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Quality Face Morphing Attacks
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Abstract—Face morphing attacks seek to deceive a Face Recognition (FR) system by presenting a morphed image consisting of the
biometric qualities from two different identities with the aim of triggering a false acceptance with one of the two identities, thereby
presenting a significant threat to biometric systems. The success of a morphing attack is dependent on the ability of the morphed
image to represent the biometric characteristics of both identities that were used to create the image. We present a novel morphing
attack that uses a Diffusion-based architecture to improve the visual fidelity of the image and the ability of the morphing attack to
represent characteristics from both identities. We demonstrate the effectiveness of the proposed attack by evaluating its visual fidelity
via Fréchet Inception Distance (FID). Also, extensive experiments are conducted to measure the vulnerability of FR systems to the
proposed attack. The ability of a morphing attack detector to detect the proposed attack is measured and compared against two
state-of-the-art GAN-based morphing attacks along with two Landmark-based attacks. Additionally, a novel metric to measure the
relative strength between different morphing attacks is introduced and evaluated.

Index Terms—Morphing Attack, GAN, Vulnerability Analysis, Face Recognition, Diffusion Models

1 INTRODUCTION

ACE recognition (FR) systems have become one of the most
Fcommon biometric modalities used for identity verification
across a wide range of modern-day applications, from trivial tasks
such as unlocking a smart phone to official businesses such as
banking, e-commerce, and law enforcement. Unfortunately, while
FR systems can often reach low false rejection and acceptance
rates [1], they are especially vulnerable to a new class of emerging
attacks, known as the face morphing attack [2], [3], [4], [S]. The
face morphing attack aims to compromise a fundamental property
of biometric security, i.e., the one-to-one mapping from biometric
data to the associated identity. This compromise is achieved
by creating a morphed face which contains biometric data of
both identities in such a manner that presenting one morphed
image triggers a match with two disjoint identities, violating the
fundamental principle.

This poses a significant threat towards FR systems, especially
in application cases such as e-passports and border access. Notably
the e-passport scenario, wherein the applicant submits a passport
photo either in digital or printed form, is especially vulnerable to
face morphing attack. This is particularly relevant for countries
such as New Zealand, Estonia, and Ireland, where e-passports are
used for both issuance and renewal of documents [6]. In 2018 a
German activist was reported to have received a German passport
with a photo of his face morphed with an Italian politician [7].
Moreover, digital morphs can be easily generated hence offer a
low-cost attack in the digital domain. It is not uncommon for a
digital image submitted to a document submission portal to not
have its authenticity verified by a human agent [8]. Critically, an
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adversary who is blacklisted from accessing a certain system can
create a morph with a non-blacklisted individual to gain access.

Due to the severity of face morphing attacks, an abundance of
algorithms have been developed to identify these attacks [2], [9],
[10], [11]. Methods for Morphing Attack Detection (MAD) can
be broadly characterized into two classes based on the manner in
which they obtain the features used for detection, i.e., handcrafted
features or deep features. Handcrafted features are used in the
so-called classical algorithms which seek to find evidence of the
morphing attack in the pixel domain, whether that is evidence
of degradation in image quality [10], residual noise left from
the morphing attack [12], or local geometric features such as
Local Binary Patterns (LBP) [13], Binarized Statisical Image
Feature (BSIF) [14], and Local Phase Quantitization (LPQ) [4].
Conversely, deep features are used with deep learning-based
algorithms. These features are extracted by a deep Convolutional
Neural Network (CNN), often a pre-trained network such as
ResNet150 [8], [15]. Generally, the best success has been found
using deep CNN-based features in comparison to handcrafted
features on both digital and print-scan face data [16], [17].

Comparatively, there has been less research on face morphing
attack algorithms. Similar to the two classes of MAD algorithms,
there exist two broad classes of face morphing attacks: Landmark-
based attacks and deep learning-based attacks. Landmark-based
morphing attacks use local features to create the morphed image
by warping and aligning the landmarks within each face then cre-
ate a morphed face by pixel-wise compositing. Landmark-based
attacks have been shown to be effective against FR systems [18].
Recent work has enhanced the effectiveness of Landmark-based
attacks by using adversarial perturbation [19]. In contrast, deep
learning-based morphing attacks use a machine learning model to
embed the original bona fide faces into a semantic representation
which are then combined to produce a new representation that
contains information from both identities. This new representation
is then used to generate a morphed face.

However, nearly all state-of-the-art deep learning based morph
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(a) Identity a

(b) Morphed image

(c) Identity b

Fig. 1: Example of the proposed Diffusion-based morphing attack. Samples are from FRLL dataset.

methods were based on the Generative Adversarial Network
(GAN) framework [20], [21], with the primary difference being
architectural improvements such as using the StyleGAN2 archi-
tecture [22] over the vanilla GAN architecture, or changes to
the morph generation pipeline as seen in the Morphing through
Identity Driven Prior GAN (MIPGAN) [23]. At the same time,
there exists a handful of alternative state-of-the-art deep genera-
tive models outside the GAN framework which offer their own
advantages in terms of visual fidelity, semantic representation
capabilities, and inference speed.

In particular, a class of generative models collectively known
as “Diffusion models” haven been shown to possess high visual
fidelity, even beating state-of-the-art GANs in visual fidelity [24],
at the cost of increased inference time. As visual fidelity and
semantic representation abilities are far more important for the
potency of a morphing attack than inference speed, we present a
novel methodology for generating strong face morphing attacks by
leveraging Diffusion-based methods. Figure 1 shows an exemplary
morphed image generated by the proposed attack constructed from
two identities from the FRLL dataset [25]. We summarize the
contributions of the proposed work as shown below:

e We propose a novel method for generating morphed faces
by using a Diffusion-based model which calculates twin
embeddings to generate images of high visual fidelity.

e We evaluate our proposed attack against four other mor-
phing attacks with extensive experiments assessing the
vulnerability of three FR systems across three different
datasets.

e The proposed morphing attack is evaluated via the Fréchet
Inception Distance, a quantitative measure of visual fi-
delity.

e The proposed attack is further evaluated on its ability
to evade detection from MAD algorithms trained against
other morphing attacks.

e We introduce a novel metric to measure the strength of
one morphing attack relative to another.

e We present a small-scale study on the impact of pre-
processing in the FR pipeline on the vulnerability of FR
systems to morphing attacks.

o An exploration of different interpolation techniques on the
proposed morphing attack is presented and evaluated.

2 PRIOR WORK

Several face morphing attacks have been developed by researchers
with the morph generating process generally using face land-
marks or deep learning. In particular, we compare our proposed
Diffusion-based attack against four state-of-the-art morphing at-
tacks, two deep learning-based and two Landmark-based; namely,
the OpenCV, FaceMorpher, StyleGAN2, and MIPGAN-II face
morphing attacks. These schemes represent different types of
morphing attacks and provide a substantial baseline to measure
the performance of the proposed Diffusion-based attack. To the
best of our knowledge all previously proposed deep learning-
based attacks generate the morphed images via a type of GAN
architecture [18], [20], [23], [26].

