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THE DEPLOYMENT OF MOVABLE ENERGY RESOURCES (MERs) CAN BE 
an effective strategy to restore critical loads to enhance power system resil-
ience when no other energy sources are available after the occurrence of an 
extreme event. Since the optimal locations of MERs following an extreme 
event are dependent on system operating states (e.g., the loads at each node, 
on/off status of system branches, and so on), existing analytical and popula-
tion-based approaches must repeat the entire analysis and calculation when 
the system operating states change. On the contrary, if deep reinforcement 
learning (DRL)-based algorithms are sufficiently trained with a wide range of 
scenarios, they can quickly find optimal or near-optimal locations irrespective 
of changes in system states. A deep Q-learning-based approach is proposed 
for optimal MER deployment to enhance power system resilience. MERs can 
be also utilized to complement other types of resources, if available. The pro-
posed approach operates in two stages after the occurrence of extreme events. 
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In the first stage, the distribution network is represented 
as a graph, and the network is then reconfigured using 
tie switches by using Kruskal’s spanning forest search 
algorithm (KSFSA). To maximize critical load recovery, 
the optimal or near-optimal locations of MERs are chosen 
in the second stage. Case studies on a 33-node distribu-
tion system and a modified IEEE 123-node system dem-
onstrate the effectiveness of the proposed approach for 
postdisaster routing of MERs.

Introduction
Extreme events, both natural (such as hurricanes, wild-
fires, ice or hailstorms, and earthquakes) and man-made 
(such as cyber- and physical attacks), have become more 
frequent in the past 10 years [1]. Although the majority of 
loads can be kept in operation by modern power distribu-
tion systems in the face of typical weather-related disrup-
tions, some high-impact low-probability extreme events, 
both man-made and weather-related, can still result in 
widespread power interruptions in distribution systems. 
For instance, Winter Storm Uri in Texas, USA, in February  
2021, caused widespread power interruptions that left 4.5 
million customers without power [2]. Also, during the year 
2022 alone, there were 18 weather-related disasters in the 
United States, each of which cost more than $1 billion 
[3]. Such extreme events have caused damage to crucial 
power system components and prolonged power outages 
that affected the entire system. The goal of electric utilities 
to provide their consumers with a dependable and resil-
ient electricity supply has been jeopardized by extreme 
weather events and subsequent outages. To minimize the 
impact of these events on end-user customers, efficient 
power distribution service restoration (PDSR) strategies 
must be implemented. By ensuring the optimal use of the 
available resources, PDSR’s main objective is to minimize 
the duration of outages and load curtailments. The most 
efficient PDSR solutions in this context have been found to 
be based on smart grid technologies like microgrid (MG) 
formation, network reconfiguration, repair crew dispatch, 
distributed generation, energy storage, MERs, and combi-
nations of these methods and techniques [4].

In the literature, several analytical and population-
based intelligent search techniques for PDSR based on 
MERs have been developed to improve the reliability 
and resilience of the distribution system. A comprehen-
sive survey of the literature on mobile energy storage for 
enhancing power system resilience has been provided in 
[5], where the modeling of power system constraints has 
also been discussed along with a cost–benefit analysis of 
MERs. A robust optimization framework based on two 
stages has been developed in [6] for routing and sched-
uling MERs to enhance the resilience of distribution 
systems. A two-stage PDSR strategy based on mixed-
integer linear programming (MILP) has been proposed 
in [7] to enhance the seismic resilience of distribution 
systems with MERs. A MILP-based PDSR strategy has 

been proposed in [8] for an active distribution system, 
where routing and scheduling of mobile energy storage 
systems was performed for enhanced resilience. In [9], 
a two-stage optimization strategy has been proposed 
to enhance distribution system resilience with mobile 
energy storage units, where dynamic MG formation was 
also considered. In order to reduce the overall operat-
ing costs and enhance distribution system resilience, 
an innovative integrated restoration approach based on 
a stochastic MILP has been developed in [10] for the 
coordination of mobile energy storage fleets and MGs. 
A genetic algorithm-based approach has been developed 
in [11] to enhance distribution system reliability using 
MERs. The analytical and population-based intelligent 
search techniques utilized for PDSR based on MERs to 
enhance distribution system reliability and resilience 
have the following shortcomings. The accuracy and 
efficacy of analytical-based approaches are dependent 
on the accuracy of the models utilized, with accurate 
models imposing scalability challenges. Furthermore, 
mathematical models are typically derived using many 
approximations and require entire system information. 
Due to the enormous search space, population-based 
approaches, on the other hand, are computationally 
intensive, especially as system sizes increase.

