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THE BIGGER PICTURE Artificial intelligence (AI) methods that rely on large electronic health record data-
sets have proved effective at predicting different kinds of ‘‘clinical risk,’’ the likelihood of a disease or
adverse outcome given past clinical history. While these methods can help improve patient care, there
are still substantial obstacles to their widespread use. In particular, studies have shown that these kinds
of AI models performmore poorly after several years of deployment due to shifts in the underlying data dis-
tributions, caused by, for example, changes in patient populations or medical practice. Here, the authors
propose a method that reweights patients from older data sources and show that this can substantially
reduce the impact of these ‘‘temporal shifts’’ on model performance. Methods like this one may ultimately
help make AI risk prediction models a more regular and reliable part of clinical care.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
The availability of large-scale electronic health record datasets has led to the development of artificial intel-
ligence (AI) methods for clinical risk prediction that help improve patient care. However, existing studies have
shown that AI models suffer from severe performance decay after several years of deployment, which might
be caused by various temporal dataset shifts. When the shift occurs, we have access to large-scale pre-shift
data and small-scale post-shift data that are not enough to train newmodels in the post-shift environment. In
this study, we propose a new method to address the issue. We reweight patients from the pre-shift environ-
ment to mitigate the distribution shift between pre- and post-shift environments. Moreover, we adopt a
Kullback-Leibler divergence loss to force the models to learn similar patient representations in pre- and
post-shift environments. Our experimental results show that our model efficiently mitigates temporal shifts,
improving prediction performance.
INTRODUCTION

The availability of large-scale electronic health record (EHR) da-

tasets has led to the development of machine-learning methods

for clinical risk prediction that help improve patient care.1,2

Patients’ health records included in EHRs provide useful infor-

mation for personal health tracking and monitoring3–6 in various

tasks in the medical domain.7 In this study, we focus on clinical

risk prediction, which predicts the risks of future diseases by

analyzing previously observed EHR information.
This is an open access article und
Many deep-learning models have been proposed to predict

future diagnoses and have achieved promising results. Choi

et al.8 developed a recurrent neural-network-based model with

reverse time attention modules (RETAIN) to model reverse

time-ordered EHR sequences and learn weights for all medical

codes, which are used to analyze the codes’ contributions to

the prediction. Ma et al.9 proposed a bidirectional recurrent neu-

ral network (RNN)-based model using different attention mecha-

nisms (Dipole) to model patients’ visits in both time-ordered and

reverse time-ordered ways and calculate the weights for
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Figure 1. Illustrations of sample reweighting, clinical risk prediction, and the proposed method

(A) Diagram of clinical risk prediction.

(B) Changes in the distribution of medical codes after sample reweighting to mitigate the distribution shift.

(C) Architecture of the proposed method for sample reweighting.
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previous visits with the attention. Ma et al.10 incorporated RNN

and multi-head self-attention to consider the personal patient’s

health context, extracting interdependencies between clinical

features to learn the personal health context. Choi et al.11 con-

structed a graph-based attention model using RNN tomodel pa-

tient visits in the sequential context. Gao et al.3 developed a

model composed of an RNN and a convolutional module to

model disease-stage information for risk prediction. Luo

et al.12 proposed a time-aware transformer model for health

risk prediction. Figure 1A presents a basic diagram of clinical

risk prediction using a neural-network-based model. In this dia-

gram, the historical EHRs are fed as input to the model, which

then predicts the future diagnosis as an output.

Despite their successes, a fundamental challenge in EHR

studies that has not been addressed in previous works is distri-

bution shift. Mostmachine-learningmodels are tentatively based

on the strong assumption that training and test data points are

independently and identically distributed. However, this

assumption could be violated for real-world applications, where

out-of-distribution (OOD) problems often occur (i.e., the clinical

data distribution changes over time). The OOD problems cause

significant performance degradation in the testing environ-

ment,13–16 which raises serious concern for the application of

machine-learning models in the real-world clinical setting.

The distribution shift could appear on EHRs in various ways:

(1) difference in the patient population; (2) changes in the prac-

tice of medical care; and (3) difference in data formats.17 We

investigate whether the distribution shift exists in the real-world

EHRdatasetwith respect to the aforementionedways in Figure 2.

Figures 2A and 2B show the distribution of patient demographics

(i.e., gender and age). Figure 2C shows that the occurrence rates

of some diseases gradually change over time. The accumulation

of the changes could cause a critical data shift after several
2 Patterns 4, 100828, September 8, 2023
years. Moreover, the transition of the International Classification

of Diseases (ICD) codes (e.g., from ICD-9-CM to ICD-10-CM)

could also cause data shifts. ICD codes are widely used and

play important roles in clinical risk prediction models.7–9 The

list of potential diagnosis codes in ICD-10-CM is five times larger

than its ICD-9-CM counterpart currently used in practice. When

mapping the codes from ICD-9-CM to ICD-10-CM, 27% of the

diagnosis codes were convoluted and 3% were found to have

nomapping.18 Figures 3A and 3B show that the occurrence rates

of some diseases change suddenly after the transition from

ICD-9 to ICD-10. The frequencies of CEI, CIH, and DMD codes

have increased by approximately two times or more since the

ICD transition. It is not advisable to apply decision models

from previous EHRs that were coded in ICD-9 directly to the lat-

est EHRs without considering the changes in distribution. These

changes can result in data shifts and performance decay, lead-

ing to inaccurate predictions. Therefore, it is necessary to

address the temporal and/or ICD version shifts inherent in

EHRs to effectively utilize historical data for predictive models.