2.1 Landmark-Based Morphing Attacks

The FaceMorpher and OpenCV attacks were chosen as they are
commonly used to represent Landmark-based attacks [11], [18],
[27].

FaceMorpher is an open-source algorithm that uses the
STASM landmark detector [28], [29]. From the landmarks on the
images Delaunay triangles are formed, which are then warped and
blended together. The areas outside the landmarks are averaged,
typically introducing strong artifacts in the neck and hair regions
of the image [30].

OpenCV morphing attack uses the open-source OpenCV
library with a 68-point annotator from the Dlib library [31]. The
images and associated landmarks are used to form Delaunay trian-
gles. Then, in a similar manner to FaceMorpher, the landmarks are
warped and blended. In contrast to the approach of FaceMorpher,
the areas outside the landmarks do not consist of an averaged
image, but rather additional Delaunay triangles. However, these
morphs also exhibit strong artifacts outside the facial area due to
the missing landmarks [30].

2.2 GAN-Based Morphing Attacks

As mentioned earlier, prior deep learning-based attacks have used
a GAN architecture for the morph generation process [27], [32].
GANSs are a type of deep generative model which seeks to learn
the sampling process for some data distribution Py, on X, i.e.,
given some simple distribution Z ~ p(z) on Z, the generator G :
Z — X isto learn G(Z) ~ Pgatq- A discriminator, sometimes
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called the critic, D : X — [0, 1] is trained adversarially against
the generator in a minimax game described by

minmax E logD(z)+ E log(l—(DoG)(2)) (1)
G D zrop(z)

z~Phata
where the discriminator attempts to get better at distinguishing
synthetic samples from genuine samples, while the generator tries
to get better at deceiving the discriminator. For a GAN-based
morphing attack, it becomes necessary for an encoding algorithm
FE : X — Z to exist, which can embed images in the latent space
such that the inversion has low distortion (G o E)(z) ~ z. The
latent codes for two identities are then averaged to produce a new
latent code representing the morphed face which is passed to the
generator. Notably, there exists a trade-off between the inversion
distortion and editability of the latent embeddings [33]. Damer et
al. proposed to use the GAN architecture for generating morphs
by combining two latent codes encoded from two real identities to
create a morphed code [20]. This proposed attack, known as Mor-
GAN, was based on a modification to the vanilla GAN architecture
with the addition of an explicitly defined encoder architecture that
was trained jointly with the generator via a modified adversarial
loss formulation. Since then the StyleGAN2 [18] and MIPGAN-
IT [23] attacks have improved upon the MorGAN formulation by
improving the GAN architecture, loss formulation, or encoding
algorithm.

StyleGAN2 offers a host of improvements over the standard
GAN implementation that enables the architecture to achieve
state-of-the-art image quality when generating high resolution
images. The StyleGAN2 model was pre-trained on the Flickr-
Faces-HQ (FFHQ) dataset [34]. The faces were then cropped to
possess the same landmark alignment as in the FFHQ dataset.
Following the approach in [22], the images, Z, x5, are embedded
by optimizing an initial latent code through stochastic gradient
descent, minimizing the perceptual loss between the generated
image and target image. After each embedded latent code, z,, 25,
is found, a morphed latent code is created by linearly interpolating
between the two, 24, = lerp(zq, 25; 0.5). Lastly, the interpolated
latent code is passed to the StyleGAN2 synthesis network to get
the morphed image x,p. The StyleGAN2 morphs are strong when
used with images containing a uniform background, which makes
them especially powerful when used in conjunction with the Face
Research Lab London (FRLL) dataset [25].

MIPGANC-II proposes an extension on StyleGAN2 by adding
an optimization procedure for the latent vector used in creating
the morphed image [23]. The StyleGAN2 portion of MIPGAN-
II was pre-trained on the FFHQ dataset. The two bona fide
images are embedded into the latent space using the StyleGAN2
optimization procedure. The latent code is initially constructed
as zog = lerp(za, 25;0.5). For n epochs the latent code is
optimized to minimize a combination of perceptual loss, identity
loss, identity difference loss, and Multi-Scale Structural Similarity
loss, finding a fully optimized latent z,,. The latent code z,, is then
passed to the StyleGAN2 synthesis network to create the morphed
image. As MIPGAN-II presents a refinement on StyleGAN2 for
the application of morphing attack, it possesses similar advantages
and disadvantages that StyleGAN2 morphs offer.

3 DIFFUSION-BASED MORPHING ATTACK

Unlike GANs which learn the sampling process for the data
distribution through adversarial training between the generator
and the critic, diffusion-based and score-based generative models

— X Xp_] —> e — X

g(x:|x-1)

Fig. 2: The forward and reverse Diffusion processes.

learn the data distribution via a denoising process through varying
noise levels. Diffusion-based models can achieve image fidelity
superior to state-of-the-art generative models, matching even the
acclaimed BigGAN-deep [35] model, while maintaining better
coverage of the data distribution [24]. For these reasons we
propose a morphing attack that uses Diffusion-based methods as
the generative process.

3.1 Diffusion Models

Given data distribution ¢(x() on data space X, the goal is to
learn a model py(x() approximating ¢(xo) which can be easily
sampled. Denoising Diffusion Probabilistic Models (DDPMs) [36]
are latent variable models of the form

Po(X0) = /pe(xo:T) dxi.7 (6)

where {x;}7_; € X are latent variables and T € N. The reverse
process is a Markov chain starting at pg(x7) = N(0,1), i.e., a
normal distribution with mean vector 0 and variance I (the identity
matrix), with Gaussian transitions

=

Po(X0:7) = po(X0) | | po(xe—1 | x¢) @)

t=1

The diffusion (forward) process is fixed to a Markov chain that
gradually adds Gaussian noise to the original sample x( according
to variance schedule {3;}7_,, such that

T
q(x1,%0) = [ a(x¢ [ xe-1) ®)
t=1

and q(x¢|x¢—1) = N(V/1 = Bix¢—1, 5I). See Figure 2 for an
illustration of this process. The transition probability p(x;—1|x¢)
is likely to be very complex, unless the gap between ¢ and £ — 1
is very small, i.e., T — oo. In this case, p(x;_1|x;) can be
modelled as N (py(x¢,t),0¢), where g : X X N — X is an
estimator at step ¢ parameterized by 6. Ho ef al. [36] proposes to
use the following form:

1(X_ By
NCANERV )

where iy = 1 — B4, (i :]_[izlozs,andeg tXXN—= Xisa
function approximator parameterized by @, which learns to predict
the noise added to x¢ to get x;. This is achieved by using a U-
Net, a type of CNN consisting of several skip connections formed
at each resolution size in the architecture to model €y [37]. Like
variational autoencoder (VAE), the model is trained by optimizing
the variational bound on the negative log likelihood.