Since learning-driven models can address uncertainty 
by extracting information from previous data, they have 
been utilized to overcome the shortcomings of analytical 
and population-based approaches [12], [13]. Furthermore, 
because of their capacity to employ information gathered 
from previous data to solve new scenarios, learning-
driven models do not need to be solved whenever new 
scenarios are encountered [14]. RL-based systems are 
among the learning-driven approaches that can learn 
from experiences during online operations [15], [16]. Also, 
RL-based approaches are the best fit for online decision-
making applications. Therefore, an RL-based approach for 
postdisaster MER dispatch is investigated in this article for 
distribution system resilience enhancement.

This article proposes a DRL-based framework for the 
postdisaster dispatch of MERs to enhance distribution 
system resilience. The proposed DRL approach is based 
on the training of a neural network (NN) that makes the 
best decision based on previous experiences [17], [18]. 
Given a specific decision, the sequential decision process 
gives a reward value as a function of the system outcome. 
The objective of the proposed DRL agent is to minimize 
critical load curtailment. To ensure realistic representa-
tion of distribution system operations, system constraints, 
including radiality and power balance constraints, are 
considered. In the training phase of the proposed frame-
work, Q values are predicted using forward propagation 
of a deep NN (DNN). Actions are selected using the epsi-
lon-greedy algorithm. When actions are passed through 
the training environment, the DRL agent gets rewarded 
(or penalized) based on its performance. Target Q values 
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are calculated based on the reward. The mean square 
error (MSE)—one of most commonly employed loss func-
tions for regression—is computed using the predicted 
and target Q values. Errors are then backpropagated to 
update the weights of the DNN. The trained DRL agent 
is then used to find optimal or near-optimal locations for 
MER deployment. The proposed framework is validated 
through case studies on two different distribution test 
systems, and the results show that the proposed frame-
work can effectively find an optimal network configura-
tion and MER deployment locations, thereby minimizing 
critical load curtailment.

The remainder of the article is organized as follows. 
The mathematical formulation of the postdisaster reconfig-
uration and MER deployment problem is explained in the 
“Mathematical Modeling” section. The proposed frame-
work and solution approach are described in the “RL for 
MER Routing” section. Case studies on two different dis-
tribution test systems are used to validate the proposed 
work in the “Case Study and Discussion” section. The 
“Conclusion” section provides some concluding remarks.

Mathematical Modeling
This article combines network reconfiguration (the first 
stage) and MER routing (the second stage) to minimize 
load curtailments after extreme events. An introduction 
to graph theory, the graph theory-based modeling of the 
distribution network, and the mathematical formulation 
of the problem under study are presented in this section. 
In addition, states, actions, and the reward function are 
described in the context of the problem.

Graph Theory
Graph theory refers to the study, modeling, and analysis 
of graphs. A graph is a framework built up of a collec-
tion of objects where some object pairs are conceptually 
“connected.” The objects are represented by mathemati-
cal constructs known as vertices (sometimes known as 
nodes or points), and each pair of connected vertices is 
known as an edge (also referred to as a link or line) [19], 
[20]. A graph is typically shown diagrammatically as a 
collection of dots or circles representing the vertices and 
lines or curves representing the edges. The edges can be 
either directed or undirected. Mathematically, a graph is 
represented as a pair ( , ),G N E=  where N is a set whose 
objects are called nodes, and E is a set of connected 
nodes, whose objects are called edges.

