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Postdisaster Routing of NMovable
Energy Resources for Enhanced
Distribution System Resilience

A DEEP REINFORCEMENT THE DEPLOYMENT OF MOVABLE ENERGY RESOURCES (MERs) CAN BE
LEARNING-BASED APPROACH an effective strategy to restore critical loads to enhance power system resil-
ience when no other energy sources are available after the occurrence of an
extreme event. Since the optimal locations of MERs following an extreme
event are dependent on system operating states (e.g., the loads at each node,
on/off status of system branches, and so on), existing analytical and popula-

By Mukesh Gautam ®, tion-based approaches must repeat the entire analysis and calculation when
Narayan Bhusa|®, and the system operating states change. On the contrary, if deep reinforcement
Mohammed Ben-|dri5® learning (DRL)-based algorithms are sufficiently trained with a wide range of

scenarios, they can quickly find optimal or near-optimal locations irrespective
of changes in system states. A deep Q-learning-based approach is proposed
for optimal MER deployment to enhance power system resilience. MERs can
"""""""""""""""""""""""""" be also utilized to complement other types of resources, if available. The pro-
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In the first stage, the distribution network is represented
as a graph, and the network is then reconfigured using
tie switches by using Kruskal’s spanning forest search
algorithm (KSFSA). To maximize critical load recovery,
the optimal or near-optimal locations of MERs are chosen
in the second stage. Case studies on a 33-node distribu-
tion system and a modified IEEE 123-node system dem-
onstrate the effectiveness of the proposed approach for
postdisaster routing of MERs.

Introduction

Extreme events, both natural (such as hurricanes, wild-
fires, ice or hailstorms, and earthquakes) and man-made
(such as cyber- and physical attacks), have become more
frequent in the past 10 years [1]. Although the majority of
loads can be kept in operation by modern power distribu-
tion systems in the face of typical weather-related disrup-
tions, some high-impact low-probability extreme events,
both man-made and weather-related, can still result in
widespread power interruptions in distribution systems.
For instance, Winter Storm Uri in Texas, USA, in February
2021, caused widespread power interruptions that left 4.5
million customers without power [2]. Also, during the year
2022 alone, there were 18 weather-related disasters in the
United States, each of which cost more than $1 billion
[3]. Such extreme events have caused damage to crucial
power system components and prolonged power outages
that affected the entire system. The goal of electric utilities
to provide their consumers with a dependable and resil-
ient electricity supply has been jeopardized by extreme
weather events and subsequent outages. To minimize the
impact of these events on end-user customers, efficient
power distribution service restoration (PDSR) strategies
must be implemented. By ensuring the optimal use of the
available resources, PDSR’s main objective is to minimize
the duration of outages and load curtailments. The most
efficient PDSR solutions in this context have been found to
be based on smart grid technologies like microgrid (MG)
formation, network reconfiguration, repair crew dispatch,
distributed generation, energy storage, MERs, and combi-
nations of these methods and techniques [4].

In the literature, several analytical and population-
based intelligent search techniques for PDSR based on
MERs have been developed to improve the reliability
and resilience of the distribution system. A comprehen-
sive survey of the literature on mobile energy storage for
enhancing power system resilience has been provided in
[5], where the modeling of power system constraints has
also been discussed along with a cost-benefit analysis of
MERs. A robust optimization framework based on two
stages has been developed in [6] for routing and sched-
uling MERs to enhance the resilience of distribution
systems. A two-stage PDSR strategy based on mixed-
integer linear programming (MILP) has been proposed
in [7] to enhance the seismic resilience of distribution
systems with MERs. A MILP-based PDSR strategy has

been proposed in [8] for an active distribution system,
where routing and scheduling of mobile energy storage
systems was performed for enhanced resilience. In [9],
a two-stage optimization strategy has been proposed
to enhance distribution system resilience with mobile
energy storage units, where dynamic MG formation was
also considered. In order to reduce the overall operat-
ing costs and enhance distribution system resilience,
an innovative integrated restoration approach based on
a stochastic MILP has been developed in [10] for the
coordination of mobile energy storage fleets and MGs.
A genetic algorithm-based approach has been developed
in [11] to enhance distribution system reliability using
MERs. The analytical and population-based intelligent
search techniques utilized for PDSR based on MERs to
enhance distribution system reliability and resilience
have the following shortcomings. The accuracy and
efficacy of analytical-based approaches are dependent
on the accuracy of the models utilized, with accurate
models imposing scalability challenges. Furthermore,
mathematical models are typically derived using many
approximations and require entire system information.
Due to the enormous search space, population-based
approaches, on the other hand, are computationally
intensive, especially as system sizes increase.

