

1 Multiscale kinetic modeling of biomass fractionation in an
2 experiment: understanding individual reaction mechanisms and
3 cellulose degradation

4 Silabrata Pahari^{a,b,*}, Juhyeon Kim^{a,b,*}, Hyun-Kyu Choi^{a,b}, Mairui Zhang^c, Anqi Ji^c, Chang
5 Geun Yoo^c, Joseph Sang-Il Kwon^{a,b,**}

6 ^a*Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77845 USA*

7 ^b*Texas A&M Energy Institute, Texas A&M University, College Station, TX 77845 USA*

8 ^c*Department of Chemical Engineering, State University of New York College of Environmental Science and
9 Forestry, Syracuse, New York 13210, USA*

10 **Abstract**

11 To avoid over-consumption and wastage of virgin fibers, the quality of pulp products is as
12 important as their productivity. To this end, both the quality and quantity of pulp should be
13 considered together during the pulping processes. Multiple experimental studies have highlighted
14 that maintaining a high degree of polymerization (DP) for cellulose microfibers in the wood chip
15 ensures a good quality pulp product. However, in the pulping process, the applied reagents and
16 severe conditions can cause a certain degree of cellulose degradation, accompanying unwanted
17 lowering of fiber grades. In order to mitigate cellulose degradation during this step, it is crucial
18 to control the process conditions such as reagent concentration and temperature. Also, to
19 establish the optimum operating strategies, it is necessary to understand how the operating
20 conditions impact the DP of cellulose microfibers. Therefore, we have proposed a novel multiscale
21 model which predicts mesoscopic properties (*e.g.*, the lignin content and fiber morphology)
22 alongside microscopic properties (*e.g.*, the DP of the cellulose microfibers). The proposed model
23 incorporates a multi-layered kinetic Monte Carlo (kMC) framework that allows us to capture the
24 temporal evolution of lignin content, fiber morphology, and cellulose DP, occurring at disparate

*The authors have contributed equally.

**Corresponding author

Email address: kwonx075@tamu.edu (Joseph Sang-Il Kwon)

timescales, as a function of reaction conditions in a computationally tractable fashion. Furthermore, the model predictions are validated with the experimental results so that it gives us a detailed picture of the pulp production processes. Overall with the proposed model, we aim to maximize productivity and maintain a high quality of cellulose fibers from the wood chips during the pulping process.

Keywords: Pulp digester; pulp quality; cellulose; glycosidic linkage; layered-kMC; multiscale modeling

1. Introduction

In recent years, the concern for the environment has grown across all the industrial sectors of the developed world. Like other industries that have high greenhouse emissions, the pulp and paper industry has made significant efforts to reduce its carbon footprint by optimizing resource consumption in the paper production process [1, 2]. Due to the stringent environmental constraints, the industry has primarily focused on reducing their feedstock consumption while improving paper quality via novel operating strategies [3, 4, 5]. While it requires a detailed understanding of the pulping process (i.e., the process by which the wood chips are converted to pulp used for making papers) to come up with such innovations, there is still a knowledge gap in regard to the comprehensive process information among the pulp and paper industries. To this end, both the industry and academia have put significant research efforts to develop mathematical models that can explain the pulping process and relate the process inputs to the properties of the paper produced [6, 7].

Woody biomass, the primary feedstock in the pulping process, is mainly composed of lignin, cellulose, and hemicellulose [8, 9]. Among these components, cellulose forms microfibers with a crystalline structure and determines the quality of the paper produced. Specifically, those mi-

43 microfibers are a primary building block and play an important role as one of the main load-bearing
44 elements of the papers [10, 11, 12]. Therefore, they have extended their practical applications in
45 the textile, construction, as well as polymer synthesis owing to their sustainable, inexhaustible,
46 and regenerative nature [13, 14, 15]. The degree of polymerization (DP) of cellulose in the
47 microfibers is significantly related to the quality of the paper produced including their tensile
48 strength according to their structure-property relationships [16, 17]. That is, the improved qual-
49 ity of the generated paper is mainly attributed to the greater DP of the cellulose microfibers
50 [18, 19]. During the pulping process (*i.e.*, the process where the wood chips are converted to the
51 pulp), delignification is performed to separate lignin from the wood chip and to minimize lignin
52 content in the fibers [20, 21]. However, the applied catalysts and solvents not only delignify the
53 wood chips but also interact with cellulose fibers, and thus, it is unavoidable to reduce cellulose
54 DP during the pulping process [22, 23].

55 During pulping process, Kappa number is used to measure the degree of delignification, and
56 a low Kappa number implies that more lignin is removed from the bulk [24, 25]. It is to be
57 noted that delignification is of great importance as the specific paper qualities (e.g., brightness)
58 is determined by the amount of residual lignin. Hence, it is thought to be advantageous to add
59 strong chemical reagents in order to accelerate reactions and minimize the Kappa number at the
60 digester [26, 27]. Nevertheless, those reagents can stimulate undesirable cellulose degradation
61 as they break down the glycosidic linkages of cellulose fibers [28]. These reactions must be
62 avoided since they can drastically decrease cellulose DP, degrade the mechanical strength of
63 paper, and also reduce the yield of pulp [29, 30, 31]. In this sense, it is critical to manage
64 the operating conditions like the cooking temperature or time properly [32, 33]. Despite some
65 knowledge already available about the relationship between pulping conditions and cellulose DP

[34, 35], it is still challenging to monitor the changes of cellulose DP simultaneously during the pulping process. Therefore, it would be beneficial to see how the input parameters (*i.e.*, operating conditions) can affect the cellulose quality through the use of a high-fidelity model (in a soft-sensor manner) and determine the optimal operating strategies.

As the entire pulping process is difficult to be elaborated in detail because of many interactions happening in tandem over various length and time scales, we present a multiscale model utilizing the kinetic Monte Carlo (kMC) approach [36, 37]. Specifically, multiscale events are captured on a simulation lattice where a layered-kMC approach is implemented to calculate mesoscopic properties like Kappa number and cell wall thickness (CWT) alongside microscopic properties like cellulose DP. The spatiotemporal evolution of the system's multiscale properties is acquired by executing multiple microscopic events in between succeeding macroscopic ones on simulation lattice sites. By doing this, we can obtain the long time-scale distributions of wood chip components in a computationally tractable manner while avoiding the insufficient sampling of slower dissolution reactions; so the multiscale model well predicts the temporal evolution of key pulp parameters including Kappa number and cellulose DP.

As presented in our previous study, 4-phenolsulfonic acid (PSA) treatment resulted in an effective cellulose fractionation from poplar wood chips under mild conditions [38]. Therefore, the multiscale model is built based on this process, and PSA pulping was conducted with Aspen wood chips in order to validate the proposed model. In this fashion, our results can offer a comprehensive picture of the cellulose degradation process. Additionally, because the suggested model is sensitive to reaction variables (*i.e.*, the process temperature and cooking time), it may be used to successfully manage the operating strategies that not only secure a target Kappa number but also enable an improved yield of cellulose with sufficient cellulose DP for paper

89 production.

90 This article is arranged as follows: In the model formulation section, the details of the
91 layered-kMC algorithm to capture the multiscale pulping process are presented; in this model,
92 the details of the various kMC steps are highlighted. In the simulation section, the details of
93 implementing this algorithm in the pulping process are highlighted. Subsequently, in the results
94 and discussion section, the major findings from the proposed framework are presented. Lastly,
95 in the conclusion section, a number of significant insights inferred from the simulation results
96 are highlighted.

97 **2. Model formulation**

98 Throughout the wood chip treatment process, there are a number of key parameters which
99 can be obtained by analyzing the different scales of interactions in the pulp digester. Hence,
100 a multiscale model is developed in this work to depict the system in different length and time
101 scales. To begin with, the continuum-scale mass and energy balance equations are used to
102 describe the macroscopic changes. They determine the kinetics of the dissolution of major
103 wood chip components (lignin, cellulose, and hemicellulose) or the mass and heat transfer.
104 Subsequently, a layered-kMC model is implemented to capture the evolution of meso/microscopic
105 properties using the simulation lattice. The model consists of two kMC layers (upper/lower
106 layer), and two separate reactions are assigned to each layer. First, the upper layer utilizes the
107 dissolution reaction rates, and it predicts where and how the dissolution reactions occur. As a
108 result, the microconfiguration of the chip changes, and then the mesoscopic properties (Kappa
109 number and CWT) are computed. Besides, the lower layer is introduced to simulate cellulose
110 depolymerization taking place at a smaller scale. This layer provides us with the microscopic

111 property (cellulose DP distribution) over the reaction time, completing the overall simulation
112 dataset. The details of each layer and the working principles of the kMC simulation are discussed
113 in the subsequent sections. It is notable that our multiscale approach not only integrates the
114 different scales but enables taking a snapshot of the detailed configuration of a wood chip at a
115 certain instance, beyond which can be described by the general mass/energy balances for a pulp
116 digester.

117 *2.1. Basic description of wood chip microstructure*

118 The cell wall structure is mainly composed of three components: lignin, cellulose, and
119 hemicellulose. Cellulose is a structural framework of the wood chip, and lignin and hemicellulose
120 are the components surrounding cellulose and making inter-fiber connections. To produce high-
121 quality cellulose products, delignification, the process of removing lignin from the wood chip
122 [39, 40], is essential. However, during the delignification, the cellulose fibers also become exposed
123 to the solvent and have a risk of unwanted degradation. Therefore, removing lignin content while
124 preserving the quantity and quality of cellulose fibers has become the holy grail of the wood
125 chip treatment processes. To this end, a high-fidelity model to predict cellulose degradation is
126 proposed that can be employed to design the operating strategies required for the production of
127 high-quality pulps [41, 42].

128 *2.2. Macroscopic model*

129 In the pulping processes, the wood chips are first fed into the solution with having certain
130 porosity. As shown in Fig. 1, the entire system can be classified into three different phases. First,
131 the solid phase includes the basic components of the wood chips consisting of lignin, cellulose,
132 and hemicellulose. In addition, the liquor phase can be divided into two different regions. The

Pulp digester

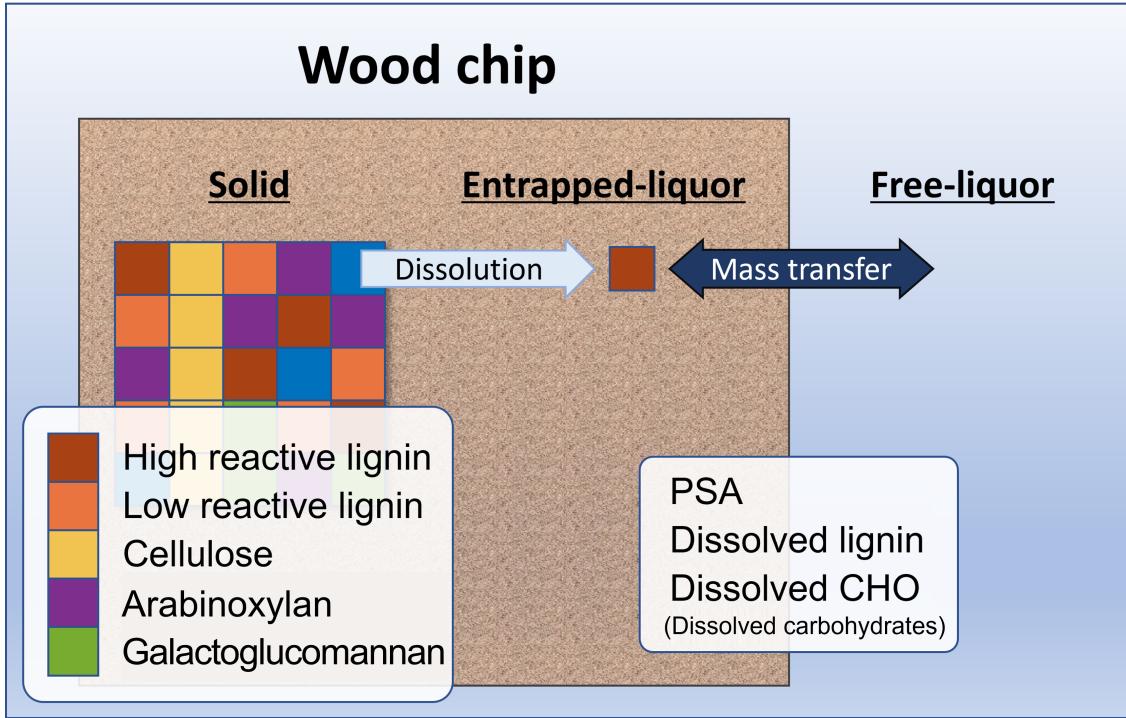


Fig. 1. The illustration of a pulp digester consisting of three phases (solid, entrapped-liquor, and free-liquor) with their components.

