUROC, precision, and recall, can be found in
Tables S4 and S5.

We also compare the performance of the proposed method
with DG and AdaDiag methods, which are existing tools to alle-
viate temporal data shifts. For a fair comparison, both DG and
AdaDiag methods utilize the post-shift training data for model
training. DG and the proposed method (weighted) employ the
Dipole model as the backbone network. Table 5 shows the per-
formance results on AUPRC and accuracy. While all the compar-
ative models outperform the basic model that does not utilize the
post-shift training data in most cases, the proposed method ex-
hibits the highest improvement in almost all cases. This demon-
strates that the proposed method effectively mitigates data dis-
tribution shifts through the sample reweighting approach. To
assess the statistical significance of the differences between
the performances of the proposed method and existing works,
we conduct Friedman and Wilcoxon tests on AUPRC scores.
We apply the Friedman test with the null hypothesis (Hp) that
there is no statistically significant difference between the perfor-
mances of the methods, while the alternative hypothesis (H1) as-
sumes the presence of the difference. In addition, the Wilcoxon
test is applied to test the null hypothesis Hy that there is no sta-
tistically significant difference between the performances of the
top two methods, weighted and DG, and the alternative hypoth-
esis H; that there is a significant difference. Table S6 presents
the results of both tests, including the p values obtained from
ten repeated experiments. Based on the results, we rejected
the null hypothesis at a significance level of « = 0.05, indicating
statistically significant differences among the performances of
the methods.

The usefulness of the proposed method

We observe the temporal distribution shift in EHR records as the
prediction performance changes over time. In particular, the per-
formance decreases significantly as of October 2015, so we pre-
sent our method to mitigate the distribution shift based on that
time. Although we have demonstrated the effectiveness of our
method through previous experiments, we further conduct an
additional experiment to prove the usefulness of the proposed
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Table 2. Statistics of the dataset for stroke prediction
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method. The settings for the additional experiment are as fol-
lows. (1) We randomly split the post-shift data (EHRs after
October 2015) into the training, validation, and test data, then
train the model only with the training data. The prediction perfor-
mance is reported on the post-shift test data. (2) We further train
the model with the pre-shift data reweighted by the proposed
method using the post-shift training data. The prediction perfor-
mance is also reported on the post-shift test data. As shown in
Table 6, the experimental results using the weighted pre-shift
data (denoted as pre-shift training) achieve higher performance
compared to only using the post-shift training data (denoted as
post-shift training) by about 17.2% on AUROC. This experiment
shows that our method not only efficiently leverages large
amounts of historical pre-shift data for model training but also
improves performance.

Distribution shift

The proposed method mitigates the distribution shift in
EHRs, especially in the medical codes. Figure 7A-Cshow
the code distributions for the pre-shift training set, post-shift
test set, and reweighted training set, respectively. Here, the
x and y axes indicate the codes and ratios of them, respec-
tively. The x axis is set in descending order of the ratios on
the pre-shift training data. As shown in Figures 7A and 7B,
there exists a distribution shift between the pre-shift training
and post-shift tests. Noticeably, the distribution of the re-
weighted training set (i.e., Figure 7C) becomes very similar
to the post-shift test set, compared to Figure 7A. This result
also evaluates that the sample weighting mitigates the distri-
bution shift.

Ablation study

We conduct an ablation study to investigate whether each
component of our model actually contributes to the predictive
performance. Starting from the original version of the proposed
model, each component is independently excluded to construct
some model variants, proposed method without £,s. and pro-
posed method without Lk, . Table 7 shows the results of the abla-
tion study. The prediction performance is reduced when each
component is removed. These results demonstrate the effective-
ness of directly equalizing the distributions of the codes and
reducing the difference between the latent distributions in the
sequential context.

DISCUSSION

Principal results

In this study, we investigate the temporal distribution shift in
diagnosis codes and the performance degradation that
accompany the shift. Prediction performance tends to
decrease slightly over time but decreases significantly since
October 2015 when the ICD version was changed from ICD-
9-CM to ICD-10-CM. We investigate that the post-shift data
(EHRs after October 2015) achieves significantly lower perfor-
mance for a predictive model trained on the pre-shift data
(EHRs before October 2015), due to the distribution shift.
Conversely, even if it is trained with the post-shift data, it
also provides poor performance due to the small number of
data. This suggests that the model trained with the past
EHRs coded as ICD-9-CM cannot be generalized to the
EHRs coded as ICD-10-CM and thus be exploited at all.
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Table 3. Comparison of prediction performance on the post-shift test set for heart failure prediction

