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a b s t r a c t

This article proposes an approach based on graph theory and coalitional game theory for pre-
positioning of movable energy resources (MERs) to improve the resilience of the electric power supply.
By utilizing the weather forecasting and monitoring data, the proposed approach determines staggering
locations of MERs in order to ensure the quickest possible response following an extreme event. The
proposed approach starts by generating multiple line outage scenarios based on fragility curves of
distribution lines, where the fuzzy k-means method is used to create a set of reduced line outage
scenarios. The distribution network is modeled as a graph and distribution network reconfiguration is
performed for each reduced line outage scenario. The expected load curtailment (ELC) corresponding to
each location is calculated using the amount of curtailed load and probability of each reduced scenario.
The optimal route to reach each location and its distance is determined using Dijkstra’s shortest path
algorithm. The MER deployment cost function associated to each location is determined based on the
ELC and the optimal distance. The MER deployment cost functions are used to determine candidate
locations for MER pre-positioning. Finally, the Shapley value, a solution concept of coalitional game
theory, is used to determine the sizes of MERs at each candidate location. The proposed approach for
pre-positioning of MERs is validated through case studies performed on a 33-node and a modified IEEE
123-node distribution test systems.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Over the last decade, the frequency of extreme events, both
atural (e.g., hurricanes, wildfires, ice or hail storms, and earth-
uakes) and man-made (e.g., cyber and physical attacks), has
ncreased dramatically. For example, there were 20 weather re-
ated catastrophic events in the United States in 2021 alone, each
ith costs surpassing $1 billion [1]. Such extreme events have
esulted in severe damages to important power system equip-
ent resulting in system-wide extended power outages. The
lectric companies’ goal of delivering reliable and resilient electri-
al supply to its customers has been compromised by catastrophic
eather events and subsequent outages. As a result, effective
ower distribution service restoration (PDSR) procedures must be
stablished in order to reduce the impact of these incidents on
nd-user customers. PDSR’s major goal is to reduce load curtail-
ents and outage duration by making the best use of available

esources. Smart grid technologies, such as microgrid forma-
ion, network reconfiguration, repair crew dispatch, distributed
eneration, energy storage, MERs, and combinations of these
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methods and techniques, have proven to be the most effective
PDSR solutions.

MERs are mobile and versatile resources that can be rede-
ployed quickly from staggering locations to power outage loca-
tions. They are versatile in the notion that they can be built to
variable size and quickly integrated into the distribution grid after
a disaster. These resources can be designed to supply up to a few
megawatts of load. When part of a distribution system is islanded
due to equipment failures or damages, MERs can be deployed to
supply local and isolated critical loads if no other resources are
available [2].

Deployment of MERs for PDSR has gained significant mo-
mentum. A two-stage robust optimization framework has been
developed in [3] for routing and scheduling MERs to enhance
the resilience of distribution systems. A two-stage PDSR strategy
based on mixed-integer linear programming (MILP) has been
proposed in [4] to enhance seismic resilience of distribution
systems with MERs. A mixed integer linear programming-based
PDSR strategy has been proposed in [5] for an active distri-
bution system, where routing and scheduling of mobile energy
storage systems is performed for enhanced resilience. In [6], a
two-stage optimization strategy has been proposed to enhance
distribution system resilience with mobile energy storage units,
where dynamic microgrid formation is also considered. In [7], the
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Nomenclature

N Set of players of a coalitional game
V Characteristic function
S Coalition that is subset of N
2N Possible set of coalitions
ELCi Expected load curtailment of location i
CDFi Capacity distribution factor of location i
ψi Shapley value of player i
r Number of original scenarios
K Number of reduced scenarios
Pr(j) Probability of the jth reduced scenario
β1, β2 Cost function weighting coefficients
ωm Critical load factor at node m
PMER−tot Total MER capacity
PDSR Power distribution service restoration
MER Movable energy resource
ECLR Expected critical load recovery

scheduling of mobile energy storage systems has been performed
by formulating a stochastic optimization problem. A two-stage
robust optimization problem has been proposed in [8] for the op-
timal dispatch of mobile power sources for minimization of criti-
cal load curtailment. The majority of the aforementioned studies
primarily focus on coordinating and dispatching MERs with other
PDSR techniques for service restoration, without considering MER
pre-positioning.

This article proposes an approach based on graph theory and
oalitional game theory for pre-positioning of MERs. High wind
peed caused by hurricanes or tornadoes is taken as an example
f weather-related extreme events. A set of line outage scenarios
s generated based on forecasted wind speed. Generated scenarios
re then reduced using the fuzzy k-means method. The reduced
cenarios are used to determine expected load curtailments when
ERs are placed at each node. The MER deployment cost function
f each node is determined using expected load curtailment and
he optimal distance of MER deployment location calculated using
ijkstra’s shortest path algorithm. A certain number of candidate
ocations of MERs is selected based on the MER deployment
ost function. The candidate locations thus selected are treated
s players of a game. Since the players are allowed to form
oalitions among themselves to maximize the expected critical
oad recovery, the game is a coalitional game. Shapley value,
ne of the solution concepts of coalitional game theory, is then
sed to determine sizes of MERs at each candidate location. The
roposed approach is validated through case studies on several
istribution test systems. The main contributions of this article
nclude developing:

• A framework for pre-positioning of MERs as a proactive
measure for enhanced distribution system resilience.

• A graph theoretic approach to determine the total amount
of curtailed critical loads. The graph theory is used to create
microgrids energized with MERs and the critical load curtail-
ments of all microgrids and isolated parts of the distribution
network are added to find the total critical load curtailment.

• A MER deployment cost function calculated for each loca-
tion based on the weighted combination of the expected
load curtailment and the optimal distance. The MER deploy-
ment cost function serves a criterion to determine candidate
locations for MER deployment.

• A coalitional game theoretic framework find the individual
sizes of MERs at each candidate location. The coalitional
2

Fig. 1. (a) A spanning tree; and (b) a spanning forest of a hypothetical 12-node
system.

game theoretic approaches have the ability to uniquely as-
sign payoffs among players of the game.

