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ABSTRACT

Quantifying how brain functional architecture differs from person to person is a key challenge in human neuroscience.
Current individualized models of brain functional organization are based on brain regions and networks, limiting their
use in studying fine-grained vertex-level differences. In this work, we present the individualized neural tuning (INT)
model, a fine-grained individualized model of brain functional organization. The INT model is designed to have vertex-
level granularity, to capture both representational and topographic differences, and to model stimulus-general neural
tuning. Through a series of analyses, we demonstrate that (a) our INT model provides a reliable individualized measure
of fine-grained brain functional organization, (b) it accurately predicts individualized brain response patterns to new
stimuli, and (c) for many benchmarks, it requires only 10-20 minutes of data for good performance. The high reliability,
specificity, precision, and generalizability of our INT model affords new opportunities for building brain-based bio-
markers based on naturalistic neuroimaging paradigms.

Keywords: fMRI, individual differences, brain functional organization, naturalistic neuroimaging, hyperalignment,
precision neuroscience, individualized prediction

1. INTRODUCTION tial granularity. Typical functional magnetic resonance imag-
ing (fMRI) data of the human brain comprise 20,000-100,000
cortical surface vertices (or voxels in volumetric data).
Coarse-grained models group these vertices into spatial
units—brain regions, networks, and systems—and reduce
the brain into tens to hundreds of spatial units (Glasser

et al., 2016; Gordon et al., 2016; Yeo et al., 2011). Vertices

A central goal of human neuroscience is to understand
how brain functional organization differs across individu-
als, and how these differences relate to differences in
intelligence, personality, motivation, mental health, and
many other attributes. Understanding these differences
is instrumental for providing individualized education and

training, as well as effective diagnosis and intervention in
the case of pathology, and ultimately improving educa-
tional, occupational, and health-related outcomes
(Bijsterbosch et al., 2020; Dubois & Adolphs, 2016;
Gabrieli et al., 2015; Gratton et al., 2020).

Models of the functional organization of the human brain
can be summarized into two categories based on their spa-

with similar, relatively homogeneous functions are studied
as a group in coarse-grained models, which makes it easier
to summarize their functions neuroscientifically and com-
putationally (Bijsterbosch et al., 2020; Eickhoff, Constable,
& Yeo, 2018; Eickhoff, Yeo, & Genon, 2018). Recent
advances of coarse-grained brain models have success-
fully extended group-level models to model individual
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brains (Gordon, Laumann, Adeyemo, Gilmore, et al., 2017;
Harrison et al., 2015; Kong et al., 2019; Wang et al., 2015).
In these models, the cortical topographies of the spatial
units in an individual are allowed to differ from the group
template, in order to account for inter-individual variations
in brain functional organization (Gordon, Laumann,
Adeyemo, & Petersen, 2017; Gratton et al., 2018; Laumann
et al., 2015). Individualized models help disentangle differ-
ent sources of inter-individual variation (Bijsterbosch et al.,
2018, 2019), and improve brain-behavior predictions
(Kashyap et al., 2019; Kong et al., 2021).

Given this feature aggregation, coarse-grained mod-
els focus on spatial units that are centimeters in scale.
Modern fMRI data acquisition, however, usually has a
spatial resolution of 2-3 mm in each dimension, which is
close to the spatial precision of blood-oxygen-level-
dependent (BOLD) signal acquired at 3 T (Engel et al.,
1997; Parkes et al., 2005). This fine spatial resolution
affords access to the rich information encoded in fine-
grained vertex-by-vertex and voxel-by-voxel spatial pat-
terns (Haxby et al., 2001, 2014; Huth et al.,, 2016;
Kriegeskorte & Kievit, 2013). This information can be
used to decode brain responses to different object cate-
gories (Haxby et al., 2001), and also different exemplars
of the same category, such as different face identities or
different views of the same face (Guntupalli et al., 2017;
Visconti di Oleggio Castello et al., 2017, 2021). Individual
differences in fine-grained responses and connectivity
are much more reliable than their coarse-grained coun-
terparts (Feilong et al., 2018). Fine-grained functional
connectivity captures what information is exchanged
between regions instead of how much information is
exchanged, providing a twofold increase in accuracy in
predicting intelligence (Feilong et al., 2021).

In this work, we present the individualized neural tuning
(INT) model, a fine-grained individualized model of brain
functional organization that has three key features. First,
the INT model has vertex-level granularity, which provides
access to the rich information encoded in fine-grained
spatial patterns. Second, it models each individual’'s
unique representational geometry as well as the corre-
sponding topographic organization in cortex, and thus
affords study of both functional and topographic differ-
ences. Third, the INT model decomposes responses into
stimulus information, as defined by neural responses that
are shared across brains, and response tuning functions
that model individual-specific fine-grained responses to
any stimulus. Therefore, the INT model affords study of
individual differences in neural response tuning that are
independent of stimulus information (Fig. 1).

2

Using two rich fMRI datasets collected during movie-
watching, we demonstrate that our INT model of brain
functional architecture has remarkable reliability and
validity. Specifically, we show that: (a) two estimates of
an individual’s model of brain function are highly similar
based on independent data, but distinctive for different
individuals; (b) the model can predict idiosyncratic pat-
terns of brain responses to novel stimuli, including object
categories and retinotopic localizers; (c) the model cap-
tures information encoded in fine-grained spatial pat-
terns and can differentiate response patterns to different
movie time points (TRs); and (d) the model works well
with small amounts of movie data but continuously
improves with more data. Together, these results demon-
strate that our INT model predicts idiosyncratic fine-
grained functional organization of the brain with high
sensitivity and specificity.

2. RESULTS

2.1. Estimating the individualized neural tuning model

Here, we briefly describe the individualized neural tuning
(INT) model in order to build a high-level intuition for how
the model is constructed; see the “Methods” section for
a more detailed mathematical treatment. Brain responses
to external stimuli, such as movies, are broadly similar
across individuals after anatomical alignment of cortical
features and show much stronger similarity after the
information contained in idiosyncratic fine-grained pat-
terns is projected into a common model information
space using hyperalignment (Guntupalli et al., 2016,
2018; Hasson et al., 2004, 2010; Haxby et al., 2011, 2020;
Nastase et al., 2019). A substantial amount of an individ-
ual’s responses can be explained by these commonali-
ties. Still, individuals differ from the common space and
from each other, even though these differences are
smaller in scale than the commonalities (Feilong et al.,
2018). Therefore, it is critical to ensure that our model
captures the idiosyncrasies of each individual’s brain
functional organization, as well as the shared responses
across individuals.

The goal of the INT model is to re-represent the brain
data matrices B, acquired for each individual in a way
that captures precise, individualized vertex-level func-
tional architecture and supports out-of-sample predic-
tion across both individuals and stimuli. First, we
construct a common functional template M across all
training participants to serve as a target for functional
alignment based on all training participants’ data using a
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Fig. 1. Estimating a shared stimulus matrix and individualized tuning matrices. (A) The individualized neural tuning (INT)
model decomposes the brain response data matrix B(p ) (shaped t x v, where t is the number of time points and v is the
number of cortical vertices) of participant p into a shared stimulus matrix S (t x k, where k is the number of stimulus features)
and an individualized tuning matrix T(p) (k x v, the number of stimulus features by the number of cortical vertices). Temporal
information capturing how the stimulus changes over time is factored into S; each row of S is a time point in the stimulus,
and each column of S is a basis response profile shared across individuals and vertices. Each column of T(p ) is a vector of k
elements describing the response tuning function of a cortical vertex over basis response profiles. (B) If we divide the brain
responses matrix B o into several parts (i.e., responses to different stimuli), each part can be modeled as part of the matrix
S multiplied by the same T o In other words, T{p) models neural response tuning in a way that generalizes across stimuli.
Moreover, the same T can be estimated from different parts of B, (e g., two halves of a movie B,,andB, 2)) by using the
corresponding parts of S (S, and S ). (C) After obtaining T ), it can be used to predict the part|0|pant s responses to new
stimuli B using the corresponding S__ = matrix, which can be estimated from other participants’ data.

(p,new) (new)

searchlight-based algorithm. Next, we estimate a linear
transformation W for each participant, using ensemble
ridge regression, that maps between their idiosyncratic
functional architecture and the functional template M.
Unlike previous implementations of hyperalignment that
employed Procrustes-based rotations to resolve topo-
graphic idiosyncrasies while preserving representational
geometry, here we estimate a linear transformation that
captures individual differences in both representational
geometry and cortical topography. Finally, we convert the
model-estimated brain data, MW(), into a more compact
shared stimulus matrix S, with orthogonal feature dimen-
sions, and an individualized tuning matrix 7 (Fig. 1). This
decomposition factors the stimulus-specific temporal
structure of the movie into S, represented as a collection
of basis functional profiles shared across vertices and
individuals. The individual-specific tuning matrices T(p)
can be estimated with independent data using different
stimuli. The T(p) matrices capture individual differences in
functional tuning—modeling idiosyncrasies in both repre-
sentational geometry and cortical topography.

3

2.2. Modeling individualized brain functional organization

To assess how well our model captures individual-specific
brain functional organization, we evaluated the within-
subject similarities and between-subject similarities of
the modeled tuning matrices (7). For each of the n partic-
ipants, we divided the movie data into two parts, and
computed a tuning matrix independently for each movie
part. Therefore, we obtained estimates of n tuning matri-
ces based on the first part of the movie, and an indepen-
dent set of n estimated tuning matrices based on the
second part. Then, we computed an n x n matrix of
cross-movie-part similarities, where each row corre-
sponds to a tuning matrix based on the first part, and
each column corresponds to a tuning matrix based on
the second part. Each entry in the matrix quantifies the
cross-movie-part similarity of tuning matrices within-
subject (diagonal entries) and between-subject (off-
diagonal entries) (Fig. 2A). For both datasets, the similarity
matrix had a clear diagonal, indicating that the within-
subject similarities were much higher than the between-
subject similarities. When all the tuning matrices were
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Fig. 2. Modeling individual-specific brain functional organization. (A) For each movie part, we obtained n tuning
matrices, one for each participant, which describes the participant’s response tuning functions. The cross-movie-

part similarities form an n x n matrix, where rows are tuning matrices based on the first movie part, and columns the
second movie part; the colored legends at left and top index individual participants. The obvious diagonal indicates
that within-subject similarities were much higher than between-subject similarities. (B) Multi-dimensional scaling (MDS)
projection of the 2n matrices onto a 2-D plane. Two dots of the same color denote two estimates of the tuning matrix
for the same participant, as in (A). Dots from the same participant clustered together. (C) The distribution of within-
and between-subject tuning matrix similarities, sorted by within-subject similarity. For each tuning matrix, the within-
subject similarity always exceeded between-subject similarities. (D) We computed a distinctiveness index for each
tuning matrix based on the difference between within- and between-subject similarities. The distinctiveness index is
based on Cohen’s d and, therefore, measures effect size. Based on the distinctiveness index, we estimate the error
rate for individual identification (bottom). (E) Local functional distinctiveness based on a searchlight analysis (20 mm
radius), averaged across all participants for each dataset. Extensive occipital, temporal, and lateral prefrontal cortices
showed high distinctiveness.
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projected to a 2-D plane using multi-dimensional scaling
(MDS), matrices from the same participant were close
together, whereas matrices from different participants
were clearly separated (Fig. 2B).