Prediction window 360 days 180 days 90 days
AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy
LSTM Basic 0.5730 + 0.017 0.5301 + 0.002 0.6677 + 0.005 0.5840 + 0.006 0.7018 + 0.006 0.6247 + 0.007
Weighted 0.5865 + 0.015 0.5319 + 0.002 0.6763 + 0.007 0.5859 + 0.007 0.7133 + 0.009 0.6344 + 0.008
GRU Basic 0.5781 + 0.005 0.5309 + 0.002 0.6718 + 0.004 0.5889 + 0.005 0.7095 + 0.003 0.6309 + 0.004
Weighted 0.5964 + 0.006 0.5336 + 0.003 0.6803 + 0.004 0.5912 + 0.004 0.7144 + 0.005 0.6348 + 0.005
Dipole Basic 0.5905 + 0.002 0.5322 + 0.002 0.6757 + 0.002 0.5937 + 0.004 0.7095 + 0.002 0.6308 + 0.002
Weighted 0.5968 + 0.003 0.5330 + 0.002 0.6781 + 0.003 0.5977 + 0.005 0.7171 + 0.002 0.6375 + 0.003
RETAIN Basic 0.5934 + 0.006 0.5414 + 0.003 0.6726 + 0.002 0.5912 + 0.004 0.7128 + 0.003 0.6362 + 0.003
Weighted 0.5971 + 0.006 0.5428 + 0.003 0.6763 + 0.003 0.5983 + 0.004 0.7156 + 0.004 0.6422 + 0.003
ConCare Basic 0.5946 + 0.004 0.5421 + 0.001 0.6756 + 0.002 0.5866 + 0.002 0.7123 + 0.003 0.6353 + 0.003
Weighted 0.5965 + 0.005 0.5491 + 0.001 0.6781 + 0.002 0.5906 + 0.003 0.7140 + 0.003 0.6437 + 0.003
StageNet Basic 0.5911 + 0.003 0.5305 + 0.001 0.6743 + 0.003 0.5829 + 0.002 0.7057 + 0.002 0.6326 + 0.001
Weighted 0.5946 + 0.004 0.5441 + 0.002 0.6787 + 0.005 0.5899 + 0.004 0.7148 + 0.002 0.6410 + 0.002

The baseline and proposed method are denoted by Basic and Weighted, respectively. The average score and standard deviation under ten trials are

reported. The results for other metrics can be found in Table S4.

In this work, we address the challenges of the performance
degradation over time and the ICD version changes by stable
learning, which learns stable representation for both pre- and
post-shift data, mitigating the distributional shift between them.
Experiments on the real-world dataset demonstrate that our
method not only improves state-of-the-art models but also gener-
alizes prediction performance for new patients that differ from
training patients. Our experimental findings are significant
because it creates new chances for EHR studies. The experimental
results showing that the past EHRs improve prediction perfor-
mance provide many research opportunities to explore and pursue
the benefits of the past EHRs. Furthermore, our method builds a
bridge between different datasets, providing generalized perfor-
mance and thus allowing the data to be cross-used.

Conclusion

Clinical risk prediction is crucial for improving healthcare quality.
We investigate that there exist inconsistencies in the distribu-
tions of the diagnosis codes depending on time and ICD ver-
sions, resulting in the distribution shift between them. In this pa-
per, we propose a novel method to address these issues for
clinical risk prediction, learning the sample weights in pre-shift
data to mitigate the distribution shift between the pre- and
post-shift data. The proposed method not only directly equalizes
the occurrence rate of codes in pre- and post-shift data but also
equalizes the probability distribution in latent space using KL-
divergence. The experimental results demonstrate that our pro-
posed method degrades the distribution shift and thus improves
the prediction performance.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be
directed to and will be fulfilled by the lead contact, Ping Zhang (zhang.
10631@osu.edu).

Materials availability

This study did not generate any new materials.
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Data and code availability

The data analyzed in this paper are from MarketScan Commercial Claims and
Encounters, with more than 100 million patients from 2012 to 2017. Access to
the MarketScan data are provided by the Ohio State University. The dataset is
available from IBM at MarketScan: https://www.ibm.com/products/
marketscan-research-databases. The source code is available from the Gi-
thub repository at https://github.com/yeon-lab/stable-prediction or the Zen-
odo repository at https://doi.org/10.5281/zenodo.7826125.

Clinical risk prediction definitions and basic notations

We use uppercase and bold letters (e.g., X) for matrices, lowercase and bold
letters (e.g., x) for vectors, and lowercase letters (e.g., x) for scalars. Table 8
summarizes the notations used in our method.