The remainder of the article is organized as follows. The
mathematical modeling of the MER pre-positioning problem is
explained in Section 2. The proposed approach and solution
algorithm are described in Section 3. Case studies on two different
distribution test systems are used to validate the proposed work
in Section 4. Section 5 provides some concluding remarks and
future research directions.

2. Mathematical modeling

This section presents the graph theoretic modeling of dis-
tribution network and road network, and the coalitional game
theoretic model of the MER pre-positioning problem under study
for resilience enhancement of the distribution system.

2.1. Graph theoretic modeling of distribution network

Distribution systems are equipped with sectionalizing switches
(normally closed) and tie-switches (normally open). When all
the switches of a distribution network are closed, a meshed
network is formed, and the meshed network thus formed can be
represented by an undirected graph G = (N, E), where N is a set
of nodes (or vertices) and E is a set of edges (or branches).

2.1.1. Spanning tree
A spanning tree is defined as a subset of the undirected graph

G = (N, E) that has a minimal number of edges linking all vertices
(or nodes). In a spanning tree, the number of edges is one less
than the number of vertices. There are no cycles in a spanning
tree, and all of the vertices are connected [9]. A linked graph can
have many spanning trees, each of which has the same number
of edges and vertices. Each of the undirected graph G’s edges has
a specific value (or weights). The edge weights vary depending
on the problem. The sum of all edge weights of a spanning
tree is minimized when establishing the minimum spanning tree.
Fig. 1(a) shows a spanning tree of a hypothetical 12-node system.
The spanning tree shown in the figure consists of all system nodes
(i.e., 12) and 11 closed branches (edges).

2.1.2. Spanning forest
In graph theory, a forest is a disconnected union of trees. A

spanning forest is a forest that covers all vertices of the undi-
rected graph G and consists of a set of disconnected spanning
trees [9]. When all spanning trees are connected, each vertex
of the undirected graph G is included in one of the spanning
trees [10]. On the other hand, when a disconnected graph has
many connected components, a spanning forest is formed and
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Fig. 2. Flowchart of Kruskal’s spanning forest search algorithm.

t contains a spanning tree of each component [11]. Fig. 1(b)
hows the spanning forest formed as a result of disconnection
f two additional branches (2–3 and 3–10) in the spanning tree
resented in Fig. 1(a). The spanning forest shown in Fig. 1(b)
onsists of three spanning trees (ST-1, ST-2, and ST-3).
In this article, Kruskal’s algorithm [12] is used to search for

he optimal spanning forest. Kruskal’s spanning forest search
lgorithm (KSFSA) starts by constructing a forest F with each
raph vertex acting as a single tree based on the given undirected
raph. Since KSFSA is a greedy algorithm, it goes on connecting
he next least-weight edge that avoids loop or cycle to the forest
at each iteration. The resulting forest F after the last iteration is

he optimal spanning forest. Fig. 2 shows the flowchart of KSFSA.

.2. Graph theoretic modeling of road network—Dijkstra’s shortest
ath algorithm

A road network refers to a collection of linked points and lines
hat depict a network of roads in a certain area. The road network
ay be modeled using the graph theory since it consists of linked
oints and lines that resemble vertices and edges in a graph.
n this article, the meshed configuration of the road network is
odeled as an undirected graph Gr = (Nr , Er ), where Nr is a set
f nodes and Er is a set of road edges. The weight of each road
dge is determined by its length.
Since multiple routes from the initial location of MERs to the

inal location may be possible, determining the best route can
ignificantly minimize the MER deployment cost function. In this
ork, Dijkstra’s Shortest Path Algorithm (DSPA) is used to find
he shortest (optimal) path between two different nodes of a road
etwork graph. DSPA uses the least edge weight to calculate the
hortest path from the initial location to the destination. DSPA
an only be applied in case of the graph with non-negative edge
eights [13]. DSPA is appropriate for this study since the length of
3

ach road edge (which is non-negative) is used to calculate edge
eights.

.3. Coalitional game theory and shapley value

In game theory, coalitional game refers to the game where
layers can establish alliances or coalitions with one another
o maximize coalitional and individual utilities. Since coalitions
mong players are formed to increase their individual incentives,
coalition must always result in equal or greater incentives than

ndividual player’s incentives [14]. A coalitional game is defined
y assigning a value to each of the coalitions. The coalitional game
s composed of the following two components:

• A finite players’ set N , known as the grand coalition.
• A characteristic function V (S) : 2N

→ R that maps the set
of all possible player coalitions to a set of coalitional values
that satisfy V (φ) = 0.

The characteristic function, representing the worth or value
f each coalition, is defined in every coalitional game. The char-
cteristic function of a coalition is the aggregated worth of all
oalition members. Solution paradigms such as the Shapley value,
he core, the Nucleolus, and the Nash-bargaining solution are
sed to allocate the overall payout or incentive among individual
layers of a coalitional game.

.3.1. The core of a coalitional game
In game theory, the core is the set of possible assignments

hat cannot be enhanced more through any alternative coalitions.
he core is a set of payout assignments that ensures no player
r player group has a motivation to quit N to establish a new
oalition. Mathematically, the core is defined as follows [15].

=

⎧⎨⎩α :

∑
j∈N

αj = V (N ) and
∑
j∈S

αj ≥ V (S),∀S ⊂ N

⎫⎬⎭ (1)

.3.2. The shapley value
The Shapley value is a solution paradigm of coalitional game

heory. The Shapley value is an approach to allocate the overall
arnings to individual players when all participants participate in
he game. The Shapley value of a coalitional game is expressed as
ollows [16].

j(V ) =

∑
S∈2N ,j∈S

(|S| − 1)!(n − |S|)!
n!

[V (S) − V (S\{j})] (2)

where n = |N | is the total number of players.
The Shapley value has a number of important properties,

which are listed below:

• Efficiency: The efficiency property is stated as follows.∑
j∈N

ψj(V ) = V (N ) (3)

• Individual Rationality: The individual rationality property is
stated as follows.