Relaxing the constraint that the inference process has to be
Markovian leads to another kind of diffusion model known as the
Denoising Diffusion Implicit Model (DDIM) as proposed by Song

Mo (X, t) = €o(xs, t)) &)
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Algorithm 1 Diffusion Morphing Algorithm with DDIM scheduler where o; = 0.

Require: The following components:
(a) L (b)

1) Bona fide images, X ', x5 € X

2) Noise prediction model €9 : X X Z x N — X

3) Image space preprocessing function, £ : X X X — X

4) Image space interpolation function, £y : X x X’ x [0,1] —
5) Latent space interpolation function, {z : Z X Z x [0,1] —
6) Timing sub-schedule {;} ,

procedure DIFPUSIONMORPH(XBG)7 xgb), ()
Zg — E(x(a))
{b)

zy < E(xy )

D
X+ &(%p %Xy )
fori <« 1,2,...,N do
X(a) — o (X(Tj)—l_ I—anr,_,-€o(x
Tq Ti \/QT,L',l
XS’b) — 067—_ xii),li 170"'171'69(}(5}1),1’zb’Tifl)
i i \/aTi—l
end for
x%?b) +— EX(xg?),xgg);Oﬁ)

Zabh < Eg(za,zb;0.5)
fori < N,N —1,...1do

(ab) - xi‘;b) —/1—a-, 69(x(7‘:b) \Zab,Ti)
XTi—l aTi—l \/T,r,
k2
end for
ab)
return X,

end procedure

) T (), 2, 7)

X
Z

> Calculate semantic latent codes

> Preprocess images passed to stochastic encoder

@ g
riz1 1)) +/1—ag,€ (X(Taz1 ,Za, Ti—1) > Forward pass of diffusion algorithm

b
) + v 1- anee(xg'i)fuzbaTi—l)

> Stochastic code interpolation
> Semantic code interpolation

> Diffusion generative process

Xt — /X
Go(X¢—1 | X¢,%0) = N(\/Ottflxo +y 11— —of- m’07521> 2
xe — vI—ar ateg(xt,t)> N r—
Xi_1 = /oy _ +1/1—aqr_1 — o7 - €9(x4,t)+ o€ 3)
1= va ( - Cd el g
Predicted x Direction pointing to x bl
I 0
Xy, — V1 — o €(xs,, 7
X1 =/ aTi—l( = OéT ( . Z)) + \/ 1- Q- EG(XTwTi) 4)
Ti
X — 11—, , - €(Xr,_,,2,Ti_
Xy, = \/aﬂ( - T’; o(xr 1 Tic1) +V1—are(xr_,,2,7-1) (5)
V o Ti—1

et al. [38]. Consider a family Q of inference distributions indexed
by a real vector o € RL,

T

4o (X1:7 | X0) = o (X7 | X0) HQU(Xt—l | x¢,%0)
t=2

where ¢, (x7[x0) = N(\/arxo, (1 — ar)I) and for all ¢ >
1 Equation (2) holds. This leads to the forward equation, Equa-
tion (3). Such a formulation allows for a deterministic generation
of an image when o; = 0.

Another advantage of the DDIM framework is the ability to
sample the forward trajectory more quickly by skipping timesteps.
Let {7;}V., be a monotonically increasing sequence of samples
with N < T. By convention 7y = 7T and an initial timestep
7o = 0 is inserted. The inference equation can be reformulated
into Equation (4) where the parameter N controls a trade-off
between sample speed and visual fidelity.

(10)

Preechakul et al. [39] proposed a Diffusion Autoencoder by
employing a conditional DDIM. The DDIM is conditioned on a
semantic representation z € Z by modifying eét) to take z as an
additional input. An encoding network F : X — Z is introduced
to learn the semantic latent code z = F(x). In this frame-
work a twin pair of latent codes are created for a given image,
(z, xT), the semantic and stochastic latent codes. In theory, the
semantic code controls semantic information like hair color, face
shape, and other high level concepts, whereas the stochastic code
controls stochastic variations in the image. Instead of sampling
X7 ~ (o (X7 | X0), Preechakul et al. proposed Equation (5) as
a deterministic forward process. This implementation necessitates
that the semantic code z be generated first before creating the
stochastic code.
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Fig. 3: Proposed architecture for Diffusion-based morphs, where the green traces indicate variables associated with identity a, likewise
red traces denote identity b, and blue traces for the morphed identity ab.

3.2 Proposed Morphing Algorithm

We propose a novel process for the creation of morphed images
by employing both the stochastic and semantic encoders. In
particular, let z,, xp, € X be two bona fide images of identities
a, b, and let x(()a) = x, and x(()b) = Zp. Algorithm 1 outlines
the structure of the proposed Diffusion-based morphing attack,
hereafter called the Diffusion attack for simplicity, with additional
illustration provided in Figure 3.

Beyond the core components of the DDIM and semantic
encoder, three additional functions are added to the architecture,
namely, the image space preprocessing function, £ : X x X' — X,
image space interpolation function, £y : X x X x [0,1] — X,
and latent space interpolation function, £z : Z x Z x [0,1] — Z.

The interpolation functions are used to interpolate between
the semantic and stochastic values by some factor v € [0, 1].
The image space preprocessing function is used to prepare the
image passed to the semantic encoder. The simplest form of
the interpolation function is the linear interpolation function,
lerp(a, b; ) = ya+(1—~)b, where linear interpolation was found
to be the best choice for £z. However, Song er al. [38] suggests
the usage of spherical linear interpolation for £x. For a vector
space V and two vectors u, v € V/, the spherical interpolation by
a factor of +y is given as

sin((1=2)0)

' sin(~6) ;
sin 6

sin 0

slerp(u, v; ) = (11)

arccos(u-v)
) lull lofl .
While the semantic code provides most of the fundamental

information, such as positioning of facial features, the stochastic
code is used to provide information on the details not explicitly
associated with the identity, but necessary for the realism of the
generated image. By altering the stochastic code, details such as
direction of strands of hair, clothing, etc., are altered whilst the
identity of the image is preserved [39]. Unlike the rather straight-
forward nature of linearly interpolating between the semantic
codes to produce an image with key identifying characteristics of
both identities, the nature of the stochastic code can lead to images
of low visual fidelity if the interpolation is not done carefully. In
particular, linear interpolation between two stochastic codes does
guarantee a smooth interpolation between the stochastic details in
the images. For this reason the preprocessing function, &, is used
to prepare the image passed to the stochastic encoder. One strategy

where 6 =

is to “pre-morph” the image when extracting the stochastic details,
i.e., & performs an image space morph of the image with the goal
of reducing the artifacts induced by stochastic interpolation.

