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Abstract11

Recently, lignin has garnered significant research attention due to its abundance in nature.12

However, lignin is viewed as a recalcitrance factor as it impedes the overall biomass fractionation.13

In this regard, harsh operating conditions have been applied for the effective separation of14

the biomass components but they may cause substantial lignin degradation. Another problem15

is that the overall kinetics of lignin reactions remain limited since current models primarily16

focus on the cellulose fiber. These pose a challenge when developing effective fractionation17

strategies for industrial lignin extraction. To this end, we propose a multiscale model and develop18

a controller to determine the optimal operation strategy. In terms of lignin, delignification19

and de/repolymerization happen simultaneously but in different length and time scales. We20

adopted a bilayer structure of the ODEs and kinetic Monte Carlo (kMC) algorithm, accounting21

for the multiscale reaction kinetics. Our model provides the key outputs including the lignin22

content in the bulk chip and lignin molecular weight distribution, which were validated with the23

experiments. Subsequently, we developed a reduced-order model (ROM) for soft sensor design24
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and formulated a model predictive controller (MPC) to determine the optimal operation strategy25

and then maximize the profitability.26

Keywords: Lignin valorization; pulp digester; layered simulation; layered-kMC; multiscale27

modeling28

1. Introduction29

The global community has been striving to address environmental issues, notably the pur-30

suit of carbon neutrality and the replacement of petrochemical resources [1]. In this search for31

alternatives, lignin has garnered significant attention due to its high energy density and aro-32

matic nature, making it a large source of alternative fuels and chemicals [2, 3]. Moreover, with33

its abundance in nature and substantial production in many biorefinery processes, lignin has34

been investigated as a potential alternative resource [4, 5] to petrochemical resources, which face35

uncertainties in the future [6]. However, lignin is still underutilized primarily attributed to its36

poor processability stemming from its structural complexity [7]. Current industrial practices37

treat biomass under harsh conditions, often resulting in irreversible degradation and condensa-38

tion of lignin [8, 9]. Consequently, the quality of the fractionated lignin deteriorates, impeding39

its potential for further utilization. Additionally, the extreme operating conditions, including40

high pressure and temperature, make the overall process energy-intensive, limiting economic41

benefits [10]. This often leads to the wasteful incineration of lignin as a low-value fuel, dimin-42

ishing the feasibility of bioresources compared to petrochemical sources. Consequently, efficient43

lignocellulosic fractionation strategies have recently gained significant research attention, aiming44

to harness lignin-derived chemicals and enhance overall profitability [11].45

Significant progress has been made in the study of lignin valorization; however, a knowledge46

gap persists in understanding the intricate dynamics of multiscale reactions and achieving the47
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optimal control over fractionation processes. The primary process outputs of interest are the48

remaining lignin fraction within the wood chips and the molecular weight distribution (MWd) of49

the fractionated lignin. While numerous researchers have delved into the investigation of lignin50

MWd during the de/repolymerization process through experimental studies [12, 13, 14, 15] and51

ex-situ MWd measurement [16], there remains a strong need for process control strategies be-52

yond the measurement, incorporating explicitly defined process inputs [17]. In this context, it53

becomes imperative to consider comprehensive mathematical models that focus on the fraction-54

ation process, with particular emphasis on lignin.55

Various modeling approaches have been employed to investigate the kinetics of the de/repoly-56

merization reactions of lignin. One such approach involved the development of a kinetic model57

to describe the reaction pathway networks [18]. Although this model provided valuable insights58

into the monoaromatic units attainable through lignin depolymerization, it could not accurately59

describe the distribution of lignin chain lengths. To address this limitation, a population bal-60

ance equation (PBE)-based model was developed for electrochemical lignin depolymerization61

[19]. This model accounts for the kinetics of de/repolymerization for each length of the lignin62

chains, enabling the successful tracking of the lignin chain length distribution over time. It63

is worth noting that to achieve a good agreement with experimental results, the reaction rate64

constants for de/repolymerization had to be considered as time-varying during the operation,65

although such variations are unlikely to occur in practical scenarios. To overcome this limita-66

tion, stochastic methods can be applied to describe the complexity of the system, in contrast67

to the deterministic approaches previously mentioned. For example, a study on lignin depoly-68

merization was conducted employing a kinetic Monte Carlo (kMC) algorithm [20]. This study69

listed all potential reactions and their corresponding rates, using a probabilistic simulation of70
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depolymerization processes that factored in the distribution of reaction rates.71

Despite recent successes in modeling various fractionation processes, the valorization of72

lignin is still in its early stages when compared to well-established cellulose-centered pulping73

processes like Kraft pulping. The latter has highly developed mathematical models, such as the74