ψj(V ) ≥ V ({j}),∀j ∈ N (4)

• Symmetricity: For two players i and j satisfying V (S ∪ {i}) =

V (S ∪ {j}) for each coalition S without i and j,

ψi(V ) = ψj(V ) (5)

• Dumminess: For player i satisfying V (S) = V (S ∪{i}) for each
coalition S without i,

ψ (V ) = 0 (6)
i
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• Linearity: For two characteristic functions V1 and V2 of a
coalitional game,

ψ(V1 + V2) = ψ(V1) + ψ(V2) (7)

3. Pre-positioning of MERs

This section presents event modeling, scenario generation and
reduction, and formulation of the coalitional game.

3.1. Extreme event modeling and scenario generation

In this work, the weather-related fragility curve is used to
model the impacts of extreme events on system and generate
multiple line outage scenarios. A fragility curve is applied to
characterize the performance and vulnerabilities of different sys-
tem components confronting uncertain weather-related extreme
events. The failure probabilities of each component are obtained
by mapping the weather forecast and monitoring data to the
fragility curve [17]. We have taken the multiple line outages
caused by high wind speeds as an example of a weather-related
extreme event in this study. Mathematically, the probability of
line outages caused by high wind speeds can be represented as
follows [18].

Pl(w) =

⎧⎨⎩ Pl, if w < wcrl
Pl_hw(w), if wcrl ≤ w < wcpse
1, if w ≥ wcpse

(8)

where Pl is the probability of line failure as a function of wind
speed w; Pl is the failure probability at normal weather condition;
Pl_hw is the probability of line failure at high wind; wcrl is the
ritical wind speed (i.e., the speed above which the distribution
ines start experiencing failure); and wcpse is the speed above
hich the distribution lines completely collapse.

.2. Scenario reduction using Fuzzy k-means method

The accuracy of an approach is always improved when a large
umber of line outage scenarios is used. However, solving the
roblem with a large number of scenarios takes a long time.
he generated line outage scenarios are, therefore, reduced using
he fuzzy k-means method in this work to make the proposed
pproach computationally tractable. The fuzzy k-means cluster-
ng, also referred to as soft clustering, is a type of clustering or
cenario reduction in which each scenario can be a member of
ultiple reduced scenarios. There is fuzziness or overlap between
ifferent clusters in case of the fuzzy k-means method.
Consider an original set of scenarios X = {x1, . . . , xr} and
= {µ1, . . . , µK } be the set of reduced scenarios (cluster

entroids). If the degree of membership of any data point xi from
with the jth cluster of scenarios is defined by a weight uji, then

he cluster centroid of the jth reduced scenario is obtained by tak-
ng the weighted mean of all original scenarios, mathematically
xpressed as follows.

j =

∑r
i=1 u

m
ji × xi∑r

i=1 u
m
ji

, (9)

here m is the hyperparameter that determines fuzziness of the
clusters.

To obtain the final values of cluster centroids, the objective
unction (10) is iteratively minimized [19].

min
r∑ K∑

um
ji ∥xi − µj∥

2, (10)

i=1 j=1 p

4

where

uji =
1∑K

k=1

(
∥xi−µj∥

∥xi−µk∥

) 2
m−1

(11)

In order to evaluate the effectiveness of scenario reduction, the
fuzzy k-means method is compared with k-means and k-medians
methods in terms of Silhouette (SL) index, Davies–Bouldin (DB)
index, and Calinski–Harabasz (CH) index.

The SL index evaluates an original scenario’s cohesiveness
with its own cluster in comparison to other clusters. The range
of SL index is from 1 to +1, and a larger value implies a good fit
to the scenario’s own cluster and a poor fit to other clusters. The
SL index is mathematically defined as follows [20].

SL =
1
r

r∑
i=1

(
bi − ai

max{ai, bi}

)
, (12)

where ai denotes the average distance between the ith scenario
and other scenarios in the same cluster (i.e., cohesiveness) and
bi denotes the minimum distance between the ith scenario and
other scenarios of other clusters (i.e., separation).

The DB index utilizes the intrinsic properties and features of
dataset to validate the effectiveness of the clustering. The DB in-
dex compares each cluster’s mean similarity to that of its closest
neighbor, where similarity is defined as the ratio of intra-cluster
to between inter-cluster distances [21]. Therefore, clusters that
are more evenly spaced apart will be assigned higher score. With
a minimum value of 0, better clustering is indicated by lower
numbers. Mathematically, the DB index is defined as follows [21].

DB =
1
K

K∑
j=1

max
i̸=j

Sj + Si
Mji

, (13)

where Sj is a measure of intra-cluster distance of the jth cluster
and Mji is a measure of inter-cluster distance between clusters j
and i.

The CH index is an index that evaluates the degree of disper-
sion between different clusters. The CH index refers to the ratio of
inter-cluster dispersion to intra-cluster dispersion [22]. It is also
referred to as the variance ratio index. The larger value of CH
index indicates better clustering. Mathematically, the CH index
is expressed as follows [22].

CH =
BK × (r − K )
WK × (K − 1)

, (14)

where BK denotes inter-cluster covariance and WK denotes intra-
cluster covariance.

3.3. Selection of candidate MER locations

For the selection of candidate MER locations, the MER de-
ployment cost function is used, which is calculated based on the
expected load curtailment (ELC) of each location and the opti-
mal distance of MER deployment location from the initial MER
location. The ELC corresponding to the ith location is determined
using the amount of curtailed critical load for each reduced line
outage scenario as follows.

ELCi =

K∑
j=1

Pr(j) × LCi(j), (15)

where K is the total number of reduced scenarios; Pr(j) is the

robability of the jth reduced scenario; and LCi(j) is the critical
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oad curtailment of the jth reduced scenario for MER deployment
location i, which is calculated as follows.

LCi(j) =

N∑
m=1

ωm∆Pmi(j), (16)

where∆Pmi(j) is the load curtailment at nodem of the jth reduced
scenario for MER deployment location i; ωm is the critical load
factor at node m; and N is the total number of nodes in the
system.

While computing the critical load curtailment, the nodal power
balance constraints and radiality constraint should always be
satisfied, which are described below.