Several studies have addressed the OOD problems in medical

environments. For instance, Ulmer et al.19 investigated uncer-

tainty estimationmethods for detecting OOD samples in medical

tabular data. However, the study demonstrated that uncertainty

estimationmethodsmay not be reliable for OOD detection, since

the data are high-dimensional, complex, and noisy. In another

work, Luo et al.6 proposed a causal representation learning

model based on variable decorrelation for diagnosis prediction.

This model discovers stable correlations that reflect the causal

effect of each feature in different environments, resulting in miti-

gating bias caused by the distribution shifts between training and

inference. Some existing works have focused on data shifts in

medical environments. Guo et al.20 proposed a domain general-

ization (DG)21-based model that leverages time information as



Figure 2. Statistical analysis

(A) Gender distribution.

(B) Age distribution.

(C) Occurrence rates of important diseases that gradually change over time. DOR, dorsalgia; EH, essential (primary) hypertension; DLML, disorders of lipoprotein

metabolism and other lipidemias; CIHD, chronic ischemic heart disease; SSD, segmental and somatic dysfunction.
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the domain to learn robust and domain-invariant properties

across time to mitigate temporal shift. Zhang et al.22 proposed

AdaDiag, which is based on domain adaption (DA), to handle

domain shift. AdaDiag consists of a joint feature extractor that

maps input from the source and target domain to the shared

feature space, a classifier that performs predictions, and a

discriminator for distinguishing the source and target domain.

In this paper, we propose a new method for stable clinical risk

prediction to tackle these challenges. We treat the observed

EHRs before October 2015 (when the codes are recorded as

ICD-9-CM) as pre-shift data and the EHRs observed after

October 2015 (when the codes are recorded as ICD-10-CM) as

post-shift data. We reweight training patients’ records in pre-

shift data to mitigate the distribution shift between the pre- and

post-shift data. Figure 1 illustrates the main concepts of the pro-

posed method. Figure 1B presents an example of a distribution

shift of medical codes in the post-shift data. After sample re-

weighting, the distribution changes toward mitigating the distri-

bution shift. Figure 1C shows an architecture of the proposed

model for sample reweighting. The proposed model not only

directly equalizes the occurrence rate of codes in pre- and

post-shift data using mean squared error but also equalizes

the probability distribution in the latent space using Kullback-

Leibler divergence (KL-divergence).
Note that all the ICD-9-CM codes are mapped to ICD-10-CM

codes according to General Equivalence Mappings developed

by the Centers for Medicare & Medicaid Services (CMS).23 We

conduct a comprehensive empirical study on a real-world EHR

dataset with different scenarios to demonstrate our hypothesis

and to evaluate the effectiveness of our method. To demonstrate

our hypothesis that the distribution differences between pre- and

post-shift data exist, we first conduct experiments with the

following scenarios: (1) we train the existing clinical risk predic-

tion models (e.g., RETAIN, Dipole) for heart failure and stroke

risk prediction tasks only with patients in the pre-shift training

data, and report the performance on the post-shift test data;

(2) we apply our method to the models to evaluate whether our

method reduces the distribution shift and improves the perfor-

mance on the post-shift test data. Experimental results demon-

strate our hypothesis and show that our method improves all the

baselines.

Our contributions are summarized as follows.

d We investigate the temporal distribution shift on medical

codes and the performance differences caused by

the shift.

d We design a newmethod that reweights the pre-shift sam-

ples to reduce the distribution shift between the pre- and
Figure 3. Changes in the occurrence rates of

diseases after the transition from ICD-9-CM

to ICD-10-CM

(A) Changes in important diseases for stroke pa-

tients.

(B) Changes in important diseases for heart failure

patients.

CEI, general examination and investigation; CIH,

chronic ischemic heart disease; SMN, encounter for

screening for malignant neoplasms; DOR, dorsal-

gia; DMD, dependence on enabling machines and

devices; AMC, encounter for other aftercare and

medical care.
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Figure 4. Settings to construct the experi-

mental EHR data for clinical risk prediction

tasks

The operation criterion date refers to the date of

the EHR diagnosed with target diseases (case

patients) or the end date of the EHR (control pa-

tients). The prediction date represents the date

before the prediction window, tracking from the

operation criterion date.
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post-shift samples, learning stable representations for

both the pre- and post-shift samples.

d We show that the proposed method not only boosts the

prediction performance by sample reweighting but also

efficiently leverages the pre-shift historical data through

stable learning.

d We conduct a comprehensive experiment to demonstrate

our hypothesis and to evaluate the effectiveness of our

method.

Experimental results show that our method improves existing

predictive models for heart failure and stroke risk, mitigating the

distribution shift in diagnosis codes between the pre- and post-

shift samples.

RESULTS

Data
We conduct our experiments on a real clinical EHR data ware-

house, MarketScan Commercial Claims and Encounters

(CCAE),24 which contains individual-level and de-identified

healthcare claims information. MarketScan claims data are pri-

marily used to evaluate health utilization and services. We iden-

tify coronary artery disease (CAD) cohorts for which criteria are

defined based on ICD codes. There are 1,178,997 patients in to-

tal. All patients have a set of medical records including demo-

graphic characteristics, time information, drugs, procedures, di-

agnoses, and other clinically relevant indicators. We consider

three categories, namely demographic characteristics, diag-

nosis, and procedure codes, for study variables. Demographic

characteristics consist of age and gender information. Diagnosis

codes are defined as ICD codes and consist of 57,089 unique

ICD-9/10 codes in MarketScan data.

Study design
CAD represents a major risk factor for both heart failure25,26 and

stroke.27,28 In this work, we focus on clinical risk prediction of

whether a patient will suffer heart failure or stroke in the future.