For every tuning matrix, within-subject similarities
(Forrest: r = 0.798 + 0.044 [mean + SD]; Raiders: r=0.778
+ 0.076) were higher than between-subject similarities
(Forrest: r = 0.542 + 0.037; Raiders: r = 0.503 + 0.057)
(Fig. 2C). Simple nearest-neighbor identification of partic-
ipants based on their tuning matrices performs at 100%
accuracy. To better assess the distinctiveness of each
tuning matrix, we computed a distinctiveness index
based on Cohen’s d (Fig. 2D). This distinctiveness index
measures the difference between the within-subject sim-
ilarity and between-subject similarities of a tuning matrix
using the standard deviation of the distribution as a unit.
For example, Cohen’s d = 5 means that the within-subject
similarity is 5 standard deviations greater than the aver-
age between-subject similarity. On average across par-
ticipants, the distinctiveness index was 12.92 for the
Forrest dataset, and 9.67 for the Raiders dataset, indicat-
ing that the individual-specific tuning matrices were
highly distinctive. The distinctiveness index was com-
puted based on Fisher-transformed correlation similari-
ties, which approximately follow a normal distribution.
Therefore, the identification error rate can be estimated
based on the distinctiveness index using the cumulative
distribution function of the distribution, which was
1.73 x 10% for d = 12.92, and 2.1 x 10 for d = 9.67.
These small identification error rates make the INT model
a useful method for individuation in addition to functional
connectivity (Finn et al., 2015) and forensic DNA analysis
(Kloosterman et al., 2014).

The results so far are based on the entire tuning matrix,
which comprises response tuning functions of all cortical
vertices. Which part of the brain has the most distinctive
responses across individuals? To answer the question, we
performed a searchlight analysis with a 20 mm radius and
computed the average distinctiveness index across par-
ticipants for each searchlight (Fig. 2E). Extensive occipital,
temporal, and lateral prefrontal cortices showed high dis-
tinctiveness, with estimates of Cohen’s d exceeding 10 in
lateral and ventral occipital and temporal cortices. Even in
brain regions that do not respond strongly to external
stimuli, such as medial prefrontal cortex, our model can
still capture idiosyncratic response tuning functions.

To summarize, our model of brain functional organiza-
tion is highly specific to each individual. For both datasets,
within-subject similarities of modeled tuning matrices were
several standard deviations higher than between-subject

5

similarities. Our model also captures idiosyncrasies in
local response tuning functions throughout the cortex,
excluding somatosensory and motor regions. Individual
differences were most prominent in occipital and temporal
regions, and reliable individual differences were also found
in parietal and prefrontal regions.

2.3. Predicting category-selectivity and retinotopic maps

To assess whether the modeled tuning matrix accurately
reflects a participant’s brain functional organization, we
examined to what extent it can predict brain responses to
new stimuli. Specifically, we examined whether our model
trained with movie data could accurately predict
category-selectivity maps and retinotopic maps in a
leave-one-subject-out cross-validation analysis.

2.3.1. Predicting category-selectivity maps

Both the Forrest dataset and the Raiders dataset had 4
object category localizer runs, which were based on
static images for Forrest, and dynamic videos for Raid-
ers. Taking the “faces” category as an example, we
computed a face-selectivity map for each participant
and each run, which was the contrast between faces
and all other categories. Due to measurement noise, the
four maps generated for each individual participant (one
for each run) differ from one another (Fig. 3B and 3C
bottom rows). We averaged the four maps for each par-
ticipant to reduce noise and used the average map as
the localizer-based map for that participant. Based on
the similarity between these four maps, we computed
the Cronbach’s alpha coefficient for each participant,
which estimates the reliability of the average map. That
is, if we were to scan the participant for another four
localizer runs and correlate the new average map with
the current average map, the expected correlation
would be Cronbach’s alpha.

For each cross-validation fold, we divide the data into
n—1 training participants and a test participant. To estimate
the stimulus descriptors for the target object category
(e.g., S(faces)), we trained a regression model to predict the
localizer-based maps for the training participants (depen-
dent variables) from their tuning matrices (7) (independent
variables). The resultant S(faces) vector contains the coeffi-
cients derived from the regression model. T was estimated
from the independent movie data for each participant
and applied to this analysis. Then, we computed the prod-
uct of the S(faces) vector of coefficients and the test partici-
pant’s tuning matrix (7) to estimate the test participant’s
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Fig. 3. Predicting category-selectivity maps of individual participants. (A) Face-selectivity map of an example participant
and a zoomed-in view focusing on right ventral temporal cortex. (B) The localizer-based (top) and model-predicted (middle)
face-selectivity maps for two example participants from the Forrest dataset. Each localizer-based map was the average of
four maps, one from each localizer run. Individual maps for each localizer run are shown at bottom. (C) Face-selectivity maps
of two example participants from the Raiders dataset. (D) Similarity of each participant’s localizer-based face-selectivity
map to the participant’s own predicted map (green) and to other participants’ predicted maps (orange). Cronbach’s alpha
(purple) for each participant was calculated based on the similarity of the four localizer runs and is shown as a reference.
(E) Cronbach’s alpha (purple), within-subject correlation (green), and between-subject correlation (orange) for all category-
selectivity maps. Error bars are standard errors of the mean. For both datasets, the within-subject correlations were similar
to, and sometimes higher than Cronbach’s alpha. Between-subject correlations were much lower, suggesting that our
prediction models were able to capture each participant’s idiosyncratic category-selectivity topographies.

face-selectivity map. We evaluated the quality of this pre- (Forrest: r = 0.618 + 0.089 [mean + SD], Raiders:
dicted localizer map by computing the correlation between r=0.716 + 0.074), and the correlations were higher than our
the model-based map and the test participant’s actual previous state-of-the-art hyperalignment model with the
localizer map based on their own localizer data. same dataset (Jiahui et al., 2020). Across all participants,

For both datasets, the localizer-based and model- the average Cronbach’s alpha was 0.606 + 0.126 for For-

predicted face-selectivity maps were highly correlated rest, and 0.764 + 0.089 for Raiders. For approximately a
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third of the participants (Forrest: 6 out of 15, 40%; Raiders:
6 out of 20, 30%), the correlation exceeded the Cronbach’s
alpha of localizer-based maps. In other words, for these
participants, the predicted maps based on our model were
more accurate than the maps based on a typical localizer
scanning session comprising four runs.

Besides the high accuracy, the model-predicted maps
were also highly specific to each individual (See Fig. 3B
and 3C for examples). The correlation between one par-
ticipant’s localizer-based map and another participant’s
model-predicted map (orange circles in Fig. 3D; Forrest:
0.337 + 0.071; Raiders: 0.384 + 0.062) was always lower
than the correlation with own model-predicted map
(green circles in Fig. 3D). This indicates that our model
accurately predicts the idiosyncratic topographies of
each participant’s category-selectivity map. See Supple-
mentary Figs. S8 and S9 for measured and predicted
face-selectivity maps for every participant.

We replicated our analysis for all other categories
and found similar results (Fig. 3E; Table 1). For all
object categories and both datasets, the within-subject
similarity (correlation between own localizer-based
map and own model-predicted map) was numerically
similar to Cronbach’s alpha and much larger than
between-subject similarities (correlation between each
participant’s localizer-based map and others’ model-
predicted maps).

2.3.2. Predicting retinotopic maps

We examined whether our model can accurately predict
eccentricity and polar angle maps based on the retino-
topic data of the Forrest dataset. Similar to category-
selectivity maps, we trained our model using the movie
data and used it to predict retinotopic maps based on
leave-one-subject-out cross-validation. Note that each
retinotopic map, eccentricity and polar angle, has two
components: an amplitude map, which measures to what
extent a cortical vertex responds to retinotopic stimuli,
and a phase map, where the phase is associated with
eccentricity or polar angle. For the eccentricity map, the
phase is 0° for the center of the visual field, and 360° for
the most peripheral part. For the polar angle map, the
phase is 0° and 180° for the upper and lower vertical
meridians, and 90° and 270° for the right and left horizon-
tal meridians.

The model-predicted maps for each participant resem-
ble the corresponding localizer-based maps, and they
capture the idiosyncratic features of each map well (Fig. 4A
and 4B). To quantify these similarities, we assessed the
similarity of amplitude maps and phase maps separately.

Each retinotopic map (e.g., an eccentricity map) was
based on a standard univariate analysis of two runs
where the stimuli were displayed in reversed order (e.g.,
expanding rings and contracting rings), and an amplitude

Table 1. Summary of model performance in predicting object category selectivity maps.

The Forrest dataset

Within-subject

Between-subject (within > between) (within > alpha)

Category Cronbach's alpha similarity similarity % %

Bodies 0.756 £ 0.073 0.759 + 0.041 0.482 + 0.037 100% 40.0%
Faces 0.606 + 0.126 0.618 £ 0.089 0.337 £ 0.064 100% 40.0%
Houses 0.653 £ 0.128 0.669 £ 0.106 0.412 £ 0.070 100% 46.7%
Objects 0.485 +0.153 0.540 + 0.079 0.353 £ 0.058 100% 60.0%
Scenes 0.681 £0.107 0.721 + 0.063 0.483 £ 0.040 100% 53.3%
Scrambled 0.608 + 0.096 0.615+0.070 0.427 + 0.051 100% 60.0%

The Raiders dataset

Within-subject

Between-subject

(within > between)

(within > alpha)

Category Cronbach's alpha similarity similarity % %

Bodies 0.758 £ 0.083 0.749 £+ 0.056 0.493 + 0.042 100% 45.0%
Faces 0.764 +0.089 0.716 + 0.074 0.384 + 0.051 100% 30.0%
Objects 0.604 +0.113 0.652 + 0.077 0.390 + 0.061 100% 65.0%
Scenes 0.796 + 0.061 0.771 £ 0.043 0.500 + 0.034 100% 30.0%
Scrambled 0.730 + 0.096 0.671 £ 0.089 0.461 + 0.057 100% 40.0%

All contrasts were based on the target category versus all others. The format for Cronbach’s alpha and similarities is mean + standard

deviation.
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Fig. 4. Predicting retinotopic maps of individual participants. (A) The localizer-based (upper) and model-predicted (lower)
left hemisphere eccentricity and (B) polar angle maps for five example participants. (C) Similarity of each participant’s
localizer-based amplitude map (i.e., to what extent a vertex responds to retinotopic stimuli) to the participant’s own
predicted map (green), other participants’ predicted maps (orange), and its Cronbach’s alpha (purple). (D) The average
phase difference in early visual areas between the participant’s two retinotopic runs (e.g., expanding and contracting
rings; purple), between the participant’s localizer-based map and own model-predicted map (green), and between the
participant’s localizer-based map and other participants’ predicted maps (orange). In both (C) and (D), participants are
sorted along the x-axis according to within-subject similarity (green). Note that we inverted the y-axis in (D) because
smaller differences indicate higher similarity.

map and a phase map were obtained from each run. For for the polar angle map. We also compared the similarity
each participant, we compared the similarity of these two  between the localizer-based amplitude map (average of
amplitude maps and estimated Cronbach’s alpha. The the two runs) and the model-predicted map. On average
mean (+ standard deviation) for Cronbach’s alpha was across all participants, the similarity was 0.774 + 0.027
0.701 + 0.047 for the eccentricity map, and 0.663 £ 0.069 for the eccentricity map, and 0.746 + 0.049 for the polar
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angle map. Note that for every participant the similarity
was higher than Cronbach’s alpha, which means the
model-predicted amplitude map is more accurate than
the localizer-based map. The similarity between a partic-
ipant’s localizer-based map with the participant’s own
model-predicted map is higher than with others’ model-
predicted maps (eccentricity: 0.682 + 0.029; polar angle:
0.635 + 0.054), indicating that the model-predicted
amplitude map is individual-specific.

To assess the quality of the phase maps, we computed
the absolute value of the phase difference in early visual
areas (V1, V2, V3, and V4; (Glasser et al., 2016)) between
two retinotopic runs, between the localizer-based map
and the participant’s own model-predicted map, and
between one participant’s localizer-based map and others’
model-predicted maps. Note that the phase is circular, and
thus the difference between 360° and 1° is the same as 1°
and 2°. On average across participants, the average phase
difference between a participant’s localizer-based and
model-predicted maps was 39.1° + 4.8° for eccentricity
maps, and 41.5° + 6.0° for polar angle maps. This differ-
ence was smaller than the difference between two local-
izer runs (eccentricity: 43.7° +£6.0°; polar angle: 48.2° +7.7°)
and the difference with others’ model-predicted maps
(eccentricity: 53.9° + 6.9°; polar angle: 52.3° + 4.7°). The
average phase difference for random data would be 90°.