(a) Node power balance constraints: The power balance con-
straint at each node of the system can be expressed as follows.∑
r∈Ωg (r)

Pg,r +

∑
l∈ΩL(r)

Pl,r = PD,r (17)

where Ωg (r) is the set of sources (including MER) connected to
node r; ΩL(r) is the set of lines connected to node r; Pg,r is the
power injected from source r; PD,r is the load at node r; and Pl,r
is the line power flow from node l to node r .

(b) Radiality constraint: A distribution system must always
meet the radiality requirement. Therefore, each potential con-
figuration should be radial (i.e., the radiality constraint should
be met for each spanning tree of the network). Each spanning
tree of the network is represented by a sub-graph Gs = (Ns, Es),
where Ns is a set of nodes (or vertices) and Es is a set of edges
(or branches) in the sub-graph. For the sub-graph, a node-branch
incidence matrix should be constructed. If ns = |Ns| denotes the
number of nodes and es = |Es| denotes the number of edges of a
particular spanning tree, then the node-branch incidence matrix
A ∈ Rns×es is the matrix with element aij calculated based on
(18). If the node-branch incidence matrix A is full ranked, then
the radiality constraint is satisfied.

aij =

⎧⎨⎩
+1 if branch j starts at node i
−1 if branch j ends at node i
0 otherwise

(18)

The second component of the MER deployment cost function
is the optimal distance of MER deployment location from the
initial MER location, which is determined using the DSPA. The
MER deployment cost function of the ith location is expressed as
follows.

Ci = β1 × ELCi + β2 × di, (19)

where ELCi is the expected load curtailment corresponding to the
ith location; di is the optimal distance of MER deployment loca-
tion i from the initial MER location; and β1 and β2 are weighting
coefficients which sum to unity.

A certain number of candidate MER locations is selected based
on least MER deployment cost functions. Determination of the
optimum number of candidate MER locations is beyond the scope
of this work; readers are referred to our previous work [23] for
the determination of the optimal number of MERs.

3.4. Computation of characteristic functions of the coalitional game
model

A coalitional game model is formulated considering candidate
MER locations as players of the game. The list of all possible
coalitions of candidate MER locations is generated. For example,
if three candidate MER locations (L1, L2, and L3) are selected, the
set of all possible coalitions, denoted by 2N , is as follows.

2N
= {φ, {L }, {L }, {L }, {L , L }, {L , L }, {L , L }, {L , L , L }},
1 2 3 1 2 1 3 2 3 1 2 3

5

where φ denotes an empty set.
For each set of coalitions, the expected critical load recovery

(ECLR) is computed by taking the difference of ELCs before and af-
ter MER placement. The ECLR serves as the characteristic function
of each coalition.

3.5. Determination of MER sizes at candidate locations

After computation of characteristic functions of all possible
sets of coalitions, Shapley values of each candidate MER location
are determined using (2). Based on the Shapley values, the ca-
pacity distribution factor (CDF) of the candidate MER location, i,
is determined as follows.

CDFi =
ψi∑n
k=1 ψk

, (20)

where ψi is the Shapley value of the ith location; and n is the
number of candidate MER locations.

Now, the total size of MERs is distributed among different
candidate MER locations based on CDF as follows.

PMER−i = CDFi × PMER−tot (21)

here PMER−i is the size of MER at the ith candidate location; and
MER−tot is the total MER capacity.

.6. Overall framework and proposed solution algorithm

The overall framework of the proposed approach for pre-
ositioning of MERs is shown in Fig. 3. As shown in the fig-
re, weather forecasting and monitoring data, optimal number
f MERs, and optimal total size of MERs are taken as inputs.
he proposed approach consists of various modules including
LC calculation module, coalition module, ECLR module, Shapley
alue module, and capacity distribution module. The outputs of
he proposed approach are pre-positioning location of MERs and
ndividual sizes of MERs.

The proposed approach or the solution algorithm for pre-
ositioning of MERs can be summarized as follows.

1. Collect system data including generation data, line data,
load data, etc., which serve as input to the proposed model.

2. Generate a set of line outage scenarios based on weather
forecasting and monitoring data.

3. Generate a set of reduced scenarios along with their prob-
abilities using a scenario reduction technique.

4. Determine expected load curtailments corresponding to
each location after MER placement.

5. Select a certain number of candidate MER locations based
on expected load curtailments.

6. Generate the list of all possible coalitions of candidate
MER locations using coalition module. For example, if three
candidate MER locations (L1, L2, and L3) are selected, the set
of all possible coalitions, denoted by 2N , is as follows.

2N
= {φ, {L1}, {L2}, {L3}, {L1, L2}, {L1, L3}, {L2, L3}, {L1, L2, L3}},

where φ denotes an empty set.
7. For each set of coalitions, compute expected load curtail-

ments before and after MER placement and compute the
difference which serves as the characteristic function.

8. After the evaluation of all possible sets of coalitions, com-
pute Shapley value of each candidate MER location using
(2).

9. Based on the Shapley values, compute the capacity distri-
bution factor (CDF) of each candidate MER location and
determine the sizes of each MER.

The flowchart of the proposed approach for pre-positioning of
ERs is shown in Fig. 4.
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Fig. 3. Overall framework of the proposed approach.
Fig. 4. Flowchart of the proposed approach for the pre-positioning of MERs.

. Case studies and discussion

This section presents the implementation and validation of
he proposed approach through case studies on two modified
istribution test systems, i.e., the 33-node system and the IEEE
23-node system.
6

Fig. 5. 33-node distribution test system.

Fig. 6. Wind fragility curve for distribution lines.

4.1. Case study I: 33-node system

The 33-node distribution test system is a radial distribu-
tion system with 33 nodes, 32 branches, and 5 tie-lines (37
branches) [24]. All branches (including tie-lines) are numbered
from 1 to 37 as shown in Fig. 5. The system’s overall load is 3.71
MW. The locations and amounts of critical loads considered for
the 33-node system are shown in Table A.10 of Appendix. The
road network data considered for the 33-node system are shown
in Table A.12 of Appendix.

For the implementation of the proposed approach, multiple
line outage scenarios are generated by considering a high wind
speed event as an example of a weather-related extreme event.
The critical wind speed of 30 m/s and the collapse speed of 55 m/s
are assumed for the fragility model (8) under consideration [18].
The failure probability of 0.01 is considered at normal weather
conditions. The wind fragility curve for distribution lines adopted
in the work is as shown in Fig. 6. In this article, 10,000 random
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Fig. 7. An outage case for 33-node distribution system.