Since learning-driven models can address uncertainty
by extracting information from previous data, they have
been utilized to overcome the shortcomings of analytical
and population-based approaches [12], [13]. Furthermore,
because of their capacity to employ information gathered
from previous data to solve new scenarios, learning-
driven models do not need to be solved whenever new
scenarios are encountered [14]. RL-based systems are
among the learning-driven approaches that can learn
from experiences during online operations [15], [16]. Also,
RL-based approaches are the best fit for online decision-
making applications. Therefore, an RL-based approach for
postdisaster MER dispatch is investigated in this article for
distribution system resilience enhancement.

This article proposes a DRL-based framework for the
postdisaster dispatch of MERs to enhance distribution
system resilience. The proposed DRL approach is based
on the training of a neural network (NN) that makes the
best decision based on previous experiences [17], [18].
Given a specific decision, the sequential decision process
gives a reward value as a function of the system outcome.
The objective of the proposed DRL agent is to minimize
critical load curtailment. To ensure realistic representa-
tion of distribution system operations, system constraints,
including radiality and power balance constraints, are
considered. In the training phase of the proposed frame-
work, Q values are predicted using forward propagation
of a deep NN (DNN). Actions are selected using the epsi-
lon-greedy algorithm. When actions are passed through
the training environment, the DRL agent gets rewarded
(or penalized) based on its performance. Target Q values
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are calculated based on the reward. The mean square
error (MSE)—one of most commonly employed loss func-
tions for regression—is computed using the predicted
and target Q values. Errors are then backpropagated to
update the weights of the DNN. The trained DRL agent
is then used to find optimal or near-optimal locations for
MER deployment. The proposed framework is validated
through case studies on two different distribution test
systems, and the results show that the proposed frame-
work can effectively find an optimal network configura-
tion and MER deployment locations, thereby minimizing
critical load curtailment.

The remainder of the article is organized as follows.
The mathematical formulation of the postdisaster reconfig-
uration and MER deployment problem is explained in the
“Mathematical Modeling” section. The proposed frame-
work and solution approach are described in the “RL for
MER Routing” section. Case studies on two different dis-
tribution test systems are used to validate the proposed
work in the “Case Study and Discussion” section. The
“Conclusion” section provides some concluding remarks.

Mathematical Modeling

This article combines network reconfiguration (the first
stage) and MER routing (the second stage) to minimize
load curtailments after extreme events. An introduction
to graph theory, the graph theory-based modeling of the
distribution network, and the mathematical formulation
of the problem under study are presented in this section.
In addition, states, actions, and the reward function are
described in the context of the problem.

Graph Theory

Graph theory refers to the study, modeling, and analysis
of graphs. A graph is a framework built up of a collec-
tion of objects where some object pairs are conceptually
“connected.” The objects are represented by mathemati-
cal constructs known as vertices (sometimes known as
nodes or points), and each pair of connected vertices is
known as an edge (also referred to as a link or line) [19],
[20]. A graph is typically shown diagrammatically as a
collection of dots or circles representing the vertices and
lines or curves representing the edges. The edges can be
either directed or undirected. Mathematically, a graph is
represented as a pair G = (V, E), where N is a set whose
objects are called nodes, and E is a set of connected
nodes, whose objects are called edges.

The number of nodes in a graph determines the
graph’s size. In a graph, a path is a way that can be taken
along edges and via nodes. A path’s edges and nodes are
all linked to one another. A cycle, also known as a circuit,
is a path that starts and finishes at the same node. The
length of a path or cycle is the sum of all of its edges.
If there exists at least one edge connecting each pair of
nodes and no node is directly connected to another node
through an edge, the graph is referred to as a connection

graph [21]. The term tree graph refers to a connection
graph that is devoid of cycles. Equation (1) is satisfied in a
tree graph with | NV | nodes and | E | edges:

IN[=|E|-1. €Y)

Equation (2) is used to calculate the number of cycles Neye
in a graph [21]:

Graph-Theoretic Modeling of Distribution Network
Distribution systems are equipped with sectionalizing
switches (normally closed) and tie switches (normally
open). When all the switches of a distribution network are
closed, a meshed network is formed, and the meshed net-
work thus formed can be represented by an undirected
graph G = (N, &), where N is a set of nodes (or vertices)
and & is a set of edges [22]. For the MER deployment
problem proposed in this article, the status of tie switches
is changed in such a way that radiality is always main-
tained, and MGs are formed after deployment of MERs.