EHR sequence

The EHR data for each patient are represented as a sequence of visits in the
order of their occurrence. Each visit of the sequence has a set of varying
numbers of diagnosis codes. Thus the vth visit of the ith patient is expressed
as a binary vector x;, € {0, 1 }C, where C is the number of unique diagnosis co-
des, and a value of 1 for the kth coordinate (i.e., x;yx = 1)indicates that the kth
code is recorded at the vth visit of the ith patient. The EHR sequence for the ith
patient is denoted by X; = [x;1, X2, ---,X;] where t; is the number of visits for
the jth patient.

Clinical risk prediction

Given the EHR sequence X; = [x;1,X;2, *,X;7], the goal of health risk pre-
dictive modeling in this paper is to predict the target disease at the end of
the sequence. The label for the ith patient is denoted by y;e {0,1},
because we focus on two tasks to predict heart failure and stroke disease
separately.

Architecture

The proposed framework consists of two steps: (1) sample reweighting that
learns the sample weights for the pre-shift training patients using the corre-
sponding EHR sequences to mitigate the temporal distribution shift between
the pre- and post-shift training data; (2) classification that learns stable repre-
sentations from the EHR sequences with the sample weights to predict the
best future diagnosis. Figure 1C shows the architecture of the proposed
method for sample reweighting.

Sample reweighting

We propose to learn sample weights for the pre-shift training samples to miti-
gate the distribution shift on diagnosis codes between the pre- and post-shift
training sets. We use two approaches; directly equalize the occurrence rates of
codes in the pre- and post-shift training samples and equalize the probability
distribution of them in latent space.


mailto:zhang.10631@osu.edu
mailto:zhang.10631@osu.edu
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Table 4. Comparison of prediction performance on the post-shift test set for stroke prediction

Prediction window 360 days 180 days 90 days
AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy
LSTM Basic 0.5610 + 0.011 0.5212 + 0.003 0.5972 + 0.008 0.5522 + 0.002 0.6340 + 0.006 0.5685 + 0.008
Weighted 0.5801 + 0.014 0.5253 + 0.004 0.6145 + 0.011 0.5573 + 0.003 0.6441 + 0.009 0.5792 + 0.009
GRU Basic 0.5666 + 0.006 0.5210 + 0.002 0.6136 + 0.004 0.5574 + 0.006 0.6452 + 0.006 0.5815 + 0.006
Weighted 0.5746 + 0.008 0.5278 + 0.003 0.6294 + 0.005 0.5608 + 0.007 0.6492 + 0.008 0.5843 + 0.006
Dipole Basic 0.5702 + 0.003 0.5275 + 0.002 0.6157 + 0.003 0.5592 + 0.003 0.6460 + 0.003 0.5827 + 0.003
Weighted 0.5900 + 0.005 0.5290 + 0.003 0.6260 + 0.005 0.5601 + 0.003 0.6528 + 0.006 0.5920 + 0.004
RETAIN Basic 0.5756 + 0.003 0.5259 + 0.003 0.6222 + 0.003 0.5563 + 0.004 0.6382 + 0.005 0.5781 + 0.003
Weighted 0.5869 + 0.004 0.5279 + 0.002 0.6339 + 0.005 0.5598 + 0.005 0.6519 + 0.007 0.5986 + 0.003
ConCare Basic 0.5762 + 0.006 0.5261 + 0.005 0.6261 + 0.002 0.5606 + 0.003 0.6464 + 0.004 0.5852 + 0.002
Weighted 0.5862 + 0.008 0.5343 + 0.005 0.6356 + 0.004 0.5669 + 0.003 0.6517 + 0.007 0.5872 + 0.003
StageNet Basic 0.5684 + 0.006 0.5201 + 0.001 0.6263 + 0.005 0.5594 + 0.004 0.6419 + 0.004 0.5780 + 0.002
Weighted 0.5776 + 0.007 0.5216 + 0.002 0.6323 + 0.006 0.5606 + 0.005 0.6511 + 0.007 0.5849 + 0.003

The baseline and proposed method are denoted by Basic and Weighted, respectively. The average score and standard deviation under ten trials are

reported. The results for other metrics can be found in Table S5.

To directly equalize the distributions of the codes, we first compute the
target distribution of the codes for the post-shift samples by Equations 1
and 2:

r
SfOSt _ Z wa“ (Equation 1)
x€ Dpost j = 1
ost
et ‘;f N (Equation 2)
DIPERE A

where Dy is the post-shift training datg and T is the number of visits for the
corresponding patient. We use we RL **! to denote the sample weights,
where Dy is the pre-shift training data. The code distribution d”® for Dpyre
can be obtained by Equations 3 and 2.

