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Abstract

Recently, lignin has garnered significant research attention due to its abundance in nature.
However, lignin is viewed as a recalcitrance factor as it impedes the overall biomass fractionation.
In this regard, harsh operating conditions have been applied for the effective separation of
the biomass components but they may cause substantial lignin degradation. Another problem
is that the overall kinetics of lignin reactions remain limited since current models primarily
focus on the cellulose fiber. These pose a challenge when developing effective fractionation
strategies for industrial lignin extraction. To this end, we propose a multiscale model and develop
a controller to determine the optimal operation strategy. In terms of lignin, delignification
and de/repolymerization happen simultaneously but in different length and time scales. We
adopted a bilayer structure of the ODEs and kinetic Monte Carlo (kMC) algorithm, accounting
for the multiscale reaction kinetics. Our model provides the key outputs including the lignin
content in the bulk chip and lignin molecular weight distribution, which were validated with the

experiments. Subsequently, we developed a reduced-order model (ROM) for soft sensor design
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and formulated a model predictive controller (MPC) to determine the optimal operation strategy

and then maximize the profitability.

Keywords: Lignin valorization; pulp digester; layered simulation; layered-kMC; multiscale

modeling

1. Introduction

The global community has been striving to address environmental issues, notably the pur-
suit of carbon neutrality and the replacement of petrochemical resources [1]. In this search for
alternatives, lignin has garnered significant attention due to its high energy density and aro-
matic nature, making it a large source of alternative fuels and chemicals [2, 3|. Moreover, with
its abundance in nature and substantial production in many biorefinery processes, lignin has
been investigated as a potential alternative resource [4, 5] to petrochemical resources, which face
uncertainties in the future [6]. However, lignin is still underutilized primarily attributed to its
poor processability stemming from its structural complexity [7]. Current industrial practices
treat biomass under harsh conditions, often resulting in irreversible degradation and condensa-
tion of lignin [8, 9]. Consequently, the quality of the fractionated lignin deteriorates, impeding
its potential for further utilization. Additionally, the extreme operating conditions, including
high pressure and temperature, make the overall process energy-intensive, limiting economic
benefits [10]. This often leads to the wasteful incineration of lignin as a low-value fuel, dimin-
ishing the feasibility of bioresources compared to petrochemical sources. Consequently, efficient
lignocellulosic fractionation strategies have recently gained significant research attention, aiming
to harness lignin-derived chemicals and enhance overall profitability [11].

Significant progress has been made in the study of lignin valorization; however, a knowledge

gap persists in understanding the intricate dynamics of multiscale reactions and achieving the
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optimal control over fractionation processes. The primary process outputs of interest are the
remaining lignin fraction within the wood chips and the molecular weight distribution (MWd) of
the fractionated lignin. While numerous researchers have delved into the investigation of lignin
MWd during the de/repolymerization process through experimental studies [12, 13, 14, 15] and
ex-situ MWd measurement [16], there remains a strong need for process control strategies be-
yond the measurement, incorporating explicitly defined process inputs [17|. In this context, it
becomes imperative to consider comprehensive mathematical models that focus on the fraction-
ation process, with particular emphasis on lignin.

Various modeling approaches have been employed to investigate the kinetics of the de/repoly-
merization reactions of lignin. One such approach involved the development of a kinetic model
to describe the reaction pathway networks [18]. Although this model provided valuable insights
into the monoaromatic units attainable through lignin depolymerization, it could not accurately
describe the distribution of lignin chain lengths. To address this limitation, a population bal-
ance equation (PBE)-based model was developed for electrochemical lignin depolymerization
[19]. This model accounts for the kinetics of de/repolymerization for each length of the lignin
chains, enabling the successful tracking of the lignin chain length distribution over time. It
is worth noting that to achieve a good agreement with experimental results, the reaction rate
constants for de/repolymerization had to be considered as time-varying during the operation,
although such variations are unlikely to occur in practical scenarios. To overcome this limita-
tion, stochastic methods can be applied to describe the complexity of the system, in contrast
to the deterministic approaches previously mentioned. For example, a study on lignin depoly-
merization was conducted employing a kinetic Monte Carlo (kMC) algorithm [20]. This study

listed all potential reactions and their corresponding rates, using a probabilistic simulation of
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depolymerization processes that factored in the distribution of reaction rates.