Purdue model [21], along with subsequent extended models [22, 23, 24, 25, 26]. However, the75

absence of comprehensive models for lignin hinders our ability to control its properties during full-76

scale processes. This limitation restricts the potential for the successful commercialization of this77

innovative biomass fractionation concept. In particular, many lignin valorization strategies start78

with the solubilized lignins during the pre-processing, like kraft pulping. Therefore, these lignins79

undergo depolymerization as well as repolymerization. It is well noted that the molecular weight80

of lignin plays an important role in its post-applications [27, 28, 29]. To overcome this challenge, a81

next-level comprehensive model that goes beyond just de/repolymerization kinetics is necessary.82

More specifically, in the actual fractionation process, delignification from the bulk biomass first83

occurs, and dissolved lignin chains undergode/repolymerization. Therefore, a comprehensive84

model is needed to account for the multiscale nature of the entire fractionation process.85

Motivated by the challenges discussed earlier, we have developed a multiscale model that86

effectively describes both macroscopic (delignification) and microscopic phenomena (de/repoly-87

merization of detached lignin). To achieve this, we employed a hierarchical framework [30, 31]88

that utilizes ordinary differential equations for describing mass and energy balances associated89

with the detachment of lignins from biomass (i.e., delignification). Furthermore, we used a kinetic90

Monte Carlo (kMC) algorithm [32] to simulate de/repolymerization reactions of detached lignins.91

Our multiscale model successfully captures the intricate dynamics of lignin reactions and closely92

aligns with experimental observations. In order to determine an optimal operating strategy,93
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we also developed a model-based controller [33, 34] that drives both the biomass lignin content94

and MWd towards desired set-points. This process involved the identification of a reduced-95

order model, which was then employed to design a soft sensor, specifically the Kalman filter.96

The Kalman filter allows for real-time estimation of process variables not readily available,97

including the lignin content in the solid phase and the MWd of lignin in the liquid phase.98

These estimations are derived from accessible measurements such as system temperature. The99

capability to simultaneously measure the lignin content in cellulose-rich solid fraction and MWd100

of the solubilized lignin in real-time is of immense importance. This capability ensures the101

maximization of biomass utilization, aligning with the ideal biorefinery concept that aims to102

valorize both carbohydrates and lignin. It is to be noted that the developed multiscale model103

is based on fractionation experiments using phenol-4-sulfonic acid (PSA). PSA has exhibited104

remarkable delignification capabilities under mild conditions while maintaining a high degree of105

catalyst reusability [35]. We are confident that this advancement will shed light on pathways for106

further industrialization and enhance the overall value of biorefinery processes.107

This article is structured as follows: Section 2 provides a brief overview of the experimental108

settings. Section 3 provides detailed information about the mathematical formulation, including109

the mass/energy balances of the system. This section also explains the working principle of the110

developed model, followed by model validation. In section 4, a reduced-order model is developed111

to reduce the calculation burden during the closed-loop control. Additionally, a soft sensor is112

designed to estimate unmeasurable process variables during the operation. Then, in Section 5,113

we describe the design of the MPC and highlight the results of the closed-loop control using this114

framework.115
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2. Experimental116

2.1. Chemicals117

The PSA (85 wt.%) was purchased from TCI America, Inc. (United States). All the other118

chemicals including acetone, ethanol, 72% sulfuric acid, acetic anhydride, and pyridine, used in119

this study were purchased from VWR Internation LLC. (United States).120

2.2. Preparation of Aspen wood chips121

The Aspen wood chips used in this study were provided by SUNY ESF. These air-dried122

wood chips were cut into pre-determined thicknesses of 0.8, 3.0, and 5.0 mm for all directions.123

For the preparation of 0.8 mm biomass preparation, the wood chips underwent Wiley-milling124

and were then screened with a 20-mesh sieve. In the case of biomass with thicknesses of 3.0125

and 5.0 mm, the wood chips were manually trimmed using a cutter. Subsequently, the prepared126

chips were soaked in deionized water for 48 hours under ambient conditions, and their moisture127

contents were measured prior to the experiment.128

2.3. PSA pretreatment of Aspen wood chips129

The Aspen chips that had been pre-soaked in water were loaded into a 40 mL glass vial130

equipped with a pressure relief cap. Considering the moisture content, the dry weight of wood131

chips was 2.0 ± 0.3 g. To achieve a concentration of 72 wt.% PSA solution with the water-132

presaturated Aspen samples, 85 wt.% PSA along with additional deionized water were introduced133

to the 20 ml vial. The reaction vial was placed in an oil bath maintained at temperatures of 70 ∼134

90◦C for a duration of 10 ∼ 30 minutes. Following the reaction, the softened Aspen wood chips135

were manually disintegrated using glass rods until jelly-like pulps were obtained. Subsequently,136

the mixture was then immersed in acetone for 20 minutes and subjected to filtration. The137
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resulting solid residue was washed with acetone and water until the surface pH reached 5. Both138

the solid residue and filtrate were collected and retained for further analysis. Notably, for Aspen139

samples with a thickness of 0.8 mm, the mixture was directly soaked in an acetone-water mixture140