The number of nodes in a graph determines the 
graph’s size. In a graph, a path is a way that can be taken 
along edges and via nodes. A path’s edges and nodes are 
all linked to one another. A cycle, also known as a circuit, 
is a path that starts and finishes at the same node. The 
length of a path or cycle is the sum of all of its edges. 
If there exists at least one edge connecting each pair of 
nodes and no node is directly connected to another node 
through an edge, the graph is referred to as a connection 

graph [21]. The term tree graph refers to a connection 
graph that is devoid of cycles. Equation (1) is satisfied in a 
tree graph with N; ; nodes and E; ; edges:

	 .N E 1; ; ; ;= - � (1)

Equation (2) is used to calculate the number of cycles Ncyc 
in a graph [21]:

	 ( ) .N E N1cyc ; ; ; ;= + - � (2)

Graph-Theoretic Modeling of Distribution Network
Distribution systems are equipped with sectionalizing 
switches (normally closed) and tie switches (normally 
open). When all the switches of a distribution network are 
closed, a meshed network is formed, and the meshed net-
work thus formed can be represented by an undirected 
graph ( , ),G N E=  where N  is a set of nodes (or vertices) 
and E is a set of edges [22]. For the MER deployment 
problem proposed in this article, the status of tie switches 
is changed in such a way that radiality is always main-
tained, and MGs are formed after deployment of MERs.

Spanning Tree
A spanning tree (ST) is defined as a subset of the undi-
rected graph ( , )G N E=  that has a minimal number of 
edges linking all vertices (or nodes). In an ST, the number 
of edges is one less than the number of vertices. There 
are no cycles in an ST, and all the vertices are connected 
[23]. A linked graph can have many STs, each of which 
has the same number of edges and vertices. Each of 
the undirected graph G’s edges has a specific value (or 
weights). The edge weights vary depending on the prob-
lem. The sum total of all edge weights of an ST is mini-
mized when establishing the minimum cost ST. Figure 1 
shows an ST of a hypothetical 12-node system. The ST 
shown in the figure consists of all system nodes (i.e., 12) 
and 11 closed branches (edges).

Spanning Forest
In graph theory, a forest is a disconnected union of trees. 
A spanning forest is a forest that covers all vertices of the 
undirected graph G and consists of a set of disconnected 
STs [23]. When all STs are connected, each vertex of the 
undirected graph G is included in one of the STs [24]. On 
the other hand, when a disconnected graph has many 
connected components, a spanning forest is formed, 
and it contains an ST of each component [25]. Figure 2 
describes the spanning forest formed as a result of the 
disconnection of two addition branches (2–6 and 3–10) in 
the ST in Figure 1. The spanning forest in Figure 2 con-
sists of three STs (ST-1, ST-2, and ST-3).

In this article, Kruskal’s algorithm [26] is used to 
search for the optimal spanning forest. The KSFSA starts 
by constructing a forest F, with each graph vertex act-
ing as a single tree based on the given undirected graph. 
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Since the KSFSA is a greedy algorithm, it goes on con-
necting the next least-weight edge that avoids a loop or 
cycle to the forest F at each iteration. The resulting forest 
F after the last iteration is the optimal spanning forest 
[22]. Figure 3 provides a flowchart of the KSFSA.

Problem Formulation
This section presents the objective function and con-
straints of the problem under consideration.

Objective Function
As a result of an extreme event, some or all parts of the 
system may lose power. Under such a circumstance, tie 
switches should be used to reconfigure the network, 
and MERs should be deployed to enhance the distribu-
tion system’s resilience. Therefore, the objective of the 
postdisaster MER routing problem under consideration 
is to minimize the critical load curtailment of the sys-
tem since it can capture the severity of multiple line 
outages and is directly affected by the topology, or con-
figuration, and MER deployment locations in a distribu-
tion system. Mathematically, the objective function of 
the critical load curtailment minimization is expressed 
as follows:

	 PMin i
i

N

i
1

T~
=

/ � (3)

where PiT  is the load curtailment at node I, i~  is the 
critical load factor at node i, and N is the total number of 
nodes in the system.

Constraints
The problem under consideration is subjected to various 
constraints, including nodal power balance constraints 
and a radiality constraint:
1)	 Node power balance constraints: The power balance 

constraint given by (4) ensures the balance of power 
at each node of the system (including MGs energized 
by MERs):

	 P P P,
( )

,
( )

,g j
j j

l j
l j

D j

g L

+ =
! !X X

/ / � (4)

where ( )jgX  is the set of sources (including MERs) 
connected to node j, ( )jLX  is the set of lines connect-
ed to node j, P ,g j is the power injected from source 
j, P ,D j is the load at node j, and P ,l j is the line power 
flow from node l to node j.