Despite recent successes in modeling various fractionation processes, the valorization of
lignin is still in its early stages when compared to well-established cellulose-centered pulping
processes like Kraft pulping. The latter has highly developed mathematical models, such as the
Purdue model [21], along with subsequent extended models [22, 23, 24, 25, 26]. However, the
absence of comprehensive models for lignin hinders our ability to control its properties during full-
scale processes. This limitation restricts the potential for the successful commercialization of this
innovative biomass fractionation concept. In particular, many lignin valorization strategies start
with the solubilized lignins during the pre-processing, like kraft pulping. Therefore, these lignins
undergo depolymerization as well as repolymerization. It is well noted that the molecular weight
of lignin plays an important role in its post-applications |27, 28, 29]. To overcome this challenge, a
next-level comprehensive model that goes beyond just de/repolymerization kinetics is necessary.
More specifically, in the actual fractionation process, delignification from the bulk biomass first
occurs, and dissolved lignin chains undergode/repolymerization. Therefore, a comprehensive
model is needed to account for the multiscale nature of the entire fractionation process.

Motivated by the challenges discussed earlier, we have developed a multiscale model that
effectively describes both macroscopic (delignification) and microscopic phenomena (de/repoly-
merization of detached lignin). To achieve this, we employed a hierarchical framework [30, 31|
that utilizes ordinary differential equations for describing mass and energy balances associated
with the detachment of lignins from biomass (i.e., delignification). Furthermore, we used a kinetic
Monte Carlo (kMC) algorithm [32] to simulate de/repolymerization reactions of detached lignins.
Our multiscale model successfully captures the intricate dynamics of lignin reactions and closely

aligns with experimental observations. In order to determine an optimal operating strategy,
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we also developed a model-based controller [33, 34| that drives both the biomass lignin content
and MWd towards desired set-points. This process involved the identification of a reduced-
order model, which was then employed to design a soft sensor, specifically the Kalman filter.
The Kalman filter allows for real-time estimation of process variables not readily available,
including the lignin content in the solid phase and the MWd of lignin in the liquid phase.
These estimations are derived from accessible measurements such as system temperature. The
capability to simultaneously measure the lignin content in cellulose-rich solid fraction and MWd
of the solubilized lignin in real-time is of immense importance. This capability ensures the
maximization of biomass utilization, aligning with the ideal biorefinery concept that aims to
valorize both carbohydrates and lignin. It is to be noted that the developed multiscale model
is based on fractionation experiments using phenol-4-sulfonic acid (PSA). PSA has exhibited
remarkable delignification capabilities under mild conditions while maintaining a high degree of
catalyst reusability [35]. We are confident that this advancement will shed light on pathways for
further industrialization and enhance the overall value of biorefinery processes.

This article is structured as follows: Section 2 provides a brief overview of the experimental
settings. Section 3 provides detailed information about the mathematical formulation, including
the mass/energy balances of the system. This section also explains the working principle of the
developed model, followed by model validation. In section 4, a reduced-order model is developed
to reduce the calculation burden during the closed-loop control. Additionally, a soft sensor is
designed to estimate unmeasurable process variables during the operation. Then, in Section 5,
we describe the design of the MPC and highlight the results of the closed-loop control using this

framework.
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2. Experimental

2.1. Chemicals

The PSA (85 wt.%) was purchased from TCI America, Inc. (United States). All the other
chemicals including acetone, ethanol, 72% sulfuric acid, acetic anhydride, and pyridine, used in

this study were purchased from VWR Internation LLC. (United States).

2.2. Preparation of Aspen wood chips

The Aspen wood chips used in this study were provided by SUNY ESF. These air-dried
wood chips were cut into pre-determined thicknesses of 0.8, 3.0, and 5.0 mm for all directions.
For the preparation of 0.8 mm biomass preparation, the wood chips underwent Wiley-milling
and were then screened with a 20-mesh sieve. In the case of biomass with thicknesses of 3.0
and 5.0 mm, the wood chips were manually trimmed using a cutter. Subsequently, the prepared
chips were soaked in deionized water for 48 hours under ambient conditions, and their moisture

contents were measured prior to the experiment.

2.3. PSA pretreatment of Aspen wood chips

The Aspen chips that had been pre-soaked in water were loaded into a 40 mL glass vial
equipped with a pressure relief cap. Considering the moisture content, the dry weight of wood
chips was 2.0 + 0.3 g. To achieve a concentration of 72 wt.% PSA solution with the water-
presaturated Aspen samples, 85 wt.% PSA along with additional deionized water were introduced
to the 20 ml vial. The reaction vial was placed in an oil bath maintained at temperatures of 70 ~
90°C for a duration of 10 ~ 30 minutes. Following the reaction, the softened Aspen wood chips
were manually disintegrated using glass rods until jelly-like pulps were obtained. Subsequently,

the mixture was then immersed in acetone for 20 minutes and subjected to filtration. The
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resulting solid residue was washed with acetone and water until the surface pH reached 5. Both
the solid residue and filtrate were collected and retained for further analysis. Notably, for Aspen
samples with a thickness of 0.8 mm, the mixture was directly soaked in an acetone-water mixture
(1:1, v/v) after pretreatment, without the need for manual disintegration.