[Dore| ¢

s = Z Zw,-»xu,k.

i=1 j=1

(Equation 3)

The difference between the pre- and post-shift training distributions is then
computed using mean squared error (MSE). The loss is as follows:

The MSE loss directly adjusts the occurrence rate of the diagnosis codes
and thus mitigates the distribution differences between training and test
sets, but it ignores the sequential context of EHRs. That is, the relation be-
tween a patient’s visits is not considered.

To address this issue and further force the distributions to be similar,
we map the samples to latent representations via an auto-encoder
network.*® The main idea is to construct an embedding space from which
the abstract information of the sequence for all visits is generated and to
learn robust weights in the latent space. After embedding, the latent fea-
tures for the training samples are weighted. We then minimize Kullback-
Leibler divergence (KL-divergence) between two distributions in the
latent space.

We first map pre- and post-shift training samples to the sequence of
latent representations, z, with the auto-encoder model whose encoder
network is Q: R™¥I' > R™F and decoder network is P: R™*F —R7*ICl,
Here T and F are the number of visits and the dimension of latent features
from Q, respectively. The auto-encoder model is first trained with both pre-
and post-shift data before training the sample weights to learn useful latent
representations of the input code space. The reconstruction loss is as
follows:

1 c /X\,‘ = P(Q(X,))
_ re ost\ 2 - _x)2. Equation 4
Lmse = ﬁ ‘; (df - df ) . Lreconst xipgpposl(XI xl) ( q )
Table 5. Comparison of prediction performance on the post-shift test set for heart failure and stroke prediction
Prediction window 360 days 180 days 90 days

AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy

HF Basic
AdaDiag

DG
We

ighted

ST Basic
AdaDiag

DG
We

ighted

0.5905 + 0.002
0.5896 + 0.028
0.5906 + 0.009
0.5968 + 0.003
0.5702 + 0.003
0.5697 + 0.009
0.5726 + 0.007
0.5900 + 0.005

0.5322 + 0.002
0.5296 + 0.011
0.5323 + 0.005
0.5330 + 0.002
0.5275 + 0.002
0.5290 + 0.003
0.5283 + 0.003
0.5290 + 0.003

0.6757 + 0.002
0.6760 + 0.013
0.6769 + 0.003
0.6781 + 0.003
0.6157 + 0.003
0.6180 + 0.014
0.6254 + 0.002
0.6260 + 0.005

0.5937 + 0.004
0.5935 + 0.002
0.5962 + 0.005
0.5977 + 0.005
0.5592 + 0.003
0.5594 + 0.002
0.5603 + 0.001
0.5601 + 0.003

H

0.7095 + 0.002
0.7104 + 0.007
0.7127 + 0.002
0.7171 + 0.002
0.6460 + 0.003
0.6472 + 0.011
0.6503 + 0.003
0.6528 + 0.006

0.6308 + 0.002
0.6319 + 0.002
0.6282 + 0.001
0.6375 + 0.003
0.5827 + 0.003
0.5830 + 0.003
0.5832 + 0.001
0.5920 + 0.004

Basic, AdaDiag, and DG are baseline methods, and Weighted refers to the proposed method. We use the Dipole as a backbone network for both DG

and Weighted. The average score and standard deviation under ten trials are reported. Results of statistical tests can be found in Table S6.
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Table 6. Comparison of prediction performances on AUROC and accuracy using the post-shift data and both pre- and post-shift data

as training sets

Prediction window

360 days

180 days

90 days

AUROC

Accuracy

AUROC

Accuracy

AUROC

Accuracy

HF Post-shift training
Pre-shift training
ST Post-shift training

0.5821 + 0.013
0.6597 + 0.006
0.5325 + 0.020
0.6088 + 0.008

0.5399 + 0.015
0.6062 + 0.008
0.5059 + 0.006
0.5642 + 0.014

0.5795 + 0.009
0.7029 + 0.004
0.5357 + 0.022
0.6317 + 0.007

0.5593 + 0.010
0.6490 + 0.008
0.5149 + 0.022
0.5960 + 0.008

0.6182 + 0.015
0.7282 + 0.003
0.5661 + 0.012
0.6716 + 0.005

0.5782 + 0.020
0.6630 + 0.006
0.5200 + 0.020
0.6255 + 0.004

Pre-shift training

The average score and standard deviation under ten trials are reported. Note that we have access to small-scale post-shift data (i.e., 3 months records)
in the post-shift training setting and large-scale pre-shift data (i.e., more than 3 years) in the pre-shift training setting. We use the GRU model in the two

settings.