(1:1, v/v) after pretreatment, without the need for manual disintegration.141

The lignin was recovered using an Amicon® stirred cell (UFSC20001, Amicon Corporation)142

equipped with a 1 kD regenerated cellulose membrane disc. The black liquor was diluted 5143

times with ethanol/water (1:1, v/v), and pH was controlled at 3.0 to 3.5 using 1 wt.% sodium144

hydroxide in ethanol/water (2:1, v/v) solvent. The residues on the membrane disc were collected145

and dried in air condition.146

2.4. Klason lignin analysis147

To quantify the lignin content of the wood chips both before and after pretreatment, the148

NREL standard procedure was followed [36]. Before analysis, the untreated wood chips were149

ground to a 14-mesh size. The unpretreated and PSA-pretreated biomass were then hydrolyzed150

with 72% sulfuric acid at a temperature of 30 ◦C for 1 hour. The resulting mixture was then151

diluted to contain 4% sulfuric acid by the addition of deionized water. Following this, the biomass152

and hydrolysate in 4% sulfuric acid were autoclaved at 121 ◦C for 1 hour. After the two-stage153

hydrolysis process, the insoluble samples were filtered, followed by washing with deionized water.154

Then, the ash content was measured using a muffle furnace at a temperature of 575 ◦C for 24155

hours. The content of acid-insoluble lignin, excluding ash content, was used as Klason lignin156

content in biomass samples.157

2.5. Molecular weight analysis158

The recovered lignin in Section 2.3 was acetylated for its molecular weight analysis. About159

2 mg of the lignin was dissolved and acetylated in a mixture of pyridine and acetic anhydride (1:1160
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v/v) for 48 hours. After this process, the solvent was removed using a rotary evaporator, and the161

resulting acetylated lignin was dissolved in THF. The weight-average molecular weight (Mw),162

and number-average molecular weight (Mn) were measured using an Agilent Gel Permeation163

Chromatography (GPC) SECurity 1200 system equipped with Waters Styragel columns (Waters164

Corporation, Milford, MA) and a UV detector at 270 nm.165

3. Model formulation166

In this work, we developed a kinetic model based on the outcomes of the biomass frac-167

tionation experiment. This model was subsequently used to predict and delve deeper into the168

reaction kinetics. The biomass treatment comprises two distinct processes operating at different169

time and length scales.170

The first process involves the dissolution of lignin from the bulk biomass, referred to as171

delignification (i.e., a macroscopic reaction). The second process involves the de/repolymeriza-172

tion of the dissolved lignin chains in the solution (i.e., microscopic reactions). These multiscale173

reactions yield several critical process variables, including the lignin content remaining in the174

bulk biomass and the MWd of the dissolved lignin chains.175

Initially, a simple mass balance equation was employed to monitor the macroscopic changes176

and determine delignification kinetics, based on the experimental findings. Furthermore, mi-177

croscopic kinetics were also determined using the kMC approach to obtain the MWd for each178

reaction condition, thereby establishing the relationship between these conditions and the MWd.179

Considering that these two events are occurring concurrently but at different scales, we coupled180

these models by layering, ensuring the accurate formulation of the entire process. The detailed181

working scheme will be elucidated in the following sections.182

8



3.1. Macroscopic model183

To model the macroscopic phenomena of delignification, we employed continuum-scale mass184

and energy balance equations. These were utilized to model and simulate the process, and their185

predictions were validated against the results of the delignification experiment.186

3.1.1. Mass balance: delignification187

The delignification reaction is often modeled as a first-order reaction; however, in practice,188

redeposition of the dissolved lignin has been observed during experiments. Therefore, the sim-189

plest reversible reaction scheme was chosen among the available kinetic models [37]. In summary,190

delignification is modeled as follows:191

L
k1−−⇀↽−−
k2

Ls (1)

where L and Ls represent the lignin content in the wood chip and liquor phases (i.e., dissolved192

lignin), respectively. The rate constants for delignification and lignin redeposition are denoted193

by k1 and k2, respectively. Therefore, the rate equations can be expressed as follows:194

rL = −dL

dt
= k1L− k2Ls

rLs = −dLs

dt
= −k1L+ k2Ls

(2)

The analytical solutions for both mass balances are provided below:195

L(t) = L(0)

(
k2 + k1e

−(k1+k2)t

k1 + k2

)
Ls(t) = L(0)