The lignin was recovered using an Amicon® stirred cell (UFSC20001, Amicon Corporation)
equipped with a 1 kD regenerated cellulose membrane disc. The black liquor was diluted 5
times with ethanol/water (1:1, v/v), and pH was controlled at 3.0 to 3.5 using 1 wt.% sodium
hydroxide in ethanol /water (2:1, v/v) solvent. The residues on the membrane disc were collected

and dried in air condition.

2.4. Klason lignin analysis

To quantify the lignin content of the wood chips both before and after pretreatment, the
NREL standard procedure was followed [36]. Before analysis, the untreated wood chips were
ground to a 14-mesh size. The unpretreated and PSA-pretreated biomass were then hydrolyzed
with 72% sulfuric acid at a temperature of 30 °C for 1 hour. The resulting mixture was then
diluted to contain 4% sulfuric acid by the addition of deionized water. Following this, the biomass
and hydrolysate in 4% sulfuric acid were autoclaved at 121 °C for 1 hour. After the two-stage
hydrolysis process, the insoluble samples were filtered, followed by washing with deionized water.
Then, the ash content was measured using a muffle furnace at a temperature of 575 °C for 24
hours. The content of acid-insoluble lignin, excluding ash content, was used as Klason lignin

content in biomass samples.

2.5. Molecular weight analysis
The recovered lignin in Section 2.3 was acetylated for its molecular weight analysis. About
2 mg of the lignin was dissolved and acetylated in a mixture of pyridine and acetic anhydride (1:1
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v/v) for 48 hours. After this process, the solvent was removed using a rotary evaporator, and the
resulting acetylated lignin was dissolved in THF. The weight-average molecular weight (M),
and number-average molecular weight (M,,) were measured using an Agilent Gel Permeation
Chromatography (GPC) SECurity 1200 system equipped with Waters Styragel columns (Waters

Corporation, Milford, MA) and a UV detector at 270 nm.

3. Model formulation

In this work, we developed a kinetic model based on the outcomes of the biomass frac-
tionation experiment. This model was subsequently used to predict and delve deeper into the
reaction kinetics. The biomass treatment comprises two distinct processes operating at different
time and length scales.

The first process involves the dissolution of lignin from the bulk biomass, referred to as
delignification (i.e., a macroscopic reaction). The second process involves the de/repolymeriza-
tion of the dissolved lignin chains in the solution (i.e., microscopic reactions). These multiscale
reactions yield several critical process variables, including the lignin content remaining in the
bulk biomass and the MWd of the dissolved lignin chains.

Initially, a simple mass balance equation was employed to monitor the macroscopic changes
and determine delignification kinetics, based on the experimental findings. Furthermore, mi-
croscopic kinetics were also determined using the kMC approach to obtain the MWd for each
reaction condition, thereby establishing the relationship between these conditions and the MWd.
Considering that these two events are occurring concurrently but at different scales, we coupled
these models by layering, ensuring the accurate formulation of the entire process. The detailed

working scheme will be elucidated in the following sections.
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3.1. Macroscopic model

To model the macroscopic phenomena of delignification, we employed continuum-scale mass
and energy balance equations. These were utilized to model and simulate the process, and their

predictions were validated against the results of the delignification experiment.

3.1.1. Mass balance: delignification

The delignification reaction is often modeled as a first-order reaction; however, in practice,
redeposition of the dissolved lignin has been observed during experiments. Therefore, the sim-
plest reversible reaction scheme was chosen among the available kinetic models [37]|. In summary,

delignification is modeled as follows:

k
L M L, (1)
ko

where L and L represent the lignin content in the wood chip and liquor phases (i.e., dissolved
lignin), respectively. The rate constants for delignification and lignin redeposition are denoted

by ki and ks, respectively. Therefore, the rate equations can be expressed as follows:

dL
’I"L:——Ile—kst
N
L, = da 1 2Ls

The analytical solutions for both mass balances are provided below:

ko + kye Uitk
M0=M®<2 5+% )