Spanning Tree

A spanning tree (ST) is defined as a subset of the undi-
rected graph G = (N, &) that has a minimal number of
edges linking all vertices (or nodes). In an ST, the number
of edges is one less than the number of vertices. There
are no cycles in an ST, and all the vertices are connected
[23]. A linked graph can have many STs, each of which
has the same number of edges and vertices. Each of
the undirected graph G’s edges has a specific value (or
weights). The edge weights vary depending on the prob-
lem. The sum total of all edge weights of an ST is mini-
mized when establishing the minimum cost ST. Figure 1
shows an ST of a hypothetical 12-node system. The ST
shown in the figure consists of all system nodes (i.e., 12)
and 11 closed branches (edges).

Spanning Forest

In graph theory, a forest is a disconnected union of trees.
A spanning forest is a forest that covers all vertices of the
undirected graph G and consists of a set of disconnected
STs [23]. When all STs are connected, each vertex of the
undirected graph G is included in one of the STs [24]. On
the other hand, when a disconnected graph has many
connected components, a spanning forest is formed,
and it contains an ST of each component [25]. Figure 2
describes the spanning forest formed as a result of the
disconnection of two addition branches (2-6 and 3-10) in
the ST in Figure 1. The spanning forest in Figure 2 con-
sists of three STs (ST-1, ST-2, and ST-3).

In this article, Kruskal’s algorithm [26] is used to
search for the optimal spanning forest. The KSFSA starts
by constructing a forest F, with each graph vertex act-
ing as a single tree based on the given undirected graph.
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Since the KSFSA is a greedy algorithm, it goes on con-
necting the next least-weight edge that avoids a loop or
cycle to the forest F at each iteration. The resulting forest
F after the last iteration is the optimal spanning forest
[22]. Figure 3 provides a flowchart of the KSFSA.

Problem Formulation
This section presents the objective function and con-
straints of the problem under consideration.

® Node
--- Open Branch
— Closed Branch

® Node
--- Open Branch
— Closed Branch

FIGURE 2. A spanning forest of the hypothetical 12-node system in

Figure 1.

Read an Undirected Graph

v

Construct a Forest F (a Collection of Trees) With
Each Graph Vertex Acting as a Single Tree

v

Construct a Set E that Contains
all the Graph’s Edges

v

Delete an Edge With
the Least Weight From E

v

If the Deleted Edge Links Two Different Trees,
Add It to Forest F to Merge the Two Trees into One

v

Is E Empty and F Spanning?

\ 4

No

Yes

FIGURE 3. The KSFSA.

Objective Function

As a result of an extreme event, some or all parts of the
system may lose power. Under such a circumstance, tie
switches should be used to reconfigure the network,
and MERs should be deployed to enhance the distribu-
tion system’s resilience. Therefore, the objective of the
postdisaster MER routing problem under consideration
is to minimize the critical load curtailment of the sys-
tem since it can capture the severity of multiple line
outages and is directly affected by the topology, or con-
figuration, and MER deployment locations in a distribu-
tion system. Mathematically, the objective function of
the critical load curtailment minimization is expressed
as follows:

N
Min z wiAP; 3)
i=1
where AP; is the load curtailment at node I, w; is the
critical load factor at node 7, and N is the total number of
nodes in the system.

Constraints

The problem under consideration is subjected to various
constraints, including nodal power balance constraints
and a radiality constraint:

1) Node power balance constraints: The power balance
constraint given by (4) ensures the balance of power
at each node of the system (including MGs energized
by MERSs):

2 Pyt 2 Py=Pp, @
JEQ(H 1€Q1())

where Qz(j) is the set of sources (including MERSs)
connected to node j, Q(j) is the set of lines connect-
ed to node j, P,; is the power injected from source
J, Ppyj is the load at node j, and P; is the line power

flow from node / to node j.
2

N

Radiality constraint: A distribution system must always
meet the radiality requirement. Therefore, each poten-
tial configuration should be radial (.e., the radiality
constraint should be met for each ST of the network).
Each ST of the network is represented by a subgraph
Gs = (N, &), where N is a set of nodes (or vertices)
and &; is a set of edges (or branches) in the subgraph.
For the subgraph, a node branch incidence matrix
should be constructed. If 7 =| N, | denotes the number
of nodes and e =| & | denotes the number of edges of
a particular ST, then the node branch incidence matrix
A € R is the matrix with element a;, calculated as
follows [27]:

+1 if branch j starts at node i
a; =41—1 if branch j endsat nodei . ()
0 otherwise

If the node branch incidence matrix A4 is full ranked,
then the radiality constraint is satisfied.
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States, Actions, and Reward Function

The choice of states, actions, and the reward function
plays a critical role for the proper training of an RL agent.
Therefore, states, actions, and the reward function must
be chosen with careful consideration. For the MER rout-
ing problem under consideration, the state S; consists of
the on/off status of each edge of the network and the
amount of curtailed critical load at time step t:

S ={sit|i € Qg LCY} (@)

where LC; is the amount of curtailed critical load at time
step £, Qg is the set of network edges, and s;: denotes
the status of network edge i at time step #, determined
as follows:

1 if network edge i is closed
Sit = ,ViEQE. (@)

0 if network edge 7 is open

The action is a vector of MER deployment locations.
The system state given by (6) consists of two different
types of variables. The exogenous variable s;, is indepen-
dent of actions, whereas the endogenous variable LC; is
affected by actions, i.e., MER deployment locations.

The RL agent is given a high positive reward when it
reaches the optimal point and is not given any reward if
the amount of curtailed critical load decreases. This moti-
vates the agent to reach the optimal point faster instead
of proceeding slowly. However, the RL agent is penalized
by giving a negative reward when the amount of curtailed
critical load remains constant or increases between two
consecutive time steps. The total reward at time step ¢ is
computed as follows:

100 if LCH = LCc™"

R — 0 ifLci < rLct, ®
-5 if LcF = LCtY
—10 if LCM™ > Lc™

where LC and LCH: are critical
load curtailments, respectively, at

time steps ¢ and # — 1 as a result of

value functions, and environment model. An agent decides
what action to take based on the policy. The policy estab-
lishes a relationship between states and actions. When the
agent performs a task, it is rewarded (or penalized). The
value function determines the expected value of the cumu-
lative reward when an agent follows a policy. There is a
variety of algorithms for RL. A number of factors influence
the choice of an algorithm, such as the nature of the states
(continuous or discrete), the action space (continuous or
discrete), and so on. The action space for the MER routing
problem under consideration is discrete, making Q-learning
an appropriate option for the task. Basic Q-learning, on the
other hand, necessitates large lookup tables to store state—
action values. As an action value function approximator, a
DNN is employed to avoid the usage of large lookup tables.
The addition of the DNN to the basic Q-learning framework
transforms it into a deep Q-network (DQN). The goal of
Q-learning is to simulate the Q-function, or, to put it anoth-
er way, to predict the expected rewards for each action in
a given state. The term Q-function here refers to a function
that takes a state—action pair and returns the action value.
The update rule for the action value function in Q-learning
is defined as follows [15]:

Q(Sl;At) s Q(St,At) +aoa X
[Ris1 + 7 X max Q(Sr+1,4r:1) = Q(S1, 4] ©

where A, and S: are the action and state of an agent at
the th iteration, Q(S:, Ay is the action value function
at time step £, Q(S:+1, Ai+1) is the action value function at
time step (¢ + 1), « is the learning rate, and y is the reward
discount factor.

Instead of updating the action value function itera-
tively, the DNN is trained, and the action value func-
tion’s parameters are optimized to minimize the MSE

DQN Loss Function

; Update

the acthn.taken b?/ jche RL a.g.ent Parapmetero Q(s,a;0) Q(s,a;0)

and LC™" is the minimum critical

load curtailment for the particular Distribution Sl ) e @ ) 5) e o )

line outage scenario. Network ® : : ® PS : : P

) Update

RL for MER Routing ® ® o ometor 5| ® ~
System ® o) ® ® ® o0 ®

This work leverages recently Data Q(s,a;0) PUAIN PUA P

advanced RL techniques for post- Main DQN Target DQN

disaster MER routing to minimize
the amount of curtailed critical load.
This section provides a brief over- Generator)
view of deep Q-learning and its

Environment
(Reward Function

training aspects.

Store Transition Experience Replay

Deep Q-Learning
The four main integrands of an RL-
based system are the policy, reward,

(s ar) Memory

FIGURE 4. The training architecture of the proposed DRL model.
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loss function (i.e., the regression loss function), which is
expressed as follows [28]:

L) = E[(Q(S, A1 |0) — R(S1, AD) +y X Q(S:, As; $))7] (10)

Algorithm 1. The training of the proposed DRL-based

Input: System data, including line data, load data, the on/off
status of branches, and so on.