For both category-selectivity maps and retinotopic
maps, our model can accurately predict individualized
maps with high fidelity and high specificity. See Supple-
mentary Fig. S10 for measured and predicted retinotopic
maps for every participant. The quality of the model-

predicted maps was similar to or higher than that of maps
derived from actual localizer data. These results demon-
strate that the modeled response tuning functions are not
only individualized and reliable across independent data,
but also can accurately predict responses to new stimuli.

2.4. Predicting brain responses to the movie

The previous analyses show that our model accurately
predicts brain responses for category-selectivity and ret-
inotopic maps. These maps reflect coarse-grained func-
tional topographies of the brain: they are relatively
spatially smooth, and neighboring vertices on the cortex
(especially vertices in the same brain region) have similar
category-selectivity or adjacent receptive fields. In the
analysis below, we examine whether our model can
accurately predict fine-grained functional topographies;
that is, the vertex-by-vertex spatial patterns which vary
substantially even within a brain region. Rich visual, audi-
tory, and social information is encoded in fine-grained
spatial patterns of response (Haxby et al., 2014). Specifi-
cally, we trained our model using half of the movie data
and predicted the other half.

We used a leave-one-subject-out cross-validation to
evaluate the performance of our INT model. We derived
the tuning matrix T of the test participant based on the
first half of the participant’s movie data, and combined it
with S(Z) (the part of S for the second part of the movie,
derived from the training participants’ data) to predict
the test participant’s responses to the second part of the
movie. The response pattern at each time point (i.e., TR)

\

Fig. 5. Predicting brain response patterns to movie time points (TRs). (A) The similarities between measured and
predicted brain response patterns for the first 100 time points of an example Forrest participant (the full matrices for
Forrest and Raiders contain 1818 and 1680 time points, respectively). The red diagonal indicates that the model-predicted
response pattern at each time point was highly similar to the actual response pattern for the corresponding time point. The
response patterns were based on 150 principal components (PCs) reduced from all cortical vertices. (B) The similarities
between measured response patterns of one participant and predicted patterns of another. The less obvious diagonal
suggests that our model predicted both the shared functional topographies (which generalize across participants)

and each participant’s idiosyncratic functional topographies (which does not generalize across participants). (C) The
distribution of response pattern similarities across participants and time points. When the measured and the predicted
patterns were for the same time point of the movie, the average within- and between-subject similarities were 0.356 and
0.211, respectively, for the Forrest dataset, and 0.408 and 0.209, respectively, for the Raiders dataset. Cross-time-point
similarities were centered around 0. This indicates that the predicted movie response patterns were highly specific to

both the participant and the time point. (D) Binary (2-alternative forced choice) movie time point classification based on

a nearest-neighbor classifier and pattern similarities. The within-subject accuracy peaked at 99.0% for Forrest (180 PCs)
and 98.6% for Raiders (250 PCs), and it was fairly robust across the number of PCs. The peak between-subject accuracy
was 95.2% (50 PCs) and 94.1% (60 PCs), respectively. (E) Multiclass movie time point classification. The number of
choices was 1818 for Forrest and 1680 for Raiders, and chance accuracy was less than 0.1% for both datasets. The peak
within-subject accuracy was 51.9% for Forrest (190 PCs) and 44.8% for Raiders (220 PCs), and the peak between-subject
accuracy was 20.1% for Forrest (90 PCs) and 15.8% for Raiders (80 PCs). (F and G) Searchlight binary classification. The
accuracy was high for much of the cortex for both datasets, with the highest accuracies in temporal and occipital regions.
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of the movie comprises 18,742 values, one for each
cortical vertex. Similar to our previous work (Guntupalli
et al., 2016), we trained a principal component analysis
(PCA) based on the first half of the movie to reduce
dimensionality from 18,742 vertices to a few hundred
principal components (PCs) and projected responses to
the other half of the movie onto these PCs. Analysis of
whole-brain spatial patterns of response was based on
these normalized PCs.

The model-predicted response patterns for the movie
were highly specific to both the time point and the partic-
ipant. Note that these model-predicted patterns are
based on other participants’ neural responses projected

into the native, fine-grained cortical topography of the
left-out test participant’s brain. The predicted pattern for
a certain time point for a left-out test participant’s brain
was much more similar to the measured response pat-
tern to the same time point in that participant’s brain
(Fig. 5A diagonal) than responses to other time points
(Fig. 5A off-diagonal). The average correlation similarity
between predicted and measured response patterns for
the same time point was 0.356 for the Forrest dataset,
and 0.408 for the Raiders dataset, whereas the average
similarity between predicted and measured patterns from
different time points was close to 0 for both datasets. For
the same time point, the measured response patterns
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were more similar to predicted patterns in a participant’'s  to classify which time point one participant was viewing
native space than to predicted patterns in other partici- based on the predicted patterns in another participants’
pants’ native spaces (Fig. 5B diagonal). The average sim-  native space to some extent. For the binary classification
ilarity of the same time point for different participants was analysis, the peak accuracy was 95.2% for Forrest (50
0.211 for the Forrest dataset, and 0.209 for the Raiders PCs) and 94.1% for Raiders (60 PCs) (Fig. 5D, orange
dataset (Fig. 5C). lines). For the multiclass classification analysis, the peak
Considering the similarity between measured and pre- accuracy was 20.1% for Forrest (90 PCs) and 15.8% for
dicted response patterns, we assessed whether we could  Raiders (80 PCs) (Fig. 5E, orange lines). Note that the
classify which time point of the movie the participant was classification accuracy for mismatching participants
viewing based on these patterns. We performed the clas- drops dramatically after peaking at 50-90 PCs, whereas
sification analysis using a one-nearest-neighbor classifier the classification accuracy for the matching participant
in two different ways. First, we used binary classification monotonically improves until the number of PCs is
(2-alternative forced choice); that is, we compared the roughly 200. This suggests that a considerable amount of
measured response pattern for one time point with the the information in our model-predicted response patterns
predicted patterns for the same single time point paired are specific to the test participant.
with each other time point to determine which pair is To localize cortical areas where the fine-grained pat-
more similar, and then averaged across all pairs, resulting  terns are most accurately predicted, we performed a
in a chance accuracy of 50%. Second, we used multi- searchlight analysis (20 mm radius) with the binary
class classification; that is, whether the similarity with the classification approach. Due to the limited number of
same time point is higher than with all other time points. vertices in each searchlight, we performed the classifi-
The number of time points was 1818 for Forrest and 1680 cation analysis without dimensionality reduction. We
for Raiders, resulting in a multiclass chance accuracy found that the accuracy was highest for visual, audi-
less than 0.1% for both datasets. We varied the number tory, and corresponding association cortices (Fig. 5F
of PCs used in the analysis from 10 to 300 with an incre- and G) with significant classification across almost all
ment of 10 and repeated the analysis at each number of of the cortex.
PCs. For binary classification, the accuracy peaked at
99.0% for Forrest (180 PCs) and 98.6% for Raiders (250
PCs) (Fig. 5D). For multiclass classification, the peak
accuracy was 51.9% for Forrest (190 PCs) and 44.8% for  The datasets used so far in this work comprise relatively
Raiders (220 PCs) (Fig. 5E). Note that these classification long-duration movie-watching fMRI acquisitions (Forrest:
results are robust against the number of PCs used, and 120 minutes; Raiders: 56 minutes), which may not be fea-
the accuracy was stable with 100-300 PCs for both sible for every fMRI experiment due to limited scanning
approaches and both datasets. resources. How well does our INT model work with
The response patterns of different participants’ share smaller amounts of movie data? To address the question,
some similarities (Fig. 5C, dark orange), and we were able  we systematically manipulated the amount of movie data

2.5. Model performance with less data

»
>

Fig. 6. Effect of data volume on model performance. (A) Effect of data volume on the distinctiveness of an individual’s
tuning matrix (cf. Fig. 2D). With 10 minutes or more movie data, the within-subject similarity of tuning matrices was

more than 6 standard deviations away from between-subject similarities on average, corresponding to a participant
identification error rate of less than 1/10°. (B) Effect of data volume on the distinctiveness of local tuning matrices

(cf. Fig. 2E). Different lines denote different percentiles across searchlights, from an average searchlight (50" percentile) to
a highly distinctive searchlight (99" percentile). (C) Predicting face-selectivity map with lower volumes of movie data

(cf. Fig. 3C). Face-selectivity maps can be accurately predicted with 20 minutes of movie data, but the prediction
performance continues to grow with more data. Based on psychometrics and the quality of predicted maps, we estimated
the amount of localizer data needed to achieve a similar quality (right panel). For the Forrest dataset, 30 minutes of movie
data works better than standard localizers (21 minutes). Dashed horizontal lines indicate Cronbach’s alpha (left panel) or
the actual duration of localizer scans (right panel). (D) Predicting retinotopic maps based on less movie data (cf. Fig. 4C).
(E) Quality of predicted response patterns for movie time points based on a model estimated from varying volumes of data
(classification accuracy; cf. Fig. 5C and 5D). Binary classification results on the left panel; multiclass results on the right
panel. Both were based on 100 PCs. To summarize, the performance of our model continuously grows with more training
data, but for certain tasks (e.g., individual identification, predicting category-selectivity and retinotopic maps), only a small
amount of movie data (e.g., 30 minutes) is needed to achieve satisfying performance.
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for the test participant and assessed our model perfor-
mance for key benchmarking indices. For the Forrest
dataset, the durations were 5, 10, 15, 20, 30, 40, 50, 60,
and 120 minutes; for the Raiders dataset, the durations
were 5, 10, 15, 20, 28, and 56 minutes. Depending on the

analysis, up to half of the movie data (60 and 28 minutes,
respectively) or the entire movie dataset was used.

With more movie data used for estimating a tuning
matrix, the distinctiveness of that modeled tuning matrix
increased monotonically (Fig. 6A). With 10 minutes or
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more movie data, the average Cohen’s d was more than
6, which means within-subject similarity of tuning matri-
ces exceeded between-subject similarities by more than
6 standard deviations on average. Given that Fisher-
transformed correlation similarities are approximately
normally distributed, the chance of a between-subject
similarity exceeding the within-subject similarity was less
than 10°. In other words, if we were to identify an average
individual using the tuning matrix based on 10 minutes of
movie data, the error rate would be less than 10-°.

We observed a similar effect of data volume on func-
tional distinctiveness in local brain areas based on a
searchlight analysis (Fig. 6B). The distinctiveness based
on movie responses differs inherently across brain regions
and is highest in temporal and occipital regions and low-
est in somatosensory and motor regions (Fig. 2E). There-
fore, instead of a simple average value, we assessed key
percentiles of the distribution. Specifically, we assessed
the effect of data volume on the 50, 80, 90, 95%, and
99t percentiles of the distribution, representing local brain
areas with low to high distinctiveness. With 15 minutes of
movie data, the Cohen’s d for the 95™ percentile was 5.83
for the Forrest dataset and 7.19 for the Raiders dataset.

The prediction performance for face-selectivity maps
also increases with more movie data (Fig. 6C). For the For-
rest dataset, the correlation between localizer-based and
model-predicted maps was 0.557, 0.592, 0.610, and 0.618
for 15, 30, 60, and 120 minutes of movie data, respectively.
For the Raiders dataset, the similarity was 0.684, 0.702,
and 0.716 for 15, 28, and 56 minutes of data, respectively.
Note that for the Forrest dataset, the similarity sometimes
exceeded Cronbach’s alpha, which means the model-
predicted map is more accurate than a map based on four
localizer runs (21 minutes). The quality of localizer-based
maps increases with more localizer data, which can be
estimated using the Spearman-Brown prediction formula
(Brown, 1910; Spearman, 1910). Based on Cronbach’s
alpha and the Spearman-Brown prediction formula, we
estimated the amount of localizer data needed to achieve
similar accuracy as our model. For the Forrest dataset, the
maps predicted by 15, 30, 60, and 120 minutes of movie
data were as accurate as 17.0, 22.4, 26.2, and 30.1 min-
utes of localizer data, respectively. For the Raiders data-
set, the maps predicted by 15, 28, and 56 minutes of
movie data were as accurate as 9.7, 11.4, and 12.8 min-
utes of localizer data, respectively.