Ky — ke~ (kth)t
L) = 20) (M=)
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Both rate constants can be expressed using the Arrhenius-type equation as follows:

k; = Asexp (— }Eza‘) (4)

where A and F,, are the pre-exponential factor and the activation energy, respectively, R is the
universal gas constant, and 7" is the system temperature. Additionally, i = 1,2 designates the
delignification and redeposition reactions. Aspen wood is classified as a hardwood species, and
its lignin mainly consists of the cinapyl monolignols with a MW of 0.210 kDa [38]. In this study,
lignin is modeled as a polymerized chain of single monomers, where the MW of the dissolved
lignin chains is observed as 13 kDa, which corresponds to the degree of polymerization of 62
monolignols/chain. The dissolved lignin chains are subject to de/repolymerization. Therefore, it

is coupled with the microscopic layer of this simulation, which is described in detail in Section 3.3.

3.1.2. Energy balance

In addition to the continuum-scale mass balance, the energy balance is also considered in
this study. The system is divided into two phases: the chip phase, where the macroscopic
reactions occur, and the free-liquor phase, where the microscopic reactions occur. The energy

balance for the chip phase is expressed as follows:

dr.
dt

pCMC = AHR’T’L + U(Tf — Tc) (5)

where T stands for the chip phase temperature, while C'p, and M, are the specific heat and the
mass for the chip phase, respectively. AHpg is the heat of the reaction, U is the overall heat
transfer coefficient, and T} is the temperature of the free-liquor phase. The specific heat of the
chip phase is a function of temperature and can be expressed as Cp, = 0.1031 4 0.0038677

10



214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

[kJ /kg K] [39].

For the free-liquor phase, the energy balance can be represented as:

dT .
d—;”cprf = —U(T; = T.) + Cp.p, Meat(Toqy — T}) (6)

where Cp, is the specific heat, and My is the mass for the free-liquor phase. The latter term of
Eq. 6 is utilized for temperature control purposes, which is achieved through an external heat
jacket. Here, Cp_,, M., Tepr represent the specific heat, mass flow rate, and temperature of
the external flow that exchanges heat with the free-liquor phase, respectively. The mixing rule
[40] is utilized to calculate the specific heat of the free-liquor phase, which is influenced by the

amount of solid mass dissolved into the free-liquor phase.

Cpf = foC’pc + fEflCPl (7)

where x¢ represents the mass fraction of solid and liquid, and Cp, denotes the specific heat of

the pure-liquid.

3.2. Microscopic model: de/repolymerization

As previously mentioned, the number of dissolving lignin chains at a given time is determined
using Eq. 2. Our model takes into account the further microscopic interactions these chains
undergo. Specifically, it incorporates three types of microscopic events: (i) a random scission of
a selected chain, which represents depolymerization; (ii) an end-to-end polymerization between
two selected chains, signifying repolymerization; and (iii) any other events that do not affect
the MW of existing chains. In the free-liquor phase, lignin molecules can be solubilized without
any associated length changes. Such interactions between lignin fragments and PSA solvent are

11
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classified as null events. Within our model, de/repolymerization kinetics are assumed to follow
first and second-order reactions, respectively, while null events are classified as zeroth-order
reactions.

At any given moment, each dissolved chain undergoes microscopic events at distinct reaction
rates, subsequently updating the lignin population. Capturing these events mathematically is
challenging due to the stochastic nature of the microscopic interactions. As a result, we employed
the kinetic Monte Carlo (kMC) algorithm to simulate de/repolymerization. To simplify the
process, we made the following assumptions: (i) Lignin fragments are considered linear polymer
chains due to their less branched nature [5, 41|; (ii) All scission possibilities are identical for
the constituent bonds in a given lignin chain [20]; and (iii) The MWd adheres to a specific
distribution, such as log-normal, as reported in prior studies [12, 13, 14, 15]. For the calculations,
zero, one, or two out of N chains can be chosen at any time, with the corresponding reaction

rates defined as follows:

Tdep(Ni) - kdepCL(Ni>
Frep(Niy Nj) = kyepCrL(N;)CL(N;) (8)

Toth = Koth
Here, N; and N; are the indices for the selected lignin chains, with the conditions ¢ # j and
1 < N;, N; < N. Additionally, we define C,(1V;) as the concentration of all dissolved lignin chains
that have a MW equal to that of the selected chain, N;. Based on the actual experiments, this
model aims to determine the rate constants for various processes: kg, for depolymerization, k.,
for repolymerization, and k., for other events.
The parameters in the rate equations (i.e., pre-exponential factors and activation energies)

for de/repolymerization, and other events are obtained by fitting the average molecular weights

12
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Criteria Event
0<6 < raep(NVi) Depolymerization of N;

Tmicro
Tdep(Ni) Tdep(Ni)+7rep(Ni,Nj)
s <6 < —
micro micro
Tdep N’i)+TT5P(N’iVNj) < 51 < 1

Tmicro

Repolymerization between N; and NN;

Null events

Table 1. The execution table of the microscopic events.