Initialize experience replay memory M.

Initialize parameters 6 of the main DQN with random values.

Set target DQN parameters ¢ equal to the main DQN
parameters; i.e., ¢ — 6.

for episode — 1 to n,, do

Initialize the system with a random state (here, a vector
of the line/branch status and load curtailment).

fort—1to7do

Generate action value function Q based on the
current state.

Calculate the reward function R,. (S, A,) after
passing the state and action value function through
the reward generator.

Append the experience replay memory M with
transition (S, A;, R;.1(Sy Ay).

if length(M) > batch_size then

Randomly select a minibatch.
Calculate the DQN loss function based on the
main Q-function and target Q-function.
Perform backpropagation to update parameters 6
of the main DQN.
L= Periodically update parameters ¢ of the target DQN.
Output: MER deployment locations.

23 24 25

37

where [E denotes the expectation operator, & denotes the
parameter of action value function Q(S:;, 4), R(S:, A1)
denotes the reward function at time step ¢, ¢ denotes the
parameter of the target DQN, and Q(S;, As; ¢) denotes the
action value function of the target DQN.

Training Attributes

When a nonlinear function approximator, like an NN,
is employed to represent the Q-function, RL becomes
unstable or divergent. The causal links in the series
of observations, the possibility that tiny changes to
Q may drastically alter the agent’s behavior and the
distribution of the data, and the relationships between
predicted and target Q values all contribute to this
instability. The technique is applicable to many dif-
ferent applications and areas of stochastic search [29].
Experience replay, a bioinspired process that chooses
from a random sample of previous actions rather than
the most recent action, is employed in Q-learning
[30]. As a result, causality in the observational order
is eliminated, and fluctuations in the data distribution
are smoothed [31].

The experience replay memory-based training of the
DQN is performed for a certain number of episodes
(1¢p). The parameters 6 of the main DQN are initialized
with some random values, and the parameters ¢ of the
target DQN are set equal to that of the main DQN. Each
episode starts by initializing the system with a random
state, which is a vector of the on/off status of the network
branches after reconfiguration and the amount of cur-
tailed critical load. In each time step, the predicted Q val-
ues corresponding to each action are
computed based on forward propa-
gation of the DNN. For the selec-
tion of actions, the epsilon-greedy
(exploration—exploitation) algorithm
[32] is used. The value of the explora-
tion rate, ¢, is initialized at emax = 1.

19 20 21

22

FIGURE 5. The 33-node distribution test system. S/S: substation.

The exploration rate is kept constant
(i.e,, D up to 10% of the total epi-
sodes, is decreased at a constant rate
from 10% to 80% of the total epi-

1,2,..., 37: Edges sodes, and is again kept constant to

1,2,...,33: Nodes a minimum value &nin = 0.001 for the

last 20% of episodes. This ensures
that the DQN sufficiently explores
in the initial phase of training and
exploits (i.e., searches in the most

Tahle 1. The locations of critical loads for the 33-node system

Node 4 5 6 7 8 9 10 11 18
Critical 60 30 60 200 200 60 30 25 45
load (kW)

19 20 2
45

2 B 2% 27 8 2 30 3

45 45 45 45 60 60 60 60 60 30
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prospective regions) during the last episodes of the train- ] i
ing. The exploration rate ¢; at the jth episode can be Table 2. The hyperparameter settings of the main and

expressed as follows: target WNS
€ max lf] < 0.17Lep H t 23-¥°de ;23;N0de
£; =161~ Ae if 0.1n¢ < j < 0.8n6p an fyperparamezer ystem ystem
Emin if j= 0.8n¢p Number of hidden layers 3 3
Hidden layer neurons 10, 10, 10 10, 10, 20
where .
Learning rate 103 103
_ €max — Emin A
Ae = 0.7 X 1oy 12 Reward discount factor ~ 0.99 0.99
Output layer activation Linear Linear
The experience replay memory is appended with Hidden layer activation RelU RelU
transition (S, As, Ri+1(S:, Ar)). MSE losses for each time Optimizer Adam Adam
step ¢ are computed based on (10) using the predicted P .
Q value of the main DQN and target Q values. The Replay memory size 20,000 20,000
parameters of the main DQN are updated by back- Batch size 600 1,000
propagating these MSE losses. After a certain number of Target update rate 1,500 iterations 2,500 iterations

iterations, the parameters of the target DQN are periodi- —
. s o . ReLU: rectified linear unit.
cally updated. Figure 4 exhibits the training architecture
of the proposed DRL model. Algorithm 1 provides the

procedure of training the proposed DRL-based MER

routing problem. 100
Case Study and Discussion 50+
To demonstrate the effectiveness of the proposed é
approach, a 33-node system and a modified IEEE 123- z 01
node system are used for numerical simulations. 0 501