After training the auto-encoder mode with Equation 4, the sequence of latent
representations for ith patient is obtained as follows:

Z = [2i1,2i2,",2i7] .

e . Equation 5
- [Q(%1), Qlxi2), -, Qxir)]; (Fquation 5)
where Z; reflects the sequence of diagnosis codes for all visits in the order of
their occurrence. The pre- and post-shift training distributions in the latent
space are then computed as

(Equation 6)

A
150
2
£ 075
(-3
0.00 T
0 400 800
B
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=]
&
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o
S 075
&
A .
0.00 + -
0 400 800
Code

Figure 7. Visualization of code distribution

The x and y axes indicate the codes and ratios, respectively. x is set in de-
scending order of the ratios on the pre-shift training data.

(A) Distribution of the pre-shift training data.

(B and C) Post-shift test data (B) and the reweighted pre-shift training data (C).
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(Equation 7)

The KL loss between two latent distributions is expressed in Equation 8:

post

L = WP log :p,s .

(Equation 8)

We iteratively optimize sample weights by Equations 9 and 10. Here «
and § are the coefficients that control MSE and KL-divergence con-
straints, respectively, and A = {we R]}. We consistently consider
non-negative weights. Positive weights represent the relative importance
of samples, enabling the model to effectively learn from significant sam-
ples. Conversely, the use of negative weights may result in the model
considering samples in the opposite manner, which could lead to confu-
sion and misinterpretation of the intended meaning of the weights. w is
also regularized so that the sum of w equals the number of data. The
reason for this regularization is that if the sample weights are too small
or large, it can cause instability or non-convergence of the model during
training. By constraining the sum of sample weights, the model training
can be stabilized and facilitated to converge, thereby enhancing the per-
formance and robustness of the model:

N 2
Lo = a Lyge + B L + (Zw, - N> , (Equation 9)
i=1

wt+1

= argminL,. (Equation 10)
we A

Classification

The clinical risk prediction is conducted with a classification network
f: R™¥I°l - R. Given the trained sample weights, the weights are fixed and
then multiplied by the classification losses for the corresponding training
data to train the classification model. Samples with smaller weights have
less impact on the model training, and larger weights have more impact. The
weighted losses allow learning stable representations for both the pre- and
post-shift training data.

Our algorithm iteratively optimizes the prediction function f as follows:

= argmin > Wi Liavar(F(X, 7)),

X€ Dore

(Equation 11)

where Liape/( +) represents the binary cross-entropy loss function.

In the training phase, we optimize the predictive model parameters with the
weighted training samples. On the other hand, in the inference phase, the
model directly predicts the label without any sample weights.

Optimization

To apply the proposed method, we use a two-stage optimization process as
follows. First the sample weights w are trained by minimizing £,, on the pre-
and post-shift training data, Dpr and Dpost. The trained weights w are then
used in the training of the classification network fin which the classification los-
ses for Dyre are multiplied by the corresponding weights. The 10ss Liape/ is mini-
mized for prediction.
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Table 7. Ablation study for the proposed method

Table 8. Notation definitions

Model AUROC Notation Description
=P . .

Proposed method 0.6185 Dpre ={Xi, y,-},! i | pre-shift training data
Proposed method without £nse 0.6057 Dpost ={Xi, Vi E";’“‘ post-shift training data
Proposed method without Lk, 0.6031 X; ith patient’s EHR sequence
The model is based on GRU, and Xi ¢ ith patient’s tth EHR
the prediction period is 360 days. w sample weights

17 label for X;
Baseline methods . . yi prediction for X;
We apply our method to several deep-learning-based models for health risk pre- ore _gpost o pre post
diction to validate the effectiveness of our method. All models only use historical da™.d code distributions for X%, X
diagnoses as input without additional information such as ontology and temporal b hPoSt latent distributions for XP™, XP°st
intervals for a fair comparison. The baseline models we use are described as fol- Z latent representation for X;
lows. LSTM®': the variant of RNN with a long-short term gating mechanism. .
GRU®%: the variant of RNN. Dipole®: the bidirectional recurrent-neural- % p weights to control losses
network-based model with attention mechanisms. Dipole models patients’ visits ~ Q encoder network
in both time-ordered and reverse time-ordered ways and calculates the weights ~ p decoder network
for previous visits with attention. RETAIN®: the RNN-based model with reverse E classifier

time attention modules to model reverse time-ordered EHR. The attention learns
weights for all medical codes, which are used to analyze the codes’ contributions
to the prediction. ConCare'®: the RNN-based model with multi-head self-atten-
tion to consider the personal patient’s health context. ConCare extracts interde-
pendencies between clinical features to learn the personal health context.
StageNet®: The neural-network-based model with an LSTM module and a con-
volutional module to model disease-stage information for risk prediction.