133 entrapped-liquor stands for the liquid portion residing in the wood chip pores, and they are able
134 to interact with solid components. Meanwhile, the free-liquor phase is the liquid existing out of
135 the chip. PSA is firstly fed into the digester as a solvent as well as a pulping reagent, and as the
136 reaction proceeds, the lignin and other carbohydrate species (*e.g.*, cellulose and hemicellulose)
137 are dissolved into liquor phase and become liquor phase constituents.

138 Once the wood chips are fed, the subsequent steps (*i.e.*, dissolution and degradation of
139 cellulose) occur in three phases. During these interactions, the system parameters change ac-
140 cordingly through two layers of kMC simulation. Throughout this simulation, the macroscopic
141 model sets the mass/energy balances which can figure out basic system information, such as
142 temperature and concentrations. Here, the model also determines the rates of the mesoscopic

143 interactions, and they are controlling the entire simulation in a realistic way. The details of the
 144 mass and energy balance equations are described in the following sections.

145 *2.2.1. Mass balances*

146 First, for the mass balances to be established, we have to track the concentration profiles
 147 of each component over reaction time. In this work, five components are considered in the
 148 solid phase, including high- and low-reactive lignin (s_1 and s_2), cellulose (s_3), and hemicellulose
 149 species, xylan (s_4) and glucomannan (s_5). As discussed earlier, the entrapped-liquor phase
 150 consists of PSA (e_1), dissolved lignin (e_2), dissolved carbohydrates (e_3) (*i.e.*, cellulose, and
 151 hemicellulose). As the free-liquor only undergoes mass transfer with the entrapped-liquor phase,
 152 the free-liquor phase also has the same constituents. It should be noticed that, during a series
 153 of dissolution reactions in this simulation, solid lignin and polysaccharides are converted to
 154 dissolved lignin and carbohydrates (*i.e.*, degraded and solubilized hemicellulose and cellulose
 155 oligosaccharides), respectively.

156 In this work, the concentration is calculated by Eq. 1:

$$C_{A_i} = \frac{\text{The mass component } i \text{ in the phase } A}{\text{The volume of phase } A} \quad \left[\frac{\text{kg}}{\text{m}^3} \right] \quad (1)$$

157 where the phase A can be s , e , and f for solid, entrapped-, and free-liquor phase, respectively.

158 Using the concentration defined above, the rate of dissolution and mass transfer can be set
 159 as a function of concentrations for each phase. First, for the solid phase, the rate of dissolution
 160 can be obtained as follows [43]:

$$r_{s_i} = V_s \frac{dC_{s_i}}{dt} = -V_s (k_{1,i} C_{e_1} + k_{2,i} C_{e_1}^{\frac{1}{2}} C_{e_3}^{\frac{1}{2}}) (C_{s_i} - C_{s_i}^{\infty})^{\alpha} \quad \left[\frac{\text{kg}}{\text{min}} \right] \quad (2)$$

161 where V_s , $C_{s_i}^\infty$, and α stand for the solid phase volume, inert mass, and the reaction order, respec-
 162 tively. Here, $i = 1, \dots, 5$ stands for high-, low-reactive lignin, cellulose, xylan, and glucomannan,
 163 respectively. Additionally, C_{e_j} stands for the concentration of the j^{th} species in the entrapped-
 164 liquor phase, where $j = 1, 2, 3$ for PSA, dissolved lignin, and carbohydrates, respectively. Fur-
 165 thermore, $C_{s_i}^\infty$ can be expressed in terms of the inert fraction, $\gamma_{s_i}^\infty$; hence, $C_{s_i}^\infty = \gamma_{s_i}^\infty C_{s_i,0}$. Also,
 166 the reaction rate constant, k_i , can be expressed as following the Arrhenius type equation:

$$k_i = A_i \exp \left(-\frac{E_{a,i}}{RT_c} \right) \quad (3)$$

167 From above, A and E_a are a pre-exponential factor and the activation energy to be estimated.
 168 R and T_c are the gas constant and the temperature of the chip phase; that is, the temperatures
 169 for solid and entrapped-liquor are considered identical. This will be explained with the energy
 170 balances in the following section.

171 The entrapped-liquor phase is the liquor present within the chip pore. As it is adjacent
 172 to both the solid surface and free-liquor, it plays an important role as the region where the
 173 dissolution of the solid components and the mass transfer take place. Therefore, in terms of
 174 the reaction kinetics, the mass balance considering both dissolution and mass transfer can be
 175 expressed as:

$$r_{e_j} = V_e \frac{dC_{e_j}}{dt} = V_e D(C_{f_j} - C_{e_j}) - V_c \sum_{i=1}^5 b_{ji} r_{s_i} \quad \left[\frac{kg}{min} \right] \quad (4)$$

176 where V_e and V_c are the volumes of the entrapped-liquor and the chip phases. D is the average
 177 diffusivity for the liquors; and the empirical relationship between D and T_c is found in a previous
 178 study [44]:

$$D = 6.1321 \sqrt{T_c} \exp \left(-\frac{4870}{1.98T_c} \right) \quad \left[\frac{1}{min} \right] \quad (5)$$

179 Also, b_{ji} is for the stoichiometric relationships between solid component i and liquor component
 180 j ; this corresponds to the (j, i) element of the matrix B given in Eq. 6.

$$B = \begin{bmatrix} b_{11} & b_{12} & b_{13} & b_{14} & b_{15} \\ b_{21} & b_{22} & b_{23} & b_{24} & b_{25} \\ b_{31} & b_{32} & b_{33} & b_{34} & b_{35} \end{bmatrix} \quad (6)$$

181 Specifically, the interaction values of the solid components in the wood chips with entrapped
 182 liquor components (i.e., dissolved lignin, CHO, and PSA) are set as follows:

$$B = \begin{bmatrix} 0.185 & 0.185 & 0.49 & 0.49 & 0.49 \\ -1.0 & -1.0 & 0 & 0 & 0 \\ 0 & 0 & -1.0 & -1.0 & -1.0 \end{bmatrix} \quad (7)$$

183 The interaction parameters from dissolved lignin and -CHO are obtained from [26]. Furthermore,
 184 it is assumed that the interaction strengths of Active Alkali and PSA in dissolving wood
 185 chip components are comparable in the pulp digester. Therefore, we considered the interaction
 186 strengths of Active Alkali and PSA to be the same. It is to be noted that the free-liquor phase
 187 is the liquor fraction not being caught by the chip pores. Assuming that the solid-liquor interac-
 188 tions only occur in the entrapped-liquor phase, the free-liquor concentrations are only affected
 189 by the mass transfer. Hence, the mass balance for the free-liquor becomes:

$$r_{f_j} = V_f \frac{dC_{f_j}}{dt} = V_f \left(D \frac{\epsilon V_c}{V_f} (C_{e_j} - C_{f_j}) \right) = D \epsilon V_c (C_{e_j} - C_{f_j}) \quad \left[\frac{kg}{min} \right] \quad (8)$$

190 where ϵ is the porosity of the wood chip, *i.e.*, V_e/V_c ; thus, the added term, $\epsilon V_c/V_f$ ($= V_e/V_f$)
 191 renders the rate equation as a function of the free-liquor phase volume. Note that, the porosity ϵ

192 is defined at Eq. 13; it is updated at every time segment and used for mass balance calculation.

193 Finally, the mass transfer rate between the liquor phases can be set as:

$$r_m = D \sum_{j=1}^3 (|C_{e_j} - C_{f_j}|) (V_e + V_f) \quad \left[\frac{kg}{min} \right] \quad (9)$$

194 where V_f stands for the free-liquor volume. The absolute value sign determines the direction of
195 the mass transfer, which is driven by the concentration gradient.

196 Here, it is to be noted that the kMC simulation lattice is primarily utilized to explain the
197 spatiotemporal evolution of the chip phase. In detail, dissolution of the wood chip components
198 are explained by the chip phase mass balance (Eq. 2); the corresponding kMC lattice site is
199 filled with the liquor phase. Although the mass balances for both liquor phases (Eq. 4 and
200 8) are not directly related to the kMC lattice, they are still considered since those impact the
201 overall reaction propensity. For a deeper understanding, the algorithm is further elaborated in
202 the Sect. 2.3.

203 *2.2.2. Energy balances*

204 Apart from the concentration profile of each component, the system temperature is also
205 supposed to be controlled, since the temperature influences diverse aspects of the reaction, from
206 the reaction rates to the process safety.

207 As mentioned before, the temperatures of the solid and entrapped-liquor phases are re-
208 mained the same and set as one variable, the wood chip temperature, T_c . As the chip phase
209 temperature is influenced by the bulk dissolution as well as the mass transfer, the energy balance

210 for the wood chip can be expressed as below:

$$(c_{p_s} M_s + \epsilon c_{p_e} M_e) \frac{dT_c}{dt} = \Delta H_R \sum_{i=1}^3 r_{s_i} + U (T_f - T_c) + D \epsilon d_E \quad (10)$$

211 where c_{p_s} and c_{p_e} are the heat capacities of the solid and entrapped-liquor phases, respectively.

212 Also, M_s and M_e are the total masses of the solid and entrapped-liquor phases, respectively.

213 ΔH_R is the heat of reaction, T_f is the free-liquor phase temperature, U is the overall heat
214 transfer coefficient, and d_E is the amount of energy transferred from the free-liquor to the solid
215 phase by diffusion.

216 In the same way, the energy balance for the free-liquor becomes:

$$c_{p_f} M_f \frac{dT_f}{dt} = U (T_c - T_f) + D \frac{\epsilon V_c}{V_f} d_E \quad (11)$$

217 where M_f and c_{p_f} are the total mass and the heat capacity of the free-liquor phase. As both the
218 liquor phases consist of the dissolved solid components and liquors, the liquor heat capacities
219 can be determined using the following relationships:

$$c_{p_e} = c_{p_s} x_{es} + c_{p_l} x_{el} \quad (12)$$

$$c_{p_f} = c_{p_s} x_{fs} + c_{p_l} x_{fl}$$

220 where c_{p_l} is the heat capacity of the liquor, which is supposed to be the same as the heat
221 capacity of the PSA solution, and x_{ab} is defined as the mass fraction of the b -phase component
222 being dissolved or existing in the phase a .

223 2.3. Mesoscopic model description (the upper kMC layer)

224 To perform a multiscale simulation, the constituent components for each phase are defined
 225 as exhibited in Fig. 1. Then, the system properties, such as concentration/temperature profile,
 226 are computed based on the mass/energy balance equations as mentioned in Section 2.2.