Table 1
Comparison of scenario reduction for the 33-node system.
Index/Method k-means k-medians Fuzzy k-means

SL index 0.0257 0.0119 0.0292
DB index 2.869 3.116 2.833
CH index 19.507 16.947 20.211

outage scenarios are generated and a fuzzy k-means method is
used to reduce the generated scenarios into 200 reduced out-
age scenarios for wind speed of 38 m/s. The fuzzy k-means
method outputs 200 reduced line outage scenarios along with
their probabilities. The effectiveness of the fuzzy k-means method
is compared with other clustering methods such as k-means
and k-medians methods. Three indices, i.e., Silhouette (SL) index,
Davies–Bouldin (DB) index, and Calinski–Harabasz (CH) index are
used to compare the fuzzy k-means method with other clustering
methods.

The SL index, which has values ranging from 1 to +1, is a
easurement of how close a data point is with respect to its
luster in comparison to other clusters, as described in Section 3.
high number denotes that the data point is strongly matched
ith respect to its own cluster and weakly matched to nearby
lusters. Similarly, the DB index makes use of the inherent charac-
eristics and attributes of the dataset to validate the quality of the
lustering and a lower value indicates a more effective clustering.
he third index utilized in this article, the CH index, measures the
egree of dispersion across clusters and a higher value for the CH
ndex denotes more effective clustering. Table 1 shows the values
of the indices for all three clustering methods. The comparison
result shows that the fuzzy k-means is better than other methods
(i.e., k-means and k-medians) in terms of all three indices.

For each reduced line outage scenario, the distribution net-
work reconfiguration is performed using tie-switches present in
the network and spanning forest is formed by deploying MER
of capacity 1200 kW at a location (node). Fig. 7 shows the case
for a reduced scenario where outages of lines 3, 6, 15, 19, 25,
30, and 32 occur. In this scenario, the distribution network is
reconfigured by closing tie-switches 33, 36, and 37 using KSFSA.
The tie-switches 34 and 35 are not closed to maintain radial
configuration. When the MER is deployed at node 20, a microgrid
(MG-1) and three isolates (IL-1, IL-2, and IL-3) are formed. These
isolates are devoid of power supply. The total critical loads of
IL-1, IL-2, and IL-3 are, respectively, 75 kW, 0 kW, and 150 kW.
Therefore, when the MER is deployed at node 20, the total critical
load curtailment for this reduced scenario is 225 kW. This process
is repeated for all locations (nodes) and all reduced scenarios. The
expected load curtailment (ELC) corresponding to each location
then is determined based on load curtailment and probability of
each reduced scenario.
7

Table 2
Characteristic functions of possible coalitions for
the 33-node system.
Coalitions Expected critical

load recovery (kW)

7 102.6
8 103.5
9 108.0
21 103.5
7, 8 206.1
7, 9 210.7
7, 21 206.1
8, 9 205.0
8, 21 200.5
9, 21 205.0
7, 8, 9 296.7
7, 8, 21 290.3
7, 9, 21 296.7
8, 9, 21 280.9
7, 8, 9, 21 345.8

Table 3
Shapley values and sizes of MERs at candidate locations for 33-node system.
Locations Shapley MER sizes MER sizes
(nodes) values (proposed approach) (EDB approach)

7 96.25 320 kW 300 kW
8 88.65 290 kW 300 kW
9 92.87 300 kW 300 kW
21 88.65 290 kW 300 kW

MERs are assumed to be initially located at the substation
node. The optimal path and distance of each node from the
substation node is computed using DSPA. If only ELC is considered
as the criterion for selecting candidate MER location, nodes 8, 9,
15, and 21 are obtained as candidate MER locations. Similarly, if
only distance from the substation is considered as the criterion
for selecting candidate MER location, nodes 2, 3, 4, and 19 are
obtained as candidate MER locations since these nodes are closest
to the substation. However, this work uses MER deployment cost
based on both ELC and distance from the substation, which is
computed using (19). The values of weighting coefficients β1 and
2 are taken as 0.9 and 0.1, respectively. The four locations (nodes
, 8, 9, and 21) with least MER deployment costs are selected as
andidate MER locations.
To compute the size of each MER, the four candidate MER

ocations are treated as players of the coalitional game. The char-
cteristic function (here, the expected critical load recovery) is
alculated for each set of possible coalitions. The expected critical
oad recovery (ECLR) is calculated by taking the difference of ELCs
efore and after MER placement. Before MER placement, the ELC
f the system is 476.93 kW. The ECLR (or characteristic functions)
or all sets of possible coalitions are shown in Table 2. We can see
from the table that the ECLR for the coalition of locations 7 and
8 is equal to the sum of ECLRs of individual locations. However,
the ECLR for the coalition of locations 8 and 9 is less than the
sum of ECLRs of individual locations. This indicates that some
coalitions are worthier than others and this property is utilized
to compute Shapley values of individual candidate MER locations.
The Shapley values and sizes of MER of each candidate location
are shown in Table 3.

4.2. Case study II: IEEE 123-node system

Fig. 8 shows the modified IEEE 123-node distribution test
ystem, which consists 123 nodes and 126 branches. Out of 126
ranches, two of them (94–54 and 151–300) are equipped with
ie-switches. All branches and loads are assumed to be balanced.
he locations and amounts of critical loads considered for the
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Fig. 8. IEEE 123-node distribution system.
.

Fig. 9. Simulation of an outage scenario in case of 33-node system.

ystem are shown in Table A.11 of Appendix. The road network
ata for the system is shown in Table A.13 of Appendix.
Similar to the previous case study, 10,000 random outage

cenarios are generated for this case and the fuzzy k-means
ethod is used to get 200 reduced scenarios along with their
robabilities. Table 4 shows the comparison of the fuzzy k-means
ethod with other scenario reduction methods using three differ-
nt indices. The comparison result shows that the fuzzy k-means
s better than other methods for scenario reduction. For each
educed line outage scenario, the distribution network reconfig-
ration is performed using tie-switches and spanning forest is
ormed by deploying MER of capacity 1200 kW at each node. The
LC of each location is obtained by repeating the process for all
educed scenarios.