To further evaluate our method, we compare our method with existing
methods for mitigating temporal data shift. DG refers to a DG-based model
that learns robust representation over time.”° DG leverages the aforemen-
tioned baseline model as its backbone network and has a one-layer adversa-
rial network after the last hidden layer. Each year is set in a different domain,
and both pre- and post-shift training sets are utilized for the model training
phase. AdaDiag is a DA-based model that consists of a transformer encoder,
domain discriminator, and disease classifier. The pre- and post-shift training
sets are set to the source and target domains, respectively.

Implementation and evaluation

All models are implemented by PyTorch.®® We use the ADAM algorithm on a
mini-batch of 32 patients to optimize the predictive model. The optimal hyper-
parameters are found with the validation data in the training phase. The training
phase stops when the validation metric is not improved for ten epochs, then test
performance is reported. Hyper-parameters used by all baseline methods
include the learning rate, the number of hidden nodes, and the number of hidden
layers. The ranges of the hyper-parameters are {1e—3, 1e—4} for the learning
rate, {128, 256, 512} for the number of hidden nodes, and {2, 3} for the number
of layers. For the proposed method, the hyper-parameters used to optimize the
auto-encoder include the number of hidden nodes. The learning rate and the
number of epochs for training the auto-encoder are fixed at 0.001 and 1,000,
respectively. Additionally, the hyper-parameters used to learn the sample
weights are the learing rate, the number of epochs, and the coefficients (i.e.,
a and B). The ranges of the hyper-parameters are {16, 32, 64, 128} for the hidden
nodes, {0.001, 0.01} for the learning rate, and {100, 300, 500} for the epochs.
Both « and g are set from {1, 1e+4, 1e+7, 1e+10}. The effect of hyper-parameter
tuning for our method is visualized in Figure S2. All neural-network models,
including the auto-encoder for the proposed model, are initialized with a uniform
distribution. We use BCELoss as a loss function for classification.
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patter.2023.100828.

ACKNOWLEDGMENTS

This work was funded in part by the National Science Foundation under award
numbers 11S-2145625 and CBET-2037398.

AUTHOR CONTRIBUTIONS

Conceptualization, C.Y. and P.Z.; methodology, S.L., C.Y., and P.Z.; formal
analysis, S.L., C.Y., and P.Z.; writing - review & editing, S.L., C.Y., and P.Z;;
supervision, P.Z.

DECLARATION OF INTERESTS

The authors declare no competing interests.

INCLUSION AND DIVERSITY

We support inclusive, diverse, and equitable conduct of research.

Received: January 23, 2023
Revised: April 18, 2023
Accepted: July 26, 2023
Published: August 22, 2023

REFERENCES

1. Guo, L.L., Steinberg, E., Fleming, S.L., Posada, J., Lemmon, J.,
Pfohl, S.R., Shah, N., Fries, J., and Sung, L. (2022). EHR
Foundation Models Improve Robustness in the Presence of
Temporal Distribution Shift. Preprint at medRxiv. https://doi.org/10.
1101/2022.04.15.22273900.

2. Rajkomar, A., Oren, E., Chen, K., Dai, A.M., Hajaj, N., Hardt, M., Liu, P.J.,
Liu, X., Marcus, J., Sun, M., et al. (2018). Scalable and accurate deep
learning with electronic health records. NPJ Digit. Med. 7. 18-10.

3. Gao, J., Xiao, C., Wang, Y., Tang, W., Glass, L.M., and Sun, J. (2020).
Stagenet: Stage-aware neural networks for health risk prediction. In
Proceedings of The Web Conference 2020, pp. 530-540.

4. Ma, T., Xiao, C., and Wang, F. (2018). Health-atm: A deep architecture for
multifaceted patient health record representation and risk prediction. In
Proceedings of the 2018 SIAM International Conference on Data Mining
(SIAM), pp. 261-269.

5. Zhang, X.S., Tang, F., Dodge, H.H., Zhou, J., and Wang, F. (2019).
Metapred: Meta-learning for clinical risk prediction with limited patient
electronic health records. In Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining,
pp. 2487-2495.

6. Luo, Y., Liu, Z., and Liu, Q. (2022). Deep stable representation learning on
electronic health records. Preprint at arXiv. https://doi.org/10.48550/
arXiv.2209.01321.