The definitions of heart failure and stroke are presented in

Tables S1 and S2. We conduct a case-control study, a type of

epidemiological observational study, on clinical risk prediction

tasks. The case-control study identifies two groups of subjects

with different diseases but similar conditions and compares

them to discover factors that contribute to the differences. Pa-

tients diagnosed with heart failure or stroke are collected as

case patients. Then, for each case patient, a control patient

with the same demographics and characteristics, such as the

same age, gender, and number of visits, is selected.

To predict the diagnosis of heart failure or stroke at some future

time, it is necessary to set operation criterion and prediction
4 Patterns 4, 100828, September 8, 2023
dates. Figure 4 shows the settings to construct the experimental

EHR data from the large database for early prediction tasks.

The operation criterion date indicates the date of the future diag-

nosis to bepredicted. The prediction date refers to the date before

the prediction window from the operation criterion date tomake a

prediction for future diagnosis. Each patient’s EHR data are then

split into an observation window and a prediction window. The

prediction window includes the medical records for the last 360,

180, or 90 days tracing back from the operation criterion date.

The observation window contains all the records before the pre-

diction window and is used for analysis. For example, if a patient

is diagnosed with heart failure on October 5, 2014, the records up

toOctober 1, 2013are included in the observationwindow for pre-

dicting heart failure with a prediction window of 360 days. In the

case of the case patients, the date of the EHR diagnosed with

heart failure or stroke is set as the operation criterion date. In

the case of the control patients, the last date of the EHR is set

as the operation criterion date. When selecting control patients

for the case-control study, the prediction date is also included

in the characteristics similar to those of the case patients to accu-

rately analyze EHRdata over time. In addition, to ensure that there

are sufficient medical events to predict the future diagnosis, only

patients with more than ten records (visits) in the observation win-

dow are selected for analysis.

Data pre-processing

We pre-process the EHR data by chronologically concatenating

the medical records for each patient according to previous

works,7,29 as the temporal information is critical. Thus, all pa-

tients are represented as a variable-length sequence of records

equal to the corresponding number of visits. For convenience, all

patients’ records are padded to the same size based on the

maximum number of visits, and the padding records are not

medically meaningful. For equivalence between codes of ICD-

9-CM and ICD-10-CM versions, all medical codes in the dataset

originally coded as ICD-9-CM are pre-converted into ICD-10-

CM’s codes before the experiments according to General Equiv-

alence Mappings developed by CMS.23 In our study we only

consider the first three letters, which are representative cate-

gories including more detailed codes, to reduce the number of

diagnosis codes. To address the potential loss of information re-

sulting from reducing ICD codes to a low number of letters, we

conducted a validation process to ensure that the codes re-

tained sufficient granularity to capture meaningful differences

between patients’ diagnoses. Specifically, we compared the

performances of models trained with full-length ICD codes and

shortened codes, ranging from 5-letter to 1-letter codes. Our re-

sults show that using the full-length codes led to a lower area un-

der the receiver-operating characteristics curve (AUROC)

compared to the shortened codes. The results can be attributed

to the lower frequency of 5-letter codes, which may pose



Figure 5. Visualization of performance per month for heart failure and stroke risk prediction

The x axis indicates the months and the y axis represents AUROC scores. The model is trained only with patients up to 2013. HF, heart failure; ST, stroke,
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challenges in effectively learning their embeddings. Conversely,

using shortened codes did not adversely impact the model’s

performance. For the heart failure prediction problem with a

360-day prediction window, the number of unique codes is

6,629 for full-length codes and 1,474 for three-letter codes. We

found that using the first three or two letters of the ICD codes re-

sulted in optimal performance. However, since 3-letter codes

include category information about the disease codes, we

decided to use only the first three letters of the ICD codes in

our study. The results of the experiment can be found in

Table S3.

Data shift

We observe that the occurrence rates of some important dis-

eases gradually change over time and also change suddenly af-

ter the transition from ICD-9 to ICD-10 in Figures 2 and 3. These

changes could cause distribution shifts and severe performance

decay. To demonstrate the existence of the distribution shift in

EHRs and how it affects the model performance, we report the

prediction performance trend over time with a neural-network-

based model that is trained and optimized only for patients

whose prediction date is up to December 31, 2013. Figure 5

shows the prediction performance per month based on the pre-

diction date for heart failure and stroke risk prediction tasks. The

predictive model is trained only with patients whose prediction

date is up to 2013. The x axis indicates the months and the y

axis represents AUROC scores. As illustrated on the graph, the

score gradually decreases over time, with a rapid decline
Figure 6. Experimental settings for the data shift

We use the EHRs with the prediction date prior to 2015-10-01 as the pre-shift

data. The EHRs with the prediction date from 2015-10-01 to 2015-12-31 are

used as the post-shift training data to reweight the pre-shift data, and EHRs

with the prediction date after 2016-01-01 are used as the post-shift test data to

evaluate the prediction performance.
observed from October to December 2015. This finding indi-

cates that there is a significant distribution shift before and after

October 2015, highlighting the need to address temporal shifts

when working with EHRs. To further investigate the potential in-

fluence of gender distribution on clinical risk prediction, we also

compare the average AUROC scores for the overall population,

males, and females by year. Figure S1 shows the results for the

model trained with patients up to 2013. Our analysis reveals that

there is no significant difference in performance based on

gender. As a result, we focus on the data shift rather than the

gender distribution.