(
k1 − k1e

−(k1+k2)t

k1 + k2

) (3)
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Both rate constants can be expressed using the Arrhenius-type equation as follows:196

ki = Aiexp

(
−Eai

RT

)
(4)

where A and Eai are the pre-exponential factor and the activation energy, respectively, R is the197

universal gas constant, and T is the system temperature. Additionally, i = 1, 2 designates the198

delignification and redeposition reactions. Aspen wood is classified as a hardwood species, and199

its lignin mainly consists of the cinapyl monolignols with a MW of 0.210 kDa [38]. In this study,200

lignin is modeled as a polymerized chain of single monomers, where the MW of the dissolved201

lignin chains is observed as 13 kDa, which corresponds to the degree of polymerization of 62202

monolignols/chain. The dissolved lignin chains are subject to de/repolymerization. Therefore, it203

is coupled with the microscopic layer of this simulation, which is described in detail in Section 3.3.204

3.1.2. Energy balance205

In addition to the continuum-scale mass balance, the energy balance is also considered in206

this study. The system is divided into two phases: the chip phase, where the macroscopic207

reactions occur, and the free-liquor phase, where the microscopic reactions occur. The energy208

balance for the chip phase is expressed as follows:209

dTc

dt
CPcMc = ∆HRrL + U(Tf − Tc) (5)

where Tc stands for the chip phase temperature, while CPc and Mc are the specific heat and the210

mass for the chip phase, respectively. ∆HR is the heat of the reaction, U is the overall heat211

transfer coefficient, and Tf is the temperature of the free-liquor phase. The specific heat of the212

chip phase is a function of temperature and can be expressed as CPc = 0.1031 + 0.003867Tc213
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[kJ/kg K] [39].214

For the free-liquor phase, the energy balance can be represented as:215

dTf

dt
CPf

Mf = −U(Tf − Tc) + CPextṀext(Text − Tf ) (6)

where CPf
is the specific heat, and Mf is the mass for the free-liquor phase. The latter term of216

Eq. 6 is utilized for temperature control purposes, which is achieved through an external heat217

jacket. Here, CPext , Ṁext, Text represent the specific heat, mass flow rate, and temperature of218

the external flow that exchanges heat with the free-liquor phase, respectively. The mixing rule219

[40] is utilized to calculate the specific heat of the free-liquor phase, which is influenced by the220

amount of solid mass dissolved into the free-liquor phase.221

CPf
= xfsCPc + xflCPl

(7)

where xf represents the mass fraction of solid and liquid, and CPl
denotes the specific heat of222

the pure-liquid.223

3.2. Microscopic model: de/repolymerization224

As previously mentioned, the number of dissolving lignin chains at a given time is determined225

using Eq. 2. Our model takes into account the further microscopic interactions these chains226

undergo. Specifically, it incorporates three types of microscopic events: (i) a random scission of227

a selected chain, which represents depolymerization; (ii) an end-to-end polymerization between228

two selected chains, signifying repolymerization; and (iii) any other events that do not affect229

the MW of existing chains. In the free-liquor phase, lignin molecules can be solubilized without230

any associated length changes. Such interactions between lignin fragments and PSA solvent are231
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classified as null events. Within our model, de/repolymerization kinetics are assumed to follow232

first and second-order reactions, respectively, while null events are classified as zeroth-order233

reactions.234

At any given moment, each dissolved chain undergoes microscopic events at distinct reaction235

rates, subsequently updating the lignin population. Capturing these events mathematically is236

challenging due to the stochastic nature of the microscopic interactions. As a result, we employed237

the kinetic Monte Carlo (kMC) algorithm to simulate de/repolymerization. To simplify the238

process, we made the following assumptions: (i) Lignin fragments are considered linear polymer239

chains due to their less branched nature [5, 41]; (ii) All scission possibilities are identical for240

the constituent bonds in a given lignin chain [20]; and (iii) The MWd adheres to a specific241

distribution, such as log-normal, as reported in prior studies [12, 13, 14, 15]. For the calculations,242

zero, one, or two out of N chains can be chosen at any time, with the corresponding reaction243

rates defined as follows:244

rdep(Ni) = kdepCL(Ni)

rrep(Ni, Nj) = krepCL(Ni)CL(Nj)

roth = koth

(8)

Here, Ni and Nj are the indices for the selected lignin chains, with the conditions i ̸= j and245

1 ≤ Ni, Nj ≤ N . Additionally, we define CL(Ni) as the concentration of all dissolved lignin chains246

that have a MW equal to that of the selected chain, Ni. Based on the actual experiments, this247

model aims to determine the rate constants for various processes: kdep for depolymerization, krep248

for repolymerization, and koth for other events.249

The parameters in the rate equations (i.e., pre-exponential factors and activation energies)250

for de/repolymerization, and other events are obtained by fitting the average molecular weights251
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Criteria Event
0 ≤ ξ1 ≤ rdep(Ni)

rmicro
Depolymerization of Ni

rdep(Ni)

rmicro
< ξ1 ≤ rdep(Ni)+rrep(Ni,Nj)

rmicro
Repolymerization between Ni and Nj

rdep(Ni)+rrep(Ni,Nj)

rmicro
< ξ1 ≤ 1 Null events

Table 1. The execution table of the microscopic events.