Patterns 4, 100828, September 8, 2023 11



https://doi.org/10.1016/j.patter.2023.100828
https://doi.org/10.1016/j.patter.2023.100828
https://doi.org/10.1101/2022.04.15.22273900
https://doi.org/10.1101/2022.04.15.22273900
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref2
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref2
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref2
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref3
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref3
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref3
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref4
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref4
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref4
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref4
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref5
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref5
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref5
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref5
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref5
https://doi.org/10.48550/arXiv.2209.01321
https://doi.org/10.48550/arXiv.2209.01321

¢? CellPress

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

OPEN ACCESS

. Yin, C., Zhao, R., Qian, B., Lv, X., and Zhang, P. (2019). Domain knowledge

guided deep learning with electronic health records. In 2019 IEEE
International Conference on Data Mining (ICDM) (IEEE), pp. 738-747.

. Choi, E., Bahadori, M.T., Sun, J., Kulas, J., Schuetz, A., and Stewart, W.

(2016). Retain: An interpretable predictive model for healthcare using
reverse time attention mechanism. Adv. Neural Inf. Process. Syst. 29.

. Ma, F., Chitta, R., Zhou, J., You, Q., Sun, T., and Gao, J. (2017). Dipole:

Diagnosis prediction in healthcare via attention-based bidirectional recur-
rent neural networks. In Proceedings of the 23rd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining,
pp. 1903-1911.

Ma, L., Zhang, C., Wang, Y., Ruan, W., Wang, J., Tang, W., Ma, X., Gao, X.,
and Gao, J. (2020). Concare: Personalized clinical feature embedding via
capturing the healthcare context. In Proceedings of the AAAI Conference
on Artificial Intelligence, 34, pp. 833-840.

Choi, E., Bahadori, M.T., Song, L., Stewart, W.F., and Sun, J. (2017).
GRAM: graph-based attention model for healthcare representation
learning. In Proceedings of the 23rd ACM SIGKDD international confer-
ence on knowledge discovery and data mining, pp. 787-795.

Luo, J., Ye, M., Xiao, C., and Ma, F. (2020). Hitanet: Hierarchical time-
aware attention networks for risk prediction on electronic health records.
In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pp. 647-656.

Duchi, J., and Namkoong, H. (2018). Learning models with uniform perfor-
mance via distributionally robust optimization. Preprint at arXiv. https://
doi.org/10.48550/arXiv.1810.08750.

Creager, E., Jacobsen, J.-H., and Zemel, R. (2021). Environment inference
for invariant learning. In International Conference on Machine Learning
(PMLR), pp. 2189-2200.

Shen, Z., Cui, P., Zhang, T., and Kunag, K. (2020). Stable learning via sam-
ple reweighting. Proc. AAAI Conf. Artif. Intell. 34, 5692-5699.

Shen, Z., Liu, J., He, Y., Zhang, X., Xu, R., Yu, H., and Cui, P. (2021).
Towards out-of-distribution generalization: A survey. Preprint at arXiv.
https://doi.org/10.48550/arXiv.2108.13624.

Avati, A., Seneviratne, M., Xue, E., Xu, Z., Lakshminarayanan, B., and Dai,
A.M. (2021). BEDS-Bench: Behavior of EHR-models under Distributional
Shift-A Benchmark. Preprint at arXiv. https://doi.org/10.48550/arXiv.
2107.08189.

Grief, S.N., Patel, J., Kochendorfer, K.M., Green, L.A., Lussier, Y.A,, Li, J.,
Burton, M., and Boyd, A.D. (2016). Simulation of ICD-9 to ICD-10-CM tran-
sition for family medicine: simple or convoluted? J. Am. Board Fam. Med.
29, 29-36.

Ulmer, D., Meijerink, L., and Cina, G. (2020). Trust issues: Uncertainty esti-
mation does not enable reliable ood detection on medical tabular data. In
Machine Learning for Health (PMLR), pp. 341-354.

12 Patterns 4, 100828, September 8, 2023

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

Patterns
Article

Guo, L.L., Steinberg, E., Fleming, S.L., Posada, J., Lemmon, J., Pfohl,
S.R., Shah, N., Fries, J., and Sung, L. (2023). EHR foundation models
improve robustness in the presence of temporal distribution shift. Sci.
Rep. 13, 3767.

Zhou, K., Liu, Z., Qiao, Y., Xiang, T., and Loy, C.C. (2023). Domain
Generalization: A Survey. |IEEE Trans. Pattern Anal. Mach. Intell. 45,
4396-4415. https://doi.org/10.1109/TPAMI.2022.3195549.