Experimental setting

Based on our findings, we treat EHRs before and after October

2015 as pre-shift and post-shift data, respectively. Aiming to

decrease the significant performance difference between the

pre-shift and post-shift data, we design our model with the

following settings. Figure 6 shows the experimental settings of

clinical risk prediction tasks for our model. The EHRs with the

prediction date prior to October 1, 2015 are used as the pre-shift

data. The pre-shift data are further split into the pre-shift training,

validation, and test data to train, optimize, and evaluate the pre-

dictive model, respectively. To mitigate the distribution shift be-

tween the pre-shift and post-shift data, the post-shift data with

the prediction date from October 1, 2015 to December 31,

2015 are used as the post-shift training data to reweight the

pre-shift training data. The post-shift data with the prediction

date after January 1, 2016 are then used as the post-shift test

data to evaluate the prediction performance. The statistics of

the dataset for heart failure and stroke risk prediction tasks are

described in Tables 1 and 2.

We compare the prediction performances of models trained

with the original pre-shift training data and the reweighted pre-

shift training data, respectively. We apply our method to existing

clinical risk prediction models. Our method reweights the pre-

shift patients’ EHRs to make their distributions similar to that of

the post-shift patients, mitigating the distribution shift between

them for stable learning. Moreover, we adopt KL loss to learn

stable and similar patient representation extracted from the

pre-shift and post-shift data. In Tables 3, 4, and 5, Basic and
Patterns 4, 100828, September 8, 2023 5
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Weighted represent the results of the existing methods and the

proposed method, respectively. Accuracy, area under the preci-

sion-recall curve (AUPRC), and AUROC are used as perfor-

mance measurements.

Results for clinical risk prediction
Tables 3 and 4 show the performances of clinical risk prediction

on the post-shift test set as measured by AUPRC and accuracy

scores for heart failure and stroke, respectively. The proposed

method (marked as weighted in the tables) improves all base-

lines (marked as basic) on both AUPRC and accuracy scores.

The results demonstrate that the proposed method mitigates

the distribution shift and thus provides more robust performance

for new patients that differ from training patients. Such findings

indicate the advantage of the proposed method to learn stable

representations for the post-shift data by sample reweighting.

When comparing the performance of baseline models, the

advanced models generally exhibit better overall performance

than the simpler models such as GRU and LSTM. Specifically,

ConCare and StageNet achieve superior performance across

the board. The results of the experiment on other metrics,

including AUROC, precision, and recall, can be found in

Tables S4 and S5.

We also compare the performance of the proposed method

with DG and AdaDiag methods, which are existing tools to alle-

viate temporal data shifts. For a fair comparison, both DG and

AdaDiag methods utilize the post-shift training data for model

training. DG and the proposed method (weighted) employ the

Dipole model as the backbone network. Table 5 shows the per-

formance results on AUPRC and accuracy. While all the compar-

ativemodels outperform the basic model that does not utilize the

post-shift training data in most cases, the proposed method ex-

hibits the highest improvement in almost all cases. This demon-

strates that the proposed method effectively mitigates data dis-

tribution shifts through the sample reweighting approach. To

assess the statistical significance of the differences between

the performances of the proposed method and existing works,

we conduct Friedman and Wilcoxon tests on AUPRC scores.

We apply the Friedman test with the null hypothesis (H0) that

there is no statistically significant difference between the perfor-

mances of the methods, while the alternative hypothesis (H1) as-

sumes the presence of the difference. In addition, the Wilcoxon

test is applied to test the null hypothesis H0 that there is no sta-

tistically significant difference between the performances of the

top two methods, weighted and DG, and the alternative hypoth-

esis H1 that there is a significant difference. Table S6 presents

the results of both tests, including the p values obtained from

ten repeated experiments. Based on the results, we rejected

the null hypothesis at a significance level of a = 0:05, indicating

statistically significant differences among the performances of

the methods.

The usefulness of the proposed method

We observe the temporal distribution shift in EHR records as the

prediction performance changes over time. In particular, the per-

formance decreases significantly as of October 2015, so we pre-

sent our method to mitigate the distribution shift based on that

time. Although we have demonstrated the effectiveness of our

method through previous experiments, we further conduct an

additional experiment to prove the usefulness of the proposed
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method. The settings for the additional experiment are as fol-

lows. (1) We randomly split the post-shift data (EHRs after

October 2015) into the training, validation, and test data, then

train the model only with the training data. The prediction perfor-

mance is reported on the post-shift test data. (2) We further train

the model with the pre-shift data reweighted by the proposed

method using the post-shift training data. The prediction perfor-

mance is also reported on the post-shift test data. As shown in

Table 6, the experimental results using the weighted pre-shift

data (denoted as pre-shift training) achieve higher performance

compared to only using the post-shift training data (denoted as

post-shift training) by about 17.2% on AUROC. This experiment

shows that our method not only efficiently leverages large

amounts of historical pre-shift data for model training but also

improves performance.

Distribution shift

The proposed method mitigates the distribution shift in

EHRs, especially in the medical codes. Figure 7A–Cshow

the code distributions for the pre-shift training set, post-shift

test set, and reweighted training set, respectively. Here, the

x and y axes indicate the codes and ratios of them, respec-

tively. The x axis is set in descending order of the ratios on

the pre-shift training data. As shown in Figures 7A and 7B,

there exists a distribution shift between the pre-shift training

and post-shift tests. Noticeably, the distribution of the re-

weighted training set (i.e., Figure 7C) becomes very similar

to the post-shift test set, compared to Figure 7A. This result

also evaluates that the sample weighting mitigates the distri-

bution shift.

Ablation study

We conduct an ablation study to investigate whether each

component of our model actually contributes to the predictive

performance. Starting from the original version of the proposed

model, each component is independently excluded to construct

some model variants, proposed method without Lmse and pro-

posedmethodwithoutLKL. Table 7 shows the results of the abla-

tion study. The prediction performance is reduced when each

component is removed. These results demonstrate the effective-

ness of directly equalizing the distributions of the codes and

reducing the difference between the latent distributions in the

sequential context.