(i.e., Mn and Mw) predicted by the model with the experimental data. As seen in Eq. 4,252

the reaction temperature affects the reaction rates, while the chip size does not influence the253

microscopic kinetics. In this sense, the best-fit values of rate constants and the activation energy254

barriers were obtained by doing a grid search. With the rate constants determined, the kMC255

algorithm randomly selects a specific event based on the rate distribution, which can be described256

as follows. Since any lignin chain can be chosen, and the rates are provided in Eq. (8), the overall257

de/repolymerization rates can be expressed as:258

rdep =
N∑
i=1

kdepCL(Ni)

rrep =
N∑
i=1

∑
j ̸=i

krepCL(Ni)CL(Nj)

(9)

The overall microscopic reaction rate (rmicro = rdep + rrep + roth) can be calculated, allowing259

for the determination of the microscopic reaction rate distribution. Utilizing this information,260

the kMC algorithm selects and executes an event based on Table 1, using a random number261

generated (ξ1). Each event progresses the clock, and the advancement amount is calculated262

using another random number, ξδt, as follows:263

δt = − ln ξδt
rmicro

(10)

13



Fig. 1. A schematic illustration showing the lignin MW arrays and the reactions occurring at multiple scales.

3.3. Overall simulation scheme264

As previously described, two layers of ODE (Section 3.1.1) and kMC (Section 3.2) are265

integrated and operate together to simulate the temporal evolution of lignin content in bulk266

biomass and the MWd of dissolved lignin chains.267

Since dissolved lignin chains undergo de/repolymerization, the macroscopic mass balance is268

linked to the microscopic layer. To achieve this, specific arrays are implemented to store the MW269

information of lignin chains in both the wood chip and free-liquor phases, as illustrated in Fig. 1.270

When a lignin chain dissolves from the bulk wood chip, it is transported to the free-liquor phase271

(red arrow). Simultaneously, some dissolved chains reattach to the wood chip via redeposition272

(green arrow). The dissolved lignin chains then undergo de/repolymerization reactions (yellow273

and blue arrows), which are simulated in the microscopic kMC layer. The arrays are updated274

for each macro/microscopic time segment during the simulation.275
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For the macroscopic layer, k1 and k2 are used to fit the experimental data for 0.8/3.0/5.0276

mm chips. With these values, the macroscopic mass balance is calculated discretely for each time277

step (∆t), which is set to 0.0005 min. The amount of lignin dissolved from the biomass at each278

∆t is determined to calculate the quantities of dissolved and condensed lignin. Consequently,279

lignin chains are either introduced to or removed from the liquor phase.280

For the microscopic layer, three microscopic rate constants (kdep, krep, and koth) are incor-281

porated into the kMC algorithm. For each ∆t, a microscopic event is selected and executed for282

δt, and this process is repeated until Σδt reaches ∆t. De/repolymerization reactions break and283

recombine existing lignin chains in the solution, without altering the overall lignin masses in284

both phases. The entire cycle is then repeated for 30 min, as the experimental data are available285

for each condition up to 30 min.286

After validating the model with the experiment data, the kinetic parameters are analyzed287

using traditional methods, such as plotting and examining them on ln k vs. 1/T plots. Subse-288

quently, the kinetic parameter estimation is completed, which yields the activation energies and289

pre-exponential factors for delignification and de/repolymerization processes, which can be used290

for further applications in biomass fractionation.291

3.4. Open-loop simulation results292

3.4.1. Delignification kinetics293

In this section, we present the results of the open-loop simulation for the delignification294

kinetics. To estimate the delignification/redeposition rate constants, we performed reactions295

under various conditions, and the results are displayed in Fig. 2. Based on these outcomes,296

we determined the delignification/redeposition rate constants, as shown in Fig. 3. With these297

results, we obtained the activation energies and pre-exponential factors, the values of which298
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Fig. 2. The delignification results for different biomass sizes are presented, including (a) 0.8 mm, (b) 3.0 mm,
and (c) 5.0 mm wood chips, under three different temperatures. The darker lines represent higher temperatures
in the ascending order of 70, 80, and 90 ◦C. The solid and dashed arrows also indicate the increasing temperature
for L,Ls, respectively.