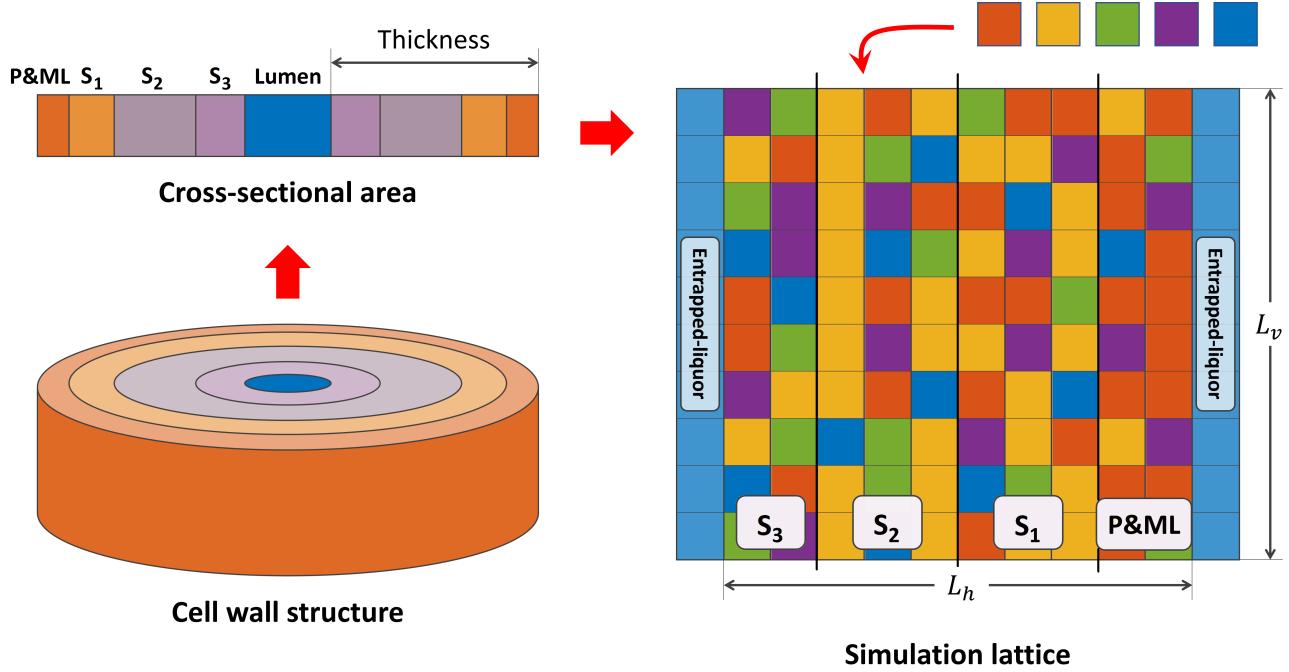


Fig. 2. The illustration of the simulation lattice.

227 Here, the biomass configuration is represented as a simulation lattice that enables us to
 228 capture the spatiotemporal variation in the concentration of the different wood chip components
 229 during the dissolution phenomena [24, 26, 44]. As exhibited in Fig. 2, a two-dimensional ax-
 230 isymmetric simulation lattice is introduced here. The simulation lattice consists of four layers,
 231 *i.e.*, primary wall and middle lamella (P&ML), and three secondary wall layers (S_1 , S_2 , and
 232 S_3). This layer-wise representation ensures that the realistic structure of the wood chips gets
 233 captured in the proposed model. The initial composition of the components is kept according
 234 to that found in the Aspen wood chips and is also shown in Table 1.

Table 1. Chemical composition of the cell wall [45, 46]

	Lignin	Cellulose	Hemicellulose
P&ML	8.4 (80%)	0.7 (7%)	1.4 (13%)
S_1	10.5 (52%)	6.1 (30%)	3.7 (18%)
S_2	9.1 (15%)	32.7 (54%)	18.4 (31%)
S_3	0.0 (0%)	0.8 (13%)	5.2 (87%)
Total	28.0 (29%)	40.3 (41%)	28.7 (30%)

235 Since the diameter of dissolved lignin and cellulose elementary fibril is considered to be 3.5
 236 nm [44], the length of a single lattice site is set as 3.5 nm. The size of the two-dimensional
 237 lattice is defined as the product of the number of horizontal and vertical lattice sites, $L_h \times L_v$.
 238 Here, $L_h = 3.8\mu m/3.5nm = 1086$ as the average thickness of the wood fibers is 3.8 μm ; and L_v
 239 is set to be 800 representing the cell wall length. The solid and liquor components are assigned
 240 to each lattice site according to the initial chip porosity ($\epsilon_0 = 0.64$) and compositions for each
 241 cell wall layer on the basis of Table 1. The porosity is defined below and tracked at each time
 242 step during the simulation:

$$\epsilon = \frac{n_e}{L_h \times L_v} \quad (13)$$

243 where n_e is the number of lattice sites that are unoccupied by solid components, and $L_h \times L_v$ is
 244 the overall dimension of lattice sites explained earlier.

245 As the simulation lattice can provide the wood chip component accessibility to the entrapped-
 246 liquor during the dissolution reactions, it helps us predict where the dissolution is likely to occur
 247 and enables accurate tracking of the microscopic properties of the system. To elaborate in de-
 248 tail, the dissolution happens at the lattice site neighboring to the liquor; therefore, the algorithm
 249 randomly picks one liquor site first and evaluate the dissolution rates of the neighboring com-
 250 ponents based on the macroscopic mass balance equations. Then, utilizing those rates at every
 251 time instant, the probabilities for each of the dissolution or mass transfer events to be selected

252 are calculated based on the ratio of each individual event over the sum of overall reaction rates
 253 ($r_{t,upper} = \sum r_{s_i} + r_m$). Then, a random number, $\xi_{p_1} \in (0, 1]$, is generated to determine which
 254 event is going to happen. As the probabilities (Table 6) are computed for each site, the cor-
 255 responding component is dissolved out or mass transfer takes place. Subsequently, the time
 256 advancement for the executed event is computed by the following equation with another random
 257 number generated, $\xi_{t_1} \in (0, 1]$:

$$\Delta t_1 = - \sum_{\text{selected sites}} \frac{\ln \xi_{t_1}}{r_{t,upper}} \quad [\text{min}] \quad (14)$$

258 where $r_{t,upper}$ is the sum of all the reaction rates in the upper layer. These steps are repeated
 259 until the system reaches the predefined reaction time, 10, 20, and 30 minutes.

Table 2. The probability distribution for bulk dissolution reactions [47].

Probabilities	Phenomena
$0 < \xi_{p_1} \leq \frac{r_{s_{ju}}}{r_{t,upper}}$	Dissolution of: upper
$\frac{r_{s_{ju}}}{r_{t,upper}} < \xi_{p_1} \leq \frac{r_{s_{ju}} + r_{s_{jd}}}{r_{t,upper}}$	lower
$\frac{r_{s_{ju}} + r_{s_{jd}}}{r_{t,upper}} < \xi_{p_1} \leq \frac{r_{s_{ju}} + r_{s_{jd}} + r_{s_{jl}}}{r_{t,upper}}$	left
$\frac{r_{s_{ju}} + r_{s_{jd}} + r_{s_{jl}}}{r_{t,upper}} < \xi_{p_1} \leq \frac{r_{s_{ju}} + r_{s_{jd}} + r_{s_{jl}} + r_{s_{jr}}}{r_{t,upper}}$	right
$\frac{r_{s_{ju}} + r_{s_{jd}} + r_{s_{jl}} + r_{s_{jr}}}{r_{t,upper}} < \xi_{p_1} \leq 1$	of the selected liquor site Mass transfer

260 In every time step when a segment of cellulose is dissolved from the wood chips, there
 261 is an associated degradation in the DP of cellulose calculated in the model. Specifically, this
 262 degradation is captured by reducing the total number of $n_{cellulose}$ -mers from randomly chosen
 263 cellulose chains in the wood chips. Here, $n_{cellulose}$ is the number of cellulose lattice units dissolved
 264 in the kMC simulation. This is the first mechanism via which cellulose degradation takes place.

265 As the dissolution reaction proceeds, the system variables like concentration and tempera-

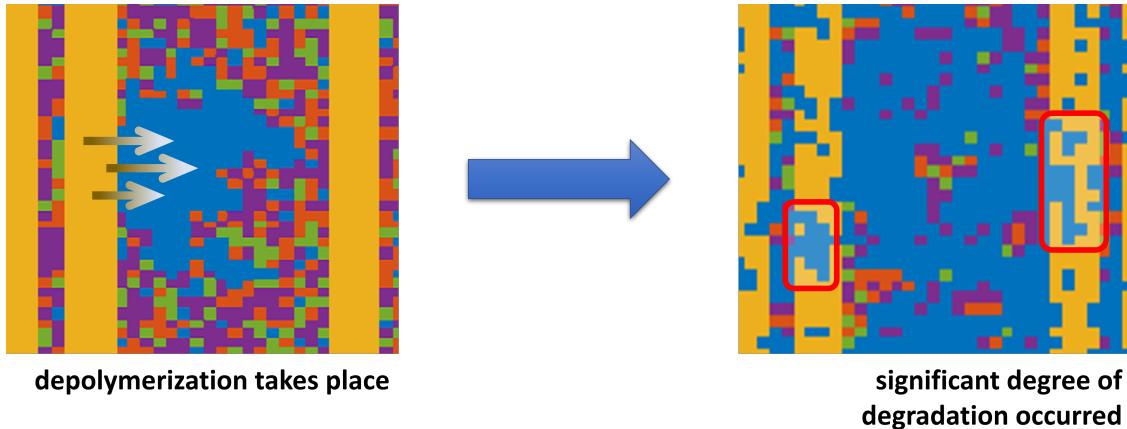


Fig. 3. The schematic illustration of the cellulose depolymerization mechanisms.

ture are correspondingly updated based on the mass and energy balance equations mentioned in the macroscopic model.

2.4. Microscopic model description (the lower kMC layer)

The governing equations in the previous section describe the evolution of mesoscopic properties and refer to the steps captured in the upper layer of the kMC simulation. Apart from the bulk dissolution reactions, as mentioned before, the cellulose fibers exposed to the liquor experience further degradation due to depolymerization; this reaction takes place in the form of hydrolysis. It is to be noted that the mesoscopic dissolution and microscopic depolymerization are significantly influenced by the system parameters like temperature, and reaction rates. However, being a microscopic intramolecular reaction, cellulose depolymerization occurs at a different length and time scale as compared to bulk dissolution reactions. To account for this fact, the second kMC layer for depolymerization is placed within the existing one. Therefore, these multiscale reactions must be considered together. For the microscopic model, the lower layer of the kMC algorithm is implemented to capture the following aspects of the microscopic properties of the system: the temporal evolution of cellulose DP distribution, and its sensitivity

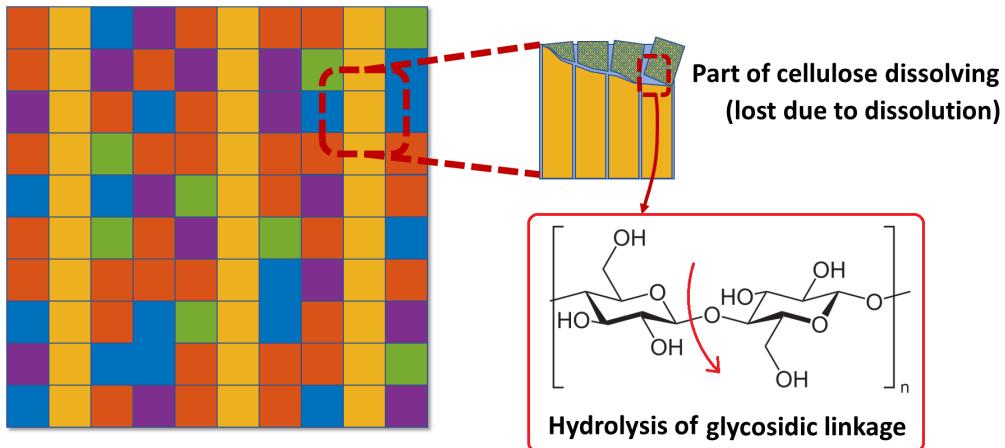


Fig. 4. Mechanism for cellulose degradation during the pulping process, specifying two important phenomena governing cellulose degradation.

281 to various reaction conditions.

282 It is to be noted that the bulk dissolution reactions involve mass losses as the biomass
 283 components are dissolved out. Fig. 3 displays the illustration of the cellulose fiber degradation.
 284 The fibers are depolymerized to smaller fractions. In the figure, the yellow masses stand for a
 285 bunch of the cellulose fibers, and the lattice sites adjacent to the liquor dissolved out. Then, in
 286 the microscopic layer, the bond within the fiber is broken. Cellulose depolymerization is mostly
 287 caused by the cleavage of its glycosidic linkages and results in cellulose DP distribution over
 288 the reaction time. So it does not make the apparent changes in the simulation lattice, because
 289 it is different from the bulk dissolution, but the chain lengths of the individual cellulose fiber
 290 decreases; this is illustrated in Fig. 4. During the kMC simulation, the cellulose DP distribution
 291 is calculated considering these two cellulose degradation mechanisms exhibited in both Figs. 3-4.