2)	 Radiality constraint: A distribution system must always 
meet the radiality requirement. Therefore, each poten-
tial configuration should be radial (i.e., the radiality 
constraint should be met for each ST of the network). 
Each ST of the network is represented by a subgraph 

( , ),G N Es s s=  where Ns is a set of nodes (or vertices) 
and Es is a set of edges (or branches) in the subgraph. 
For the subgraph, a node branch incidence matrix 
should be constructed. If n Ns; ;=  denotes the number 
of nodes and e Es; ;=  denotes the number of edges of 
a particular ST, then the node branch incidence matrix 
A Rn e! #  is the matrix with element ,aij  calculated as 
follows [27]:

	 .a
j i
j i

1
1

0

if branch starts at node
if branch ends at node
otherwise 

ij =

+

-* � (5)

If the node branch incidence matrix A is full ranked, 
then the radiality constraint is satisfied.
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FIGURE 3. The KSFSA.
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FIGURE 2. A spanning forest of the hypothetical 12-node system in 
Figure 1.
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States, Actions, and Reward Function
The choice of states, actions, and the reward function 
plays a critical role for the proper training of an RL agent. 
Therefore, states, actions, and the reward function must 
be chosen with careful consideration. For the MER rout-
ing problem under consideration, the state St consists of 
the on/off status of each edge of the network and the 
amount of curtailed critical load at time step t:

	 { , }S s i LC,t i t E t; ! X= � (6)

where LCt is the amount of curtailed critical load at time 
step t, EX  is the set of network edges, and s ,i t denotes 
the status of network edge i at time step t, determined 
as follows:

	 , .
i
i

s i
1
0

if network edge is closed
if network edge is open ,i t E6 ! X= ' � (7)

The action is a vector of MER deployment locations. 
The system state given by (6) consists of two different 
types of variables. The exogenous variable s ,i t is indepen-
dent of actions, whereas the endogenous variable LCt is 
affected by actions, i.e., MER deployment locations.

The RL agent is given a high positive reward when it 
reaches the optimal point and is not given any reward if 
the amount of curtailed critical load decreases. This moti-
vates the agent to reach the optimal point faster instead 
of proceeding slowly. However, the RL agent is penalized 
by giving a negative reward when the amount of curtailed 
critical load remains constant or increases between two 
consecutive time steps. The total reward at time step t is 
computed as follows:
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where LCt
RL and LCt 1

RL
-  are critical 

load curtailments, respectively, at 
time steps t and t – 1 as a result of 
the action taken by the RL agent 
and LCmin is the minimum critical 
load curtailment for the particular 
line outage scenario.

RL for MER Routing
This work leverages recently 
advanced RL techniques for post-
disaster MER routing to minimize 
the amount of curtailed critical load. 
This section provides a brief over-
view of deep Q-learning and its 
training aspects.

Deep Q-Learning
The four main integrands of an RL-
based system are the policy, reward, 

value functions, and environment model. An agent decides 
what action to take based on the policy. The policy estab-
lishes a relationship between states and actions. When the 
agent performs a task, it is rewarded (or penalized). The 
value function determines the expected value of the cumu-
lative reward when an agent follows a policy. There is a 
variety of algorithms for RL. A number of factors influence 
the choice of an algorithm, such as the nature of the states 
(continuous or discrete), the action space (continuous or 
discrete), and so on. The action space for the MER routing 
problem under consideration is discrete, making Q-learning 
an appropriate option for the task. Basic Q-learning, on the 
other hand, necessitates large lookup tables to store state–
action values. As an action value function approximator, a 
DNN is employed to avoid the usage of large lookup tables. 
The addition of the DNN to the basic Q-learning framework 
transforms it into a deep Q-network (DQN). The goal of 
Q-learning is to simulate the Q-function, or, to put it anoth-
er way, to predict the expected rewards for each action in 
a given state. The term Q-function here refers to a function 
that takes a state–action pair and returns the action value. 
The update rule for the action value function in Q-learning 
is defined as follows [15]:

	
( , ) ( , )

[ ( , ) ( , )]max

Q S A Q S A

R Q S A Q S A

t t t t

t
a

t t t t1 1 1

! #

#

a

c

+

+ -+ + +
� (9)

where At and St are the action and state of an agent at 
the tth iteration, ( , )Q S At t  is the action value function  
at time step t, ( , )Q S At t1 1+ +  is the action value function at 
time step ( ),t 1+  a is the learning rate, and c is the reward 
discount factor.