©

E —Actual Rewards
The 33-Node System ~100 — Running Mean

o of Actual Rewards

System Description -150 ' ' , , , , : :
The 33-node distribution test system is a radial distribu- © 6QQ QQQ (,DQQ QQQ 600 QQQ @Q QQQ
. . . L D oY Al DR Y AT o
tion system with 33 nodes, 32 branches, and five tie lines v NYON N N Y
(37 branches) [33]. As displayed in Figure 5, all branches Episodes

(including tie lines) are numbered from one to 37. The

system’s overall load is 3.71 MW. The deployment of  FIGURE 6. The learning curve of the proposed DRL model for the
four MERs, each of capacity 300 kW, is considered. The 33-node system.

locations and amount of critical load considered for the

33-node system are listed in Table 1. The hyperparam-

eter settings of the main and target DQNs of the pro- 30 :
posed framework for the 33-node system are provided —Actua'l lteration Counts
. 25 —Running Mean of
in Table 2. Iteration Counts
20
Training

The training of the proposed model for the 33-node sys-
tem is performed for 20,000 episodes. The parameters 6 of

=
o

Iteration Counts
o

the main DQN are initialized with random values, and the

parameters ¢ of the target network are set equal to 6. In 51

each episode, the system is initialized with a random state, 04

and the action value function is generated based on the O O & P
. . Q ) Q i) Q Q

current state. The reward function is calculated by pass- AN -RE S S RN SN SN

ing the state and action value function through the reward Episodes

generator. Initially, the rewards are very low, but then

they increase as the number of episodes increases. Fig-  FIGURE 7. The total iteration counts during the training of the
ure 6 presents the actual rewards and the running mean proposed DRL model for the 33-node system.
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23 24 25 37

SIS O

19 20 21 22

1, 2,..., 37: Edges

1, 2,..., 33: Nodes

X : Branch With Outage

FIGURE 8. Test case 1 of the 33-node system before implementing the proposed approach.

23 24 25 g7 L2 oceecec e .

S/S

19 202021 22

1,2,...,37: Edges X :Branch With Outage
1,2,...,33: Nodes < : MER

FIGURE 9. Test case 1 of the 33-node system after implementing the proposed approach.

IL-6

1,2,...,37: Edges
IL-5 1,2,...,33: Nodes
X : Branch With Outage

(500-episode window) of the actual
rewards as the episode progresses.
It can be seen from the figure that
as the number of episodes increas-
es, the running mean of the reward
increases and almost saturates after
nearly 15,000 episodes. Similarly, Fig-
ure 7 shows the total iteration counts
during the training of the proposed
model. The total iteration count is
the number of iterations taken by
the DRL model to reach the optimal
point, where the maximum iteration
count is set to 30. The figure shows
that the iteration count is very high
up to 7,000 episodes. However, as the
training continues, the total iteration
count decreases and becomes almost
constant after 17,000 episodes.

Testing and Implementation

For the testing and implementation

of the trained model, two test cases

are devised with different line out-
age scenarios. The two test cases are
explained in the following:

1 Test case 1: In this case, the outage
of six lines, 12, 13, 17, 29, 30, and
31, is simulated. Due to the outage
of these lines, six isolates (ILs)
(IL-1, IL-2, IL-3, IL-4, IL-5, and IL-6)
are formed, as in Figure 8. These
ILs are devoid of power. This
results in a total critical load cur-
tailment of 135 kW.

When the outage data are
given as inputs to the proposed
DRL model, two tie switches (34
and 30) are closed, and MERs are
placed at nodes 18, 20, 22, and
30. This results in the formation
of two MGs (MG-1 and MG-2)
and two ILs (IL-1 and IL-2), as
described in Figure 9. In both
MG-1 and MG-2, the total gen-
eration exceeds the total critical
loads, resulting in no critical load
curtailments. The total critical
loads in IL-1 and IL-1 are zeros as
well. Therefore, the total amount
of curtailed critical load after
reconfiguration and MER deploy-
ment is 0 kW. The proposed
approach is able to recover 135
kW of critical loads for the given

FIGURE 10. Test case 2 of the 33-node system before implementing the proposed approach. outage scenario.
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2) Test case 2: In this case, the proposed approach is  IEEE 123-Node System

tested with a more extreme outage scenario, where an
outage of the line connected to the substation node System Description
(i.e., 1) is considered in addition to outage of lines 11, To further demonstrate the effectiveness and scalability of
16, 20, 27, and 28, as in Figure 10. Because of the the proposed DRL-based approach, numerical simulation
outage of the line connected to the substation node, is also performed on the modified IEEE 123-node system
there is a power interruption at
all system nodes, and the total
critical load curtailment in this A CUSIPARCORNEMEETE  mamsccocstiieosrosescesiesence:
scenario is 1,265 kW.