292 In this study, the depolymerization is also explained by the aforementioned simulation lattice
 293 and the followings are assumed: (1) Glucose, a monomeric form of cellulose, has a molecular size
 294 of 1 nm; (2) while depolymerization takes place, any kind of repolymerization will not happen;
 295 (3) the cellulose degradation is the first-order reaction; (4) the system temperature and pressure

296 do not change as a result of cellulose degradation; and (5) the probabilities of breakage are all
297 the same for every scission point.

298 The cellulose depolymerization kinetics for a fiber whose DP is L follows the rate law below:

$$r_d = -k_d(L-1)p_L \quad (15)$$

299 where p_L stands for the number fraction of L -mers in the system. Here, the rate constant for
300 the degradation is also in the Arrhenius form:

$$k_d = A_d \exp\left(-\frac{E_d}{RT_c}\right) \quad (16)$$

301 where A_d and E_d are the pre-exponential factor and the bond dissociation energy for the de-
302 polymerization, respectively. The other intra-/inter-molecular reactions are also present in the
303 depolymerization kinetics. Peeling-off is the end-chain scission reaction, which removes one
304 monomer from either end of the polymer chain. Also, stopping is to make the polymer chain
305 stable and inactive to further de/repolymerization reactions. Those two are regarded as null
306 reactions so that they do not alter the degree of polymerization in this simulation, and are
307 expressed as zeroth-order reactions:

$$r_{poly} = -(r_{peel} + r_{stop}) = -(k_{peel} + k_{stop}) \quad (17)$$

308 For simultaneous degradation, the total rate can be found as follows:

$$r_{t,lower} = r_{d,avg} + r_{poly} \quad (18)$$

309 where $r_{tot,lower}$ is the total rate of the reactions at the lower layer of kMC simulation, and $r_{d,avg}$
 310 is the average rate of degradation reactions happening at the same time. Then, events for each
 311 cellulose fiber are again selected by using a random number, $\xi_{p2} \in (0, 1]$, and the probabilities
 and the corresponding events are presented in Table 3.

Table 3. The probability distribution for cellulose depolymerization.

Probabilities	Depolymerization mechanism
$0 < \xi_{p2} \leq \frac{r_d}{r_{t,lower}}$	Random scission
$\frac{r_d}{r_{t,lower}} < \xi_{p2} \leq 1$	Peeling or stopping

312
 313 While degradation proceeds, the time evolution is calculated in the same way as that of
 314 dissolution using a random number, $\xi_{t2} \in (0, 1]$:

$$\Delta t_2 = -\frac{\ln \xi_{t2}}{r_{t,lower}} \quad [min] \quad (19)$$

315 The microscopic events repeat until a series of Δt_2 accumulates to the mesoscopic time segment,
 316 Δt_1 , with corresponding concentration and temperature updates.

317 *2.5. Integrating kMC and continuum models*

318 To couple the kMC simulation for the solid phase with the continuum mass and energy
 319 balance equations for the entrapped- and the free-liquor phases, information regarding the mass
 320 dissolved, change in porosity of the wood chips, kMC time increment associated with the upper
 321 kMC loop, and the time increment associated with the lower kMC loop is passed. Then, the
 322 continuum mass and energy balance equations are solved using the explicit Euler's method.

323 The process begins with the execution of the upper kMC loop, which provides the mass of
 324 the solid dissolved, the change in porosity of wood chips, and the time increment associated with
 325 the upper layer of kMC simulations. Subsequently, the lower kMC loop is performed, and as

326 the event of depolymerization of cellulose fiber is executed, the time increment associated with
 327 the lower kMC loop is obtained. Finally, the change in the concentration of the solid associated
 328 with the time increment of the lower kMC loop is updated using Eq. 20, which is as follows:

$$C_{s_i}(t + \Delta t_2) = C_{s_i}(t) - \frac{M_k \Delta t_2}{V_s \Delta t_1} \quad (20)$$

329 where $C_{s_i}(t)$ is the concentration of the solid component i in the solid phase at time instant t ,
 330 M_k is the mass of the dissolved lattice site k in the upper kMC loop, Δt_1 is the time step of
 331 the upper kMC loop, V_s is the volume of the solid phase, and Δt_2 is the time increment in the
 332 lower kMC loop. Using information obtained from the kMC simulations, the concentration of
 333 individual species in the entrapped liquor is obtained using Eq. 21, which is as follows:

$$C_{e_j}(t + \Delta t_2) = C_{e_j}(t) + \sum_{i=1}^5 \frac{M_k \Delta t_2}{\epsilon V_s \Delta t_1} b_{ji} + D(C_{f_j}(t) - C_{e_j}(t)) \Delta t_2 \quad (21)$$

334 where $C_{e_j}(t)$ is the concentration of the entrapped-liquor component j , $C_{f_j}(t)$ is the concentration
 335 of the free-liquor component j , $\epsilon(t)$ is the porosity of the wood chip at time t , D is the diffusivity
 336 of solid from the entrapped-liquor to the free-liquor, and b_{ji} is the stoichiometry of a solid
 337 component i in the liquor phase j . The porosity of the wood chip is obtained as follows:

$$\epsilon(t + \Delta t_1) = \epsilon(t) + \frac{\Delta \epsilon \Delta t_1}{\Delta t_2} \quad (22)$$

338 where $\Delta \epsilon$ is the total change in porosity of the wood chips in the upper layer of the kMC

339 simulation. Then, the concentration of the components in the free-liquor is updated as follows:

$$C_{f_j}(t + \Delta t_2) = C_{f_j}(t) + D(C_{e_j}(t) - C_{f_j}(t))\Delta t_2 \quad (23)$$

340 In summary, the continuum mass balance equations for the entrapped- and free-liquor phases
 341 are solved forward in time with the explicit Euler's method. The mass of the solid dissolved,
 342 the change in porosity, and the time increment are obtained from the upper kMC layer, while
 343 the time increment associated with the lower kMC layer is also utilized in solving the continuum
 344 mass balance equations. This shows how both of the kMC layers are coupled with the continuum
 345 mass balance equations.

346 The temperature of the system is calculated by solving the following continuum energy
 347 balance equations:

$$T_c(t + \Delta t_2) = T_c(t) + \frac{\left(\frac{M_k}{\Delta t_1} \Delta H_R + U(T_f(t) - T_c(t)) - Dd_E\epsilon(t)\right) \Delta t_2}{c_{p_s}C_s(t)V_s + c_{p_e}C_e(t)V_e\epsilon(t)} \quad (24)$$

348 where $T_c(t)$ is the chip phase temperature at a time instant, $T_f(t)$ is the free liquor temperature
 349 at a time instant, ΔH_R is the heat of reaction for the dissolving species, U is the overall heat-
 350 transfer coefficient, c_{p_s} is the specific heat capacity of the solid, c_{p_e} is the specific heat capacity
 351 of the entrapped liquor, d_E is the energy loss due to diffusing components from the entrapped
 352 liquor, $C_s = \sum_{i=1}^5 C_{s_i}(t)$ is the overall concentration of the solid, and $C_e = \sum_{j=1}^3 C_{e_j}(t)$ is
 353 the total concentration of the dissolved components in the entrapped-liquor. The free-liquor
 354 temperature is also obtained using the explicit Euler's method as follows:

$$T_f(t + \Delta t_2) = T_f(t) + \frac{U(T_c(t) - T_f(t)) + D\epsilon(t)\frac{V_e}{V_f}d_E}{c_{p_f}C_f(t)V_f} \quad (25)$$

355 where c_{p_f} is the specific heat capacity of the free-liquor phase, and $C_f(t) = \sum_{j=1}^3 C_{f_j}(t)$ is the
356 total concentration of the dissolved solid in the free-liquor phase.

357 **Remark 1:** *To obtain the temporal profiles of two values, the mass of a dissolved component*
358 *from the solid phase and the number fraction of cellulose chains with a specific length, kMC*
359 *simulations are conducted for both the dissolution and depolymerization reactions. The amount*
360 *of components dissolved from the solid phase is equal to the amount of components received by the*
361 *liquor phase. Once the amount of dissolved components is determined from the kMC simulation,*
362 *it becomes crucial to use this information in the mass balance equations for the entrapped and*
363 *free-liquor phases. This is necessary to describe how the distribution of dissolved components*
364 *changes with time in both the phases.*

365 **3. Simulation section**

366 This section will give the overall scheme of the multi-layered kMC simulation and explain the
367 details for each layer of this simulation. First, it shows how the macroscopic continuum model is
368 integrated with the discrete event-based layered kMC simulations. As mentioned in the previous
369 section, mesoscopic variables like Kappa number and CWT are obtained from the upper layer of
370 the kMC simulations while the microscopic properties like the cellulose DP are obtained from the
371 lower layer of the kMC simulations [24, 26]. Furthermore, the following paragraph explains how
372 the kMC simulation captures the spatiotemporal evolution of the system's meso/microscopic
373 properties. In this work, Matlab R2019a is particularly used for the kMC simulation.

374 Owing to the initial contact between the solid and liquor components, the liquor from the
375 free-liquor phase enters the pores and becomes the entrapped-liquor components. The mass
376 transfer rate is found by Eq. 9. Subsequently, the dissolution of the solids takes place and the

377 rate constants for this dissolution are calculated from the literature. Since the dissolution is an
 378 action of etching of the wood chip components by PSA, the exposed area of the wood chip to
 379 the entrapped liquor remarkably affects how the wood chip morphology changes with time. In
 380 this work, the discrete event-based kMC simulation allows us to explicitly track the solid-liquor
 381 interface by keeping a list of lattice surface sites of solid components exposed to the entrapped-
 382 liquor phase. Here, it must be emphasized that the lattice sites having more faces exposed to the
 383 entrapped-liquor have a higher dissolution probability. Having the list of sites to be dissolved
 384 and dissolution probabilities, the dissolution rates are computed for the individual interfacial
 385 sites in the kMC simulation lattice. Implementing kMC simulations in this unique fashion
 386 allows us to capture the variation in the status of the system accurately. Associated with the
 387 mass transfer and dissolution, the temperature change takes place based on the energy balance
 388 equations (Eqs. 10-11). The temperature change alters the reaction rates of all the kMC events
 389 and consequently drives the key system variables to particular values. The temperature also
 390 impacts the depolymerization rate in the cellulose nanofibers, which finally affects the cellulose
 391 DP. This coupled process is conveniently captured by the layered-kMC simulation.

Table 4. Overall summary of the operating conditions [26]

Conditions	Values	Units
Wood chip thickness	0.8/3.0/5.0	mm
Dimension of simulation lattice site ($L_h \times L_v$)	1086 \times 800	N/A
Dimension of a lattice site	3.5 \times 3.5	mm ²
Treatment time (T_{fin})	10/20/30	min
Initial porosity (ϵ_0)	0.64	N/A
Initial system temperature	343/353/363	K
Heat capacities of:		
solid phase (C_{ps})	1.47	kJ/kg \cdot K
pure liquor (C_{pl})	4.19	kJ/kg \cdot K
Heat of reaction (ΔH_R)	-581	kJ/kg
Heat transfer coefficient (U)	827	kJ/min \cdot K \cdot m ³
Initial DP of the cellulose fibers	900	N/A

Table 5. Kinetic parameters for the dissolution reaction [48]

Parameters	Solid component indices (i)					Units
	1	2	3	4	5	
Pre-exponential factors						
$A_{1,i}$	0.3954	1.457×10^{11}	28.09	7.075	5.8267×10^3	$m^3/kg \cdot min$
$A_{2,i}$	12.49	1.873		124.9	47.86	3.225×10^{16}

Table 6. The activation energy and rate constants for the three reactions for the cellulose polymers [49]

Parameters	Values
Activation energy for depolymerization of cellulose	$62.031 \text{ kJ/mol} \cdot K$
Activation energy for peeling-off reactions	$43.64 \text{ kJ/mol} \cdot K$
Activation energy for stopping reactions	$54.44 \text{ kJ/mol} \cdot K$
Rate constant for hydrolysis reaction	$4.906 \times 10^6 \text{ s}^{-1}$
Rate constant for peeling-off reaction	$1.0937 \times 10^6 \text{ s}^{-1}$
Rate constant for stopping reaction	$2.97 \times 10^7 \text{ s}^{-1}$

392 In the upper layer of the kMC simulation, the macroscopic state of the system like the

393 temperature, and concentration are initialized. The overall simulation parameters and detailed

394 operating conditions are summarized in Table 4. Subsequently, the dissolution rate for each

395 face of the simulation lattice is obtained. For the reaction rates to be determined, the reaction

396 rate constants need to be specified (Eq. 3); and the kinetic parameters are listed in Table 5.