Instead of updating the action value function itera-
tively, the DNN is trained, and the action value func-
tion’s parameters are optimized to minimize the MSE 
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FIGURE 4. The training architecture of the proposed DRL model.
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loss function (i.e., the regression loss function), which is 
expressed as follows [28]:

	 ( ) [( ( , ) ( , ) ( , ; )) ]L Q S A R S A Q S AE t t t t t t
2#;i i c z= - + � (10)

where E denotes the expectation operator, i denotes the 
parameter of action value function ( , ),Q S At t  ( , )R S At t  
denotes the reward function at time step t, z denotes the 
parameter of the target DQN, and ( , ; )Q S At t z  denotes the 
action value function of the target DQN.

Training Attributes
When a nonlinear function approximator, like an NN, 
is employed to represent the Q-function, RL becomes 
unstable or divergent. The causal links in the series 
of observations, the possibility that tiny changes to 
Q may drastically alter the agent’s behavior and the 
distribution of the data, and the relationships between 
predicted and target Q values all contribute to this 
instability. The technique is applicable to many dif-
ferent applications and areas of stochastic search [29]. 
Experience replay, a bioinspired process that chooses 
from a random sample of previous actions rather than 
the most recent action, is employed in Q-learning 
[30]. As a result, causality in the observational order 
is eliminated, and fluctuations in the data distribution 
are smoothed [31].

The experience replay memory-based training of the 
DQN is performed for a certain number of episodes 
( ).nep  The parameters i of the main DQN are initialized 
with some random values, and the parameters z of the 
target DQN are set equal to that of the main DQN. Each 
episode starts by initializing the system with a random 
state, which is a vector of the on/off status of the network 
branches after reconfiguration and the amount of cur-
tailed critical load. In each time step, the predicted Q val-

ues corresponding to each action are 
computed based on forward propa-
gation of the DNN. For the selec-
tion of actions, the epsilon-greedy 
(exploration–exploitation) algorithm 
[32] is used. The value of the explora-
tion rate, ,f  is initialized at .1maxf =  
The exploration rate is kept constant 
(i.e., 1) up to 10% of the total epi-
sodes, is decreased at a constant rate 
from 10% to 80% of the total epi-
sodes, and is again kept constant to 
a minimum value .0 001minf =  for the 
last 20% of episodes. This ensures 
that the DQN sufficiently explores 
in the initial phase of training and 
exploits (i.e., searches in the most  

Input: �System data, including line data, load data, the on/off 
status of branches, and so on.

Initialize experience replay memory .M
Initialize parameters i of the main DQN with random values.
Set target DQN parameters z equal to the main DQN  
  parameters; i.e., .!z i
for episode ! 1 to nep do
    Initialize the system with a random state (here, a vector  

    of the line/branch status and load curtailment).
    for t ! 1 to T do
         �Generate action value function Q based on the  

  current state.
         �Calculate the reward function Rt + 1(St, At) after  

  passing the state and action value function through  
  the reward generator.

         �Append the experience replay memory M with  
  transition (St, At, Rt + 1(St, At)).

         �if length(M) 2 batch_size then
           Randomly select a minibatch.
       �    Calculate the DQN loss function based on the  

  main Q-function and target Q-function.
       �    Perform backpropagation to update parameters i  

  of the main DQN.
       �    Periodically update parameters z of the target DQN.
Output: MER deployment locations.

Algorithm 1. The training of the proposed DRL-based  
MER routing problem
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FIGURE 5. The 33-node distribution test system. S/S: substation. 

Node 4 5 6 7 8 9 10 11 18 19 20 21 22 23 26 27 28 29 30 33

Critical  
load (kW)

60 30 60 200 200 60 30 25 45 45 45 45 45 45 60 60 60 60 60 30

Table 1. The locations of critical loads for the 33-node system
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prospective regions) during the last episodes of the train-
ing. The exploration rate jf  at the jth episode can be 
expressed as follows:

	
 .
 . .
 .

j n
n j n

j n

0 1
0 1 0 8

0 8

if
if
if

max

min

j j 1

ep

ep ep

ep

T 1 1
#

$

f

f

f f

f

= --* � (11)

where

	
.