4 EXPERIMENTAL SETUP

To evaluate its effectiveness, we tested the proposed morphing
attack on three datasets against two different state-of-the-art FR
systems. All training, optimization, and evaluation was conducted
on a system with dual Intel Xeon Silver 4114 CPUs and an
NVIDIA Tesla V100 32GB GPU with CUDA version 10.1 and
CUDNN version 8.4. The proposed morphing attack, MAD algo-
rithm, and the FR systems are implemented in PyTorch [40].

4.1 Face Recognition Systems

In order to evaluate the strength of the proposed morphing attack,
three publicly available FR systems are used, specifically, the
FaceNet!, VGGFace2?, and ArcFace® models. These models are
representative recognition systems with state-of-the-art face veri-
fication performance [41], [42], [43] and hence are widely used.
For both models the last fully connected layer is used to provide a
rich feature representation of the input image. Then for a presented
face, its feature vector is compared with that of the feature vector
belonging to the target face. If the distance between these two
representations is sufficiently “small”, the presented face is then
said to have the same identity as the target face. The VGGFace2
model improves upon acclaimed VGGFace [44] by using an
improved training dataset, also called VGGFace2. Following the
introduction of Squeeze and Excitation Network (SENet) by Hu et
al. [45], Cao et al. [41] presented the SENet architecture as the
optimal choice when used with the VGGFace2 dataset. Google’s
FaceNet model consists of an Inception-ResNet V1 architecture
which is pre-trained on the VGGFace2 dataset [42]. A new
state-of-the-art model, ArcFace [43], uses a novel loss function
during training to improve the embeddings of faces. This loss
function is known as Additive Angular Margin Loss or ArcFace
Loss. The particular ArcFace model used for evaluation consists

1. https://pypi.org/project/facenet-pytorch
2. https://github.com/ox-vgg/vgg_face2
3. https://github.com/deepinsight/insightface
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of a 100-layer Improved ResNet [46] trained on the Glint360K
dataset* [47].

Additionally, the three FR systems use different pre-processing
pipelines. Across all datasets the images and generated morphs are
cropped as to be appropriate for passport photos; consequently, a
face extractor such as MTCNN [48] is omitted from the verifica-
tion pipeline. The FaceNet model resizes the image such that the
short side of the image is 180 pixels long and then the image
is cropped to a 160 x 160 resolution. Lastly, the images are
normalized to [—1, 1]. The VGGFace2 model resizes the image
such that the short side of the image is 256 pixels long and then
crops the image to 224 x 224 pixels. The mean RGB vector’ is
subtracted from the cropped image to normalize the image. The
ArcFace model resizes images such that the short side of the image
is 112 pixels long which is then cropped to a 112 x 112 resolution.
The image is then normalized to have values in [—1, 1].

4.2 Datasets

In this work, the FERET [49], FRLL [25], and FRGC v2.0 [50]
datasets were used to evaluate the proposed technique, as they
are commonly used in MAD with a large number of different
identities [18], [27]. Notably, the FRLL dataset consists of high
quality close-up frontal images at a 1350 x 1350 resolution
with 189 facial landmarks—a large number of landmarks. The
StyleGAN2, MIPGAN-II, and diffusion models were all trained on
the FFHQ dataset, which contains 70,000 images at a 1024 x 1024
resolution [34]. Morphs using OpenCV, FaceMorpher, and Style-
GAN?2 were created by Sarkar et al. [18] on the FRLL, FERET,
and FRGC datasets. Additionally, Zhang et al. [23] created morphs
via MIPGAN-II on the three datasets.

In order to create a morphed face, two component identities are
needed. Naturally, if the two component identities are disparate,
the resulting morph is likely to be very weak. To rectify this
and for evaluation purposes, the component identity pairs were
selected by following the existing protocol offered by Sarkar et
al. [18]. These pairings resulted in 1222 unique morphs on FRLL,
964 on FRGC, and 529 on FERET.

5 RESULTS

The proposed morphing attack is compared to state-of-the-art
techniques drawing from both GAN-based and Landmark-based
methods. The effectiveness of the proposed method is quantita-
tively measured on three fronts, being the visual fidelity of the
generated morphed images, the vulnerability of state-of-the-art
FR systems to the morphing attack, and the detection potential of
the morphing attack, respectively. Furthermore, an exploration of
interpolation techniques for the stochastic latent code is provided.

5.1 Evaluation of Visual Fidelity

The visual fidelity of the Diffusion attack is compared against
other morphing attacks. Whilst on first glance it may appear that
the ability to deceive an FR system should imply a high level of
visual fidelity, this is not a simple assertion. We posit two reasons
for this discrepancy:

4. The Glint360K dataset consists of 17,091,657 imagees of 360,232 in-
dividuals. Models trained on this dataset can achieve state-of-the-art perfor-
mance.

5. The mean vector is specifically (131.0912,103.8827,91.4953) for the
red, green, and blue channels.

TABLE 1: FID across different morphing attacks. Lower is better.

Morphing Attack FRLL FRGC FERET
StyleGAN2 45.19 86.41 41.91
FaceMorpher 91.97 88.14 79.58
OpenCV 85.71  100.02 91.94
MIPGAN-II 66.41  115.96 70.88
Diffusion 42.63 64.16 50.45

1) The image pre-processing pipeline for an FR system may
crop out a significant portion of artifacts in the original
morphed image.

2) The FR system can be vulnerable to certain adversarial
morphing attacks even though they inject noticeable arti-
facts into the morphed image.

This can lead to a situation wherein the FR system is fooled by a
morphed image; however, it would be trivial for a human agent to
notice the artifacts present in the image. Moreover, a deep learning
system could be specifically trained to notice such artifacts, greatly
reducing the potential of such an attack to go undetected.

To quantitatively assess the visual fidelity of the generated im-
ages, the Fréchet Inception Distance (FID) is employed, as it has
shown to correlate well with human assessment of fidelity [51].
The FID is a measure of distance between the generated and target
distributions. Therefore, the lower the FID metric, the more similar
the generated distribution is to the target distribution, which
correlates well with visual fidelity. The metric is defined as the
Fréchet distance, or 2-Wasserstein metric®, between two Gaussian
distributions, each representing the activations the deepest layer of
an Inception v3 network’ induced by images from the generated
and target distributions.