397 It is necessary to adjust the parameters of the high-fidelity model so that it fits well with the

398 observed experimental data. The results for fitting the activation energies are highlighted in the

399 results and discussions section. Then, based on the laws laid down in Table 6, faces are chosen for

400 dissolution. It is to be noted that the n_{dis} number of lattice sites having the chosen configuration

401 for the faces is dissolved at once: this parameter is set to 1000. Here, the dissolution events are

402 simulated in the form of replacing the dissolved lattice sites with the liquor lattice sites. Once

403 the dissolution event is executed, the time increment of the simulation system is computed from

404 Eq. 14.

405 Furthermore, some portions of the cellulose nanofibers get degraded in tandem with the

406 dissolved events. Once the cellulose sites are selected to be dissolved, the dissolving portions
407 are removed, and cellulose DP is updated accordingly. Specifically, for each lattice site, the l_1
408 segments of the polymer chains are removed and the DP is updated. Here, l_1 is a ratio of the
409 length of one single cellulose molecule to the length of one simulation lattice. From the literature
410 [50], the size of a cellulose molecule is obtained to be 2.50 Å, while the size of a simulation
411 lattice is 3.5 nm; and therefore, the value of l_1 is 14. The removal of polymer segments leads to a
412 reduction in the cellulose DP. The decrease in cellulose DP due to the breakage of the glycosidic
413 linkages is also important, and it is captured by the lower layer of the kMC simulation. In the
414 upper layer of the kMC simulation, the time is advanced by δt_1 , which is obtained from Eq. 14.

415 In the lower layer of kMC simulations, the microscopic process of breaking the glycosidic
416 linkages is captured. In the lower layer of kMC simulations, the microscopic process of breaking
417 the glycosidic linkages is captured. As observed from the values of the activation energies
418 highlighted in Table 6, the activation energy (*i.e.*, cellulose depolymerization) is high. This makes
419 the reaction very sensitive to temperature changes. Therefore, capturing the incremental changes
420 in the system temperature due to mass transfer is crucial throughout the depolymerization
421 process. To this end, the temperature change is captured by a set of steps. In the first step, the
422 temperature value at the initial state for the upper layer of the kMC simulation is considered
423 to calculate the depolymerization rate of cellulose. To mimic the process of depolymerization, a
424 set of 1500 glucose molecules (each having 900 monomers) is considered and the random point
425 scission mechanism is followed [37]. Then, the time step is increased using Eq. 19, and the total
426 time spent in the lower layer of the kMC simulations is updated. Subsequently, the mass transfer
427 taking place during this time interval is obtained from Eq. 2. Henceforth, the temperature change
428 corresponding to this mass transfer is calculated via Eqs. 10-11. Finally, the temperature changes

429 and the overall rate of the reaction are updated. This process is continued until the total time
430 increment in the lower layer of the kMC simulation reaches one time step of the upper layer.
431

The schematic of the two-layer kMC approach is displayed in Figs. 3-4.

432 In our layered-kMC approach, the reactions in two different scales are coupled, and a brief
433 schematic for our layered-kMC simulation is summarized in Fig. 5. Using MATLAB R2019a,
434 we implemented the code for kinetic Monte Carlo simulations and the manuscript showcases the
435 results obtained from our implementation.

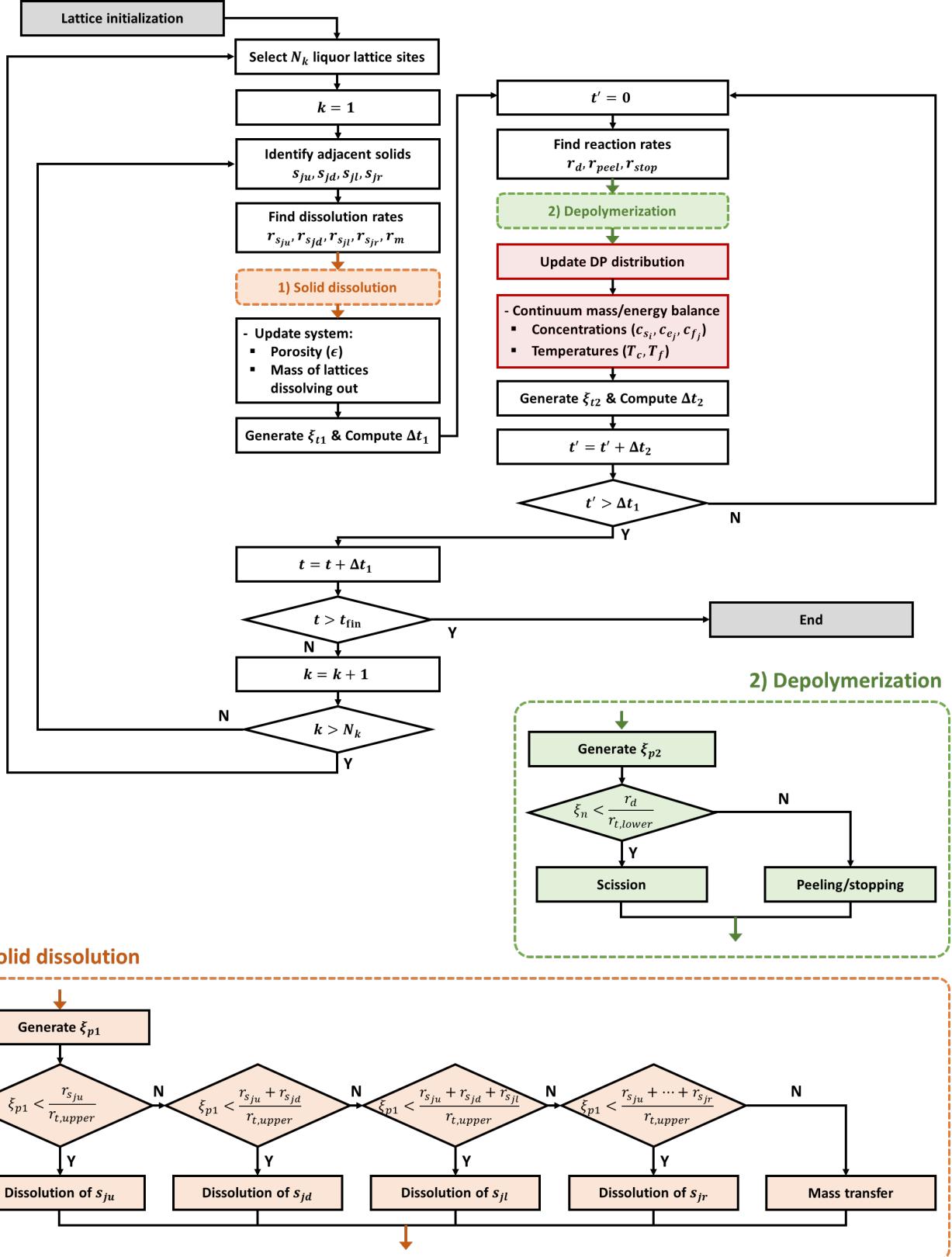


Fig. 5. The flowchart for the layered-kMC simulation algorithm.

436

4. Results and discussion

437

In this section, details of the various properties obtained from the layered-kMC simulations are highlighted. Specifically, the temporal variations of the important mesoscopic properties (*e.g.*, CWT and Kappa number) alongside the important microscopic properties (*e.g.*, DP of cellulose fibers) are calculated and presented in the following sections. The results reveal the effect of solution conditions like temperature and alkali concentration on the mesoscopic and microscopic properties of the wood chips.

438

439

440

441

442

443

4.1. Validation of the layered-kMC simulations

444

445

446

447

448

In order to utilize the proposed layered-kMC model as a digital twin of the depolymerization of cellulose, the model predictions are validated with the experimental data at two different temperatures as shown in Fig. 6. It is to be noted that the experiments are performed at temperatures of 345 K and 355 K, which are close to the temperatures at which the actual pulping process is carried out.

449

450

451

452

453

454

455

456

457

458

The experimental data are found to fit the model predictions well as shown in Fig. 6. However, minor discrepancies are observed; those might be attributed to the uncertainty associated with wood chip characteristics. The preparation procedures for the wood chips utilized in this study have the potential to create data inconsistencies. Specifically, our experiment involved conducting separate experiments with new batches to acquire individual data points for each time point (*i.e.*, 15, 20, 25, 30 minutes) due to the time required for DP data sampling preventing us from running the reaction continuously. Nevertheless, it is important to note that even under the same experimental conditions, the wood chip characteristics may vary between batches, resulting in inconsistencies in the DP data. Moreover, it is worth noting that 1 mm size wood chips may have a greater degree of size variation than other sizes due to limitations in

459 the milling and sieving procedure, which cannot accurately control the small size. On the other
460 hand, the 3 and 5 mm size wood chips were prepared by manual cutting. As a result, the use of
461 small size chips and distinct preparation methods could potentially lead to less consistent results.
462 To achieve satisfactory agreements between simulations and the experiment, some modifications
463 are necessary by making small changes to the parameters associated with wood properties (*i.e.*,
464 effectiveness factor, inert fraction, etc.) depending on the age and species of the wood chip.

465 The good validations of the DP for the cellulose fibers at different temperatures indicate
466 that the mechanism captured by the model is accurate so that the model can be used to predict
467 important microscopic and mesoscopic properties. It is to be noted that the number-average
468 degree of polymerization is utilized for the validation of experimental data. Specifically, owing
469 to the higher central tendency of the number average molecular weight than the weight average
470 molecular weight, it has been utilized in this study. This is due to the fact that, during calcula-
471 tions, the molecular weight of oligomers is not weighted with any factor. In contrast, the weight
472 average molecular weight incorporates a weighing factor equal to the molecular weight of the
473 oligomer, which results in the expected values being shifted towards higher molecular weights.
474 A more detailed explanation can be obtained by examining the following equations, used to
475 calculate these molecular weights:

476 The number average molecular weight is obtained using the following equation:

$$M_n = \frac{\sum_{i=1}^P M_i N_i}{\sum_{i=1}^P N_i} \quad (26)$$

477 where M_n is the number average molecular weight, M_i is the molecular weight of an oligomer
478 with i monomers, N_i is the number of polymer species with i monomers, and P is the maximum
479 size of the polymer.

480 On the other hand, the number average molecular weight is calculated using the following

481 equation:

$$M_w = \frac{\sum_{i=1}^P N_i M_i^2}{\sum_{i=1}^P N_i M_i} \quad (27)$$

482 where M_w is the weight average molecular weight of the polymer. It should be noted that in
483 calculating the average molecular weight of polymers, both the numerator and the denominator
484 are weighted by the molecular weight of the polymer chains. This means that higher molecular
485 weight species have a greater impact on the overall molecular weight calculation. As a result,
486 the weight average molecular weight is shifted towards higher values. It is important to keep in
487 mind that this figure is a general representation and may vary depending on the specific polymer
488 system. M_z is the z -average molecular weight, which is another parameter used to characterize
489 the molecular weight distribution of a polymer system, and it is given by the following equation:

$$M_z = \frac{\sum_{i=1}^P N_i M_i^z}{\sum_{i=1}^P N_i M_i^{z-1}} \quad (28)$$

490 where z is an index by which the molecular weights are weighed in the calculation of the z -
491 average molecular weight. When $z = 1$, the calculation of M_z reduces to the calculation of the
492 number average molecular weight, M_n . Similarly, when $z = 2$, the calculation of M_z reduces
493 to the calculation of the weight average molecular weight M_w . For higher values of z , the cal-
494 culation of M_z results in a weighted average that places even greater emphasis on the highest
495 molecular weight species in the sample.