DISCUSSION

Principal results
In this study, we investigate the temporal distribution shift in

diagnosis codes and the performance degradation that

accompany the shift. Prediction performance tends to

decrease slightly over time but decreases significantly since

October 2015 when the ICD version was changed from ICD-

9-CM to ICD-10-CM. We investigate that the post-shift data

(EHRs after October 2015) achieves significantly lower perfor-

mance for a predictive model trained on the pre-shift data

(EHRs before October 2015), due to the distribution shift.

Conversely, even if it is trained with the post-shift data, it

also provides poor performance due to the small number of

data. This suggests that the model trained with the past

EHRs coded as ICD-9-CM cannot be generalized to the

EHRs coded as ICD-10-CM and thus be exploited at all.
Patterns 4, 100828, September 8, 2023 7



Table 3. Comparison of prediction performance on the post-shift test set for heart failure prediction

Prediction window 360 days 180 days 90 days

AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy

LSTM Basic 0.5730 ± 0.017 0.5301 ± 0.002 0.6677 ± 0.005 0.5840 ± 0.006 0.7018 ± 0.006 0.6247 ± 0.007

Weighted 0.5865 ± 0.015 0.5319 ± 0.002 0.6763 ± 0.007 0.5859 ± 0.007 0.7133 ± 0.009 0.6344 ± 0.008

GRU Basic 0.5781 ± 0.005 0.5309 ± 0.002 0.6718 ± 0.004 0.5889 ± 0.005 0.7095 ± 0.003 0.6309 ± 0.004

Weighted 0.5964 ± 0.006 0.5336 ± 0.003 0.6803 ± 0.004 0.5912 ± 0.004 0.7144 ± 0.005 0.6348 ± 0.005

Dipole Basic 0.5905 ± 0.002 0.5322 ± 0.002 0.6757 ± 0.002 0.5937 ± 0.004 0.7095 ± 0.002 0.6308 ± 0.002

Weighted 0.5968 ± 0.003 0.5330 ± 0.002 0.6781 ± 0.003 0.5977 ± 0.005 0.7171 ± 0.002 0.6375 ± 0.003

RETAIN Basic 0.5934 ± 0.006 0.5414 ± 0.003 0.6726 ± 0.002 0.5912 ± 0.004 0.7128 ± 0.003 0.6362 ± 0.003

Weighted 0.5971 ± 0.006 0.5428 ± 0.003 0.6763 ± 0.003 0.5983 ± 0.004 0.7156 ± 0.004 0.6422 ± 0.003

ConCare Basic 0.5946 ± 0.004 0.5421 ± 0.001 0.6756 ± 0.002 0.5866 ± 0.002 0.7123 ± 0.003 0.6353 ± 0.003

Weighted 0.5965 ± 0.005 0.5491 ± 0.001 0.6781 ± 0.002 0.5906 ± 0.003 0.7140 ± 0.003 0.6437 ± 0.003

StageNet Basic 0.5911 ± 0.003 0.5305 ± 0.001 0.6743 ± 0.003 0.5829 ± 0.002 0.7057 ± 0.002 0.6326 ± 0.001

Weighted 0.5946 ± 0.004 0.5441 ± 0.002 0.6787 ± 0.005 0.5899 ± 0.004 0.7148 ± 0.002 0.6410 ± 0.002

The baseline and proposed method are denoted by Basic and Weighted, respectively. The average score and standard deviation under ten trials are

reported. The results for other metrics can be found in Table S4.
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In this work, we address the challenges of the performance

degradation over time and the ICD version changes by stable

learning, which learns stable representation for both pre- and

post-shift data, mitigating the distributional shift between them.

Experiments on the real-world dataset demonstrate that our

method not only improves state-of-the-art models but also gener-

alizes prediction performance for new patients that differ from

training patients. Our experimental findings are significant

because itcreatesnewchances forEHRstudies.Theexperimental

results showing that the past EHRs improve prediction perfor-

manceprovidemany researchopportunities toexploreandpursue

the benefits of the past EHRs. Furthermore, our method builds a

bridge between different datasets, providing generalized perfor-

mance and thus allowing the data to be cross-used.

Conclusion
Clinical risk prediction is crucial for improving healthcare quality.

We investigate that there exist inconsistencies in the distribu-

tions of the diagnosis codes depending on time and ICD ver-

sions, resulting in the distribution shift between them. In this pa-

per, we propose a novel method to address these issues for

clinical risk prediction, learning the sample weights in pre-shift

data to mitigate the distribution shift between the pre- and

post-shift data. The proposedmethod not only directly equalizes

the occurrence rate of codes in pre- and post-shift data but also

equalizes the probability distribution in latent space using KL-

divergence. The experimental results demonstrate that our pro-

posed method degrades the distribution shift and thus improves

the prediction performance.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Ping Zhang (zhang.

10631@osu.edu).

Materials availability

This study did not generate any new materials.
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Data and code availability

The data analyzed in this paper are from MarketScan Commercial Claims and

Encounters, with more than 100 million patients from 2012 to 2017. Access to

the MarketScan data are provided by the Ohio State University. The dataset is

available from IBM at MarketScan: https://www.ibm.com/products/

marketscan-research-databases. The source code is available from the Gi-

thub repository at https://github.com/yeon-lab/stable-prediction or the Zen-

odo repository at https://doi.org/10.5281/zenodo.7826125.

Clinical risk prediction definitions and basic notations

We use uppercase and bold letters (e.g., X) for matrices, lowercase and bold

letters (e.g., x) for vectors, and lowercase letters (e.g., x) for scalars. Table 8

summarizes the notations used in our method.