Similar to the previous case study, DSPA is used to calculate
he optimal path and distance of each node from the substation
ode. If only ELC is considered as the criterion for selecting
andidate MER locations, the candidate MER locations would be
6, 77, 86, 97, and 197. If only optimal distance is considered as
he criterion for selecting candidate MER locations, the candidate
ER locations would be 1, 2, 3, 7, and 149. However, the MER de-
loyment cost function based on both ELC and optimal distance,
ith weighting coefficients of 0.9 and 0.1, respectively, has been
onsidered in this work. As a result, the five locations (nodes 54,
8

Table 4
Comparison of scenario reduction for the 123-node system.
Index/Method k-means k-medians Fuzzy k-means

SL index −0.006 −0.001 0.010
DB index 4.523 4.919 4.415
CH index 5.851 5.262 6.597

Table 5
Shapley values and sizes of MERs at candidate locations for the 123-node system
Locations Shapley MER sizes MER sizes
(nodes) values (proposed approach) (EDB approach)

54 23.97 230 kW 240 kW
57 24.33 240 kW 240 kW
91 25.96 250 kW 240 kW
93 24.48 240 kW 240 kW
94 23.97 240 kW 240 kW

57, 91, 93, and 94) with least MER deployment cost functions are
selected as the candidate MER locations.

Similar to the previous case study, a coalitional game is
formulated and the expected critical load recovery is used as
characteristic function for the game. Based on the characteristic
functions of all possible sets of coalitions, Shapley values and CDF
of candidate MER locations are determined. Finally, MER sizes are
determined using total MER capacity and CDF of each candidate
MER location. Table 5 shows Shapley values and sizes of MERs at
each candidate location for the 123-node system.

4.3. Comparison

For both case studies, sizes of MERs obtained using the pro-
posed approach are compared with an equal distribution-based
(EDB) approach, where the total MER capacity is equally dis-
tributed at all candidate locations. Fig. 9 shows the case of the
33-node system for the outage of lines 1, 2, 5, 7, 11, and 17. After
the implementation of KSFSA, all tie-switches are closed except
tie-switch 35. For this scenario, MERs are placed at the candi-
date locations calculated based on least MER deployment cost
functions. Two microgrids (MG-1 and MG-2) as shown in Fig. 9
are formed as a result of reconfiguration. MER sizes are, then,
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Table 6
Comparison of critical load curtailments and expected critical load curtailments.
Approaches/
Test Systems

33-node
system scenario
in Fig. 9

123-node
system scenario
in Fig. 10

33-node system
(all reduced
scenarios)

123-node system
(all reduced
scenarios)

EBD 470 kW 75 kW 131.1345 kW 87.936 kW
Proposed 460 kW 65 kW 130.6315 kW 87.887 kW
Table 7
Comparison of the 33-node system test cases based on ref. [25] with and without pre-positioning.
Cases Without pre-positioning With Pre-positioning

Max distance (ft) Max time (s) Max distance (ft) Max time (s)

Test Case-I 3450 115 3200 106.667
Test Case-II 3450 115 3200 106.667
Fig. 10. Simulation of an outage scenario in case of the 123-node system.
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chosen using both the proposed approach and EDB approach.
When MER sizes are chosen using EDB approach, the amounts
of curtailed critical loads in MG-1 and MG-2 are, respectively,
0 kW and 470 kW. This results in total critical load curtailment of
470 kW. However, when MER sizes are chosen using the proposed
approach, the amounts of critical loads in MG-1 and MG-2 are,
respectively, 0 kW and 460 kW, the total critical load curtailment
amounting 460 kW. Therefore, the total critical load curtailment
is reduced when MER sizes are determined based on the proposed
approach.

Fig. 10 shows the case of the 123-node system for the out-
age of lines 3–4, 57–60, 82–83, 91–93, and 101–105. Both tie-
switches 94–54 and 151–300 are closed after the implementation
of KSFSA. When MERs are placed at locations 54, 57, 91, 93,
and 94, a microgrid MG-1 and two isolates (IL-1 and IL-2) are
formed as shown in Fig. 10 as a result of reconfiguration. Both of
he isolates IL-1 and IL-2 do not have critical loads. When MER
izes are chosen using the EDB approach, the amount of curtailed
ritical load in MG-1 is 75 kW. However, when MER sizes are
hosen using the proposed approach, the amount of curtailed
ritical load in MG-1 is reduced to 65 kW.
Figs. 9 and 10 show the cases for a particular line outage

cenario. If the process is repeated for all reduced line outage
9

cenarios, the expected load curtailments are obtained for both
pproaches.
Table 6 shows the values of expected load curtailments for

oth approaches. The comparison result shows that the expected
oad curtailments are reduced with the proposed approach for
oth case studies.

.4. Resilience evaluation based on recovery time

Resilience evaluation criteria are needed in order to analyze
nd assess resilience enhancement strategies. In the literature,
number of resilience evaluation and assessment criteria have
een put forth, and some of these have been applied to the
valuation and assessment of power system resilience. Service
nterruption, outage duration, restoration cost, and preventive
ost have all been utilized to assess power system resilience [26].
dditionally, due to the absence of widely accepted resilience
etrics and evaluation criteria, resilience has been assessed us-

ng a number of stochastic and deterministic criteria, including
oad curtailment, load restoration, outage duration, and rate of
ecovery [27]. In the previous sub-sections, the enhancement of
istribution system resilience was evaluated using the amount of
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urtailed critical loads. This sub-section presents the evaluation
f distribution resilience based on recovery time.
Table 7 shows the comparison of two test cases from our pre-

ious work [25] with and without pre-positioning for the 33-node
ystem in terms of maximum traveling distance and maximum
raveling time. The table shows that the traveling distance and
ime are reduced as a result of pre-positioning. The traveling
peed is assumed to be 30 ft/s in this analysis. The recovery
ime in case of the 33-node system is reduced by 8.33 s for both
est cases. It can, therefore, be concluded from the results that
he proposed approach can reduce the recovery time, thereby
nhancing the system resilience.