Fig. 3. The rate constants are plotted as a function of reaction temperature, with (a) representing delignification,
and (b) redeposition. The data correspond to 0.8, 3.0, and 5.0 mm wood chips, displayed from top to bottom.

are presented in Table 2. It is important to note that while PSA generally shows superior299

fractionation performance, the 5 mm chips are considerably large, making it difficult to obtain300

meaningful delignification and de/repolymerization data at low temperatures, such as 70 ◦C.301

In general, reaction rates increase with the temperature, and delignification is more favorable302

with smaller biomass sizes. This is because the solvent can more easily penetrate the biomass,303

and the dissolved lignin chains can be released into the free-liquor phase with less resistance.304

Consequently, the trends observed are reasonable, as delignification rate constants increase with305

higher temperatures and smaller biomass sizes.306
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Biomass size (mm) E1 E2 A1 A2

0.8 20.50 4.482 311.7 0.1216
3.0 24.25 11.97 464.3 0.9989
5.0 27.84 13.66 644.6 1.410

Table 2. The macroscopic kinetic parameters.

It is also noteworthy that the activation energies we obtained were lower than those reported307

in previous studies, even under more extreme reaction conditions [42, 43]. This suggests that308

the PSA reagent can stabilize the dissolved lignin chains and play a critical role as a catalyst,309

allowing for effective delignification even under moderate conditions, such as lower temperatures310

and atmospheric pressure. This is in contrast to traditional methods like Kraft pulping.311

3.4.2. De/repolymerization kinetics312

In this section, we examine the kinetics of de/repolymerization of lignin, employing the313

kMC algorithm as our analysis tool. Our study is based on the macroscopic rate data we have314

gathered. To begin, we present the evolution of MWd as illustrated in Fig. 4.315

As the reaction progresses, lignin chains continuously dissolve out from the biomass, result-316

ing in an increase in the number of lignin chains. Interestingly, the emergence of a small peak317

at the onset of the reactions can be observed. This peak corresponds to chains of length 62 or318

Fig. 4. The estimated DP distribution of the fractionated lignin in the liquor phase at selected time points (0.8
mm chip, 70 ◦C): (a) 1 min, (b) 5 min, and (c) 15 min following the initiation of the reaction.
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Fig. 5. The resulting DP distribution of the fractionated lignin in the liquor phase for the 0.8 mm chips after a
reaction time of 30 minutes under varying temperatures, (a) 70 ◦C, (b) 80 ◦C, and (c) 90 ◦C.

a MW of 13 kDa. Such a phenomenon can be attributed to the significant reduction in lignin319

content within the bulk biomass.320

As the reactions progress, the MWd tends towards specific log-normal distributions for each321

operating condition. This trend is presented in Fig. 5, and it aligns with the findings from prior322

studies [12, 13, 14, 15]. This observation suggests a higher dissolution rate of lignin chains at323

elevated temperatures.324

With the MWd data, we computed the number-averaged MW (Mn) and the weight-averaged325

MW (Mw). Fig. 6 shows that the Mn and Mw values, when aligned with the estimated kinetic326

parameters, correspond well with the experimental results. This concurrence serves to validate327

our multiscale modeling framework. Furthermore, as depicted in Fig. 6, the average MW de-328

creases as temperature increases. This trend can be attributed to the depolymerization reaction329

rate dominating over other microscopic reaction rates.330

It is noteworthy that the initial fluctuations in the Mn and Mw become more pronounced as331

larger wood chips are employed. This phenomenon can be attributed to the interplay between332

macroscopic reactions, such as delignification, and microscopic phenomena. During the early333

stages of the fractionation process, fewer lignin chains are released from larger wood chips into334
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Fig. 6. The de/repolymerization results (MWs) under three different temperatures, each with varying biomass
sizes: (a) 0.8 mm/70 ◦C, (b) 0.8 mm/80 ◦C, (c) 0.8 mm/90 ◦C, (d) 3.0 mm/70 ◦C, (e) 3.0 mm/80 ◦C, (f) 3.0
mm/90 ◦C, (g) 5.0 mm/80 ◦C, and (h) 5.0 mm/90 ◦C.

the liquor phase. Consequently, a small population of lignin chains undergoes rapid de/repoly-335

merization reactions, leading to significant changes in the average MWs. Once the wood chips336

supply a sufficient number of additional chains, both the Mn and Mw stabilize, converging to337

their respective values.338

The microscopic kinetic parameters, derived through the fitting model outputs to experi-339

mental results, are presented in Fig. 7. As predicted, the rate constants exhibit an increasing340

trend with escalating temperature. Importantly, it should be emphasized that the microscopic341
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Fig. 7. Microscopic rate constants described as a function of reaction temperature for (a) depolymerization, (b)
repolymerization, and (c) null events.