Note that brain responses to movies contain richer
information than traditional experimental paradigms.
Besides the face-selectivity map, many different maps can
be estimated using the same movie data, such as retino-
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topic maps. With 15, 30, 60, and 120 minutes of Forrest
data, the correlations between localizer-based and model-
predicted amplitude maps were 0.744, 0.759, 0.766, and
0.774, respectively, for the eccentricity map; and 0.717,
0.732, 0.740, and 0.746, respectively, for the polar angle
map (Fig. 6D). These similarities were much higher than
the corresponding Cronbach’s alpha values. Based on the
Spearman-Brown prediction formula, the quality of the
predicted maps was equivalent to 22.1, 27.7, 31.4, and
35.8 minutes of retinotopic scans, respectively.

The prediction performance for fine-grained response
patterns to the movie also increases with the amount of
movie data (Fig. 6E). For the Forrest dataset, the accu-
racy for binary time point classification was 98.1%,
98.6%, and 98.9% for 15, 30, and 60 minutes of training
movie data, respectively. For multiclass classification, the
accuracy was 37.3%, 44.8%, and 50.3%, respectively.
Similar results were observed for the Raiders dataset,
where the binary classification accuracy was 98.1% and
98.5% for 15 and 28 minutes of training movie data,
respectively, and the multiclass classification accuracy
was 38.8% and 43.1%, respectively.

To sum up, the performance of our model grows con-
tinuously with more data. For certain tasks (e.g., individ-
ual identification, predicting retinotopic maps), 10 to
20 minutes of movie data might be sufficient to achieve
satisfying performance. Additional data will further
improve the performance of our model, at least up to the
typical duration of a feature film (2 hours). Besides the
amount of data for the test participant, using more data
to build the template also increases the performance of
these tasks (Supplementary Fig. S7).

3. DISCUSSION

In this work, we present an individualized model of fine-
grained brain functional organization. Through a series of
analyses, we demonstrate that (a) the individualized tun-
ing functions recovered by our model for each person are
highly reliable across independent data; (b) our model
can accurately predict an individual’s topographic brain
responses to new stimuli, such as object categories and
retinotopic localizers; (c) our model accurately predicts
fine-grained response patterns to movies, which can be
used to distinguish different time points (TRs) of the
movie; and (d) the performance of our model continu-
ously improves with more training data. Besides high reli-
ability and high prediction accuracy, our model also
shows high specificity—the predicted responses tuned
to a given individual are much more similar to the actual
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responses for that person than the predicted responses
tuned to other individuals. Different from previous area-
level individualized models (Gordon, Laumann, Adeyemo,
Gilmore, et al., 2017; Harrison et al., 2015; Kong et al.,
2019; Wang et al., 2015; see Huth et al., 2016 for fine-
tuning area-level models to fit individual vertices), the INT
model is an individualized model of brain function that
offers vertex-level (voxel-level for volumetric data) spatial
resolution. That is, our INT model provides out-of-sample
generalization to new participants at the quality and spa-
tial resolution of within-subject data acquisition.

Like most biological systems, the functional architec-
ture of the brain is “degenerate,” such that roughly the
same information can be instantiated in structurally differ-
ent ways across different brains (Edelman & Gally, 2001;
Haxby et al., 2020). In this work, we used searchlight
hyperalignment algorithms (Guntupalli et al., 2016) to cre-
ate a functional template of brain responses based on the
training participants. The template is a common, high-
dimensional response space, and its column vectors
(response time series of features) span the space of
response time series across vertices and participants. We
took advantage of this property and created a set of basis
vectors, so that we could express the response time series
of each vertex and each participant as a linear combina-
tion of the same set of basis vectors. These weights offer
a way to directly compare the functional architecture of
different participants and different vertices. Based on
these weights, we created the individualized tuning matri-
ces that describe the brain functional organization of each
participant, which can be used to accurately predict the
participant’s idiosyncratic responses to various stimuli.

The present model provides a theoretical advance over
previous hyperalignment algorithms by capturing not only
topographic idiosyncrasies, but also inter-individual differ-
ences in representational geometry. The first component
of the model introduces a new hyperalignment algorithm
that we refer to as warp hyperalignment (WHA). WHA
warps the representational geometry of one participant (or
the template) to match the unique representational geom-
etry of another participant, and thus it captures both topo-
graphic idiosyncrasies and representational idiosyncrasies.
The second component of the model derives individual-
ized tuning matrices in each participant’s native cortical
topography from the WHA model, which we refer to as the
individualized neural tuning (INT) model. In contrast to our
earlier hyperalignment algorithms for creating a common
model information space with individual transformation
matrices calculated using the Procrustes algorithm (which
preserves representational geometry) (Busch et al., 2021;
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Feilong et al., 2018, 2021; Guntupalli et al., 2016, 2018;
Haxby et al., 2001, 2020; Jiahui et al., 2020), WHA calcu-
lates transformations using ensemble regularized regres-
sion that allows for individualized representational
geometries. Compared to classic Procrustes hyperalign-
ment, the INT model based on WHA can better predict
individualized response time series, representational
geometry, category-selectivity maps, retinotopic maps,
and response patterns to the movie (Supplementary
Figs. S1-S6). WHA also introduces a new way to calculate
a template matrix M in a single step that more accurately
reflects the central tendency for cortical topography and is
not biased towards the topography of a “reference brain.”
The common model space in our previous models, M, had
as many dimensions as cortical vertices (approximately
20,000 to 60,000). In the INT model, a change of basis
from M to S recasts the common model space into a
smaller orthogonal basis with approximately 3000 dimen-
sions. In our previous algorithms, we studied individual
differences in responses and connectivity as residuals
around shared content in the model space, M. In the INT
model, by contrast, we model individual differences in the
transformation matrices, T, which capture individual differ-
ences in both content and cortical spatial topography of
functional patterns in participants’ native cortical topogra-
phies. Because individual differences in representational
geometry are now contained in the individual transforma-
tion matrices, T, the new model space, S, is a neural data-
driven stimulus matrix that is not confounded with
individual differences in representational geometry. More-
over, comparable estimates of T can be calculated from
responses to different stimuli, giving the INT model more
flexibility in its application, as well as greater precision. In
our previous algorithms, we performed between-subject
classification of response patterns after projecting all par-
ticipants’ data into the common model space, M. In the
INT model, we perform between-subject classification by
comparing each test participant’s response pattern in their
native space to response patterns from other participants
projected into that test participant’s native space.

The INT model separates neural responses into
stimulus-related information and stimulus-general neural
tuning, which can be estimated separately. The stimulus-
related information is represented as the stimulus matrix S,
which is derived based on the neural responses of the
training participants when the functional template is cre-
ated. After the functional template has been created,
descriptors for additional stimuli can be estimated based
on a subset of training participants for whom responses to
the new stimuli are available. These descriptors for new
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stimuli extend the original stimulus matrix S, and they can
be used to predict individualized responses to the new
stimuli for the left-out test participants. For example, we
built the functional template based on responses to the
movie, estimated the stimulus descriptors for object cate-
gories and retinotopic localizers, and used these stimulus
descriptors to estimate the category selectivity maps and
retinotopic maps of left-out test participants. In other
words, the original stimulus matrix S can be extended
based on a subset of participants, provided that we have
their neural responses to the new stimuli and their tuning
matrices. On the other hand, the tuning matrix T of a new
participant, which represents stimulus-general neural tun-
ing, can be accurately estimated with several minutes of
movie data (Fig. 6). Therefore, our INT model makes it pos-
sible to accurately predict individualized, out-of-sample
responses to a wide range of stimuli based on a rich nor-
mative functional template and a relatively small amount of
fMRI data from a new participant.

A major objective of studying individual differences in
brain functional organization is to build biomarkers that
are associated with cognition, behavior, and disorders.
Our model focuses on semi-shared components of
brain functional organization and is ideal for this pur-
pose. By “semi-shared” we mean that the same compo-
nent exists in multiple brains but differs in amplitude
and topography. These reliable variations across indi-
viduals may covary with phenotypes of interest and pro-
vide accurate biomarkers. A fully shared component,
which is identical across brains, cannot covary with
other variables by definition. A fully idiosyncratic com-
ponent that only exists in one brain, on the other hand,
cannot be used to build generalizable models. For
example, a specific component that only exists in one
schizophrenic brain may be of interest for a case study
but cannot be used to diagnose other schizophrenic
individuals because it does not exist in other brains. Our
model focuses on how the same set of components are
instantiated in different forms across the functional
organization of different brains. Given the large number
of components (over 3000 in the current implementa-
tion) and observation that they vary across brains in a
variety of ways, these semi-shared components provide
a promising basis for developing biomarkers. Similar to
our previous work (Feilong et al., 2018), brain regions
that have the most shared and synchronized responses
(Guntupalli et al., 2016; Hasson et al., 2004, 2010) are
also the regions showing the most reliable differences,
suggesting the great potential of using semi-shared
components to study individual differences.

15

In this work, we evaluated our model using two different
movie datasets, both of which yielded highly similar results.
The Forrest dataset was collected using a 3 T Philips
Achieva dStream MRI scanner in Germany, with German-
language audio, a TR of 2 seconds, and a spatial resolu-
tion of 3 mm. The Raiders dataset was collected using a
3 T Siemens Magnetom Prisma MRI scanner in the US,
with English-language audio, a simultaneous multi-slice
acceleration factor of 4, a TR of 1 second, and a spatial
resolution of 2.5 mm. Despite these differences, our model
worked well for both datasets, suggesting it is robust over
differences in scan parameters and other details. Recently,
many large-scale neuroimaging datasets have become
openly available (Alexander et al., 2017; Horien et al., 2020;
Nastase et al., 2021; Snoek et al., 2021; Taylor et al., 2017),
and many have naturalistic movie-viewing sessions similar
to our datasets. The synergy between our individualized
model of brain function and large-scale neuroimaging
datasets offers a great opportunity to study individual dif-
ferences in brain functional organization and their cor-
relates with various phenotypes.

In this work, we focused on neural response profiles to
the movie. However, in theory, the algorithm itself can be
applied to any kind of data matrices. In our previous
hyperalignment algorithms, the searchlight procedure
originally developed based on response profiles (RHA)
(Feilong et al., 2018; Guntupalli et al., 2016; Haxby et al.,
2020; Jiahui et al., 2020) has been applied successfully to
connectivity profiles (CHA) (Feilong et al., 2021; Guntupalli
et al., 2018; Nastase et al., 2020) and a hybrid of both
(H2A) (Busch et al., 2021); and the original algorithm
developed based on fMRI data of humans (Haxby et al.,
2011) has been applied successfully to electrophysiology
recording data of rodent neurons (Chen et al.,, 2021).
Generalizability of models trained on responses to mov-
ies is satisfactory for much of cortex, and these models
have been shown to work for both visual information
(Guntupalli et al., 2016; Haxby et al., 2011, 2020; Jiahui
et al., 2020) and high-level semantic information, such as
familiarity for a face (Visconti di Oleggio Castello et al.,
2021). However, it is unknown whether these models also
generalize to brain activations that are less time-locked
to content of the movie or are often absent during movie-
watching; for example, brain activations related to mov-
ing one’s own body or solving math problems. Additional
data are needed to assess the generalizability of INT
models trained on movie data in these scenarios, and
additional functional indices, such as functional connec-
tivity, may help increase the generalizability of the model
in these cases. We leave it to future works to assess the
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generalizability of the INT model to other functional pro-
files, modalities, and species. Different modalities may
highlight different aspects of individual differences. For
example, individual differences in association cortices
are more prominent than other areas based on functional
connectivity (Mueller et al., 2013), whereas regions that
have synchronized responses across individuals exhibit
more individual differences than other regions based on
responses to the movie (Feilong et al., 2018). Future work
that combines multiple modalities might provide a more
comprehensive description of individual differences in
brain functional architecture, and potentially provide bet-
ter models of brain-behavior associations.