Table 1 shows the FID metric between the generated images
from different morphing attacks and bona fide samples from the
dataset the morphing attack is drawn from. The FID metric is
calculated using pytorch-fid [53]. What we can see is that
morphed images generated from the Diffusion attack generally
has the lowest FID, with the StyleGAN2-based attack follow-
ing closely behind. Both Landmark-based morphs—OpenCV and
FaceMorpher—has noticeably higher FIDs than the deep learning-
based morphs. These results correlate well with visual inspection
of the morphs as Figures 4b, 4f, 4i and 4m exhibit prominent
artifacts outside the central face region. Likewise, the MIPGAN-II
attack seems to struggle with some distortion outside the central
face region, as can be seen in Figures 4e and 4l. Interestingly, on
the FRLL dataset the StyleGAN2 morphing pipeline consistently
darkens morphs relative to its component images; however, the
visual fidelity is relatively high albeit noticeable darkening. Im-
portantly, stochastic details such as hair seem to be modelled well
by the Diffusion attack, while other attacks distort such details for
the cases of OpenCV, FaceMorpher, and MIPGAN-II attacks, or
present details that have little similarity to both identities for the
case of StyleGAN2 attack. While exhibiting far less visual artifacts
than other morphing techniques, the Diffusion attack tends to

6. The 2-Wasserstein metric between two probability measures p, v with
finite moments on R™ is defined as
1

2
Wa(p,v) = inf / & =yl dn(z,y)
mE€(p,v) JrRn xR

where IT(p, v) is the set of all distributions with marginals p and v.
7. The Inception v3 network is trained on the publically available ImageNet
dataset [52].
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Fig. 4: Comparison across different morphing algorithms of two identity pairs from the FRLL dataset.

(a) Diffusion

(b) MIPGAN-II

Fig. 5: Comparison of Diffusion and MIPGAN-II morphed faces
on FRLL. Images are resized to 256 x 256 and cropped to 224 x
224 to match VGGFace?2 pre-processing pipeline.

slightly smooth out the skin texture. Overall, the Diffusion attack
exhibits the highest consistent visual fidelity among all presented
attacks.

Interestingly, the MIPGAN-II morphs exhibit a much higher
FID than the StyleGAN2 morphs, despite the two approach being
based on the same deep learning backbone, i.e., the StyleGAN2
model. Figure 5 compares two morphed faces generated by the
Diffusion and MIPGAN-II attacks on the FRLL dataset. High
frequency artifacts can be easily observed in Figure 5b, partic-
ularly, near the hairline and the transition region between hair
and the background. Comparing Figure 5a and Figure 5b, the hair
generated by the MIPGAN-II attack looks unnatural with a strange
texture as though an image sharpening filter has been applied to
the image, greatly enhancing the magnitude of high frequency
content, which aligns with the observation in Figure 4. Moreover,
the MIPGAN-II images seem to be de-saturated when compared
to images produced by other attacks, leading to a washed-out
appearance. One possible explanation for the low visual fidelity is
the identity loss overpowering the perceptual quality loss, leading
to morphed images with low visual fidelity but high effectiveness

against FR systems.

5.2 Vulnerability of FR Systems

The strength of the proposed face morphing algorithm is further
evaluated by measuring the ability of the morph to deceive an FR
system. The attack success is quantitatively verified against two
state-of-the-art FR systems. To ensure a valid comparison across
five different morphing attacks, the same pairs of component
identities were used in evaluating every morphing attack, i.e., for
every pair of component identities a morphed image was created
for each of the five attacks. For the FaceNet, VGGFace2, and
ArcFace FR systems, the False Match Rate (FMR) is set at 0.1%
following the guidelines of Frontex [54]. Additionally, the distance
between faces is measured using the L? distance between the
outputs of the FR model. All measurements were collected by
embedding the bona fide, imposter, and morphed images from
all morphing attacks using the three FR systems. Any derivative
metrics of performance were calculated using the embeddings we
collected.

The vulnerability of FR systems to morphing attacks is as-
sessed by comparing the error rates in detection. Specifically,
the Attack Presentation Classification Error Rate (APCER)® is
measured at specific Bona fide Presentation Classification Error
Rate (BPCER)® values. The FR systems are treated as differential
morph detectors, i.e., two images are sent to the FR model, one
of which is bona fide and the other is unknown. The L? distance
between the embeddings of bona fide image and the unknown
image is calculated. A threshold is set to obtain various desired
BPCER values. If the distance is less than this threshold the
unknown sample is classified as bona fide; otherwise, it is not.
In Table 2 the APCER values for the five different morphing
attacks are presented across all three datasets evaluated on three
different BPCER values of 0.1%, 1%, and 5%, respectively. Due
to a variety of factors—such as image quality and number of

8. APCER is the proportion of attack presentations incorrectly classified as
bona fide presentations.

9. BPCER is the proportion of bona fide presentations incorrectly classified
as attack presentations.
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TABLE 2: The APCER at specific BPCER values. Higher is better.

Dataset FR System Morphing Attack APCER @ BPCER=0.1% APCER @ BPCER=1% APCER @ BPCER =5%
FaceNet StyleGAN2 0.99 0.05 0
FaceNet FaceMorpher 2.25 0.14 0.05
FaceNet OpenCV 3.24 0.33 0
FaceNet MIPGAN-II 8.87 0.47 0.09
FaceNet Diffusion 8.83 0.99 0.23
VGGFace2  StyleGAN2 0.05 0.05 0

FRIL VGGFace2  FaceMorpher 1.36 1.08 0.23
VGGFace2  OpenCV 2.35 2.11 0.28
VGGFace2  MIPGAN-II 1.31 0.99 0.23
VGGFace2  Diffusion 2.68 2.07 0.52
ArcFace StyleGAN2 0 0 0
ArcFace FaceMorpher 0 0 0
ArcFace OpenCV 0 0 0
ArcFace MIPGAN-II 0.05 0 0
ArcFace Diffusion 3.33 0.28 0.09
FaceNet StyleGAN2 74.04 36.69 17.73
FaceNet FaceMorpher 87.9 38.85 14.9
FaceNet OpenCV 84.1 31.43 11.36
FaceNet MIPGAN-II 96.54 61.9 33.48
FaceNet Diffusion 91.73 48.86 24.95
VGGFace2  StyleGAN2 81.42 46.22 26.7

FRGC VGGFace2  FaceMorpher 95.42 63.65 38.18
VGGFace2  OpenCV 95.31 64.62 394
VGGFace2  MIPGAN-II 91.92 57.8 30.84
VGGFace2  Diffusion 93.71 58.25 32.18
ArcFace StyleGAN2 18.44 6.26 0.93
ArcFace FaceMorpher 26.11 5.44 0.37
ArcFace OpenCV 2.12 0.07 0
ArcFace MIPGAN-II 30.39 12.18 2.79
ArcFace Diffusion 40.6 2041 7.49
FaceNet StyleGAN2 15.65 9.35 2.49
FaceNet FaceMorpher 10.71 5.1 0.91
FaceNet OpenCV 8.79 3.06 0.17
FaceNet MIPGAN-II 21.03 10.77 2.21
FaceNet Diffusion 24.04 13.95 4.99
VGGFace2  StyleGAN2 54.08 18.42 5.73