(i.e., M, and M,,) predicted by the model with the experimental data. As seen in Eq. 4,
the reaction temperature affects the reaction rates, while the chip size does not influence the
microscopic kinetics. In this sense, the best-fit values of rate constants and the activation energy
barriers were obtained by doing a grid search. With the rate constants determined, the kMC
algorithm randomly selects a specific event based on the rate distribution, which can be described
as follows. Since any lignin chain can be chosen, and the rates are provided in Eq. (8), the overall

de/repolymerization rates can be expressed as:

N
Tdep = Z kdepCL(Ni)
=1

Trep = Z Z krepCr(N;)CL(N;)

i=1 j#i

The overall microscopic reaction rate ("picro = Tdep + Trep + Totn) can be calculated, allowing
for the determination of the microscopic reaction rate distribution. Utilizing this information,
the kMC algorithm selects and executes an event based on Table 1, using a random number
generated (). Each event progresses the clock, and the advancement amount is calculated

using another random number, &s;, as follows:

_ In &s;

T'micro

ot =

13
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Fig. 1. A schematic illustration showing the lignin MW arrays and the reactions occurring at multiple scales.

3.3. Owerall simulation scheme

As previously described, two layers of ODE (Section 3.1.1) and kMC (Section 3.2) are
integrated and operate together to simulate the temporal evolution of lignin content in bulk
biomass and the MWd of dissolved lignin chains.

Since dissolved lignin chains undergo de/repolymerization, the macroscopic mass balance is
linked to the microscopic layer. To achieve this, specific arrays are implemented to store the MW
information of lignin chains in both the wood chip and free-liquor phases, as illustrated in Fig. 1.
When a lignin chain dissolves from the bulk wood chip, it is transported to the free-liquor phase
(red arrow). Simultaneously, some dissolved chains reattach to the wood chip via redeposition
(green arrow). The dissolved lignin chains then undergo de/repolymerization reactions (yellow
and blue arrows), which are simulated in the microscopic kMC layer. The arrays are updated

for each macro/microscopic time segment during the simulation.
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For the macroscopic layer, k; and ky are used to fit the experimental data for 0.8/3.0/5.0
mm chips. With these values, the macroscopic mass balance is calculated discretely for each time
step (At), which is set to 0.0005 min. The amount of lignin dissolved from the biomass at each
At is determined to calculate the quantities of dissolved and condensed lignin. Consequently,
lignin chains are either introduced to or removed from the liquor phase.

For the microscopic layer, three microscopic rate constants (Kgep, krep, and ko) are incor-
porated into the kMC algorithm. For each At, a microscopic event is selected and executed for
dt, and this process is repeated until X4t reaches At. De/repolymerization reactions break and
recombine existing lignin chains in the solution, without altering the overall lignin masses in
both phases. The entire cycle is then repeated for 30 min, as the experimental data are available
for each condition up to 30 min.

After validating the model with the experiment data, the kinetic parameters are analyzed
using traditional methods, such as plotting and examining them on Ink vs. 1/7T plots. Subse-
quently, the kinetic parameter estimation is completed, which yields the activation energies and
pre-exponential factors for delignification and de/repolymerization processes, which can be used

for further applications in biomass fractionation.

3.4. Open-loop simulation results

3.4.1. Delignification kinetics

In this section, we present the results of the open-loop simulation for the delignification
kinetics. To estimate the delignification/redeposition rate constants, we performed reactions
under various conditions, and the results are displayed in Fig. 2. Based on these outcomes,
we determined the delignification/redeposition rate constants, as shown in Fig. 3. With these

results, we obtained the activation energies and pre-exponential factors, the values of which
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Fig. 2. The delignification results for different biomass sizes are presented, including (a) 0.8 mm, (b) 3.0 mm,
and (c¢) 5.0 mm wood chips, under three different temperatures. The darker lines represent higher temperatures

in the ascending order of 70, 80, and 90 °C. The solid and dashed arrows also indicate the increasing temperature
for L, L, respectively.
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Fig. 3. The rate constants are plotted as a function of reaction temperature, with (a) representing delignification,
and (b) redeposition. The data correspond to 0.8, 3.0, and 5.0 mm wood chips, displayed from top to bottom.

are presented in Table 2. It is important to note that while PSA generally shows superior

fractionation performance, the 5 mm chips are considerably large, making it difficult to obtain
meaningful delignification and de/repolymerization data at low temperatures, such as 70 °C.
In general, reaction rates increase with the temperature, and delignification is more favorable
with smaller biomass sizes. This is because the solvent can more easily penetrate the biomass,
and the dissolved lignin chains can be released into the free-liquor phase with less resistance.