EHR sequence

The EHR data for each patient are represented as a sequence of visits in the

order of their occurrence. Each visit of the sequence has a set of varying

numbers of diagnosis codes. Thus the vth visit of the ith patient is expressed

as a binary vector xi;v ˛ f0; 1gC, where C is the number of unique diagnosis co-

des, and a value of 1 for the kth coordinate (i.e., xi;v;k = 1) indicates that the kth

code is recorded at the vth visit of the ith patient. The EHR sequence for the ith

patient is denoted by Xi = ½xi;1; xi;2;/; xi;ti � where ti is the number of visits for

the ith patient.

Clinical risk prediction

Given the EHR sequence Xi = ½xi;1;xi;2;/;xi;T �, the goal of health risk pre-

dictive modeling in this paper is to predict the target disease at the end of

the sequence. The label for the ith patient is denoted by byi ˛ f0; 1g,
because we focus on two tasks to predict heart failure and stroke disease

separately.

Architecture

The proposed framework consists of two steps: (1) sample reweighting that

learns the sample weights for the pre-shift training patients using the corre-

sponding EHR sequences to mitigate the temporal distribution shift between

the pre- and post-shift training data; (2) classification that learns stable repre-

sentations from the EHR sequences with the sample weights to predict the

best future diagnosis. Figure 1C shows the architecture of the proposed

method for sample reweighting.

Sample reweighting

We propose to learn sample weights for the pre-shift training samples to miti-

gate the distribution shift on diagnosis codes between the pre- and post-shift

training sets.We use two approaches; directly equalize the occurrence rates of

codes in the pre- and post-shift training samples and equalize the probability

distribution of them in latent space.

mailto:zhang.10631@osu.edu
mailto:zhang.10631@osu.edu
https://www.ibm.com/products/marketscan-research-databases
https://www.ibm.com/products/marketscan-research-databases
https://github.com/yeon-lab/stable-prediction
https://doi.org/10.5281/zenodo.7826125


Table 4. Comparison of prediction performance on the post-shift test set for stroke prediction

Prediction window 360 days 180 days 90 days

AUPRC Accuracy AUPRC Accuracy AUPRC Accuracy

LSTM Basic 0.5610 ± 0.011 0.5212 ± 0.003 0.5972 ± 0.008 0.5522 ± 0.002 0.6340 ± 0.006 0.5685 ± 0.008

Weighted 0.5801 ± 0.014 0.5253 ± 0.004 0.6145 ± 0.011 0.5573 ± 0.003 0.6441 ± 0.009 0.5792 ± 0.009

GRU Basic 0.5666 ± 0.006 0.5210 ± 0.002 0.6136 ± 0.004 0.5574 ± 0.006 0.6452 ± 0.006 0.5815 ± 0.006

Weighted 0.5746 ± 0.008 0.5278 ± 0.003 0.6294 ± 0.005 0.5608 ± 0.007 0.6492 ± 0.008 0.5843 ± 0.006

Dipole Basic 0.5702 ± 0.003 0.5275 ± 0.002 0.6157 ± 0.003 0.5592 ± 0.003 0.6460 ± 0.003 0.5827 ± 0.003

Weighted 0.5900 ± 0.005 0.5290 ± 0.003 0.6260 ± 0.005 0.5601 ± 0.003 0.6528 ± 0.006 0.5920 ± 0.004

RETAIN Basic 0.5756 ± 0.003 0.5259 ± 0.003 0.6222 ± 0.003 0.5563 ± 0.004 0.6382 ± 0.005 0.5781 ± 0.003

Weighted 0.5869 ± 0.004 0.5279 ± 0.002 0.6339 ± 0.005 0.5598 ± 0.005 0.6519 ± 0.007 0.5986 ± 0.003

ConCare Basic 0.5762 ± 0.006 0.5261 ± 0.005 0.6261 ± 0.002 0.5606 ± 0.003 0.6464 ± 0.004 0.5852 ± 0.002

Weighted 0.5862 ± 0.008 0.5343 ± 0.005 0.6356 ± 0.004 0.5669 ± 0.003 0.6517 ± 0.007 0.5872 ± 0.003

StageNet Basic 0.5684 ± 0.006 0.5201 ± 0.001 0.6263 ± 0.005 0.5594 ± 0.004 0.6419 ± 0.004 0.5780 ± 0.002

Weighted 0.5776 ± 0.007 0.5216 ± 0.002 0.6323 ± 0.006 0.5606 ± 0.005 0.6511 ± 0.007 0.5849 ± 0.003

The baseline and proposed method are denoted by Basic and Weighted, respectively. The average score and standard deviation under ten trials are

reported. The results for other metrics can be found in Table S5.
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To directly equalize the distributions of the codes, we first compute the

target distribution of the codes for the post-shift samples by Equations 1

and 2:

spost
k =

X
x˛Dpost

XT
j = 1

x;j;k ; (Equation 1)

dpost
k =

spost
kPjCj

k = 1s
post
k

; (Equation 2)

where Dpost is the post-shift training data and T is the number of visits for the

corresponding patient. We use w˛R
jDprej
+ to denote the sample weights,

where Dpre is the pre-shift training data. The code distribution dpre for Dpre

can be obtained by Equations 3 and 2.

spre
k =

XjDprej

i = 1

Xt

j = 1

wi $ xi;j;k : (Equation 3)

The difference between the pre- and post-shift training distributions is then

computed using mean squared error (MSE). The loss is as follows:

Lmse =
1

C � 1

XC
k = 1

�
dpre

k � dpost
k

�2
:

Table 5. Comparison of prediction performance on the post-shift te

Prediction window 360 days 180 day

AUPRC Accuracy AUPRC

HF Basic 0.5905 ± 0.002 0.5322 ± 0.002 0.6757

AdaDiag 0.5896 ± 0.028 0.5296 ± 0.011 0.6760

DG 0.5906 ± 0.009 0.5323 ± 0.005 0.6769

Weighted 0.5968 ± 0.003 0.5330 ± 0.002 0.6781

ST Basic 0.5702 ± 0.003 0.5275 ± 0.002 0.6157

AdaDiag 0.5697 ± 0.009 0.5290 ± 0.003 0.6180

DG 0.5726 ± 0.007 0.5283 ± 0.003 0.6254

Weighted 0.5900 ± 0.005 0.5290 ± 0.003 0.6260

Basic, AdaDiag, and DG are baseline methods, and Weighted refers to the p

and Weighted. The average score and standard deviation under ten trials a
The MSE loss directly adjusts the occurrence rate of the diagnosis codes

and thus mitigates the distribution differences between training and test

sets, but it ignores the sequential context of EHRs. That is, the relation be-

tween a patient’s visits is not considered.

To address this issue and further force the distributions to be similar,

we map the samples to latent representations via an auto-encoder

network.30 The main idea is to construct an embedding space from which

the abstract information of the sequence for all visits is generated and to

learn robust weights in the latent space. After embedding, the latent fea-

tures for the training samples are weighted. We then minimize Kullback-

Leibler divergence (KL-divergence) between two distributions in the

latent space.

We first map pre- and post-shift training samples to the sequence of

latent representations, z, with the auto-encoder model whose encoder

network is Q : RT3jCj/RT3F and decoder network is P : RT3F/RT3jCj.
Here T and F are the number of visits and the dimension of latent features

from Q, respectively. The auto-encoder model is first trained with both pre-

and post-shift data before training the sample weights to learn useful latent

representations of the input code space. The reconstruction loss is as

follows:

bx i = PðQðxiÞÞ
Lreconst =

X
x˛Dpre ;Dpost

ðxi � bx iÞ2 : (Equation 4)
st set for heart failure and stroke prediction

s 90 days

Accuracy AUPRC Accuracy

± 0.002 0.5937 ± 0.004 0.7095 ± 0.002 0.6308 ± 0.002

± 0.013 0.5935 ± 0.002 0.7104 ± 0.007 0.6319 ± 0.002

± 0.003 0.5962 ± 0.005 0.7127 ± 0.002 0.6282 ± 0.001

± 0.003 0.5977 ± 0.005 0.7171 ± 0.002 0.6375 ± 0.003

± 0.003 0.5592 ± 0.003 0.6460 ± 0.003 0.5827 ± 0.003

± 0.014 0.5594 ± 0.002 0.6472 ± 0.011 0.5830 ± 0.003

± 0.002 0.5603 ± 0.001 0.6503 ± 0.003 0.5832 ± 0.001

± 0.005 0.5601 ± 0.003 0.6528 ± 0.006 0.5920 ± 0.004

roposed method. We use the Dipole as a backbone network for both DG

re reported. Results of statistical tests can be found in Table S6.
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Table 6. Comparison of prediction performances on AUROC and accuracy using the post-shift data and both pre- and post-shift data

as training sets

Prediction window 360 days 180 days 90 days

AUROC Accuracy AUROC Accuracy AUROC Accuracy

HF Post-shift training 0.5821 ± 0.013 0.5399 ± 0.015 0.5795 ± 0.009 0.5593 ± 0.010 0.6182 ± 0.015 0.5782 ± 0.020

Pre-shift training 0.6597 ± 0.006 0.6062 ± 0.008 0.7029 ± 0.004 0.6490 ± 0.008 0.7282 ± 0.003 0.6630 ± 0.006

ST Post-shift training 0.5325 ± 0.020 0.5059 ± 0.006 0.5357 ± 0.022 0.5149 ± 0.022 0.5661 ± 0.012 0.5200 ± 0.020

Pre-shift training 0.6088 ± 0.008 0.5642 ± 0.014 0.6317 ± 0.007 0.5960 ± 0.008 0.6716 ± 0.005 0.6255 ± 0.004

The average score and standard deviation under ten trials are reported. Note that we have access to small-scale post-shift data (i.e., 3months records)

in the post-shift training setting and large-scale pre-shift data (i.e., more than 3 years) in the pre-shift training setting. We use the GRUmodel in the two

settings.
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After training the auto-encodermodewith Equation 4, the sequence of latent

representations for ith patient is obtained as follows:

Zi = ½zi;1; zi;2;/; zi;T �
= ½Qðxi;1Þ;Qðxi;2Þ;/;Qðxi;T Þ�; (Equation 5)

where Zi reflects the sequence of diagnosis codes for all visits in the order of

their occurrence. The pre- and post-shift training distributions in the latent

space are then computed as

hpre =
1��Dpre

�� Xj
Dprej

i = 1

wi $Zi ; (Equation 6)
Figure 7. Visualization of code distribution

The x and y axes indicate the codes and ratios, respectively. x is set in de-

scending order of the ratios on the pre-shift training data.

(A) Distribution of the pre-shift training data.