FERET VGGFace2  FaceMorpher 80.5 32.65 12.7
VGGFace2  OpenCV 81.01 32.6 12.87
VGGFace2  MIPGAN-II 66.5 18.14 5.84
VGGFace2  Diffusion 80.9 35.2 14.34
ArcFace StyleGAN2 0.51 0 0
ArcFace FaceMorpher 0.17 0 0
ArcFace OpenCV 0 0 0
ArcFace MIPGAN-II 0.06 0 0
ArcFace Diffusion 9.69 2.27 0.06

bona fide images per identity—the results vary across different
datasets; while there is some variance across different FR systems,
they tend to agree more closely. Noticeably, all attacks perform
rather poorly on the FRLL dataset, although the Diffusion attack
performs the best among them, which could be attributed to the
limited number of bona fide images per identity; for FRLL dataset
there are only two bona fide images per identity: a neutral face
(used to create the morph) and a smiling face. All FR systems
were more vulnerable to the different morphing attacks when
evaluated on the FRGC dataset. The MIPGAN-II attack performed
very well against FaceNet on the FRGC dataset, which makes
sense as this technique was refined on the FRGC dataset in
particular [23]. However, this attack was not as strong against
VGGFace2. Instead, that FR system was more vulnerable to
OpenCV, FaceMorpher, and Diffusion. This could be attributed
to the different pre-processing pipelines. The Diffusion-based
morphing attack generally performs close to the top performer

on all FR systems. As with FRGC, on the FERET dataset VG-
GFace?2 is more vulnerable to landmark-based attacks, OpenCV
and FaceMorpher, than FaceNet. Diffusion-based morphs pose
the greatest threat on FERET, consistently having high APCER
values. In general, the following observations can be drawn from
Table 2:

e Among the five different attacks, FR systems are most vul-
nerable to Diffusion attacks. Moreover, Diffusion attacks
always rank in the top three in terms of performance.

e FR systems are the least vulnerable to the StyleGAN2
attack. The StyleGAN2 attack is consistently outper-
formed by its successor, MIPGAN-II, and the other deep
learning-based attack, Diffusion, while often falling be-
hind landmark-based attacks.

o Even though the state-of-the-art ArcFace model is very
resilient to morphing attacks, it presents a significant
vulnerability to Diffusion morphs, compared to other mor-
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TABLE 3: MMPMR at FMR = 0.1% across diffrent morphing attacks. Higher is better. | the geometric mean.

FRLL FRGC FERET
Morphing Attack FaceNet VGGFace2 ArcFace FaceNet VGGFace2 ArcFace FaceNet VGGFace2 ArcFace Mean®
StyleGAN2 4.69 6.05 19.89 0.18 0.85 5.49 0.54 0.76 4.95 2.15
FaceMorpher 11.26 36.4 45.03 0.51 9.15 41.28 2.3 10.78 60.73 12.05
OpenCV 17.34 40.93 47.7 0.14 12.16 3.99 1.69 11.12 4.61 6.47
MIPGAN-II 30.96 26.74 56.52 3.12 7.94 33.54 6 5.39 18.19 14.16
Diffusion 28.14 35.37 88.09 2.68 8.47 46.74 6.47 13.03 59.75 19.80

phing attacks.

In addition to using the error rates to assess the vulnerability
of FR systems, the Mated Morphed Presentation Match Rate
(MMPMR) [55] is used as a measure of vulnerability. Scherhag et
al. [55] proposed two variants of the MMPMR metric for the
scenario in which multiple bona fide images of an identity were
used in morph process, excluding the image used to create the
morph, called the MinMax-MMPMR and ProdAvg-MMPMR. The
MinMax-MMPMR metric is likely to increase the number of
accepted morphs as the number of bona fide images per iden-
tity increases. Therefore, the ProdAvg-MMPMR is the specific
MMPMR variant used to assess the vulnerability of FR systems.
Any mention hereafter to MMPMR refers specifically to ProdAvg-
MMPMR unless stated otherwise.

Let Pys € P(X) be the distribution of morphed images such
that for some x4, ~ Pps, T4, denotes a morphed image made
from identities a, b, where P(X’) denotes the set of all probability
measures on X. Let P, € P(X) denote the distribution of bona
fide images of identity k. Then with abuse of notation Py, is
the distribution of bona fide images of identity k excluding those
images used in creating the morph x,;. The MMPMR metric for
a particular threshold, v > 0, equipped with FR system F' : X —
V' is then defined as

M(H)= E [H E

Tqp~P x~Py
ab~Par kefab} E\@qp

(17 (2as) = F (@) 2 < 7]}

i.e., the expected success rate of the morphing attack to deceive the
FR system. The product term is the joint probability of successful
verification of both identities.

Table 3 presents the MMPMR metric when the FMR is set
at 0.1% for all datasets and FR systems. Interestingly, the FRLL
dataset has the highest overall MMPMR metrics in contrast to
the results from Table 2. This can likely be attributed to limited
number of bona fide images per identity in the FRLL dataset, in
contrast with other datasets, as the particular choice of MMPMR
metric heavily punishes failed verifications for either identity.
Therefore, with FRLL only having one possible bona fide image
per identity the MMPMR metric could be skewed higher relative
to the other datasets. On average the Diffusion attack greatly
outperforms the other attacks; conversely, the Landmark-based
attacks on average exhibit mediocre performance. In agreement
with Table 2 the StyleGAN2 attack shows abysmal performance
in comparison with the other attacks. It is noteworthy the state-of-
the-art ArcFace model seems more vulnerable than the other FR
systems, and is particular vulnerable to the Diffusion attack.

5.2.1 The Effect of Pre-processing on an FR System

Here the impact of the pre-processing pipeline on the vulnerability
of an FR system is examined. In particular the cropping process is
further explored. To study this an additional margin size is added

TABLE 4: APCER at FMR = 0.1% across different margin sizes
on the FaceNet FR system. Higher is Better.

Margin Size

Dataset Morphing Attack 0 20 40 80
MIPGAN-II 54.84 56.53 57.18 58.03
StyleGAN2 15.12 1557 17.14 25.11

FRLL FaceMorpher 7448 7526 7386 4791
OpenCV 76.21  75.82  74.96 48.4
Diffusion 51.25 5447 57.07 59.02
MIPGAN-II 19.33 2171  22.11 26.36
StyleGAN2 14.12  17.57 18.14 22.17

FERET  FaceMorpher 36.11 3645 36.28 17.8
OpenCV 36.11 3844 37.64 13.89
Diffusion 2324 26.02 2591 30.39
MIPGAN-II 12.33 14.3 16.2  20.97
StyleGAN2 7.18 8.71 9.74 1442

FRGC FaceMorpher 17.5 18.87 20.39 9.07
OpenCV 17.02 1847 1991 6.6
Diffusion 9.7 1071 1227 15.62

to the image after an initial face extraction and cropping performed
by MTCNN, such that a margin size N adds back at most NV
pixels to the cropped image in both dimensions. Therefore, the
larger IV is the less tightly cropped the image passed to the
FR system is. Table 4 illustrates the impact of the margin size
on the APCER metric on the FaceNet FR system. Generally, as
the margin size increases, the performance of Landmark-based
attacks decreases while the performance of deep learning-based
attacks increases. As illustrated in Figure 4, the Landmark-based
attacks have noticeable artifacts outside the central face region;
conversely, the deep learning-based morphs have less artifacts in
the outside regions and generally look more realistic to a human
observer. This observation aligns with the visual fidelity results
from Table 1. Therefore, a MAD algorithm or FR system which
uses less tightly cropped faces would be more resilient against
attacks with visual artifacts outside the core face region.