Consequently, the trends observed are reasonable, as delignification rate constants increase with

higher temperatures and smaller biomass sizes.
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Biomass size (mm)  Ej E, Ay Aoy

0.8 20.50 4.482 311.7 0.1216
3.0 2425 11.97 464.3 0.9989
2.0 27.84 13.66 644.6 1.410

Table 2. The macroscopic kinetic parameters.

It is also noteworthy that the activation energies we obtained were lower than those reported
in previous studies, even under more extreme reaction conditions [42, 43]. This suggests that
the PSA reagent can stabilize the dissolved lignin chains and play a critical role as a catalyst,
allowing for effective delignification even under moderate conditions, such as lower temperatures

and atmospheric pressure. This is in contrast to traditional methods like Kraft pulping.

3.4.2. De/repolymerization kinetics

In this section, we examine the kinetics of de/repolymerization of lignin, employing the
kMC algorithm as our analysis tool. Our study is based on the macroscopic rate data we have
gathered. To begin, we present the evolution of MWd as illustrated in Fig. 4.

As the reaction progresses, lignin chains continuously dissolve out from the biomass, result-
ing in an increase in the number of lignin chains. Interestingly, the emergence of a small peak

at the onset of the reactions can be observed. This peak corresponds to chains of length 62 or
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Fig. 4. The estimated DP distribution of the fractionated lignin in the liquor phase at selected time points (0.8
mm chip, 70 °C): (a) 1 min, (b) 5 min, and (c¢) 15 min following the initiation of the reaction.
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Fig. 5. The resulting DP distribution of the fractionated lignin in the liquor phase for the 0.8 mm chips after a
reaction time of 30 minutes under varying temperatures, (a) 70 °C, (b) 80 °C, and (c) 90 °C.

a MW of 13 kDa. Such a phenomenon can be attributed to the significant reduction in lignin
content within the bulk biomass.

As the reactions progress, the MWd tends towards specific log-normal distributions for each
operating condition. This trend is presented in Fig. 5, and it aligns with the findings from prior
studies [12, 13, 14, 15]. This observation suggests a higher dissolution rate of lignin chains at
elevated temperatures.

With the MWd data, we computed the number-averaged MW (M,,) and the weight-averaged
MW (M,,). Fig. 6 shows that the M, and M, values, when aligned with the estimated kinetic
parameters, correspond well with the experimental results. This concurrence serves to validate
our multiscale modeling framework. Furthermore, as depicted in Fig. 6, the average MW de-
creases as temperature increases. This trend can be attributed to the depolymerization reaction
rate dominating over other microscopic reaction rates.

It is noteworthy that the initial fluctuations in the M,, and M, become more pronounced as
larger wood chips are employed. This phenomenon can be attributed to the interplay between
macroscopic reactions, such as delignification, and microscopic phenomena. During the early

stages of the fractionation process, fewer lignin chains are released from larger wood chips into
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Fig. 6. The de/repolymerization results (MWs) under three different temperatures, each with varying biomass
sizes: (a) 0.8 mm/70 °C, (b) 0.8 mm/80 °C, (c¢) 0.8 mm/90 °C, (d) 3.0 mm/70 °C, (e) 3.0 mm/80 °C, (f) 3.0
mm/90 °C, (g) 5.0 mm/80 °C, and (h) 5.0 mm/90 °C.
the liquor phase. Consequently, a small population of lignin chains undergoes rapid de/repoly-
merization reactions, leading to significant changes in the average MWs. Once the wood chips
supply a sufficient number of additional chains, both the M, and M, stabilize, converging to
their respective values.

The microscopic kinetic parameters, derived through the fitting model outputs to experi-

mental results, are presented in Fig. 7. As predicted, the rate constants exhibit an increasing

trend with escalating temperature. Importantly, it should be emphasized that the microscopic
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Fig. 7. Microscopic rate constants described as a function of reaction temperature for (a) depolymerization, (b)
repolymerization, and (c¢) null events.

rate constants are solely influenced by temperature and remain unaffected by the size of the wood
chips. This is attributed to the fact that the de/repolymerization reactions occur within the
already-dissolved species situated in the liquor phase. In contrast, the kinetics of the delignifi-
cation/redeposition reactions are directly impacted by the size of the wood chips. Consequently,
the de/repolymerization rates are influenced by both temperature and the concentration of lignin
chains (refer to Eqs. 8-9). The latter is determined by the quantity of lignin dissolved in the
macroscopic layer. Ultimately, our high-fidelity model effectively encapsulates the multiscale na-
ture of the biomass fractionation process through the integration of macroscopic and microscopic

kinetics.