.
n0 7

max min

ep#
Tf

f f= - � (12)

The experience replay memory is appended with 
transition ( , , ( , )).S A R S At t t t t1+  MSE losses for each time 
step t are computed based on (10) using the predicted 
Q value of the main DQN and target Q values. The 
parameters of the main DQN are updated by back-
propagating these MSE losses. After a certain number of 
iterations, the parameters of the target DQN are periodi-
cally updated. Figure 4 exhibits the training architecture 
of the proposed DRL model. Algorithm 1 provides the 
procedure of training the proposed DRL-based MER 
routing problem.

Case Study and Discussion
To demonstrate the effectiveness of the proposed 
approach, a 33-node system and a modified IEEE 123-
node system are used for numerical simulations.

The 33-Node System

System Description
The 33-node distribution test system is a radial distribu-
tion system with 33 nodes, 32 branches, and five tie lines 
(37 branches) [33]. As displayed in Figure 5, all branches 
(including tie lines) are numbered from one to 37. The 
system’s overall load is 3.71 MW. The deployment of 
four MERs, each of capacity 300 kW, is considered. The 
locations and amount of critical load considered for the 
33-node system are listed in Table 1. The hyperparam-
eter settings of the main and target DQNs of the pro-
posed framework for the 33-node system are provided 
in Table 2.

Training
The training of the proposed model for the 33-node sys-
tem is performed for 20,000 episodes. The parameters i of 
the main DQN are initialized with random values, and the 
parameters z of the target network are set equal to .i  In 
each episode, the system is initialized with a random state, 
and the action value function is generated based on the 
current state. The reward function is calculated by pass-
ing the state and action value function through the reward 
generator. Initially, the rewards are very low, but then 
they increase as the number of episodes increases. Fig-
ure 6 presents the actual rewards and the running mean 

Hyperparameter
33-Node 
System 

123-Node 
System 

Number of hidden layers 3 3

Hidden layer neurons 10, 10, 10 10, 10, 20

Learning rate 10−3 10−3

Reward discount factor 0.99 0.99

Output layer activation Linear Linear

Hidden layer activation ReLU ReLU

Optimizer Adam Adam

Replay memory size 20,000 20,000

Batch size 600 1,000

Target update rate 1,500 iterations 2,500 iterations

ReLU: rectified linear unit.

Table 2. The hyperparameter settings of the main and 
target DQNs
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(500-episode window) of the actual 
rewards as the episode progresses. 
It can be seen from the figure that 
as the number of episodes increas-
es, the running mean of the reward 
increases and almost saturates after 
nearly 15,000 episodes. Similarly, Fig-
ure 7 shows the total iteration counts 
during the training of the proposed 
model. The total iteration count is 
the number of iterations taken by 
the DRL model to reach the optimal 
point, where the maximum iteration 
count is set to 30. The figure shows 
that the iteration count is very high 
up to 7,000 episodes. However, as the 
training continues, the total iteration 
count decreases and becomes almost 
constant after 17,000 episodes.

Testing and Implementation
For the testing and implementation 
of the trained model, two test cases 
are devised with different line out-
age scenarios. The two test cases are 
explained in the following:
1) � Test case 1: In this case, the outage 

of six lines, 12, 13, 17, 29, 30, and 
31, is simulated. Due to the outage 
of these lines, six isolates (ILs) 
(IL-1, IL-2, IL-3, IL-4, IL-5, and IL-6) 
are formed, as in Figure 8. These 
ILs are devoid of power. This 
results in a total critical load cur-
tailment of 135 kW.