5.2.2 General Remarks on the Vulnerability Study

The poor performance of the StyleGAN?2 attack could be attributed
to the darkening of images with light backgrounds, see Figure 4,
and the aliasing effects latent to the StyleGAN2 generation
pipeline, which was addressed by Karras et al. [56]. Moreover,
the structure of the StyleGAN?2 latent space can make exploration
in the space difficult, which could possibly explain the poor
performance in attacking the FR system compared to other attacks.
MIPGAN-II, on the other hand, likely avoids these pitfalls due
to its explicit latent optimization process for deceiving an FR
system. The Diffusion attack utilizes an entirely different latent
representation scheme, which seems to yield an advantage in the
task of generating morphed faces. The pre-processing pipeline of
the FR system seems to mostly mitigate the artifacts latent to the
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TABLE 5: Ablation study on the impact morphing attack on validation accuracy.

Training Attack

Validation Attack

Dataset  Diffusion FaceMorpher MIPGAN-II OpenCV  StyleGAN2 Diffusion FaceMorpher MIPGAN-II OpenCV  StyleGAN2
X 4 v v v 72.73 99.23 100 99.95 99.33
v X v v v 99.9 76.39 100 99.85 99.64
FERET v v X v v 99.69 99.38 100 99.95 99.54
v v v X v 99.74 99.48 100 99.74 99.43
v v v v X 99.74 98.56 99.9 99.74 87.89
X 4 v v v 75.89 99.98 99.97 99.9 99.93
v X v v v 99.95 99.48 100 99.9 99.95
FRGC v v X v v 99.83 99.85 99.82 99.8 99.85
4 v v X v 99.93 100 100 99.23 99.93
4 4 v v X 99.93 99.93 99.94 99.88 97.83
X 4 v v v 13.96 99.58 99.32 99.65 99.65
v X v v v 99.23 99.09 98.91 99.37 99.44
FRLL v v X v v 99.09 98.95 98.24 99.02 99.09
v v v X v 99.51 99.44 99.19 99.16 99.58
v v v v X 99.93 99.86 99.86 99.93 95.02

Landmark-based attacks; however, such artifacts could easily be
detected by a human observer. Lastly, the state-of-the-art ArcFace
FR system seems especially vulnerable to the Diffusion attack.

5.3 Detectability of Morphing Attacks

The performance of the proposed attack is further evaluated by the
ability of Morphing Attack Detection (MAD) algorithms trained
against other attacks to detect an unseen attack. To quantita-
tively assess the detectability of a particular morphing attack, a
SE-ResNeXt101-32x4d model pre-trained on ImageNet [57] by
NVIDIA is trained to detect morphing attacks. SE-ResNeXt101-
32x4d is a state-of-the-art image recognition model based on the
ResNeXt101-32x4d model [58] with the addition of the Squeeze-
and-Excitation architecture [45]. For all experiments a 5-fold strat-
ified k-fold cross validation strategy is employed, thus preserving
the class balance between morphed and bona fide images in each
fold. The model is fine-tuned on a collection of morphing attacks
for 5 training epochs using exponential learning rate scheduler
with differential learning rates in order to mitigate overfitting of
the model.

5.3.1 Ablation Study

To study the impact of a particular morphing attack on the ability
of a MAD algorithm to detect morphing attacks, an ablation
study was conducted where the SE-ResNeXt101-32x4d model was
trained on all the morphing attacks except for one holdout. Table 5
shows the validation accuracy of each morphing attack when dif-
ferent morphing attacks were withheld from the training process.
Due to the similar natures between the OpenCV and FaceMorpher
attacks, the absence of one of these attacks does not greatly impact
the validation accuracy. Interestingly, the absence of MIPGAN-
IT does not significantly change the validation accuracy of the
attacks; however, the omission of StyleGAN2 during training does
decrease the performance of the StyleGAN2 during validation,
despite the presence of MIPGAN-II. Notably, the Diffusion attack
is very difficult to detect as a novel attack, which can at least
be partially attributed to its unique morph generation process in
contrast with other morphing attacks.

5.3.2 A Metric For Relative Strength

In this section we introduce a new metric to measure the strength
of one morphing attack relative to another. We say a morph «

is “strong” relative to a morph S if the following conditions are
satisfied:

1) Itis easy to detect S when a detector is trained on ¢, i.e.,
high transferability.

2) Itis hard to detect « when a detector is trained on (3, i.e.,
low detectability.

Additionally, the relative strength metric, A(«||3), should be
positive when « is stronger than 3 and negative when « is weaker.
A relative strength of O would denote that the two morphing
attacks are equally strong.

As some of the morphing attacks are not deterministic but
probabilistic, we choose to represent a morphing attack a by
the random variable X< : Q — X such that P(X%|z,, zp)
denotes the distribution of morphs generated from images x4, 5.
Moreover, we suppose there exists a detector f* : X — {0,1}
trained to distinguish between bona fide presentations and mor-
phed presentations generated by «; wherein 0 denotes a bona fide
presentation and 1 denotes a morphed presentation. The transfer-
ability of a morphing attack « to 3 is defined as the probability the
detector f is able to detect the attack 3 given the probability f¢
detects a, ie., T(a, ) = P(f*(XP) = 1|f*(X®) = 1). This
metric can be represented as a ratio of expectations taken over the
pairs of component bona fide images:

foXP) =1, f(X*) =1)
P(fe(X*)=1)
Euy0p[P(fY(XP) =1, f*(X*) =1 | 74, 2)]

=T R PUA(X%) = 1| 2ara)] (12

T(a,p) = 2

Let {z&}N | denote a collection of N samples drawn from
P(X%|xq,xp) such that ¥ denotes the morph generated from
i-th pair of bona fide identities (a;, b;), and likewise for 5. Then
the metric in Equation (12) can be closely approximated by

S [l = 1A ) =1
S [feas) =1]

T(a, B) ~ (13)

i.e., the number of morphs from both « and 3 detected over the
number of morphs detected from .
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Fig. 6: Blue indicates higher strength and red indicates weak
strength.

The relative strength metric (RSM) from « to [ is defined
as the log ratio of the transferability metrics between the two

morphing attacks:
T(e, B
A(al|B) = log (TE 37 ;)

The log of the ratio is chosen such that the RSM takes positive
values when « is “stronger” than 8 and negative values when

(14)

(a) Variant A

(b) Variant B

(c) Variant C (d) Variant D
Fig. 7: Morphed image generated by different Diffusion attack
variants on FRLL.

weaker—with a value of zero denoting equal strength. Addition-
ally, there is an antisymmetry such that A(«||8) = —A(S]|c).