(B and C) Post-shift test data (B) and the reweighted pre-shift training data (C).
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hpost =
1��Dpost

�� Xj
Dpostj

i = 1

Zi : (Equation 7)

The KL loss between two latent distributions is expressed in Equation 8:

LKL = hpost$log
hpost

hpre : (Equation 8)

We iteratively optimize sample weights by Equations 9 and 10. Here a

and b are the coefficients that control MSE and KL-divergence con-

straints, respectively, and D = fw ˛Rn
+g. We consistently consider

non-negative weights. Positive weights represent the relative importance

of samples, enabling the model to effectively learn from significant sam-

ples. Conversely, the use of negative weights may result in the model

considering samples in the opposite manner, which could lead to confu-

sion and misinterpretation of the intended meaning of the weights. w is

also regularized so that the sum of w equals the number of data. The

reason for this regularization is that if the sample weights are too small

or large, it can cause instability or non-convergence of the model during

training. By constraining the sum of sample weights, the model training

can be stabilized and facilitated to converge, thereby enhancing the per-

formance and robustness of the model:

Lw = a $LMSE + b $LKL +

 XN
i = 1

wi � N

!2

; (Equation 9)

wt+1 = argmin
w˛D

Lw: (Equation 10)

Classification

The clinical risk prediction is conducted with a classification network

f : RT3jCj/R. Given the trained sample weights, the weights are fixed and

then multiplied by the classification losses for the corresponding training

data to train the classification model. Samples with smaller weights have

less impact on the model training, and larger weights have more impact. The

weighted losses allow learning stable representations for both the pre- and

post-shift training data.

Our algorithm iteratively optimizes the prediction function f as follows:

f t+1 = argmin
f

X
X˛Dpre

wi $LlabelðfðX; byiÞÞ; (Equation 11)

where Llabelð $Þ represents the binary cross-entropy loss function.

In the training phase, we optimize the predictive model parameters with the

weighted training samples. On the other hand, in the inference phase, the

model directly predicts the label without any sample weights.

Optimization

To apply the proposed method, we use a two-stage optimization process as

follows. First the sample weights w are trained by minimizing Lw on the pre-

and post-shift training data, Dpre and Dpost . The trained weights w are then

used in the training of the classification network f in which the classification los-

ses forDpre are multiplied by the corresponding weights. The lossLlabel is mini-

mized for prediction.



Table 7. Ablation study for the proposed method

Model AUROC

Proposed method 0.6185

Proposed method without Lmse 0.6057

Proposed method without LKL 0.6031

The model is based on GRU, and

the prediction period is 360 days.

Table 8. Notation definitions

Notation Description

DprehfXi ; byigjDprej
i = 1 pre-shift training data

DposthfXi ; byigjDpostj
i = 1 post-shift training data

Xi ith patient’s EHR sequence

xi;t ith patient’s tth EHR

w sample weightsbyi label for Xi

yi prediction for Xi

dpre;dpost code distributions for Xpre;Xpost

hpre;hpost latent distributions for Xpre;Xpost

Zi latent representation for Xi

a;b weights to control losses

Q encoder network

P decoder network

F classifier

ll
OPEN ACCESSArticle
Baseline methods

We apply our method to several deep-learning-basedmodels for health risk pre-

diction to validate the effectiveness of our method. All models only use historical

diagnoses as inputwithout additional information such asontology and temporal

intervals for a fair comparison. The baselinemodels we use are described as fol-

lows. LSTM31: the variant of RNN with a long-short term gating mechanism.

GRU32: the variant of RNN. Dipole9: the bidirectional recurrent-neural-

network-basedmodel with attentionmechanisms. Dipolemodels patients’ visits

in both time-ordered and reverse time-ordered ways and calculates the weights

for previous visits with attention. RETAIN8: the RNN-based model with reverse

time attentionmodules tomodel reverse time-ordered EHR. The attention learns

weights for allmedical codes,which are used toanalyze the codes’ contributions

to the prediction. ConCare10: the RNN-based model with multi-head self-atten-

tion to consider the personal patient’s health context. ConCare extracts interde-

pendencies between clinical features to learn the personal health context.

StageNet3: The neural-network-based model with an LSTMmodule and a con-

volutional module to model disease-stage information for risk prediction.

To further evaluate our method, we compare our method with existing

methods for mitigating temporal data shift. DG refers to a DG-based model

that learns robust representation over time.20 DG leverages the aforemen-

tioned baseline model as its backbone network and has a one-layer adversa-

rial network after the last hidden layer. Each year is set in a different domain,

and both pre- and post-shift training sets are utilized for the model training

phase. AdaDiag is a DA-based model that consists of a transformer encoder,

domain discriminator, and disease classifier. The pre- and post-shift training

sets are set to the source and target domains, respectively.

Implementation and evaluation

All models are implemented by PyTorch.33 We use the ADAM algorithm on a

mini-batch of 32 patients to optimize the predictive model. The optimal hyper-

parameters are found with the validation data in the training phase. The training

phase stops when the validation metric is not improved for ten epochs, then test

performance is reported. Hyper-parameters used by all baseline methods

include the learning rate, the number of hidden nodes, and the number of hidden

layers. The ranges of the hyper-parameters are {1e�3, 1e�4} for the learning

rate, {128, 256, 512} for the number of hidden nodes, and {2, 3} for the number

of layers. For the proposed method, the hyper-parameters used to optimize the

auto-encoder include the number of hidden nodes. The learning rate and the

number of epochs for training the auto-encoder are fixed at 0.001 and 1,000,

respectively. Additionally, the hyper-parameters used to learn the sample

weights are the learning rate, the number of epochs, and the coefficients (i.e.,

a and b). The ranges of the hyper-parameters are {16, 32, 64, 128} for the hidden

nodes, {0.001, 0.01} for the learning rate, and {100, 300, 500} for the epochs.

Both a and b are set from {1, 1e+4, 1e+7, 1e+10}. The effect of hyper-parameter

tuning for our method is visualized in Figure S2. All neural-network models,

including the auto-encoder for the proposedmodel, are initialized with a uniform

distribution. We use BCELoss as a loss function for classification.
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