4. METHODS

4.1. Overview of the INT model

The fine-grained functional architecture of the brain
encodes rich information (Haxby et al., 2001, 2014, 2020)
and affords reliable measures of individual differences in
brain functional organization that are predictive of differ-
ences in behavior (Feilong et al., 2018, 2021). In this
work, we present the individualized neural tuning (INT)
model, an individualized model of fine-grained brain
functional organization, to better model these differ-
ences. The INT model has three key features. First, it has
fine spatial granularity, which affords access to the rich
information encoded in vertex-by-vertex (or voxel-by-
voxel) patterns. Second, it models each individual’s
idiosyncratic functional organization as well as that
individual’s topographic projection onto the cortex, and
thus it can be used to study both functional differences
and topographic differences. Third, it models the individ-
ualized response tuning of cortical vertices in a way that
generalizes across stimuli, and therefore the model
parameters can be estimated from different stimuli, such
as different parts of a movie that have different durations.
These three features make the INT model a powerful tool
to study individual differences in fine-grained functional
organization of the brain.

The INT model is based on the conceptual framework
of hyperalignment (Guntupalli et al., 2016, 2018; Haxby
et al., 2011, 2020). Hyperalignment models the fine-
grained functional organization of each brain as a high-
dimensionalfeature space, anditcreatesahigh-dimensional
common space based on the shared functional profiles of
a group of participants. Hyperalignment also provides a
way to transform between different spaces using a high-
dimensional rotation, which can be used to project the
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data from the common space to a participant’s native ana-
tomical space, from a participant’s space to the common
space, or from a participant’s space to another’s (Jiahui
et al., 2020). This high-dimensional rotation resolves topo-
graphic differences, which is critical to study individual dif-
ferences in fine-grained functional organizations (Feilong
et al., 2018, 2021).

The INT model starts with creating a functional tem-
plate M (a matrix of shape t x v) based on the data of the
training participants (n-1 for leave-one-subject-out
cross-validation), which corresponds to the hyperalign-
ment common space. The template M has the same
shape as the data matrix B of a participant, and its func-
tion and topographies are representative of the group of
participants used to create the template. The data matrix
B(p) of the participant p is modeled as a matrix multiplica-
tion of the shared functional template M and an idiosyn-
cratic linear transformation W (v x v). We use a new
hyperalignment algorithm (“warp hyperalignment”, WHA)
to derive the transformation instead of Procrustes-based
hyperalignment, so that the transformation is a linear
transformation instead of an improper rotation. An
improper rotation (rotation and reflection) changes how
the information is encoded on the cortex (“where”) but it
does not change the content information (“what”), and
thus it only accounts for topographic differences across
individuals. A linear transformation allows scaling and
shearing, which also warp the representational geometry
of the template to model the idiosyncratic representa-
tional geometry of each participant, and therefore it
accounts for both topographic (“where”) and functional
(“what”) differences.

With warp hyperalignment, we obtain a modeled data
matrix é(p), which are the brain responses that can be
accounted for by the functional template and the linear
transformation (i.e., MW(p)). To derive a measure of neural
response tuning that generalizes across stimuli, we
decompose é(p) into two matrices: a stimulus matrix S
(t x k) shared by all participants, and a tuning matrix Ty
(k x v) that is specific to the participant p. With the decom-
position, the temporal information, such as contents of a
movie over time, is factored into S. In the tuning matrix
T{p), the response tuning function of each cortical vertex is
depicted using a column vector of k elements, which is
the same for all stimuli.

To sum up, with the INT model we use the tuning
matrix T, to model each participant’s individualized func-
tional organization. The tuning matrix has a fine-grained
spatial granularity, models the participant’s topographic
and functional idiosyncrasies, and generalizes across
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stimuli. In the next few sections, we describe in detail the
steps we used to derive the tuning matrices and to
benchmark the reliability, validity, accuracy, and specific-
ity of our INT model.

4.2. Building the functional template

In each cross-validation fold, we built a functional tem-
plate based on the training participants and modeled
each test participant’s data matrix as the linearly trans-
formed template in a high-dimensional space. Both the
data matrix and the functional template have the same
shape t x v; that is, the number of time points by the num-
ber of cortical vertices. The template was created in a

Create local template M
for each searchlight

A SVD to create M,
Vg X
Vi) Vis)

Vis)

V(s

Vis)

Wl Bi1s) Brsy Basy Buas) [ Bin.s

way that its functional properties—both in terms of repre-
sentational geometry and cortical topography —are rep-
resentative of the training participants (Fig. 7).

4.2.1. Searchlight-based algorithm

We built the template using a searchlight-based algorithm.
For each searchlight, we built a local template based on all
vertices within the searchlight. We then combined all the
local templates into a whole-brain template. Each local
template contains modeled response profiles of vertices in
the corresponding searchlight. Each vertex is included in
multiple searchlights, and each searchlight and the corre-
sponding local template offers a modeled response profile

B Procrustes to create M)

dis)

rotate

= = MpoR = M)

B ()}

Procrustes rotation R

C Aggregate all M, searchlight templates into whole brain template M

d1 dz da

dp,
t I — t M

Fig. 7. Schematic illustration of local functional template creation. (A) First, we concatenated all participants’ data in

the searchlight along the vertices dimension and performed SVD on the concatenated data matrix. The representational
geometry of the SVs is representative of the representational geometry of the training participants. For convenience, we
only kept the first Ve SVs, where Ve is the number of vertices in the searchlight. (B) We concatenated all participants’ data
along the time series dimension, and concatenated duplicated M(pc)’s in a similar manner. We derived a rotation matrix

R using the orthogonal Procrustes algorithm, and applied it to M o o derive the final local template M(S,). The rotation
makes the functional topography of M(s,) also representative of the group of training participants. Together, these two steps
create a local functional template that accurately reflects both (a) what information is encoded in the region, and (b) how
the information is encoded on the cortical surface. (C) After creating a local template for each searchlight, these local
templates were aggregated into a whole-brain template using weighted average.
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for the vertex. We combined these modeled response pro-
files of the same vertex into a single response profile for
the vertex, which is the vertex’s response profile in the
whole-brain template. In our previous algorithms, we com-
bined local searchlight templates by adding together the
modeled response profiles of the vertex to form the final
response profile of the vertex (Guntupalli et al., 2016,
2018). In this work, we instead used a distance-based
weighted average instead of summation. Specifically, the

r—d
weight was computed as — where r is the searchlight

radius (20 mm), and d (0 <= d <=r) is the distance between
the vertex and the center of the searchlight. In other words,
the weight is 1 when the center of the searchlight is the
vertex itself, and close to 0 when the vertex is close to the
boundary of the searchlight. This improved procedure
makes the searchlights closer to the vertex contribute
more to the final modeled response profile of the vertex
(due to weighting local templates), and the scale of the
modeled response profile for a vertex similar to the actual
response profile for that vertex (due to using averaging
instead of summation).

4.2.2. Building local templates

In order to estimate the INT model, we must first create
a functional template capturing the consensus func-
tional organization (which we refer to as M). Within each
searchlight, we created a local template using a PCA-
Procrustes algorithm, and the matrix shape of the local
template is the same as a local data matrix (i.e., the
number of features is the same as the number of verti-
ces in the searchlight, not the total number of vertices).
First, we concatenated all training participants’ data
matrices in the searchlight along the features dimension
to form a group data matrix with n x v features; that is,
the number of participants times the number of vertices
in the searchlight. We then applied principal component
analysis (PCA) to this concatenated data matrix. To
keep the total variance the same for a single partici-
pant’s local data matrix and the local template, we
divide the PC time series by Jn. Similar to our previous
work (Haxby et al., 2011), here we chose to make the
dimensionality of the local template the same as a sin-
gle participant’s local data matrix, thus retaining the first
v PCs and discarding the remaining. Note that the PCA
is based on the data of all training participants, and thus
the PCs summarize across all vertices and participants;
each PC is a weighted sum of all vertices (in a given
searchlight) across all training participants. The PCs
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capture the representational geometry for a given in
searchlight in a way that is representative of the repre-
sentational geometries of the training participants. In
other words, the PCs provide a template that models
the shared function of the searchlight.

The group-PCA approach creates a local template
that is representative of the representational geometries
of the training participants. However, the dimensions of
this local template are PCs, which are optimized for their
explained variance. For neuroscientific interpretability, it
is desirable to map the PCs back to cortical vertices, so
that the neural responses can be associated with topo-
graphic locations on the cortex instead of abstract PC
dimensions. Moreover, it is also desired to have the local
templates in vertex space for combining local templates
to form a whole-brain template. Neighboring searchlights
share some of the vertices, but their PCs do not neces-
sarily have one-to-one correspondence. Therefore, if all
local templates are in the same vertex space, time series
for the same vertex from different local templates can be
averaged directly. For these reasons, for each search-
light, we derived a second local template, which is the
first local template rotated from the PC space to a vertex
space. The rotation was optimized so that the functional
topographies of the second template are representative
of those of the training participants, and the features of
the second template can be interpreted as vertices.

We then used the orthogonal Procrustes algorithm to
“align” the PCs to the training participants’ data, so that
the functional topographies of the local template are also
representative of the training participants. Mathemati-
cally, we want to find a rotation matrix R which minimizes
the topographic differences without changing the infor-
mation content.

n
R= argminRZ I Mpc)R - B(p)lhg
p=1

In this equation, M(PC) is the PC matrix, B(p) is the local
data matrix of the p-th participant, n is the number of
participants, and Il Il is the Frobenius norm.

To find the solution R, we applied the orthogonal Pro-
crustes algorithm to concatenated data matrices. This
time, we concatenated all training participants’ data along
the samples (i.e., time points) dimension to form another
group data matrix, where the number of rows is n x t; that
is, the number of participants times the number of time
points. We copied the template PC matrix n times and con-
catenated them in the same way, so that the concatenated

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00032/2183252/imag_a_00032.pdf by guest on 08 January 2024



M. Feilong, S.A. Nastase, G. Jiahui et al.

Imaging Neuroscience, Volume 1, 2023

PC matrix had the same shape as the concatenated group
data matrix. We applied the orthogonal Procrustes algo-
rithm to these two data matrices to get a rotation matrix R.

2
R =argming : - : R
F

Note that the solution for this formula is the same as
the previous one. However, because the matrices have
been concatenated, the solution of the orthogonal Pro-
crustes algorithm can be computed directly based on the
singular value decomposition of the covariance matrix,
which provides an analytical solution to the problem.

Similar to Procrustes-based hyperalignment algo-
rithms, this rotation matrix R does not change the repre-
sentational geometry or the information content in the
data matrix. Instead, it changes the functional topogra-
phies so that one data matrix is “aligned” to another. In
this case, a single rotation is estimated that best aligns
the coordinate axes (i.e., PCs) of the template matrix and
the coordinate axes (i.e., cortical vertices) of all partici-
pants, so that the functional topographies of the rotated
template matrix maximally resemble those of the training
participants. The final local template M is the PC matrix
multiplied by the rotation matrix R: M = M(PC)R.

In short, we used the PCA-Procrustes algorithm to
create a local template for each searchlight, which is rep-
resentative of the training participants both in terms of
representational geometry and cortical topography. The
PCA step ensures that the functional profiles and repre-
sentational geometry of the local template are close to

those of the training participants, and the orthogonal Pro-
crustes step ensures that the topographical distribution
of these functions on the cortex is also representative of
the training participants. After iterating over all search-
lights, the local templates were combined into a single
whole-brain template using the distance-based weighted
average method described above.