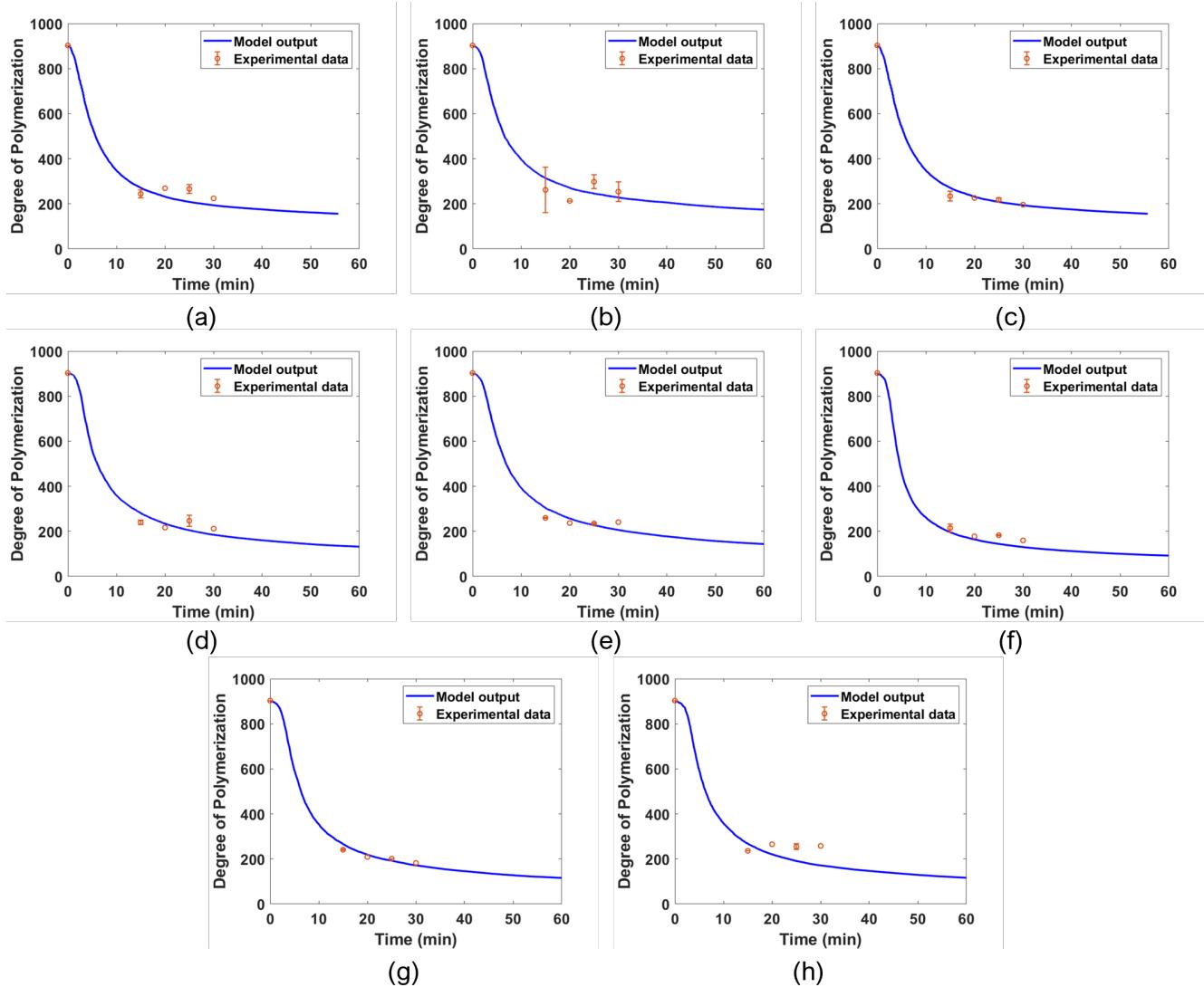


Fig. 6. Model validation for wood chips with different sizes at different temperatures: (a) 1 mm at 343 K, (b) 3 mm at 343 K, (c) 1 mm at 353 K, (d) 3 mm at 353 K, (e) 5 mm at 353 K, (f) 1 mm at 363 K, (g) 3 mm at 363 K, (h) 5 mm at 363 K.

497

The activation energies obtained by fitting the experimental data with the model predictions

498

are highlighted in Tables 7-9. Specifically, the energies are listed in the order of high-reactive

499

lignin, low-reactive lignin, cellulose, arabinoxylan, and galactoglucomannan, respectively. An

500

important observation from these tables is that there is an increase in the activation energy

501

barriers (*i.e.*, increased cellulose stability in PSA solvent) with increasing wood chip size.

Table 7. The activation energy of different wood chip thicknesses at 343 K in kJ/mol.

1 μm		3 μm	
E_1	E_2	E_1	E_2
21.75	19.8	24.75	23.7
84.1	23.76	95.7	28.44
24.65	26.4	28.05	31.6
17.4	25.08	19.8	30.02
50.75	110.88	57.75	132.72

Table 8. The activation energy of different wood chip thicknesses at 353 K in kJ/mol.

1 μm		3 μm		5 μm	
E_1	E_2	E_1	E_2	E_1	E_2
26.7	25.5	27.3	26.4	28.5	27.9
103.24	30.6	105.56	31.68	110.2	33.48
30.26	34	30.94	35.2	32.3	37.2
21.36	32.3	21.84	33.44	22.8	35.34
62.3	142.8	63.7	147.84	66.5	156.24

Table 9. The activation energy of different wood chip thicknesses at 363 K in kJ/mol.

1 μm		3 μm		5 μm	
E_1	E_2	E_1	E_2	E_1	E_2
28.5	26.5	31.2	30.00	31.5	30.3
108.2	31.6	120.64	36.00	121.8	36.36
31.3	33	35.36	40.00	35.7	40.4
23.8	31.3	24.96	38.00	25.2	38.38
66.5	142.8	72.8	168.00	73.5	169.68

502

4.2. Mesoscopic properties

503 An important application of the model is to predict the temporal variation in the mesoscopic
504 properties of wood chips which otherwise is intricate to measure. To this end, the results in this
505 section are highlighted for wood chips that have CWT of $3.8 \mu\text{m}$. It is worth mentioning that
506 the wood chip properties having small values (*e.g.*, CWT) is very difficult to measure, and the
507 proposed high-fidelity model is very useful for the predictions in such cases. The spatiotemporal
508 evolution of the kMC lattice is exhibited in Fig. 7, at the temperature of $T = 410 \text{ K}$ and the
509 PSA concentration of 72 wt%.

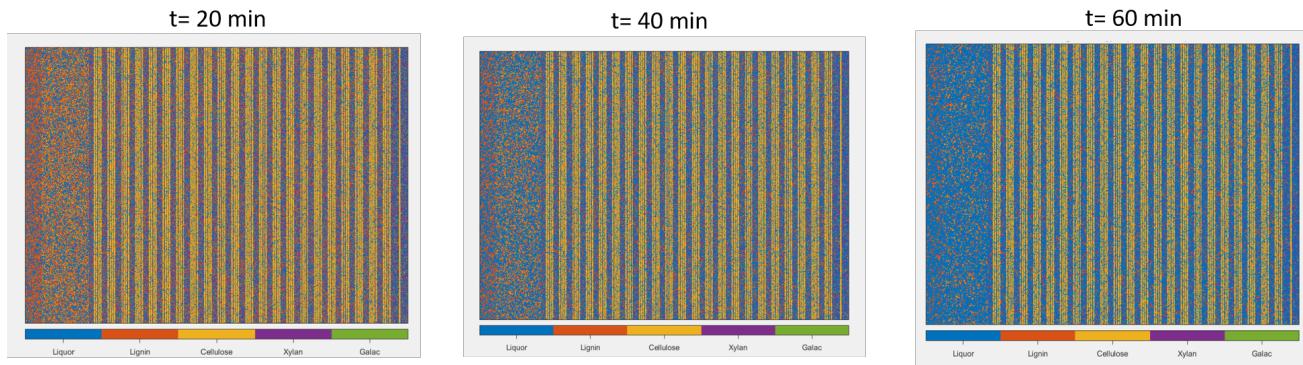


Fig. 7. Spatio-temporal evolution of the kMC lattice during the pulping process at $T=410\text{K}$ and PSA concentration of 72 wt%.

510 In the lattice space, the blue sites represent the entrapped-liquor phase; and the orange, yel-
511 low, and purple sites stand for lignin, cellulose, and hemicellulose components in the solid phase,
512 respectively. Once a solid component dissolves, the phase change takes place. Subsequently,
513 these sites are considered to be an entrapped-liquor phase. It is observed that the entrapped
514 liquor content in the wood chips goes up, and the cellulose content and the lignin content in
515 the wood chips fall significantly, implying that the dissolution phenomena lead to the fall in the
516 Kappa number and CWT.

517 The temporal variation of wood chip properties like the Kappa number and CWT is calcu-
518 lated by varying temperatures. As shown in Fig. 8, the decrease of the Kappa number and CWT

519 is found to become steeper at higher temperatures. The dissolution of the kMC lattice sites from
 520 the bulk phase into the solution phase follows an Arrhenius-type equation, with reaction rates
 521 increasing significantly at higher temperatures. As a result, the lignin and other components of
 522 the wood chips dissolve more rapidly into the free liquor, leading to a sharp decrease in the lignin
 523 content and kappa number with increasing temperature. Furthermore, the cell wall thickness
 524 (CWT), which depends on the total number of lattice sites present longitudinally, also decreases
 525 steeply with increasing temperature.

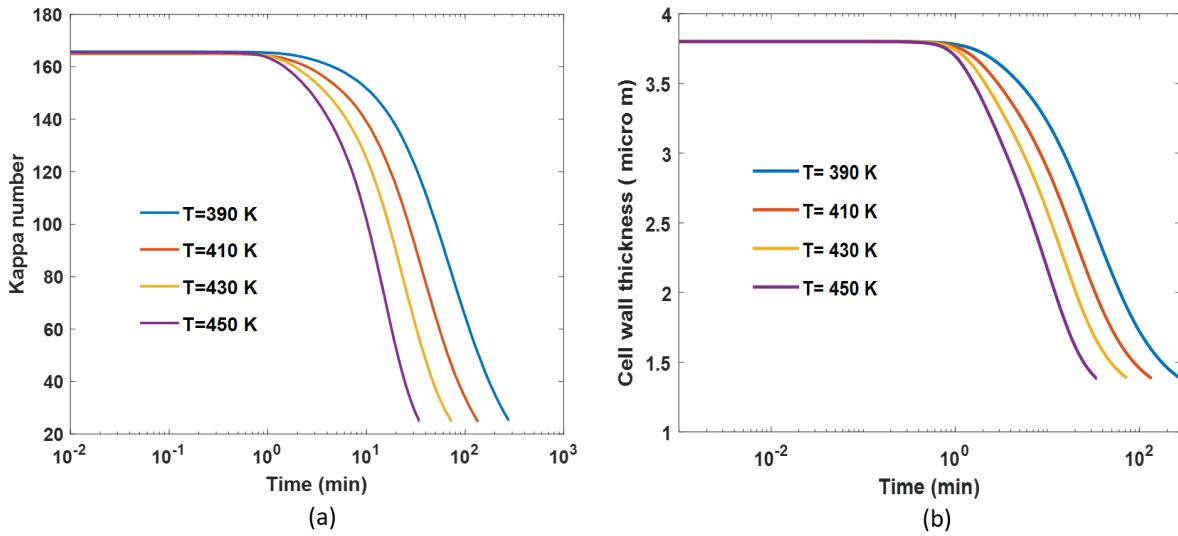


Fig. 8. Temporal evolution of mesoscopic properties for different temperatures with PSA concentration of 72 wt%: (a) cell wall thickness, and (b) Kappa number.

526 Additionally, the temporal variation of Kappa number with different PSA concentrations is
 527 also exhibited in Fig. 9. It obviously shows that increasing PSA concentration leads to substantial
 528 drops in CWT and Kappa number. This is primarily due to the accelerated dissolution rate of
 529 the lignin and cellulose resulting from more frequent etching by the solvent.