4. Model order reduction and soft-sensor design

4.1. Reduced-order model development

In the preceding section, we delved into the intricacies of the high-fidelity kinetic model.
Our ultimate objective is to identify the optimal operational strategy for the system, one that
allows us to achieve the desired lignin content and MWd. Nevertheless, the multiscale model,

while comprehensive, poses a computational challenge for control purposes. Thus, we have
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Fig. 8. Manipulated system inputs for ROM training: (a) the external jacket flow temperature and (b) the flow
rate.
developed a reduced-order model (ROM) that is more computationally tractable. In this model,
we propose the use of an external jacket to supply heat and control the system’s temperature
(Eq. 6). Our primary goal is to control the optimal operational conditions in order to achieve the
desired outputs (i.e., lignin content and MWd). This is accomplished by adjusting the process
inputs, namely, the external flow temperature and rate. We generate the ROM via the subspace
state-space system identification algorithm, also known as N4SID.

The inputs are discretized at intervals of 1 minute and utilized as training data for the
multiscale model. The manipulated input data used for the training of the ROM is illustrated

in Fig. 8. The developed ROM is presented below:

o(tpy1) = Ax(ty) + Bu(ty)

y(te) = Ca(ty)
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Fig. 9. System outputs derived from our ROM compared with results from the high-fidelity model: (a) free-liquor
temperature, (b) lignin content, and (¢) M,.

where z(t)) is the vector of states, u denotes the system inputs, the external flow temperature
and mass flow rate (i.e., u(ty) = [Tewt Mewt]T), y represents the system outputs, such that
y(tr) = [Ty M, L]*. The process inputs were modulated at a sampling rate of 1 minute for
the extraction of the ROM. The above state-space model comprises three states and is fully
controllable and observable. The matrices A, B, and C' are of dimensions 3 x 3, 3 x 2, and 3 x 3,
respectively.

Utilizing the trained ROM, we generate the results shown in Fig. 9, complete with an ac-
companying root-mean-square error (RMSE). Please note that both the free-liquor temperature
and the lignin content align well with the data from the multiscale model. However, the M,, data
exhibits less precision, primarily due to substantial fluctuations at the outset of the reaction.
These fluctuations occur when a smaller number of lignin chains undergo de/repolymerization.

Despite this, it is clear that the ROM predictions are largely in good agreement with the output
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of the model.

4.2. Soft sensor development via Kalman filter

Real-time measurement of variables poses a significant challenge. Therefore, in this study,
we estimate the lignin content and MWd from the readily available measurement, the free-
liquor temperature (7). Given that the kinetic parameters across both scales are temperature-
dependent as seen in Eq. 4, tracking the system temperature enables the computation of the
reaction rate constants. This, in turn, allows for the simulation of multiscale reactions to estimate
these values. It is important to note that M,,, which can be directly derived from MWd, is the
variable we aim to control in this study. To estimate these variables, we implement a soft sensor,

specifically a Kalman filter, for variable estimation. The design is as follows:

K(ty) = P(t)CT(R(ty) + CP(t,)CT)™*
P(tysr) = (I = K(t,)C) P(ty) (12)

i(tk+1> = Aj:(tk) + Bu(tkz> + K(tk>(ymeas<tk) - gmeas(tk))

where [ is the identity matrix, P(¢)) and R(t;) represent the state and error covariance matrices,
respectively. These matrices correspond to the state estimation and measurement noise. The

teIm Ymeas(t,) refers to the measurable output - namely, T¢(t) and Ymeqs(tr) signify the inferred

tr
measurement at time ¢ = t;. The error covariance is updated at every instant with the filter

gain, K (1), and the filtered state, &(t;). Subsequently, the updated state, Z(txy1), is employed

to predict both the future state and the output variables, as shown in Eq. 11.
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5. Closed-loop control of the fractionation process

5.1. MPC design

Given the challenges associated with real-time measurement and control of the fractionation
process, we have designed a model predictive controller (MPC) using the ROM obtained from the
previous section. The optimal control input profile is determined by solving the optimal control
problem, as outlined in Eq. 13. The controller’s performance is assessed using the fractionation

process for 0.8 mm chips, with control actions executed at three-minute intervals.

min W1<Mn(tN) — Mn,sp)2 + WQ(L(tN) — Lsp)Q

Tezt,k7Mezt,k

s.t. Reduced-order model, Eq. (11).