After the implementation of

the proposed DRL approach for 2% 580929 30

this test case, four tie switches,

33, 34, 36, and 37, are closed, and S/S
MERs are placed at nodes 7, 22,
23, and 30. An MG, MG-1, and an
IL, IL-1, are formed, as demon-
strated in Figure 11. In MG-1, the
amount of curtailed critical load
is 5 kW. IL-1 consists of node
28, whose critical load is 60 kW. ,
Therefore, the total amount of R 2 Eless
curtailed critical load is 65 kW. 1,2,...,37:Edges X :Branch With Outage
The total critical load recovered 1,2,...,33:Nodes «®W :MER

by the proposed approach is
1,200 kW for the given scenario. FIGURE 17. Test case 2 of the 33-node system after implementing the proposed approach.

98 99 100

® .67....

160 68 69 70 71

2700 0@
73 74 75

78 79

95 93 91 89

FIGURE 12. The modified IEEE 123-node system.

Authorized licensed use limited to: Michigan State University. Downloaded on February 18,2024 at 2M4R46/0T0 froR?iEEE xMEFIndugtyiApplicaligns Magazine




Tahle 3. The locations of critical loads for the modified IEEE 123-node system

Node 1 6 11 17 24 30 37 43 50 5 66 75 79 85 8 94 98 100 109 113
Critical 40 40 40 20 40 40 40 40 40 40 75 40 40 40 40 40 40 40 40 40

load (kW)
100 A 30
50 4 251

N
o

Total Rewards
|
(¢
o
Iteration Counts
o

—100 104
~150 57
N T T o T o © 8 8
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0 o0 AT oY 97 o QAT 0 AT ¥ 9P P g N
Episodes Episodes
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——Running Mean of Actual Rewards ——Running Mean of Iteration Counts
FIGURE 13. The learning curve of the proposed DRL model for the FIGURE 14. The total iteration counts during the training of the
IEEE 123-node system. proposed DRL model for the IEEE 123-node system.
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) 83
X : Branch With Outage

FIGURE 15. Test case 1 for the IEEE 123-node system before implementing the proposed approach.
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in Figure 12. The modified IEEE 123-node system shown
in the figure consists of 123 nodes and 126 branches. Out
of the 126 branches, two of them (94-54 and 151-300) are
equipped with tie switches. All branches and loads are
assumed to be balanced. The deployment of five MERs,
each of capacity 160 kW, is considered. The locations
and amount of critical load considered for the system are
given in Table 3.

Training

Similar to the 33-node system, the proposed DRL-based
model is trained for 20,000 episodes. Figure 13 displays
the learning curve of the proposed DRL model. The
figure shows that the total reward is very low in the
early episodes of training, but it continuously increases
as the episodes progress and becomes almost constant
after 17,000 episodes. Similarly, Figure 14 shows the
total iteration count during the training of the proposed
DRL-based model. The figure shows that the total
iteration count is very high up to 11,000 episodes. How-
ever, the total iteration count decreases as the training
progresses and stays in the range of one to five after
16,000 episodes.

Testing and Implementation

Similar to the 33-node system, two test cases with dif-
ferent line outage scenarios are devised for the testing
and implementation of the trained DRL model in the
case of the IEEE 123-node system. The two test cases are
explained as follows:

1) Test case 1: In this case, the outage of six lines (13—
18, 40-42, 45-46, 55-56, 60-62, and 72-73) is simu-
lated. Due to the outage, six ILs (IL-1, IL-2, IL-3, IL-4,
IL-5, and IL-6) are formed, as in Figure 15. The total
amount of curtailed critical load under this scenario
is 315 kW.