4.3. Modeling response tuning functions

We modeled each participant’s response data matrix B(p)
as the template data matrix M multiplied by a linear trans-

formation W(p, plus some noise E:

Bip)=Bip)t E =MW, +E

Unlike Procrustes-based hyperalignment (Haxby et al.,
2011), in which the transformation matrix w,, (often
denoted as R) is a rigid improper rotation, the linear trans-
formation W allows warping of representational geometry.
Consequently, individual differences in representational
geometry are embedded in the transformation matrices, W,
rather than in the individual information projected into the
model space, M. We name the new algorithm “warp hyper-
alignment” (WHA) to emphasize its capacity to warp repre-
sentational geometries and to distinguish it from previous
algorithms (Fig. 8). Compared to Procrustes hyperalign-
ment, WHA captures individual differences in representa-
tional geometry and better predicts individualized
responses to new stimuli (Supplementary Figs. S1-S6).

We computed the linear transformation W, using a
searchlight-based algorithm, similar to the procedure we
used to create the template M. That is, for each of the

»

»

Fig. 8. Schematic illustration of modeling a participant’s brain functional organization as a linearly transformed functional
template. (A) A participant’s brain responses constitute a data matrix, where rows are stimuli (e.g., time points in a
movie) and columns are cortical vertices (left). Multiple vertices form a high-dimensional space, where each vertex is a

dimension, and each stimulus is a point in the space (middle). Information is encoded in the distances between the points.
Such information can be summarized using a representational dissimilarity matrix (RDM), where each entry is the (dis)
similarity between a pair of stimuli (right). (B) The RDM of the template resembles that of a participant (right), but the data
matrix is usually quite different (left). This is because different brains encode the same information using different cortical
topographies —the vertices collectively perform similar functions across individuals, but the function for each single vertex
is quite different across individuals. (C) The participant’s idiosyncratic topographies can be predicted by a rotation of the
template’s feature space (middle), calculated with the Procrustes transformation. The rotation changes the topographies
of the template and makes the spatial patterns (rows of the data matrix) more similar to the participant’s (left), without
changing the information content, or the RDM (right). (D) A linear transformation of the template, calculated with ridge
regression (warp hyperalignment, WHA), can fully predict a participant’s responses by modeling both the participant’s
idiosyncratic topographies and idiosyncratic information content; that is, both the “what” and “where” of a participant’s
brain functional organization. Note that the schematic illustration is oversimplified; a typical fMRI data matrix contains
thousands of stimuli/time points (rows) and tens of thousands of vertices (columns), and a real neural feature space is a
high-dimensional space (hyperspace).
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searchlights, we computed a local transformation, and
these local transformations were combined using the
distance-based weighted average (Fig. 9).

Typically, a model needs to be regularized to avoid
overfitting and to increase its generalizability to new data.
For the orthogonal Procrustes algorithm, the linear trans-
formation W(p) is constrained to be orthogonal (i.e., an
improper rotation in a high-dimensional space), which

A Example participant

Vertex 1 (x)

Vertex 2 (y)
&

B Functional template

Vertex 1 (x)
Vertex 2 (y)

Activation
Low High

can be considered as a strong regularization. In this work,
we allowed scaling and shearing in the transformation,
which models individual differences in function, such
as representational geometry. We used two methods
to avoid overfitting in model estimation. First, we used
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Fig. 9. Schematic illustration of the warp hyperalignment (WHA) algorithm. (A) For each searchlight, we used ridge
regression to derive a local transformation matrix that best predicted brain responses B(S,) using the functional template
M(S,). (B) Local transformations were aggregated using a weighted average to derive a whole-brain transformation matrix

W(p) for the participant p.

k-fold bagging. That is, for each participant and each
searchlight, we trained 100 ridge regression models
based on bootstrapped samples (bootstrapped time
points; sampled with replacement), and we averaged the
weights of these 100 models to serve as the weights for
the final model (described in detail below).

4.3.1. Ensemble ridge regression models

We used ensemble learning (Zhou, 2012) to improve the
accuracy and generalizability of our models. Specifically,
we adapted the bootstrap aggregating (“bagging”) algo-
rithm (Breiman, 1996) for our time series data. Bagging is
commonly used to reduce model variance and avoid
overfitting by averaging across models trained on boot-
strapped samples. It also provides estimation of model
performance on new data through out-of-bag cross-
validation. During out-of-bag cross-validation, the pre-
dicted value of a data point is the average prediction of
models that were not trained with the time point (i.e., out-
of-bag models). In this case, this data point serves as the
test data and the other time points as training data. Typi-
cally, bootstrapped samples are randomly drawn with
replacement from the original sample. A participant’s
fMRI data (e.g., responses to movies) usually comprises
hundreds or thousands of time points. With the classic
bagging algorithm, it often happens that some time
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points are drawn by all bootstrapped samples, which
makes them inappropriate for model evaluation using
out-of-bag cross-validation (i.e., no out-of-bag models
for these data points). To use as much data as possible
for cross-validation, we augmented the classic bagging
algorithm with a k-fold scheme (Fig. 10).

In each k-fold repetition, we first divide all time points
randomly into k-folds. For a given fold, we set aside the
data in that fold to serve as candidate test data, while
data in the other k— 1 folds serve as candidate training
data. We then drew a bootstrapped sample from the
candidate training data and used it to train a model. This
procedure guarantees that the candidate test data can
be used for model evaluation because they were not
used in model training. Some candidate training data
may not get chosen by the bootstrapped sample and
these data also serve as test data for model evaluation.
In other words, for each model, the actual test data
include both candidate test data and the candidate
training data not drawn by the bootstrapped sample.
After an iteration over all k-folds, we obtained k trained
models. For each data point, our resampling procedure
ensures that at least one of the k models was not trained
with the data point. In this work, we used k = 5 and
repeated the k-fold scheme for 20 times, and thus the
prediction for each data point was the average of at
least 20 out-of-bag models.
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Fig. 10. Schematic illustration of the k-fold bagging ensemble method. In classic bagging (bootstrap aggregating), a time
point might be chosen as training data in every bootstrapped sample, making it unusable for validation. We combined
bagging with the k-fold scheme to overcome this problem. In this schematic example, we use a movie that is 300 seconds
long (TR = 1 second) and k = 5 for k-fold. (A) We divided the movie into 30 segments of 10 seconds each, and we split

the 30 segments into 5 subsets of equal length. Each subset is the candidate test data of a cross-validation fold. (B) For
each fold, the time points that are at least 10 seconds away from any candidate test data are chosen as candidate training
data. This ensures that training and test data are not temporally adjacent, and therefore the model cannot rely on temporal
autocorrelation to make the prediction. (C) We resampled 300 time points with replacement from the candidate training
data, and these 300 bootstrapped time points are the actual training data of the model. Note that some candidate training
data are not chosen, and some time points are chosen more than once. (D) Besides candidate test data, additional time
points can be used as test data as well, as long as they are also at least 10 seconds away from any training data. For
example, a segment immediately adjacent to two candidate test segments might not be chosen as candidate test data

in the beginning; however, because it is far away from any training data, the segment can be used as test data as well. In
other words, any training and test data are at least 10 seconds away in each cross-validation fold. In this process, we train
five models in total, and each time point can be used as validation data for at least one of the five models.

To account for temporal autocorrelation caused by the less than 10 seconds away from the time point used for
hemodynamic response function, we also introduced evaluation. For example, for a 2 seconds TR length, when
temporal “buffers” for out-of-bag cross-validation. That we evaluate model performance for the i-th TR, we
is, when we evaluate model performance on a certain exclude models trained with any of the 11 TRs fromi— 5
time point, we exclude not only models trained with the to i + 5. To avoid removing too many buffer time points
time point itself, but also models trained with time points  from the training data, we divided time points into groups
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by grouping them into 10 seconds segments (5-TR seg-
ments for a 2 seconds TR), and assigned all time points
in the same segment to the same fold.

The adapted bagging algorithm and the out-of-bag
cross-validation procedure were only based on the train-
ing data (for the test participant). Similar to the inner-loop
of nested cross-validation, the training and test folds dis-
cussed in this context were both part of the training data.
Because independent data were used in out-of-bag eval-
uation, this procedure provides an unbiased way to esti-
mate model performance on new data, such as the actual
test data.

4.3.2. Separating stimulus and tuning information

Based on the whole-brain functional template M and the
linear transformation W, derived by warp hyperalign-
ment, we obtained a modeled brain response matrix B(p)

(t x v) for the participant p, which are the responses of the
participant that can be accounted for by the linearly
transformed template. To model the participant’s neural
response tuning independent of stimulus information, we
derivedﬂa tuning matrix T, (k x v) by a matrix decomposi-
tion of B(p) (Fig. 11).

This matrix decomposition factors the temporal infor-
mation into the matrix S (t x k). The columns of S are a set
of basis response profiles (i.e., response time series to
the movie). The response profile of each vertex is mod-
eled as a linear combination (i.e., weighted sum) of the
basis profiles, and the weights of the linear combination
are the corresponding column in T(p, which is a column
vector of k elements. This column vector is independent
of the stimulus, and it reflects the response tuning func-
tion of the vertex. We refer to this column vector as the
tuning profile of the cortical vertex to distinguish it from
the response profile (response time series).

Individualized Neural Tuning (INT) Model:
calculate stimulus and tuning matrices (S and T )

A SVDtocreate S

B, B,

vxn

B;

k(=t)

SVD

—_—

B Convert W, into T, for each participant: S™*MW,) = T,

t

v
v v
t

C Predict brain responses to new stimulus: Sqew)T(p) = 'B\(p,new)

k

Fig. 11.

% v
A
k = t
t x )

Separating stimulus and neural tuning information using the INT model. (A) We used a group SVD to derive

the normalized PCs, which we used as a basis set that contains stimulus information. (B) The stimulus information was
factored out in the modeled brain responses, so that the derived tuning matrix 7 is stimulus general. For example,

estimates of T  based on different parts of the movie are highly similar. (C) The participant’s responses to new stimuli can
be predicted using the new stimulus matrix S(new) and the participant’s tuning matrix T@.
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To use the tuning matrices to model differences in neu-
ral tuning across vertices and across individuals, ideally
the tuning matrices should have several properties: (a) cor-
tical vertices that have larger differences in response time
series also have larger differences in their tuning profiles;
(b) individuals who are more similar based on their response
profiles are also more similar based on their tuning matri-
ces; and (c) the same tuning matrix can be estimated from
different stimuli, such as different parts of the movie with
different durations. These objectives motivate us to find a
matrix S with three properties: (a) the columns are orthog-
onal to each other; (b) each column has unit variance; and
(c) the columns of S form a basis set of response profiles.
Orthogonality is necessary to make S a similarity transfor-
mation, so that differences in T(p ) across vertices and
across individuals are proportional to their differences in
é( o) Unit variance ensures that the scale of the estimated
T(p) is the same for different amounts of data, such as data
matrices from different parts of the movie. That the col-
umns of S form a set of basis response profiles means the
response profile of each vertex and each participant can
be expressed as a linear combination of the basis profiles.
In other words, S can be used to fully model B(p) and é(p)
without any loss of information.

There are many choices of S which have all these
properties and work similarly well for our purposes. In
this work, we use the normalized principal components
(PCs) from a group-PCA. The normalized PCs work well
in practice, as is shown by the benchmarking analyses.
Furthermore, due to the nature of PCA, they provide an
easy way to reduce data dimensionality when less dimen-
sions are desired. In this work, we did not reduce dimen-
sionality, and thus k equals the rank of the concatenated
matrix, which is the same as the number of time points in
the movie in practice (approximately 3000). We per-
formed the group-PCA using a singular value decompo-
sition (SVD) on the concatenated data matrices of all
participants, and rescaled the first matrix U to get S.