Soft sensor, Eq. (12). (13)

340 < Toge s [K] < 370

50 < Moy, [g/min] < 150

|Te$t,k+1 - Temt,k|§ 5 Vke [17 N — 1]

where N represents the length of the prediction horizon, t; is the reaction time, and 7}, indicates
the temperature at the sampling time of ¢;. The cost function includes a control weight, which
is set to w = [wy;ws] = [1;6000], and the set-points for M, and L are defined as [M, ,, =

1.24 [kDa), L, = 1.88 [%]].

5.2. Closed-loop operation results

The input profiles of the MPC, depicted in Fig. 10, are integrated into the multiscale model,
serving as a virtual experiment. This model controls the temperature of the free-liquor phase, as
illustrated in Fig. 11, with the aim of attaining the desired lignin content and M,,. Initially, the
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Fig. 10. The input trajectory, showing (a) the external jacket temperature, and (b) the flow rate, used for the
process optimization.

free-liquor temperature is elevated by introducing a high volume of jacket flow at a high tem-
perature, and it is then maintained around 360 K by gradually decreasing the flow rate. This
approach is used because our aim is to attain a low lignin content in the bulk wood chip. Conse-
quently, as illustrated in Fig. 12(a), the lignin content gradually converges to its predetermined
set-point. Beyond the level of delignification, the real-time adjustment of lignin’s MW presents
a challenge, largely due to its susceptibility to both reversible macroscopic interactions and the
ongoing processes of de/repolymerization. For example, the behavior of M,,, which appears to
be on track towards the set-point, but manifests a slight increase around the 26-minute mark of
operation. This trend is presented in Fig. 12(b). To counteract this, a slight elevation in system
temperature was implemented towards the end of the operation. This was achieved by reintro-
ducing a higher temperature to the external jacket flow, which successfully allowed M, to finally
meet its set-point. The outcome aligns with the prior observation that depolymerization governs
the microscopic kinetics, leading to a decrease in M, as the depolymerization rate accelerates

in response to the increased temperature. The control objectives were thus successfully met:
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deviations from their respective set-points were only 0.28 % for lignin content and 0.17% for
M,,. Moreover, these control actions were carried out in accordance with the control constraints
provided in Eq. 13.

Despite the notable importance of Online measurement and control, these tasks have not
been conducted in previous studies. In this study, it is noteworthy that the model, soft sensor,
and controller were successfully integrated, enabling the effective estimation and control of criti-
cal state variables throughout the operation. Furthermore, we carried out the PSA fractionation
under moderate temperatures, thereby avoiding any harsh operating conditions. This method
suggests the potential for a significant increase in the profitability of biomass fractionation. By
reducing energy demand and facilitating a more comprehensive utilization of lignin from bulk

biomasses, this approach holds promise for enhancing the overall efficiency and sustainability of

the process.
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Fig. 12. The optimal operation output for the 0.8 mm wood chips: (a) lignin content, (b) M,,.

6. Conclusion

In this work, a bilayer simulation framework is employed to examine lignin behavior during
the biomass fractionation process with the use of an innovative reagent, PSA. It is shown that
our simple framework can successfully simulate the complicated fractionation process including
delignification and de/repolymerization.

First, the macroscopic layer is developed to capture lignin dissolution and redeposition.
The remaining lignin contents in the biomass could be calculated under various fractionation
conditions by solving the simple ODEs. Second, the microscopic layer is constructed to sim-
ulate de/repolymerization reactions. It turned out that our stochastic and probabilistic kMC
algorithm tracked the evolution of lignin MWd in the system and then helped with finding the
microscopic kinetic parameters. Both layers worked in tandem within our simulation framework,
and the simulation results closely aligned with the experimental results, validating our multiscale
model.

Once the high-fidelity kinetic model is obtained, we implemented an MPC to regulate the

27



449

450

451

452

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

process and attain desired outcomes. A soft sensor was also incorporated to estimate parameters
such as lignin content and MWd, which are not directly measurable within the actual system.
The controller exhibited exceptional performance, optimizing the fractionation process by guid-
ing both the lignin content and MWd to their designated set-points while adhering to process
constraints.

In summary, this work provides a holistic framework for kinetic modeling and optimal
control application for biomass fractionation processes. We believe that our comprehensive study
can provide insights into lignin valorization and will pave the way for the successful development

of alternative resources in the future.
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