After the implementation of the proposed
approach, tie switch 151-300 is closed, and MERs are
deployed at nodes 13, 27, 64, 70, 97, and 101, as illus-
trated in Figure 16. For this configuration, two MGs
(MG-1 and MG-2) and three ILs (IL-1, IL-2, and IL-3)
are formed as shown in the figure. Since the genera-
tion exceeds the critical load in both MG-1 and MG-2,
they do not have any curtailed critical loads. IL-1 has
a critical load of 40 kW at node 75, whereas IL-2 and
IL-3 do not have any critical loads. Therefore, the
total amount of curtailed critical load is 40 kW after

|
89
95 93 91 87 86 82
X : Branch With Outage 83

I : MER

FIGURE 16. Test case 1 for the IEEE 123-node system after implementing the proposed approach.
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implementing the proposed DRL
model, recovering 275 kW of the
critical loads.

2) Test case 2: In this test case, the
outage of six lines (34-15, 52-53,
63-64, 67-68, 102-103, and 108-
300) is simulated. As a result of
the outage, six ILs (IL-1, IL-2, IL-3,
IL-4, IL-5, and IL-6) are formed, as
in Figure 17. The total amount of
curtailed critical load under this
scenario is 455 kW before the
implementation of the proposed
approach.

After the implementation of
the proposed DRL-based model,
tie switch 151-300 is closed, and
MERs are deployed at nodes 1,
13, 64, 81, 93, and 101, as demon-

strated in Figure 18. For this configuration, two MGs
(MG-1 and MG-2) and three ILs (IL-1, IL-2, and IL-3)
are formed. In each of the MGs, the total generation
exceeds the total critical load. IL-1 and IL-2 do not
have any critical loads, whereas IL-3 has a critical load
of 20 kW at node 17. Therefore, the total amount of

The goal of electric
utilities to provide
their consumers with
a dependable and
resilient electricity
supply has heen
jeopardized by
extreme weather
events.

curtailed critical load is 20 kW, recov-
ering 435 kW of the critical loads.

Comparison

The proposed DRL-based approach
is compared with an exhaustive
search technique. In the exhaustive
search technique, all possible candi-
dates of the solution are enumerated,
and the critical load curtailments are
computed for each candidate solu-
tion to get the best solution. For each
test case of both 33-node and 123-
node systems, the exhaustive search
technique is used to find the opti-
mal MER deployment locations that
result in minimum critical load cur-
tailment. For each test case, the same
values of critical load curtailments

are obtained for both the exhaustive search technique and
the proposed DRL-based approach.

Although the same values of critical load curtail-
ments can be obtained using both approaches, the
proposed approach outperforms the exhaustive search
technique in terms of execution time. The analyses are

X :Branch With Outage ' __________________ !

FIGURE 17. Test case 2 for the IEEE 123-node system before implementing the proposed approach.
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X :Branch With Outage
¢l : MER

FIGURE 18. Test case 2 for the IEEE 123-node system after implementing the proposed approach.

Tahle 4. A comparison of the execution times

Execution Execution
Time Time
(Exhaustive  (Proposed
System Case Search) Approach)
33-node Test case 1 0.248s 0.006's
system
Test case 2 0.239s 0.007 s
123-node Test case 1 1.276 s 0.017 s
system
Test case 2 1.31s 0.022 s

performed on a PC with a 64-b Intel i5 Core proces-
sor running at 3.15 GHz, with 8 GB of random-access
memory and the Windows operating system. Table 4
displays the execution time for different test cases using
both approaches. The execution time of the proposed
approach ranges from 6 to 22 ms for both 33-node
and 123-node systems, while the execution time of the
exhaustive search technique is significantly higher than
the proposed approach. The ratios of the execution time

of the exhaustive search technique and the proposed
approach are approximately 40 and 75, respectively,
in the 33-node system and the 123-node system. This
shows that the proposed approach is highly scalable
compared to the exhaustive search technique.

Conclusion

This article has proposed a DRL-based two-stage
approach for network reconfiguration and MER routing
to minimize the amount of curtailed critical load when
multiple line outages occur following an extreme event. In
the first stage, distribution network reconfiguration was
performed using tie switches. In the second stage, MERs
were utilized to form MGs. The distribution network was
represented by an undirected graph, and the optimal
spanning forest was formed. The proposed approach
was tested and implemented on a 33-node system and a
modified IEEE 123-node system. Two test cases in each
of the systems exhibit the effectiveness of the proposed
approach for recovering critical loads of the system by
leveraging MERs and forming MGs, thereby enhancing
system resilience. Additionally, the proposed DRL-based
approach was found to be computationally efficient com-
pared to the exhaustive search technique, indicating its
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effectiveness for enhancing distribution systems’ opera-
tional resilience.
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