.
[ By Bz Biny |=UZV
S=+nU

Based on the conceptual framework of hyperalign-
ment (Haxby et al., 2011, 2020), different brains share the
same functional basis. In practice, the shared functional
basis is instantiated as a hyperalignment common space,
which is a functional template. The response profiles of
the template’s vertices form a set of basis response
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profiles, and the response profile of each cortical vertex
is expressed as a linear combination of these basis
response profiles. The weights of the linear combination
are the elements in the corresponding column of the
transformation matrix. Note that the transformation
matrix based on the searchlight algorithm is highly
sparse, and the weights of the linear combination are
non-zero only for local neighborhoods of vertices (i.e.,
vertices included in the same searchlight) in the template.
As a result, the response profile of each vertex is mod-
eled using a different set of vertices, whose response
profiles highly covary due to spatial autocorrelations.

In the INT model, the columns of matrix S serve as the
set of basis response profiles, which are orthogonal vec-
tors with unit variance. The response profiles of all vertices
and all participants are all expressed as a linear combina-
tion of the same basis set, which affords the study of func-
tional tuning differences across vertices and across
individuals based on tuning matrices, whose columns
comprise the linear combination weights. In other words,
we are replacing local basis sets (response profiles of adja-
cent vertices) with a single global basis set of response
profiles (columns of S). Conceptually, S is also a common
space, but different from M, the features in S are completely
virtual and do not correspond to specific cortical loci.

The features in S are neural data-driven stimulus
descriptors. They are derived from shared brain responses
and reflect the primary ways cortical vertices respond to
stimuli. Each stimulus (e.g., movie time point) is described
as a row in S, which is a vector of k elements, and each
element indexes to what extent a virtual feature responds
to the stimulus. In other words, the row vector describes
the key features of the corresponding stimulus based on
neural responses. Therefore, here and elsewhere we refer
to S as the stimulus matrix.

Because stimulus information is factored into S, the
information in the tuning matrix T(p) is neural response
tuning of cortical vertices that is the same for a wide
variety of stimuli from the space spanned by a naturalis-
tic, audiovisual movie stimulus. For example, when we
divide the neural response data matrix B into two halves,
each half can be modeled using the corresponding half
of S and the same T(p) (Fig. 1B). This property has an
important implication for Ty Once the functional tem-
plate is created, the same individualized T(p) can be esti-
mated from independent data of the same individual
(e.g., different parts of a movie), and the amount of data
used to estimate T can be less than the amount of data
used to create the functional template (e.g., responses
to part of the movie instead of the entire movie).
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Furthermore, the INT model can be extended to model
responses to stimuli that were not used to create the
template. Given the neural responses to new stimuli from
a group of participants (which can be a subset of all par-
ticipants) and their tuning matrices, the stimulus descrip-
tors S(new) for the new stimuli can be estimated (Fig. 10)
and used to predict other participants’ responses to the
new stimuli.

In the sections below, we use a series of analyses to
demonstrate the reliability, validity, accuracy, and spec-
ificity of our INT model. In the first analysis, we show
that the tuning matrices estimated from different parts
of the movie are highly similar for the same individual
but dissimilar for different individuals. In the second
and third analysis, we show that individualized
responses to new stimuli (category selectivity and ret-
inotopic maps) can be accurately predicted by estimat-
ing the stimulus descriptors for the new stimuli. In the
fourth analysis, we show that the INT model can accu-
rately predict individualized fine-grained spatial
response patterns, such as responses to a specific time
point of a movie. In the fifth analysis, we show that 10—
20 minutes of movie data are sufficient for satisfying
performance of the INT model, but the performance
grows continuously with more data.

4.4. Datasets

4.4.1. The Forrest dataset

The Forrest dataset is part of the Phase 2 data of the
studyforrest project (Hanke et al., 2014). It contains 3 T
fMRI data collected from 15 right-handed German adults
(mean age 29.4 years, 6 females) during movie-watching,
retinotopic mapping, and object category localizers
(Hanke et al., 2016; Sengupta et al., 2016). Each partici-
pant’s movie data comprised eight runs of approximately
15 minutes each, while the participant watched a short-
ened version of the audiovisual feature movie Forrest
Gump. In total, 3599 volumes were collected over the
course of 2 hours of scanning. The retinotopic data com-
prises four 3-minute runs (12 minutes in total), and the
four runs corresponded to expanding rings, contracting
rings, clockwise wedges, and counterclockwise wedges.
The object category localizer data contain four runs that
are 5.2 minutes each (20.8 minutes in total). Each run
contains two 16 seconds blocks for each of the 6 catego-
ries (bodies, faces, houses, objects, scenes, and phase
scrambled images). During each block, 16 grayscale
images were displayed for 900 ms each with a 100 ms
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interval. During the object category localizer scans, the
participant performed a central letter reading task to
maintain attention and fixation.

All these data were acquired with a Philips Achieva
dStream MRI scanner with a 32-channel head coil and a
gradient-echo EPI sequence. Every 2 seconds, a whole-
brain volumetric image containing 3 mm isotropic voxels
was acquired with the sequence. The volume comprises 35
axial slices with a 3-mm thickness and a 10% inter-slice
gap, acquired in ascending order. Each slice had an 80 x 80
matrix and an FOV of 240 x 240 mm3. The TE was 30 ms,
flip angle was 90°, and the phase encoding direction was
anterior—posterior. The acquisition was accelerated with a
SENSE factor of 2. More details of these datasets can be
found in the data descriptors for the 3 T studyforrest data
(Hanke et al., 2016; Sengupta et al., 2016).

4.4.2. The Raiders dataset

The Raiders dataset contains data from 23 participants
(mean age + SD: 27.3 + 2.4 years; 12 females) while they
were watching the second half of the movie Raiders of
the Lost Ark (Nastase, 2018). The movie scan comprised
four runs that were 14-15 minutes each (850, 860, 860,
and 850 seconds, respectively). In total, 3420 volumes
were collected for each participant, with a 1 second TR
and 2.5 mm isotropic voxels. The movie clips of adjacent
runs had 20 seconds of overlapping content, and thus we
removed 10 seconds of data from the end of the first run
and 10 from the beginning of the second run during anal-
ysis. After chopping off the overlapping content, the
remaining movie data were 14 minutes (840 TRs) per run
and 56 minutes in total. Among the 23 participants, 20
also had localizer data. The localizer data were the same
data used in Jiahui et al. (2020). They were collected
using the same scan protocol as the movie, and they
comprised four runs of 3.9 minutes each (15.6 minutes in
total). Each run comprised 10 blocks, 2 per category
(faces, bodies, scenes, objects, and scrambled objects),
and each block was 18 seconds long. Each block com-
prised 6 video clips that were 3 seconds each. During the
localizer scans, the participant performed a 1-back repe-
tition detection task based on the video clips.

The Raiders dataset was collected using a 3 T Sie-
mens Magnetom Prisma MRI scanner with a 32-channel
head coil at the Dartmouth Brain Imaging Center, with the
same scan protocols as (Visconti di Oleggio Castello
et al,, 2020). Each second, a volume was collected
with 2.5 mm isotropic voxels and whole-brain coverage.
The volume comprised 52 axial slices collected in an
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interleaved fashion with gradient-echo echo-planar ima-
ging. Each slice had a 96 x 96 matrix and an FOV of
240 x 240 mm?3. The TE was 33 ms, flip angle was 59°,
and the phase encoding direction was anterior-posterior.
The imaging was accelerated using a simultaneous multi-
slice (SMS) factor of 4 and no in-plane acceleration. All
participants gave written, informed consent, and were
paid for their participation. The study was approved by
the Institutional Review Board of Dartmouth College.

4.4.3. MRI preprocessing

We ran fMRIPrep (Esteban et al., 2019) on all MRI data,
using version 20.1.1 for the Forrest dataset, and 20.2.0
for the Raiders dataset. After fMRIPrep, functional data
from all participants were projected onto a cortical sur-
face and were in alignment with the fsaverage template
(Fischl et al., 1999) based on cortical folding patterns.
We then performed downsampling and nuisance regres-
sion in the same way as Feilong et al. (2018). First, we
downsampled functional data to a standard cortical sur-
face mesh with 9372 vertices for the left hemisphere
and 9370 vertices for the right hemisphere (approxi-
mately 3 mm vertex spacing; 10,242 per hemisphere
before removing non-cortical vertices). Then, we per-
formed a linear regression to partial out nuisance vari-
ables from functional data separately for each run. The
nuisance regressors include 6 motion parameters and
their derivatives, global signal, framewise displacement
(Power et al., 2014), 6 principal components from cere-
brospinal fluid and white matter (Behzadi et al., 2007),
and polynomial trends up to the 2" order. Finally, we
normalized the residual time series of each vertex to
zero mean and unit variance.

4.5. Assessing the reliability and specificity of tuning matrices

To make the tuning matrices a useful measure of brain
functional organization, they need to have high reliability
and specificity. That is, tuning matrices of the same indi-
vidual based on independent data should be similar, and
tuning matrices from different individuals should be dis-
similar. Therefore, we split each participant’s movie data
into two parts, and estimated a tuning matrix based on
each part of the movie.

Bip1) =St

Bip2)=S2)(p2)
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B(pﬂ)

S
(1)
,and S =
B(MJ {3(2)1

are both estimations of T, but they are estimated based
on different parts of the movie (independent data).

To assess the reliability and specificity of the mod-
eled tuning matrices, we computed a cross-movie-part
similarity matrix for each dataset based on the esti-
mated tuning matrices. The matrix has a shape of n x n,
where each row corresponds to a tuning matrix based
on the first part of the movie, each column corresponds
to a tuning matrix based on the second part of the
movie, and each entry is the correlation-based similarity
between the two matrices. The diagonal of the matrix is
the within-subject similarities, and the off-diagonal ele-
ments are between-subject similarities. A clear differ-
ence between diagonal and off-diagonal elements
indicates a substantial difference between within-
subject and between-subject similarities.

T

)

and T

(0.2)

Where B(p) = {

4.5.1. Multi-dimensional scaling

To better visualize the similarities between estimates tun-
ing matrices, we performed multi-dimensional scaling
(MDS) using the T-distributed Stochastic Neighbor
Embedding (t-SNE) algorithm (Van der Maaten & Hinton,
2008). We used a full individual differences matrix (i.e.,
2n x 2n elements, comprising both same-movie-part and
cross-movie-part dissimilarities based on correlation dis-
tance) as input to the t-SNE algorithm. The 2n tuning
matrices were projected to a 2D space by t-SNE. Given
any MDS algorithm would unavoidably distort distances
during the projection, we used a perplexity parameter of
10 to reduce the distortions of distances between closer
neighbors, which in this case are within-subject dissimi-
larities and several smallest between-subject dissimilari-
ties. These dissimilarities are key to determine whether
an individual can be easily identified based on the tuning
matrix and a nearest-neighbor classifier.

4.5.2. Distribution of tuning matrix similarities

For each tuning matrix, we extracted its within-subject
similarity and between-subject similarities based on the
cross-movie-part similarity matrix. These similarities cor-
respond to the diagonal (within-subject) and off-diagonal
(between-subject) elements of a row of the similarity
matrix. We plotted the distribution of the within-subject
similarity and between-subject similarities for each tuning
matrix in Figure 2C, sorted by within-subject similarity.
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4.5.3. Distinctiveness index

For all tuning matrices, we found that within-subject
similarity was far greater than the distribution of
between-subject similarities. In other words, any partic-
ipant can be identified by the modeled tuning matrix

distinctiveness =

with an accuracy of 100% based on a simple one-
nearest-neighbor classifier. To better describe how dis-
tinctive an individual is based on the modeled tuning
matrix, we computed the distinctiveness index based
on Cohen’s d:

within-subject similarity — mean( between-subject similarity)

SD( between-subject similarity )

The distinctiveness index is a measure of effect size,
and thus is comparable across datasets with different
sample sizes. The similarities used to compute the dis-
tinctiveness index were Fisher-transformed correlation
similarities, and therefore they approximately follow a
normal distribution, and the distinctiveness index can
serve as a z-statistic. Using the cumulative distribution
function of the standard normal distribution, an identifi-
cation error rate can be estimated based on the distinc-
tiveness index.