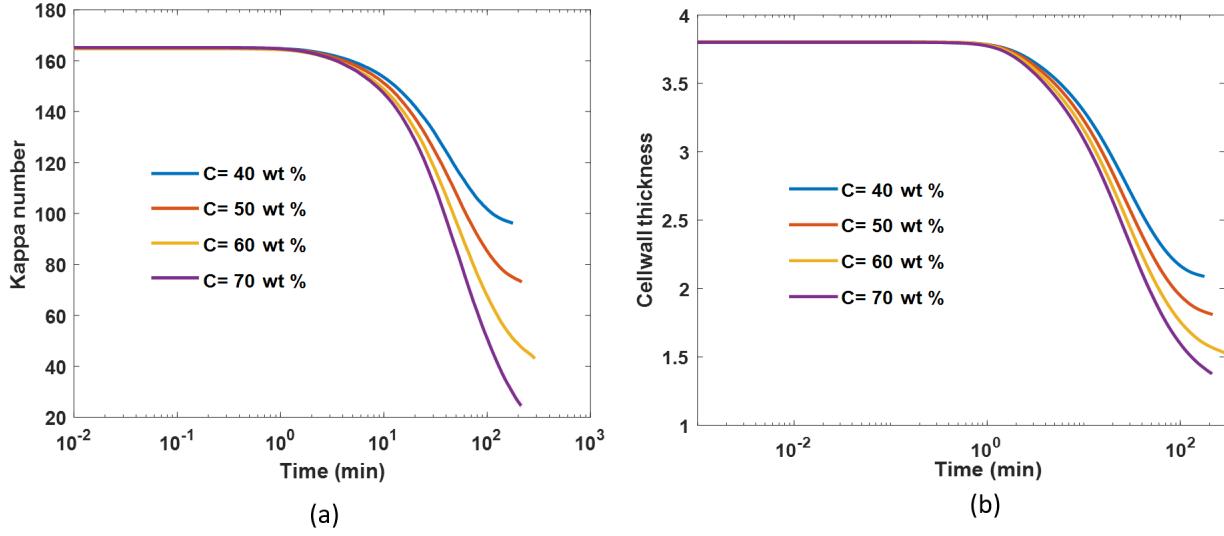


Fig. 9. Temporal evolution of mesoscopic properties at different PSA concentrations for the temperature of 410 K: (a) cell wall thickness, and (b) Kappa number.

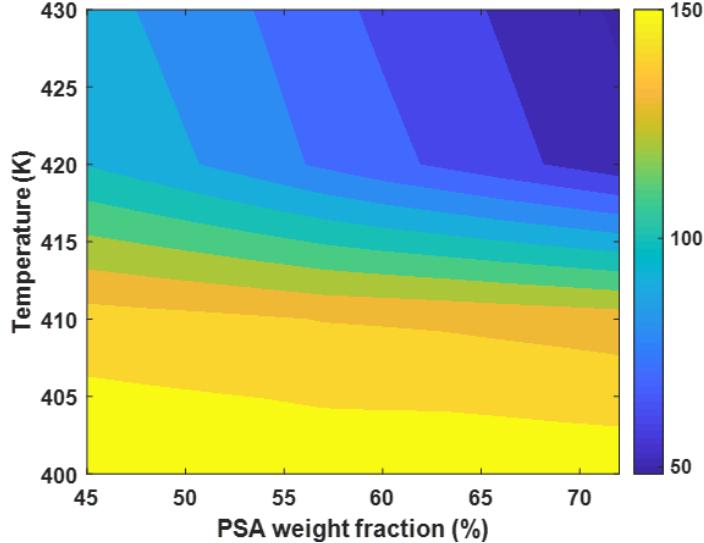


Fig. 10. The sensitivity of Kappa number with varying temperature and PSA weight fraction.

530 Furthermore, to study the sensitivity of the Kappa number for varying temperatures and
 531 PSA concentrations, a three-dimensional plot is obtained in Fig. 10, showing the Kappa number
 532 obtained after 100 min of the reaction. The detailed sensitivity analyses aid us to understand
 533 how temperature and PSA concentration have a combined impact on the critical mesoscopic
 534 property of the wood chips. As expected, the temperature is more influential on these mesoscopic

535 properties than the PSA concentration. This is primarily due to the exponential dependence of
 536 the reaction rates on the temperature in the kMC simulations. Obtaining such a plot is useful
 537 in providing us with the proper operating conditions.

538 *4.3. Microscopic properties*

539 The microscopic properties like the DP of cellulose are also obtained from the layered-
 540 kMC model. Specifically, the model predicts the temporal variation of the DP of cellulose. For
 541 demonstration purposes, the temporal evolution of DP of cellulose is presented in Fig. 11.

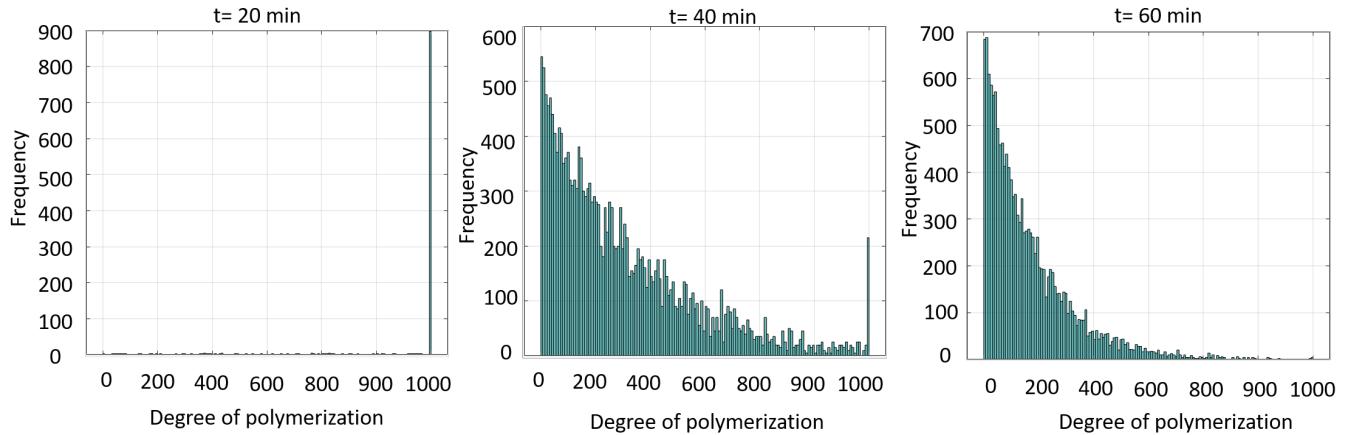


Fig. 11. Temporal evolution of DP for $T = 410$ K, and PSA concentration of 72 wt%.

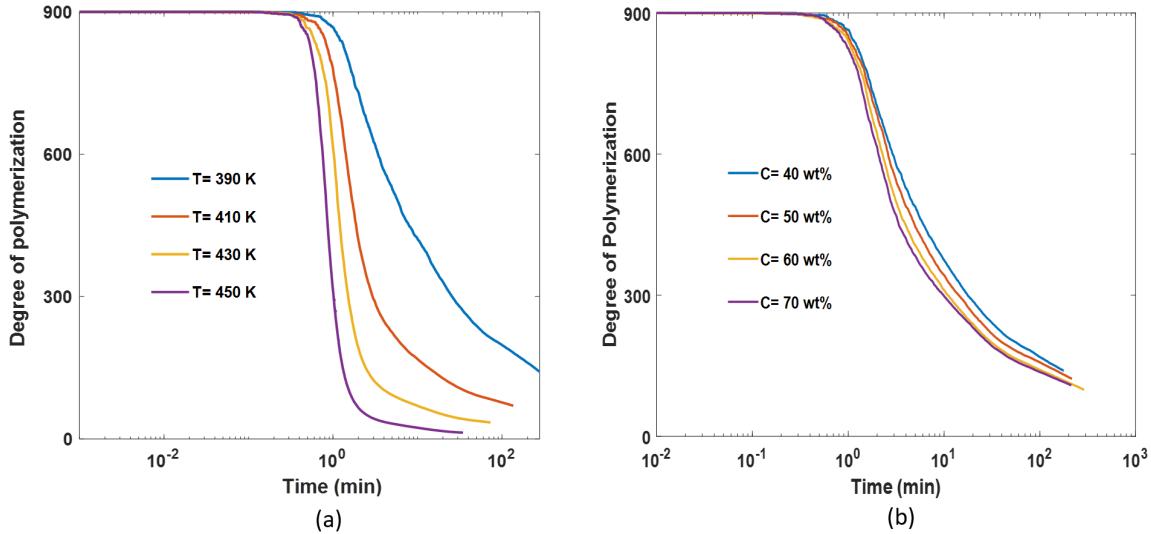


Fig. 12. Temporal evolution of DP: (a) varying temperature, and (b) varying PSA concentration.

542 The variations of the cellulose DP with varying reaction conditions are displayed in Fig. 12,
543 and it is observed that the rate of cellulose degradation increases significantly as the temperature
544 rises. This is primarily accounted for by two important reasons: 1) The increasing temperature
545 accelerates the depolymerization of cellulose nanofibers by hydrolysis of the glycosidic linkages;
546 and 2) It also increases the rate of dissolution of the cellulose. However, it is found that DP
547 changes are far less sensitive to varying PSA concentrations. This is because the PSA concen-
548 tration does not affect the rate of hydrolysis of the glycosidic linkages but only impacts the rate
549 of dissolution of cellulose. This is an important consequence of the dual mechanisms that play
550 a significant role in the degradation of cellulose nanofibers. The sensitivity plot of the cellulose
551 DP with different temperatures and alkaline conditions is shown in Fig. 13.

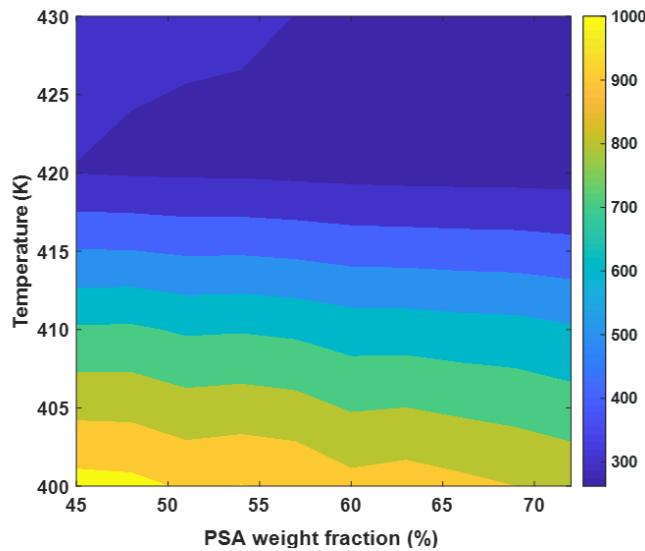


Fig. 13. The sensitivity of the DP with varying temperature and PSA concentration in percentage weight.

552 In Fig. 13, we examined the effects of PSA concentration and temperature on DP, where our
553 results indicate that increasing PSA fraction and temperature leads to a decrease in DP. In
554 particular, the hydrolysis of the glycosidic linkage remains unaffected by PSA fraction, while
dissolution is relatively strongly impacted. As a result, at low PSA concentrations, increasing

556 temperature does not further decrease the DP. This suggests that cellulose degradation occurs
557 less below a certain level of PSA concentration. However, when considering Fig. 10, it is impor-
558 tant to note that cellulose fibers resulting from this degradation still exhibit high lignin content.

559 **5. Conclusion**

560 In this work, a layered-kMC simulation was developed to predict the temporal evolution of
561 important mesoscopic properties as well as microscopic properties. In the kMC simulation, the
562 dissolution of wood chips is modeled by considering interactions among the various components
563 in the wood chip and the PSA solvent. The degradation of cellulose nanofibers is modeled via
564 two mechanisms. One is the mechanical detachment of cellulose nanofibers associated with the
565 dissolution of wood chip components, and another is the depolymerization of cellulose nanofibers
566 due to the hydrolysis of glycosidic linkages. The model predictions have good validation with
567 the experimental data at different temperatures. Furthermore, the model was used to observe
568 the temporal evolution of mesoscopic and microscopic properties by varying reaction conditions
569 like temperature and concentration of PSA solvent. The model prediction gives helpful insights
570 into the sensitivity of these properties at various conditions. Also, it should be pointed out
571 that cellulose DP has greater sensitivity to temperature than PSA concentration. This is a
572 result of the two-step process considered here for cellulose nanofiber degradation. Overall, this
573 work, for the first time, captures the cellulose degradation in wood chips and provides useful
574 insights for controlling the cellulose DP. From this viewpoint, this result will greatly assist the
575 paper industries to enhance the paper qualities and then take further steps to resolve present
576 environmental issues.