rate constants are solely influenced by temperature and remain unaffected by the size of the wood342

chips. This is attributed to the fact that the de/repolymerization reactions occur within the343

already-dissolved species situated in the liquor phase. In contrast, the kinetics of the delignifi-344

cation/redeposition reactions are directly impacted by the size of the wood chips. Consequently,345

the de/repolymerization rates are influenced by both temperature and the concentration of lignin346

chains (refer to Eqs. 8-9). The latter is determined by the quantity of lignin dissolved in the347

macroscopic layer. Ultimately, our high-fidelity model effectively encapsulates the multiscale na-348

ture of the biomass fractionation process through the integration of macroscopic and microscopic349

kinetics.350

4. Model order reduction and soft-sensor design351

4.1. Reduced-order model development352

In the preceding section, we delved into the intricacies of the high-fidelity kinetic model.353

Our ultimate objective is to identify the optimal operational strategy for the system, one that354

allows us to achieve the desired lignin content and MWd. Nevertheless, the multiscale model,355

while comprehensive, poses a computational challenge for control purposes. Thus, we have356
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Fig. 8. Manipulated system inputs for ROM training: (a) the external jacket flow temperature and (b) the flow
rate.

developed a reduced-order model (ROM) that is more computationally tractable. In this model,357

we propose the use of an external jacket to supply heat and control the system’s temperature358

(Eq. 6). Our primary goal is to control the optimal operational conditions in order to achieve the359

desired outputs (i.e., lignin content and MWd). This is accomplished by adjusting the process360

inputs, namely, the external flow temperature and rate. We generate the ROM via the subspace361

state-space system identification algorithm, also known as N4SID.362

The inputs are discretized at intervals of 1 minute and utilized as training data for the363

multiscale model. The manipulated input data used for the training of the ROM is illustrated364

in Fig. 8. The developed ROM is presented below:365

x(tk+1) = Ax(tk) + Bu(tk)

y(tk) = Cx(tk)

(11)
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Fig. 9. System outputs derived from our ROM compared with results from the high-fidelity model: (a) free-liquor
temperature, (b) lignin content, and (c) Mn.

where x(tk) is the vector of states, u denotes the system inputs, the external flow temperature366

and mass flow rate (i.e., u(tk) = [Text Ṁext]
T ), y represents the system outputs, such that367

y(tk) = [Tf Mn L]T . The process inputs were modulated at a sampling rate of 1 minute for368

the extraction of the ROM. The above state-space model comprises three states and is fully369

controllable and observable. The matrices A,B, and C are of dimensions 3× 3, 3× 2, and 3× 3,370

respectively.371

Utilizing the trained ROM, we generate the results shown in Fig. 9, complete with an ac-372

companying root-mean-square error (RMSE). Please note that both the free-liquor temperature373

and the lignin content align well with the data from the multiscale model. However, the Mn data374

exhibits less precision, primarily due to substantial fluctuations at the outset of the reaction.375

These fluctuations occur when a smaller number of lignin chains undergo de/repolymerization.376

Despite this, it is clear that the ROM predictions are largely in good agreement with the output377
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of the model.378

4.2. Soft sensor development via Kalman filter379

Real-time measurement of variables poses a significant challenge. Therefore, in this study,380

we estimate the lignin content and MWd from the readily available measurement, the free-381

liquor temperature (Tf ). Given that the kinetic parameters across both scales are temperature-382

dependent as seen in Eq. 4, tracking the system temperature enables the computation of the383

reaction rate constants. This, in turn, allows for the simulation of multiscale reactions to estimate384

these values. It is important to note that Mn, which can be directly derived from MWd, is the385

variable we aim to control in this study. To estimate these variables, we implement a soft sensor,386

specifically a Kalman filter, for variable estimation. The design is as follows:387

K(tk) = P (tk)C
T (R(tk) + CP (tk)C

T )−1

P (tk+1) = (I −K(tk)C)P (tk)

x̂(tk+1) = Ax̂(tk) + Bu(tk) +K(tk)(ymeas(tk)− ŷmeas(tk))

(12)

where I is the identity matrix, P (tk) and R(tk) represent the state and error covariance matrices,388

respectively. These matrices correspond to the state estimation and measurement noise. The389

term ymeas(tk) refers to the measurable output - namely, Tf (tk) and ŷmeas(tk) signify the inferred390

measurement at time t = tk. The error covariance is updated at every instant with the filter391

gain, K(tk), and the filtered state, x̂(tk). Subsequently, the updated state, x̂(tk+1), is employed392

to predict both the future state and the output variables, as shown in Eq. 11.393
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5. Closed-loop control of the fractionation process394

5.1. MPC design395

Given the challenges associated with real-time measurement and control of the fractionation396

process, we have designed a model predictive controller (MPC) using the ROM obtained from the397

previous section. The optimal control input profile is determined by solving the optimal control398

problem, as outlined in Eq. 13. The controller’s performance is assessed using the fractionation399

process for 0.8 mm chips, with control actions executed at three-minute intervals.400

min
Text,k,Ṁext,k

ω1(Mn(tN)−Mn,sp)
2 + ω2(L(tN)− Lsp)

2

s.t. Reduced-order model, Eq. (11).