In contrast to the ablation study, the SE-ResNeXt101-32x4d
model is only trained on a single attack per k-fold. The RSM is
calculated between all attacks with the results shown in Figure 6.
It can be observed that the RSM between the Landmark-based
morphs and the RSM between the StyleGAN-based morphs is very
small. As these attacks have similar morph generation pipelines,
it makes sense that the transferability between the attacks is
near identical. In general, the Landmark-based attacks seem to
be stronger than the StyleGAN-based attacks, in particular the
FaceMorpher attack. The MIPGAN-II attack is generally weaker
than the other attacks. Overall, the Diffusion attack is the least
detectable among the attacks along with generally being the
strongest attack across the three datasets.

The results from Figure 6 corroborate with the results from
Table 5, demonstrating the difficulty in detecting Diffusion at-
tacks. From the perspective of training a MAD system, including
samples from the FaceMorpher, StyleGAN, and Diffusion attacks
would greatly increase the ability for the system to detect un-
known attacks. Additionally, Table 5 and Figure 6 demonstrates a
particular vulnerability existing MAD systems may have towards
the emerging Diffusion attack.

5.4 Study of the Diffusion-based Morphing Process

The diffusion morphing algorithm leverages both a stochastic
and semantic representation of an image. While the semantic
representation contains many of the key “identifying” features,
the stochastic representation contains many of the details nec-
essary for high visual fidelity. Due to the importance of the
stochastic code for high fidelity, we investigated several methods
for finding the morphed stochastic latent code, ngl ®) The first
variant, variant A, is the baseline implementation with £z using
linear interpolation, £y using spherical linear interpolation, and
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TABLE 6: MMPMR at FMR = 0.1% across different configurations. Higher is better. 1 indicates our default choices. £ the geometric

mean.
FRLL FRGC FERET
Variant  {x &(x,y) FaceNet VGGFace2 ArcFace FaceNet VGGFace2 ArcFace FaceNet VGGFace2 ArcFace Mean?
A slerp z,y—x 32.97 34.71 88.27 3.2 9.59 44.83 7.17 11.54 58.69 20.62
B lep z,y—2x 10.81 11 68.94 1.17 2.17 38.85 2.33 4.69 35.41 8.79
Cf slerp  z,y — %(z +v) 28.14 35.37 88.09 2.68 8.47 46.74 6.47 13.03 59.75 19.80
D slerp  x,y — OpenCV(z,y) 9.14 9.34 29.84 0 1.37 1.85 0.14 1.42 1.65 0.0

TABLE 7: FID across different configurations. Lower is better.
1 indicates our default choices.

Variant (ly  £(z,y) FRLL FRGC FERET
A slerp 2,y — 48.13 5297 55.66
B lep z,y— =z 82.05 119.33 97.75
ct slerp z,y— L(z+v) 42.63  64.16 50.45
D slerp  x,y — OpenCV(z,y) 93.85 84.51 108.49

& does not perform any “pre-morphing”. Conversely, in variant B
the stochastic codes are interpolated via linear interpolation. In
variants C and D, instead of using the original image to calculate
the stochastic code, the function & is used to construct the “pre-
morph” passed to the stochastic encoder. Specifically, in variant
C the two images are averaged pixel-wise and presented to the
stochastic encoder; in contrast, in variant D the OpenCV morph is
presented to the stochastic encoder. For each variant, we generated
the same number of morphs across the three datasets as shown
in Section 4.2, resulting over 10,000 new morphs across four
variants.

In Table 7 the FID is calculated between the generated morphs
and the bona fide samples for each particular dataset. Variant
C generally presents the lowest FID score, closely followed by
variant A. Both variants B and D exhibit clear degradation in
performance when compared to variants A and C. Furthermore,
the FID score seems to correlate well with human assessment
of the generated samples, see Figure 7. Noticeably, the linear
interpolation in variant B results in an overly smoothed face and
generally darker image, greatly degrading visual fidelity. Variant
D has prominent visual artifacts, similar to the artifacts found in
the OpenCV morphs. Moreover, the poor performance seems to
be aided by an issue of differing alignment strategies between the
OpenCV and diffusion pipeline.

Notably, variant C often removes many of the high frequency
artifacts found in variant A. This is likely due to the difficulty
in smoothly interpolating between points in the stochastic latent
space, in contrast with the semantic latent space. As such, variant
C, which performs a pixel-wise average of the two source images
before using the stochastic encoder, seems to greatly improve
the ability to smoothly interpolate between different stochastic
representations. This appears to be the primary reason variant C
has a generally lower FID when compared to variant A. Both
Figure 7 and Table 7 demonstrate the large importance that the
stochastic code plays in creating high fidelity morphed images.
Due to the high fidelity exhibited by variant C, this particular
diffusion process was used in evaluation against other morphing
attacks.

The MMPMR metric is calculated for each variant in Table 6.
Variant A is slightly stronger than variant C, with variants B and
D falling far behind, likely due to the high number of visual
distortions. These results stand in contrast to the assessment of

visual fidelity wherein variant C outperforms variant A. This,
again, illustrates a trade-off between visual fidelity and ability
to fool the FR system; however, in this case the trade-off effec-
tiveness against the FR system is relatively small in comparison
to the gains in visual fidelity. Due to its excellent visual fidelity
and strong MMPMR results, variant C was still chosen to be the
default configuration for the Diffusion attack.

6 CONCLUSIONS

By addressing some of the key limitations of prior deep-learning
based morphing attacks, namely, the trade-off between visual
fidelity and effectiveness against FR systems, we have proposed
a novel morphing attack using Diffusion-based methods for the
generative process. The proposed attack consistently generates
realistic morphed images with high visual fidelity, while also being
able to strongly threaten FR systems. To evaluate the attack poten-
tial of the proposed method, we evaluated the vulnerability of three
FR systems over three distinct datasets across four variants of the
Diffusion morph, with the strongest variant achieving state-of-the-
art performance. We also studied the impact of the pre-processing
pipeline on the vulnerability of an FR system to morphing attacks.
A novel metric to assess the strength of one morphing attack
relative to another has been introduced. Moreover, the proposed
attack was evaluated by its detection performance against a state-
of-the-art MAD system. The Diffusion attack was shown to be
very difficult to detect if not specifically trained against, showing
the proposed attack can greatly threaten existing FR systems.
Overall, the images generated by the Diffusion attack possess
high visual fidelity, can deceive state-of-the-art FR systems, and
are difficult for MAD mechanisms to detect. It is our belief that
developing a stronger face morphing attack is essential to the
design and testing of stronger MAD methods. As far as future
work is concerned, the proposed method could be extended to
higher resolutions using diffusion-based super resolution methods
or latent diffusion methods.
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