.5. Limitations and benefits of the proposed approach

The proposed coalitional game theory-based approach suf-
ers from scalability challenges. In our recent work [28], we
ave shown that the computational time of the coalitional game
heory-based approaches increases non-linearly as the number of
layers or the size of system is increased. However, the proposed
raph theory and coalitional game theory-based pre-positioning
f MERs is still viable because pre-positioning is generally per-
ormed on week-ahead basis based on the availability of weather
orecasting and monitoring data. The consideration of marginal
ontribution of each MER location while distributing the total
ER size makes the coalitional game theoretic techniques based
n Shapley values still favorable for pre-positioning of MERs.

. Conclusion and future work

This article has proposed an approach based on graph theory
nd coalitional game theory for pre-positioning of movable en-
rgy resources (MERs) to improve resilience of the power supply.
ultiple line outage scenarios were generated, and the fuzzy
-means method was used to reduce the generated scenarios.
he distribution network and the road network were modeled
s graphs. The characteristic function of the coalitional game
odel was computed for each possible set of coalitions based
n expected critical load recovery. The Shapley value, one of
he solution concepts of coalitional game theory, was then used
o determine capacity distribution factor of each candidate MER
ocation.

The case study results showed that the proposed approach
an effectively determine the pre-positioning locations and sizes
f MERs with the least expected critical load curtailments. The
ndividual sizes of MERs obtained using the proposed approach
ere compared with the equal distribution-based (EDB) approach

n terms of total critical load curtailments. The comparison results
10
showed that the total critical loads curtailments were reduced
when MER sizes were determined based on the proposed ap-
proach for both the 33-node and the IEEE 123-node test systems.
Because of the use of the Shapley value, which takes into account
the average marginal contribution of each location, the proposed
approach’s main benefit is a fair allocation of the overall MER
size among different candidate locations. Moreover, reliability
enhancement was evaluated using two different resilience eval-
uation indices: expected critical load curtailment and recovery
time. It was concluded from each case study that the proposed
approach could effectively lower the expected value of curtailed
critical loads. The comparison of test cases with and without
pre-positioning also showed that the maximum traveling dis-
tances (or maximum traveling durations) were reduced, thereby
lowering the recovery time and enhancing system resilience.

One of the future research directions of the proposed work
could be the consideration of the dynamics of different distribu-
tion system components and performing stability analysis before
selecting the pre-positioning locations and individual sizes of
MERs. Also, integration of case studies of cyber-attacks along with
weather-related outages and the development of cyber–physical
resilience framework could be a possible extension of this work.
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ppendix. Line parameters, critical loads, and road networks
ata
See Tables A.8–A.13.
Table A.8
Line Parameters Data for 33-node System.
From node To node Impedance (�) From node To node Impedance (�)

1 2 0.0922+j0.0470 17 18 0.7320+j0.5740
2 3 0.4930+j0.2511 2 19 0.1640+j0.1565
3 4 0.3660+j0.1864 19 20 1.5042+j1.3554
4 5 0.3811+j0.1941 20 21 0.4095+j0.4784
5 6 0.8190+j0.7070 21 22 0.7089+j0.9373
6 7 0.1872+j0.6188 3 23 0.4512+j0.3083
7 8 0.7114+j0.2351 23 24 0.8980+j0.7091
8 9 1.0300+j0.7400 24 25 0.8960+j0.7011
9 10 1.0440+j0.7400 6 26 0.2030+j0.1034
10 11 0.1966+j0.0650 26 27 0.2842+0.1447
11 12 0.3744+j0.1238 27 28 1.0590+j0.9337
12 13 1.4680+j1.1550 28 29 0.8042+j0.7006
13 14 0.5416+j0.7129 29 30 0.5075+j0.2585
14 15 0.5910+j0.5260 30 31 0.9744+j0.9630
15 16 0.7463+j0.5150 31 32 0.3105+j0.3619
16 17 1.2890+j1.7210 32 33 0.3410+j0.5302
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Table A.9
Line parameters data for the modified IEEE 123-node system.
From node To node Length (ft) R (�/1000 ft) X (�/1000 ft) From node To node Length (ft) R (�/1000 ft) X (�/1000 ft)
1 2 175 0.4576 1.078 60 61 550 1.5209 0.7521
1 3 250 0.4666 1.0482 60 62 250 0.4576 1.078
1 7 300 0.4615 1.0651 62 63 175 0.4666 1.0482
3 4 200 1.3292 1.3475 63 64 350 0.4615 1.0651
3 5 325 1.5209 0.7521 64 65 425 1.3292 1.3475
5 6 250 0.4576 1.078 65 66 325 1.5209 0.7521
7 8 200 0.4666 1.0482 67 68 200 0.4576 1.078
8 12 225 0.4615 1.0651 67 72 275 0.4666 1.0482
8 9 225 1.3292 1.3475 67 97 250 0.4615 1.0651
8 13 300 1.5209 0.7521 68 69 275 1.3292 1.3475
9 14 425 0.4576 1.078 69 70 325 1.5209 0.7521
13 34 150 0.4666 1.0482 70 71 275 0.4576 1.078
13 18 825 0.4615 1.0651 72 73 275 0.4666 1.0482
14 11 250 1.3292 1.3475 72 76 200 0.4615 1.0651
14 10 250 1.5209 0.7521 73 74 350 1.3292 1.3475
15 16 375 0.4576 1.078 74 75 400 1.5209 0.7521
15 17 350 0.4666 1.0482 76 77 400 0.4576 1.078
18 19 250 0.4615 1.0651 76 86 700 0.4666 1.0482
18 21 300 1.3292 1.3475 77 78 100 0.4615 1.0651
19 20 325 1.5209 0.7521 78 79 225 1.3292 1.3475
21 22 525 0.4576 1.078 78 80 475 1.5209 0.7521
21 23 250 0.4666 1.0482 80 81 475 0.4576 1.078
23 24 550 0.4615 1.0651 81 82 250 0.4666 1.0482
23 25 275 1.3292 1.3475 81 84 675 0.4615 1.0651
25 26 350 1.5209 0.7521 82 83 250 1.3292 1.3475
25 28 200 0.4576 1.078 84 85 475 1.5209 0.7521
26 27 275 0.4666 1.0482 86 87 450 0.4576 1.078
26 31 225 0.4615 1.0651 87 88 175 0.4666 1.0482
27 33 500 1.3292 1.3475 87 89 275 0.4615 1.0651
28 29 300 1.5209 0.7521 89 90 225 1.3292 1.3475
29 30 350 0.4576 1.078 89 91 225 1.5209 0.7521
30 250 200 0.4666 1.0482 91 92 300 0.4576 1.078
31 32 300 0.4615 1.0651 91 93 225 0.4666 1.0482
34 15 100 1.3292 1.3475 93 94 275 0.4615 1.0651
35 36 650 1.5209 0.7521 93 95 300 1.3292 1.3475
35 40 250 0.4576 1.078 95 96 200 1.5209 0.7521
36 37 300 0.4666 1.0482 97 98 275 0.4576 1.078
36 38 250 0.4615 1.0651 98 99 550 0.4666 1.0482
38 39 325 1.3292 1.3475 99 100 300 0.4615 1.0651
40 41 325 1.5209 0.7521 101 102 225 1.3292 1.3475
40 42 250 0.4576 1.078 101 105 275 1.5209 0.7521
42 43 500 0.4666 1.0482 102 103 325 0.4576 1.078
42 44 200 0.4615 1.0651 103 104 700 0.4666 1.0482
44 45 200 1.3292 1.3475 105 106 225 0.4615 1.0651
44 47 250 1.5209 0.7521 105 108 325 1.3292 1.3475
45 46 300 0.4576 1.078 106 107 575 1.5209 0.7521
47 48 150 0.4666 1.0482 108 109 450 0.4576 1.078
47 49 250 0.4615 1.0651 108 300 1000 0.4666 1.0482
49 50 250 1.3292 1.3475 109 110 300 0.4615 1.0651
50 51 250 1.5209 0.7521 110 111 575 1.3292 1.3475
51 151 500 0.4576 1.078 110 112 125 1.5209 0.7521
52 53 200 0.4666 1.0482 112 113 525 0.4576 1.078
53 54 125 0.4615 1.0651 113 114 325 0.4666 1.0482
54 55 275 1.3292 1.3475 135 35 375 0.4615 1.0651
54 57 350 1.5209 0.7521 149 1 400 1.3292 1.3475
55 56 275 0.4576 1.078 152 52 400 1.5209 0.7521
57 58 250 0.4666 1.0482 160 67 350 0.4576 1.078
57 60 750 0.4615 1.0651 197 101 250 0.4666 1.0482
58 59 250 1.3292 1.3475
Table A.10
Locations of critical loads for the 33-node system.
Nodes Critical loads (kW) Nodes Critical loads (kW)