When the outage data are 
given as inputs to the proposed 
DRL model, two tie switches (34 
and 36) are closed, and MERs are 
placed at nodes 18, 20, 22, and 
30. This results in the formation 
of two MGs (MG-1 and MG-2) 
and two ILs (IL-1 and IL-2), as 
described in Figure 9. In both 
MG-1 and MG-2, the total gen-
eration exceeds the total critical 
loads, resulting in no critical load 
curtailments. The total critical 
loads in IL-1 and IL-1 are zeros as 
well. Therefore, the total amount 
of curtailed critical load after 
reconfiguration and MER deploy-
ment is 0 kW. The proposed 
approach is able to recover 135 
kW of critical loads for the given 
outage scenario.
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2)	 Test case 2: In this case, the proposed approach is 
tested with a more extreme outage scenario, where an 
outage of the line connected to the substation node 
(i.e., 1) is considered in addition to outage of lines 11, 
16, 20, 27, and 28, as in Figure 10. Because of the 
outage of the line connected to the substation node, 
there is a power interruption at 
all system nodes, and the total 
critical load curtailment in this 
scenario is 1,265 kW.

After the implementation of 
the proposed DRL approach for 
this test case, four tie switches, 
33, 34, 36, and 37, are closed, and 
MERs are placed at nodes 7, 22, 
23, and 30. An MG, MG-1, and an 
IL, IL-1, are formed, as demon-
strated in Figure 11. In MG-1, the 
amount of curtailed critical load 
is 5 kW. IL-1 consists of node 
28, whose critical load is 60 kW. 
Therefore, the total amount of 
curtailed critical load is 65 kW. 
The total critical load recovered 
by the proposed approach is 
1,200 kW for the given scenario.

IEEE 123-Node System

System Description
To further demonstrate the effectiveness and scalability of 
the proposed DRL-based approach, numerical simulation 
is also performed on the modified IEEE 123-node system 
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Node 1 6 11 17 24 30 37 43 50 52 66 75 79 85 87 94 98 100 109 113

Critical  
load (kW)

40 40 40 20 40 40 40 40 40 40 75 40 40 40 40 40 40 40 40 40

Table 3. The locations of critical loads for the modified IEEE 123-node system

100

50

0

–50

–100

–150

To
ta

l R
ew

ar
ds

0
2,5

00
5,0

00
7,5

00

10
,00

0

20
,00

0

12
,50

0

17
,50

0

15
,00

0

Episodes

Actual Rewards
Running Mean of Actual Rewards

FIGURE 13. The learning curve of the proposed DRL model for the 
IEEE 123-node system.
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proposed DRL model for the IEEE 123-node system.
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in Figure 12. The modified IEEE 123-node system shown 
in the figure consists of 123 nodes and 126 branches. Out 
of the 126 branches, two of them (94–54 and 151–300) are 
equipped with tie switches. All branches and loads are 
assumed to be balanced. The deployment of five MERs, 
each of capacity 160 kW, is considered. The locations 
and amount of critical load considered for the system are 
given in Table 3.

Training
Similar to the 33-node system, the proposed DRL-based 
model is trained for 20,000 episodes. Figure 13 displays 
the learning curve of the proposed DRL model. The 
figure shows that the total reward is very low in the 
early episodes of training, but it continuously increases 
as the episodes progress and becomes almost constant 
after 17,000 episodes. Similarly, Figure 14 shows the 
total iteration count during the training of the proposed 
DRL-based model. The figure shows that the total 
iteration count is very high up to 11,000 episodes. How-
ever, the total iteration count decreases as the training 
progresses and stays in the range of one to five after 
16,000 episodes.

Testing and Implementation
Similar to the 33-node system, two test cases with dif-
ferent line outage scenarios are devised for the testing 
and implementation of the trained DRL model in the 
case of the IEEE 123-node system. The two test cases are 
explained as follows:
1)	 Test case 1: In this case, the outage of six lines (13–

18, 40–42, 45–46, 55–56, 60–62, and 72–73) is simu-
lated. Due to the outage, six ILs (IL-1, IL-2, IL-3, IL-4, 
IL-5, and IL-6) are formed, as in Figure 15. The total 
amount of curtailed critical load under this scenario 
is 315 kW.

After the implementation of the proposed 
approach, tie switch 151–300 is closed, and MERs are 
deployed at nodes 13, 27, 64, 70, 97, and 101, as illus-
trated in Figure 16. For this configuration, two MGs 
(MG-1 and MG-2) and three ILs (IL-1, IL-2, and IL-3) 
are formed as shown in the figure. Since the genera-
tion exceeds the critical load in both MG-1 and MG-2, 
they do not have any curtailed critical loads. IL-1 has 
a critical load of 40 kW at node 75, whereas IL-2 and 
IL-3 do not have any critical loads. Therefore, the 
total amount of curtailed critical load is 40 kW after 
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implementing the proposed DRL 
model, recovering 275 kW of the 
critical loads.