Soft sensor, Eq. (12).

340 ≤ Text,k [K] ≤ 370

50 ≤ Ṁext,k [g/min] ≤ 150

|Text,k+1 − Text,k|≤ 5 ∀k ∈ [1, N − 1]

(13)

where N represents the length of the prediction horizon, tk is the reaction time, and Tk indicates401

the temperature at the sampling time of tk. The cost function includes a control weight, which402

is set to ω = [ω1;ω2] = [1; 6000], and the set-points for Mn and L are defined as [Mn,sp =403

1.24 [kDa], Lsp = 1.88 [%]].404

5.2. Closed-loop operation results405

The input profiles of the MPC, depicted in Fig. 10, are integrated into the multiscale model,406

serving as a virtual experiment. This model controls the temperature of the free-liquor phase, as407

illustrated in Fig. 11, with the aim of attaining the desired lignin content and Mn. Initially, the408
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Fig. 10. The input trajectory, showing (a) the external jacket temperature, and (b) the flow rate, used for the
process optimization.

free-liquor temperature is elevated by introducing a high volume of jacket flow at a high tem-409

perature, and it is then maintained around 360 K by gradually decreasing the flow rate. This410

approach is used because our aim is to attain a low lignin content in the bulk wood chip. Conse-411

quently, as illustrated in Fig. 12(a), the lignin content gradually converges to its predetermined412

set-point. Beyond the level of delignification, the real-time adjustment of lignin’s MW presents413

a challenge, largely due to its susceptibility to both reversible macroscopic interactions and the414

ongoing processes of de/repolymerization. For example, the behavior of Mn, which appears to415

be on track towards the set-point, but manifests a slight increase around the 26-minute mark of416

operation. This trend is presented in Fig. 12(b). To counteract this, a slight elevation in system417

temperature was implemented towards the end of the operation. This was achieved by reintro-418

ducing a higher temperature to the external jacket flow, which successfully allowed Mn to finally419

meet its set-point. The outcome aligns with the prior observation that depolymerization governs420

the microscopic kinetics, leading to a decrease in Mn as the depolymerization rate accelerates421

in response to the increased temperature. The control objectives were thus successfully met:422
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Fig. 11. The free-liquor temperature, controlled by an external jacket flow.

deviations from their respective set-points were only 0.28 % for lignin content and 0.17% for423

Mn. Moreover, these control actions were carried out in accordance with the control constraints424

provided in Eq. 13.425

Despite the notable importance of Online measurement and control, these tasks have not426

been conducted in previous studies. In this study, it is noteworthy that the model, soft sensor,427

and controller were successfully integrated, enabling the effective estimation and control of criti-428

cal state variables throughout the operation. Furthermore, we carried out the PSA fractionation429

under moderate temperatures, thereby avoiding any harsh operating conditions. This method430

suggests the potential for a significant increase in the profitability of biomass fractionation. By431

reducing energy demand and facilitating a more comprehensive utilization of lignin from bulk432

biomasses, this approach holds promise for enhancing the overall efficiency and sustainability of433

the process.434
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Fig. 12. The optimal operation output for the 0.8 mm wood chips: (a) lignin content, (b) Mn.

6. Conclusion435

In this work, a bilayer simulation framework is employed to examine lignin behavior during436

the biomass fractionation process with the use of an innovative reagent, PSA. It is shown that437

our simple framework can successfully simulate the complicated fractionation process including438

delignification and de/repolymerization.439

First, the macroscopic layer is developed to capture lignin dissolution and redeposition.440

The remaining lignin contents in the biomass could be calculated under various fractionation441

conditions by solving the simple ODEs. Second, the microscopic layer is constructed to sim-442

ulate de/repolymerization reactions. It turned out that our stochastic and probabilistic kMC443

algorithm tracked the evolution of lignin MWd in the system and then helped with finding the444

microscopic kinetic parameters. Both layers worked in tandem within our simulation framework,445

and the simulation results closely aligned with the experimental results, validating our multiscale446

model.447

Once the high-fidelity kinetic model is obtained, we implemented an MPC to regulate the448
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process and attain desired outcomes. A soft sensor was also incorporated to estimate parameters449

such as lignin content and MWd, which are not directly measurable within the actual system.450

The controller exhibited exceptional performance, optimizing the fractionation process by guid-451

ing both the lignin content and MWd to their designated set-points while adhering to process452

constraints.453

In summary, this work provides a holistic framework for kinetic modeling and optimal454

control application for biomass fractionation processes. We believe that our comprehensive study455

can provide insights into lignin valorization and will pave the way for the successful development456

of alternative resources in the future.457
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