Zhang, T., Chen, M., and Bui, A.A.T. (2022). AdaDiag: Adversarial Domain
Adaptation of Diagnostic Prediction with Clinical Event Sequences.
J. Biomed. Inform. 134. 134 104168.

National Bureau of Economic Research (2023). General Equivalence
Mappings.

IBM (2020). MarketScan Research Databases. https://www.ibm.com/
products/marketscan-research-databases.

Gheorghiade, M., and Bonow, R.O. (1998). Chronic heart failure in the
United States: a manifestation of coronary artery disease. Circulation 97,
282-289.

American Heart Association (2017). Causes of Heart Failure. https://www.
heart.org/en/health-topics/heart-failure/causes-and-risks-for-heart-failure/
causes-of-heart-failure.

Centers for Disease Control and Prevention (2018). Conditions that in-
crease risk for stroke. https://www.cdc.gov/stroke/conditions.htm.

Heart and Stroke Foundation of Canada (2019). Coronary Artery Disease.
https://www.heartandstroke.ca/heart/conditions/coronary-artery-disease.

Zhu, Z., Yin, C., Qian, B., Cheng, Y., Wei, J., and Wang, F. (2016).
Measuring patient similarities via a deep architecture with medical
concept embedding. In In 2016 IEEE 16th International Conference on
Data Mining (ICDM) (IEEE), pp. 749-758.

Rumelhart, D.E., Hinton, G.E., and Williams, R.J. (1985). Learning internal
representations by error propagation. Technical report. California Univ
San Diego La Jolla Inst for Cognitive Science.

. Graves, A. (2012). Long Short-Term Memory. Supervised Sequence

Labelling with Recurrent Neural Networks, pp. 37-45.

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014). Learning phrase representations us-
ing RNN encoder-decoder for statistical machine translation. Preprint at
arXiv. In EMNLP’14. https://doi.org/10.48550/arXiv.1406.1078.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G.,
Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al. (2019). PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances
in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds. (Curran
Associates, Inc), pp. 8024-8035.


http://refhub.elsevier.com/S2666-3899(23)00197-6/sref7
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref7
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref7
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref8
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref8
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref8
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref9
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref9
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref9
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref9
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref9
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref10
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref10
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref10
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref10
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref11
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref11
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref11
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref11
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref12
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref12
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref12
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref12
https://doi.org/10.48550/arXiv.1810.08750
https://doi.org/10.48550/arXiv.1810.08750
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref14
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref14
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref14
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref15
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref15
https://doi.org/10.48550/arXiv.2108.13624
https://doi.org/10.48550/arXiv.2107.08189
https://doi.org/10.48550/arXiv.2107.08189
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref18
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref18
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref18
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref18
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref19
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref19
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref19
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref20
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref20
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref20
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref20
https://doi.org/10.1109/TPAMI.2022.3195549
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref22
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref22
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref22
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref23
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref23
https://www.ibm.com/products/marketscan-research-databases
https://www.ibm.com/products/marketscan-research-databases
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref25
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref25
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref25
https://www.heart.org/en/health-topics/heart-failure/causes-and-risks-for-heart-failure/causes-of-heart-failure
https://www.heart.org/en/health-topics/heart-failure/causes-and-risks-for-heart-failure/causes-of-heart-failure
https://www.heart.org/en/health-topics/heart-failure/causes-and-risks-for-heart-failure/causes-of-heart-failure
https://www.cdc.gov/stroke/conditions.htm
https://www.heartandstroke.ca/heart/conditions/coronary-artery-disease
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref29
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref29
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref29
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref29
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref30
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref30
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref30
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref31
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref31
https://doi.org/10.48550/arXiv.1406.1078
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref33
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref33
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref33
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref33
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref33
http://refhub.elsevier.com/S2666-3899(23)00197-6/sref33

	Stable clinical risk prediction against distribution shift in electronic health records
	Introduction
	Results
	Data
	Study design
	Data pre-processing
	Data shift
	Experimental setting

	Results for clinical risk prediction
	The usefulness of the proposed method
	Distribution shift
	Ablation study


	Discussion
	Principal results
	Conclusion

	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Clinical risk prediction definitions and basic notations
	EHR sequence
	Clinical risk prediction

	Architecture
	Sample reweighting
	Classification
	Optimization

	Baseline methods
	Implementation and evaluation

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Inclusion and diversity
	References