2)	 Test case 2: In this test case, the 
outage of six lines (34–15, 52–53, 
63–64, 67–68, 102–103, and 108–
300) is simulated. As a result of 
the outage, six ILs (IL-1, IL-2, IL-3, 
IL-4, IL-5, and IL-6) are formed, as 
in Figure 17. The total amount of 
curtailed critical load under this 
scenario is 455 kW before the 
implementation of the proposed 
approach.

After the implementation of 
the proposed DRL-based model, 
tie switch 151–300 is closed, and 
MERs are deployed at nodes 1, 
13, 64, 81, 93, and 101, as demon-
strated in Figure 18. For this configuration, two MGs 
(MG-1 and MG-2) and three ILs (IL-1, IL-2, and IL-3) 
are formed. In each of the MGs, the total generation 
exceeds the total critical load. IL-1 and IL-2 do not 
have any critical loads, whereas IL-3 has a critical load 
of 20 kW at node 17. Therefore, the total amount of 

curtailed critical load is 20 kW, recov-
ering 435 kW of the critical loads.

Comparison
The proposed DRL-based approach 
is compared with an exhaustive 
search technique. In the exhaustive 
search technique, all possible candi-
dates of the solution are enumerated, 
and the critical load curtailments are 
computed for each candidate solu-
tion to get the best solution. For each 
test case of both 33-node and 123-
node systems, the exhaustive search 
technique is used to find the opti-
mal MER deployment locations that 
result in minimum critical load cur-
tailment. For each test case, the same 
values of critical load curtailments 

are obtained for both the exhaustive search technique and 
the proposed DRL-based approach.

Although the same values of critical load curtail-
ments can be obtained using both approaches, the 
proposed approach outperforms the exhaustive search 
technique in terms of execution time. The analyses are 
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FIGURE 17. Test case 2 for the IEEE 123-node system before implementing the proposed approach.

The goal of electric 
utilities to provide 
their consumers with 
a dependable and 
resilient electricity 
supply has been 
jeopardized by 
extreme weather 
events.
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performed on a PC with a 64-b Intel i5 Core proces-
sor running at 3.15 GHz, with 8 GB of random-access 
memory and the Windows operating system. Table 4 
displays the execution time for different test cases using 
both approaches. The execution time of the proposed 
approach ranges from 6 to 22 ms for both 33-node 
and 123-node systems, while the execution time of the 
exhaustive search technique is significantly higher than 
the proposed approach. The ratios of the execution time 

of the exhaustive search technique and the proposed 
approach are approximately 40 and 75, respectively, 
in the 33-node system and the 123-node system. This 
shows that the proposed approach is highly scalable 
compared to the exhaustive search technique.

Conclusion
This article has proposed a DRL-based two-stage 
approach for network reconfiguration and MER routing 
to minimize the amount of curtailed critical load when 
multiple line outages occur following an extreme event. In 
the first stage, distribution network reconfiguration was 
performed using tie switches. In the second stage, MERs 
were utilized to form MGs. The distribution network was 
represented by an undirected graph, and the optimal 
spanning forest was formed. The proposed approach 
was tested and implemented on a 33-node system and a 
modified IEEE 123-node system. Two test cases in each 
of the systems exhibit the effectiveness of the proposed 
approach for recovering critical loads of the system by 
leveraging MERs and forming MGs, thereby enhancing 
system resilience. Additionally, the proposed DRL-based 
approach was found to be computationally efficient com-
pared to the exhaustive search technique, indicating its 
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FIGURE 18. Test case 2 for the IEEE 123-node system after implementing the proposed approach.

System Case

Execution  
Time 
(Exhaustive 
Search)

Execution  
Time 
(Proposed 
Approach)

33-node 
system

Test case 1 0.248 s 0.006 s

Test case 2 0.239 s 0.007 s

123-node 
system

Test case 1 1.276 s 0.017 s

Test case 2 1.31 s 0.022 s

Table 4. A comparison of the execution times
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effectiveness for enhancing distribution systems’ opera-
tional resilience.
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