577

Declaration of competing interest

578

The authors declare no competing interest.

579

Acknowledgments

580

Financial support from the Artie McFerrin department of chemical engineering and the Texas A&M Energy Institute is gratefully acknowledged. This work was also supported by the National Science Foundation grant CBET2027125.

583

Literature Cited

584

[1] W. Sridach, The environmentally benign pulping process of non-wood fibers., Suranaree Journal of Science & Technology 17 (2).

586

[2] M. S. Sweet, J. E. Winandy, Influence of degree of polymerization of cellulose and hemicellulose on strength loss in fire-retardant-treated southern pine, Holzforschung 53 (3) (1999) 311–317.

589

[3] A. E. Eneh, S. N. Oluigbo, Mitigating the impact of climate change through waste recycling, Research Journal of Environmental and Earth Sciences 4 (8) (2012) 776–781.

591

[4] K. U. Kjeldsen, L. Tang, M. G. Jørgensen, K. Ingvorsen, Enumeration and identification of dominant types of sulfate-reducing bacteria in pulp from a paper-recycling plant: a multiphasic approach, FEMS Microbiology Ecology 69 (3) (2009) 481–494.

594

[5] A. Almasi, M. Mohammadi, A. Azizi, Z. Berizi, K. Shamsi, A. Shahbazi, S. A. Mosavi, Assessing the knowledge, attitude and practice of the kermanshahi women towards reducing,

596 recycling and reusing of municipal solid waste, Resources, Conservation and Recycling 141
597 (2019) 329–338.

598 [6] J. Malešić, I. Kraševec, I. Kralj Cigić, Determination of cellulose degree of polymerization
599 in historical papers with high lignin content, *Polymers* 13 (12) (2021) 1990.

600 [7] D. Mboowa, A review of the traditional pulping methods and the recent improvements in
601 the pulping processes, *Biomass Conversion and Biorefinery* (2021) 1–12.

602 [8] R. Janzon, J. Puls, A. Bohn, A. Potthast, B. Saake, Upgrading of paper grade pulps to
603 dissolving pulps by nitren extraction: yields, molecular and supramolecular structures of
604 nitren extracted pulps, *Cellulose* 15 (5) (2008) 739–750.

605 [9] R. A. Young, Comparison of the properties of chemical cellulose pulps, *Cellulose* 1 (2) (1994)
606 107–130.

607 [10] N. Gurnagul, D. H. Page, M. G. Paice, The effect of cellulose degradation on the strength
608 of wood pulp fibres, *Nordic Pulp & Paper Research Journal* 7 (3) (1992) 152–154.

609 [11] S. Lavrykov, B. Ramarao, S. Lindström, K. Singh, 3d network simulations of paper struc-
610 ture, *Nordic Pulp & Paper Research Journal* 27 (2) (2012) 256–263.

611 [12] J. Chen, M. Zhang, Z. Yuan, J. Wang, Improved high-yield pulp network and paper sheet
612 properties by the addition of fines, *BioResources* 8 (4) (2013) 6309–6322.

613 [13] I. González, S. Boufi, M. A. Pèlach, M. Alcalà, F. Vilaseca, P. Mutjé, Nanofibrillated
614 cellulose as paper additive in eucalyptus pulps, *BioResources* 7 (4) (2012) 5167–5180.

615 [14] L. Nilsson, S. Stenström, A study of the permeability of pulp and paper, *International
616 Journal of Multiphase Flow* 23 (1) (1997) 131–153.

617 [15] P. Žnidaršič-Plazl, V. Rutar, D. Ravnjak, The effect of enzymatic treatments of pulps on
618 fiber and paper properties, Chemical and Biochemical Engineering Quarterly 23 (4) (2009)
619 497–506.

620 [16] J. Jung, H.-K. Choi, S. H. Son, J. S.-I. Kwon, J. H. Lee, Multiscale modeling of fiber
621 deformation: Application to a batch pulp digester for model predictive control of fiber
622 strength, Computers & Chemical Engineering 158 (2022) 107640.

623 [17] R. De Silva, N. Byrne, Utilization of cotton waste for regenerated cellulose fibres: Influence
624 of degree of polymerization on mechanical properties, Carbohydrate Polymers 174 (2017)
625 89–94.

626 [18] S.-j. Kim, J. Jang, Effect of degree of polymerization on the mechanical properties of regen-
627 erated cellulose fibers using synthesized 1-allyl-3-methylimidazolium chloride, Fibers and
628 Polymers 14 (6) (2013) 909–914.

629 [19] L. N. Megashah, H. Ariffin, M. R. Zakaria, M. A. Hassan, Y. Andou, F. N. M. Padzil, Mod-
630 ification of cellulose degree of polymerization by superheated steam treatment for versatile
631 properties of cellulose nanofibril film, Cellulose 27 (13) (2020) 7417–7429.

632 [20] S. H. Son, H.-K. Choi, J. S.-I. Kwon, Application of offset-free Koopman-based model
633 predictive control to a batch pulp digester, AIChE Journal 67 (9) (2021) e17301.

634 [21] J. Kim, S. Pahari, J. S.-I. Kwon, Modeling biomass degradation with multiscale kMC
635 simulations, in: Energy Systems and Processes: Recent Advances in Design and Control,
636 AIP Publishing LLC Melville, New York, 2023, pp. 11–1.

637 [22] P. Shah, H.-K. Choi, J. S.-I. Kwon, Achieving optimal paper properties: A layered multiscale

638 kMC and LSTM-ANN-based control approach for kraft pulping, Processes 11 (3) (2023)

639 809.

640 [23] C. A. Hubbell, A. J. Ragauskas, Effect of acid-chlorite delignification on cellulose degree of

641 polymerization, *Bioresource Technology* 101 (19) (2010) 7410–7415.

642 [24] H.-K. Choi, J. S.-I. Kwon, Multiscale modeling and control of kappa number and porosity

643 in a batch-type pulp digester, *AIChE Journal* 65 (6) (2019) e16589.

644 [25] H. Choi, J. S. Kwon, Multiscale modeling and multiobjective control of wood fiber mor-

645 phology in batch pulp digester, *AIChE Journal* 66 (2020) e16972.

646 [26] H. Choi, J. S. Kwon, Modeling and control of cell wall thickness in batch delignification,

647 *Computers & Chemical Engineering* 128 (2019) 512–523.

648 [27] P. B. Subhedar, P. R. Gogate, Alkaline and ultrasound assisted alkaline pretreatment for

649 intensification of delignification process from sustainable raw-material, *Ultrasonics Sono-*

650 *chemistry* 21 (1) (2014) 216–225.

651 [28] C. J. Biermann, Hydrolysis and other cleavages of glycosidic linkages in polysaccharides,

652 in: *Advances in Carbohydrate Chemistry and Biochemistry*, Vol. 46, Elsevier, 1988, pp.

653 251–271.

654 [29] H. Suryanto, E. Marsyahyo, Y. S. Irawan, R. Soenoko, Morphology, structure, and mechani-

655 cal properties of natural cellulose fiber from mendong grass (*fimbristylis globulosa*), *Journal*

656 *of Natural Fibers* 11 (4) (2014) 333–351.

657 [30] M. Abdelmouleh, S. Boufi, M. N. Belgacem, A. Dufresne, A. Gandini, Modification of

658 cellulose fibers with functionalized silanes: effect of the fiber treatment on the mechanical

659 performances of cellulose–thermoset composites, *Journal of Applied Polymer Science* 98 (3)
660 (2005) 974–984.

661 [31] D. Maldas, B. Kokta, C. Daneault, Influence of coupling agents and treatments on the
662 mechanical properties of cellulose fiber–polystyrene composites, *Journal of Applied Polymer
663 Science* 37 (3) (1989) 751–775.

664 [32] S. H. Son, H.-K. Choi, J. Moon, J. S.-I. Kwon, Hybrid Koopman model predictive control
665 of nonlinear systems using multiple EDMD models: An application to a batch pulp digester
666 with feed fluctuation, *Control Engineering Practice* 118 (2022) 104956.

667 [33] H.-K. Choi, S. H. Son, J. S.-I. Kwon, Inferential model predictive control of continuous
668 pulping under grade transition, *Industrial & Engineering Chemistry Research* 60 (9) (2021)
669 3699–3710.

670 [34] B. B. Hallac, A. J. Ragauskas, Analyzing cellulose degree of polymerization and its relevancy
671 to cellulosic ethanol, *Biofuels, Bioproducts and Biorefining* 5 (2) (2011) 215–225.

672 [35] R. Funahashi, Y. Ono, R. Tanaka, M. Yokoi, K. Daido, T. Inamochi, T. Saito, Y. Horikawa,
673 A. Isogai, Changes in the degree of polymerization of wood celluloses during dilute acid hy-
674 drolysis and tempo-mediated oxidation: Formation mechanism of disordered regions along
675 each cellulose microfibril, *International Journal of Biological Macromolecules* 109 (2018)
676 914–920.

677 [36] M. Andersen, C. Panosetti, K. Reuter, A practical guide to surface kinetic monte carlo
678 simulations, *Frontiers in Chemistry* 7 (2019) 202.

679 [37] S. Pahari, B. Bhadriraju, M. Akbulut, J. S.-I. Kwon, A slip-spring framework to study

680 relaxation dynamics of entangled wormlike micelles with kinetic monte carlo algorithm,
681 Journal of Colloid and Interface Science 600 (2021) 550–560.

682 [38] D. He, Y. Wang, C. G. Yoo, Q.-J. Chen, Q. Yang, The fractionation of woody biomass under
683 mild conditions using bifunctional phenol-4-sulfonic acid as a catalyst and lignin solvent,
684 Green Chem. 22 (2020) 5414–5422.

685 [39] M. Poletto, H. L. Ornaghi Junior, A. J. Zattera, Native cellulose: structure, characterization
686 and thermal properties, Materials 7 (9) (2014) 6105–6119.

687 [40] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, D. Crocker, Determina-
688 tion of structural carbohydrates and lignin in biomass, Laboratory Analytical Procedure
689 1617 (1) (2008) 1–16.

690 [41] C. M. S. da Silva, B. R. Vital, O. C. Angélica de Cássia, E. V. Costa, M. A. de Magalhães,
691 P. F. Trugilho, Structural and compositional changes in eucalyptus wood chips subjected
692 to dry torrefaction, Industrial Crops and Products 109 (2017) 598–602.

693 [42] B. Grisogono, D. Belušić, A review of recent advances in understanding the mesoand mi-
694 croscale properties of the severe bora wind, Tellus A: Dynamic Meteorology and Oceanog-
695 raphy 61 (1) (2009) 1–16.

696 [43] T. Christensen, A mathematical model of the kraft pulping process, Purdue University,
697 1982.

698 [44] H. Choi, J. S. Kwon, Multiscale modeling and control of Kappa number and porosity in a
699 batch pulp digester, AIChE Journal 65 (6) (2019) e16589.

700 [45] E. Agosin, R. A. Blanchette, H. Silva, C. Lapierre, K. R. Cease, R. E. Ibach, A. R. Abad,
701 P. Muga, Characterization of palo podrido, a natural process of delignification in wood,
702 Applied and Environmental Microbiology 56 (1) (1990) 65–74.

703 [46] S. R. Chandrasekaran, P. K. Hopke, L. Rector, G. Allen, L. Lin, Chemical composition of
704 wood chips and wood pellets, Energy & Fuels 26 (8) (2012) 4932–4937.

705 [47] S. H. Son, H. Choi, J. S. Kwon, Multiscale modeling and control of pulp digester under
706 fiber-to-fiber heterogeneity, Computers & Chemical Engineering 143 (2020) 107117.

707 [48] P. A. Wisnewski, F. J. Doyle III, F. Kayihan, Fundamental continuous-pulp-digester model
708 for simulation and control, AIChE journal 43 (12) (1997) 3175–3192.

709 [49] L. Van Loon, M. Glaus, Review of the kinetics of alkaline degradation of cellulose in view
710 of its relevance for safety assessment of radioactive waste repositories, Journal of Environ-
711 mental Polymer Degradation 5 (1997) 97–109.

712 [50] U. Hirn, R. Schennach, Comprehensive analysis of individual pulp fiber bonds quantifies
713 the mechanisms of fiber bonding in paper, Scientific Reports 5 (1) (2015) 1–9.