4 60 20 45
5 30 21 45
6 60 22 45
7 200 23 45
8 200 26 60
9 60 27 60
10 30 28 60
11 25 29 60
18 45 30 60
19 45 33 30
11
Table A.11
Locations of critical loads for the 123-node system.
Nodes Critical loads (kW) Nodes Critical loads (kW)

1 40 66 75
6 40 75 40
11 40 79 40
17 20 85 40
24 40 87 40
30 40 94 40
37 40 98 40
43 40 100 40
50 40 109 40
52 40 113 40
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Table A.12
Road network data for 33-node system.
From node To node Distance (ft) From node To node Distance (ft)

1 2 500 15 16 400
2 3 600 15 18 500
2 19 700 16 17 700
3 4 400 17 30 900
3 23 500 18 33 400
4 5 450 19 20 800
5 6 500 20 21 800
6 7 400 21 22 700
6 26 400 23 24 450
7 8 400 24 25 300
8 9 500 24 28 600
9 21 650 25 29 550
9 10 400 26 27 450
10 11 600 26 32 700
11 22 650 27 28 500
11 12 500 27 30 400
12 13 400 27 31 550
12 14 600 29 30 550
14 15 650 31 33 550
14 32 650 32 33 500

Table A.13
Road network data for 123-node system.
From node To node Distance (ft) From node To node Distance (ft) From node To node Distance (ft)

1 2 175 44 47 250 89 90 225
1 3 250 45 46 300 89 91 225
1 7 300 47 48 150 91 92 300
3 4 200 47 49 250 91 93 225
3 5 325 49 50 250 93 94 275
5 6 250 50 51 250 93 95 300
7 8 200 51 151 500 95 96 200
8 12 225 52 53 200 97 98 275
8 9 225 53 54 125 98 99 550
8 13 300 54 55 275 99 100 300
9 14 425 54 57 350 101 102 225
13 34 150 55 56 275 101 105 275
13 18 825 57 58 250 102 103 325
14 11 250 57 60 750 103 104 700
14 10 250 58 59 250 105 106 225
15 16 375 60 61 550 105 108 325
15 17 350 60 62 250 106 107 575
18 19 250 62 63 175 108 109 450
18 21 300 63 64 350 108 300 1000
19 20 325 64 65 425 109 110 300
21 22 525 65 66 325 110 111 575
21 23 250 67 68 200 110 112 125
23 24 550 67 72 275 112 113 525
23 25 275 67 97 250 113 114 325
25 26 350 68 69 275 135 35 375
25 28 200 69 70 325 149 1 400
26 27 275 70 71 275 152 52 400
26 31 225 72 73 275 160 67 350
27 33 500 72 76 200 197 101 250
28 29 300 73 74 350 150 149 250
29 30 350 74 75 400 13 152 250
30 250 200 76 77 400 18 135 300
31 32 300 76 86 700 60 160 300
34 15 100 77 78 100 97 197 300
35 36 650 78 79 225 94 54 400
35 40 250 78 80 475 151 300 500
36 37 300 80 81 475 2 10 400
36 38 250 81 82 250 20 27 800
38 39 325 81 84 675 32 29 500
40 41 325 82 83 250 51 250 800
40 42 250 84 85 475 4 16 900
42 43 500 86 87 450 82 86 600
42 44 200 87 88 175 37 62 500
44 45 200 87 89 275 100 114 600
12
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