4.5.4. Searchlight analysis

To locate the brain regions where the functional organiza-
tion is the most distinctive, we performed a searchlight
analysis (Kriegeskorte et al., 2006) using a searchlight
radius of 20 mm. Within each searchlight, we computed
a distinctiveness index for each tuning matrix based on
vertices in the searchlight, and we averaged the distinc-
tiveness index across all tuning matrices to get an aver-
age distinctiveness index for the searchlight. We repeated
this process for each searchlight and obtained an aver-
age index for each searchlight. These average distinc-
tiveness indices formed a map of distinctiveness for each
dataset (Fig. 2E).

4.6. Predicting category-selectivity maps

The previous analyses have shown that our model has
high reliability and specificity. The modeled brain functional
organization is highly similar for the same individual (based
on independent data), and much less similar for different
individuals. In this part, we tested the generalizability of our
model. Specifically, we tested whether our model could
predict responses to new stimuli that were not used in
model training. Therefore, we trained our model based on
the movie data and tested whether the model can be used
to predict responses to various object categories. Here,
we use the “faces” category as an example to illustrate the
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procedure of our analysis, and the same procedure was
applied to other object categories.

4.6.1. Quality of localizer-based maps

The Forrest dataset has 4 static object category localizer
runs per participant (for all participants), and the Raiders
dataset has 4 dynamic object category localizer runs
per participant (for 20 out of the 23 participants). For
each run of each participant, we used the general linear
model to estimate the contrast of interest (faces vs. all
other categories) and obtained a map of t-statistics for
the contrast.

From a psychometrical perspective, each cortical vertex
has a specific face selectivity, and the face-selectivity map
based on each localizer run is a test of face-selectivity,
which assigns a score to each vertex. The score is a sum of
the true score of the vertex (its ground truth face-selectivity)
and some noise. Accordingly, the variance of measured
face-selectivity across vertices is a sum of true score vari-
ance and noise variance. The ratio between true score vari-
ance and total variance is an indicator of the quality of the
measured face-selectivity map, which is known as the reli-
ability of the measured map and denoted as p. When we
average over k independent maps, the noise variance is 1/k
of each single map (because the noise is assumed to have
no covariance with the noise from another map nor the true
score map). This relationship can be used to estimate how
the reliability increases with larger k, which is known as the
Spearman-Brown prediction formula. Specifically, the reli-
ability of the average map is:

Pavg = (-

For each participant’s face-selectivity map, we have k
measured maps X,, X,, ..., X,, each of which is from an
independent localizer run and is represented as a vector.
Fori=1..k, X, =T + E, where T is the true score map,
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and E; is the noise for the j-th map. The variance of the sum
map is:

var(Xy+...+ Xy ) = var(kT + Ey+...+ E ) = k®var(T)
+var(Eq)+...+var(Ey)

and the ratio between the sum of variance for each map
and the variance of the sum map is:

kvar(T)+var(Eq)+...+var(E)  kp+k(1-p) 1

Kk2var(T)+var(Eq)+...+var(Ec) k?p+k(1-p) kp+1-p

This ratio is often used to compute Cronbach’s alpha,
which is an estimate of the reliability of the average map:

k kvar (T )+ var(E;)+...+var(Ej )
o= 1- —

k-1 k*var(T)+var(Eq)+...+var(Ey)
_ k 1_ 1 B kp B
kAl kpti-p) T Ax(k—1)p Pao

The covariance between one map and another map is:
cov(X+ E,, X+ E/) =var(X).
Therefore, the correlation between the two maps is:

cov(X+E;, X+E;)
\/var(X+ E,-)var(X+ Ei)

= \[p,'pj

Note that when p, > p, r;, > p,. In other words, if a pre-
dicted map has comparable quality with the average
map, their correlation will be the same as average map’s
Cronbach’s alpha; if a predicted map has superior quality
than the average map, their correlation will exceed Cron-
bach’s alpha. Therefore, we choose Cronbach’s alpha as
a baseline when we present the correlation between
measured maps and predicted maps of the INT model.
Note that in this analysis, the objective is to predict
category-selectivity maps, and both “more accurate” and
“superior quality” mean that the model-predicted map
has a higher correlation with the true score map, which
should not be confused with better construct validity.

4.6.2. Model-predicted category selectivity maps

We used a leave-one-subject-out cross-validation
scheme to evaluate model performance. We built the
template based on the n-1 training participants’ movie
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data. We then computed a tuning matrix T(p) for each of
the n participants based on the movie data. We modeled
the face-selectivity map as the brain response pattern to
the specific “faces” category:

B( +E

= S(faces)T(

p,faces) p)

Here, B(p,faces) denotes the face-selectivity map for
participant p, and S, denotes the stimulus descrip-
tors for the “faces” versus other categories contrast. In this
case, both B(p,faces) and Sis,ces) are row vectors because
there is only one stimulus (category). Both B(p’faces) and
T(p) were known for the training participants, and thus
S(faces) can be estimated using a general linear model
(e.g., ordinary least squares) by finding the S, that
minimizes the Frobenius norm || B(p‘faces) - S(faces)T(p) Ilg-
This solution can be computed using ordinary least
squares (“vanilla” regression), but here we used ensem-
ble linear ridge regression to increase the accuracy and
generalizability of our model. The ensemble model is sim-
ilar to the algorithm we used to build the INT model,
which is based on k-fold bagging. The final prediction
model was the average of 50 ridge regression models
(k = 5, 10 repetitions), and the choices for the regulariza-
tion parameter were 21 values evenly distributed in a log-
arithmic scale, ranging from 0.01 to 100. Similar to nested
cross-validation, the choice of the regularization parame-
ter was determined based on out-of-bag cross-validation,
and thus it is only based on the training data. For each
single model in the ensemble, we bootstrapped n-1 par-
ticipants with replacement from the n—1 training partici-
pants and trained the ridge regression model based on
the bootstrapped sample. To further increase the diver-
sity of models in the ensemble, each time a participant
was chosen by a bootstrapped sample, we also boot-
strapped four runs with replacement from the partici-
pant’s data, and the face-selectivity map used in the
regression was the average of the four bootstrapped
runs. After all n—1 participants had been chosen for the
bootstrapped sample, we concatenated their vertices,
and trained a ridge regression model based on the con-
catenated data. We obtained an estimated S, . for
each bootstrapped sample (coefficients of the regression
model), and the final estimation of S(n_”aces) was the aver-
age across all bootstrapped samples.

The model-predicted map of the left-out test partici-
pant was simply the matrix multiplication of the estimated
stimulus descriptors S(n_uaces) based on the n-1 training
participants and the estimated tuning matrix T(p) of the
test participant:
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B(p,faces) S(n—1,faces)T(p)

4.6.3. Evaluating model-predicted maps

We evaluated the quality of model-predicted maps in the
same way as Jiahui et al. (2020). That is, for each test par-
ticipant, we computed the Pearson correlation between
the localizer-based map and the model-predicted map of
the participant. Note that we estimated the reliability of the
localizer-based map using Cronbach’s alpha, which is the
expected correlation between two average maps, each
based on four runs of independent data. Based on the
Spearman-Brown prediction formula, we can estimate
how Cronbach’s alpha changes with the amount of data
(i.e., the number of localizer runs), and correspondingly,
how much localizer data is needed to achieve the quality
of the model-predicted map.

We also evaluated the specificity of our model-
predicted maps. For each test participant, we also com-
puted the correlations between the participant’s own
localizer-based map and model-predicted maps of other
participants. If the model-predicted map is highly specific
to the participant, we expect the between-subject cor-
relations to be much lower than the correlation with the
participant’s own model-predicted map.

4.7. Predicting retinotopic maps

4.7.1. Estimating retinotopic maps based on localizers

The Forrest dataset contains 4 retinotopic scans per par-
ticipant that are 3 minutes each. The four runs are expand-
ing rings, contracting rings, clockwise wedges, and
counterclockwise wedges, respectively. We followed the
steps of Warnking et al. (2002) and estimated an eccentric-
ity map based on the runs of expanding rings and con-
tracting rings and a polar angle map based on clockwise
wedges and counterclockwise wedges for each partici-
pant. Specifically, we performed Fourier transformation on
the time series data that were collected during stimulus
presentation (5 cycles of 16 TRs [32 seconds] each; 80
TRs [160 seconds] in total; started 4 seconds after scan
onset) and located the frequency component that had the
same period as the stimuli (i.e., 5 cycles in 80 TRs). The
amplitude of the component indicates to what extent a
vertex’s response time series can be explained by retino-
topic stimuli, and the phase of the component indicates
the eccentricity or the polar angle that a vertex responds
maximally to. Considering the hemodynamic response
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function of BOLD signal, we shifted the phase by 5 sec-
onds to account for hemodynamic delay. For each kind of
retinotopic map (i.e., eccentricity and polar angle), we
averaged the Fourier transformation results of the two cor-
responding runs (e.g., expanding and contracting rings for
eccentricity map) to get the final map. The amplitude was
the mean amplitude of the two runs, and the phase was
the circular mean of the two runs (which removes the
remaining effects of hemodynamic delay).

4.7.2. Model-predicted retinotopic maps

Each retinotopic map comprises two parts, namely an
amplitude map and a phase map.

Biret) = Acos(6-9)

Here, A is the amplitude, 6 is the preferred phase (i.e.,
eccentricity or polar angle) for each vertex, and ¢ is the
phase corresponding to the current stimulus. A vertex
responds maximally when the phase of the current stimu-
lus corresponds to its preferred phase, and the response
decreases when the phase moves away from the vertex’s
preferred phase. The retinotopic map can be modeled as
a weighted sum of a sine map and a cosine map.

Acos(6—¢) = Acos(6)cos(p)+ Asin(6)sin(¢)
= xcos(¢)+ ysin(¢)

Note that the original phase 0 is a circular variable and
it is difficult to predict it using a linear model (e.g., the
model we used to predict category-selectivity maps).
After the transformation, we have two new variables x
and y, which contain the same information as the original
amplitude map A and the phase map 6. However, both x
and y are weights of the linear combination, and thus
they can be predicted directly using linear models.

We used similar prediction procedures as the
category-selectivity analysis for the current analysis.
Specifically, we used leave-one-subject-out cross-
validation, and the prediction models were ensembles
of ridge regression models. For each test participant
and each kind of retinotopic map, we trained two sets of
ensemble models: one for predicting the weight map x,
and the other for predicting y. After estimating the stim-
ulus descriptors for x and y based on the training partic-
ipants, we multiplied them by the estimated tuning
matrix of the test participant to get the estimated x and
y maps for the test participant. The model-predicted
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amplitude and phase maps can be computed from the
estimated x and y maps:

A:\/x2+y2

6 =arctan2(x, y)

4.7.3. Evaluating model-predicted maps

We evaluated the amplitude map and the phase map
separately for each kind of retinotopic map. For the
amplitude map, we computed the correlation between
the test participant’s localizer-based map and the partic-
ipant’s own model-predicted map, as well as the correla-
tions with others’ model-predicted maps. We also
computed Cronbach’s alpha based on the amplitude
maps from the two runs from each kind of retinotopic
map. In general, the amplitude maps were assessed in a
similar way as the category-selectivity maps.

For the phase map, we computed the average (abso-
lute) phase difference between the test participant’s
localizer-based map and the participant’'s own model-
predicted map in the early visual cortex—an area known to
have retinotopic responses. The early visual cortex was
located based on regions V1, V2, V3, and V4 of the Glasser
parcellation (Glasser et al., 2016). Similarly, we computed
the average phase difference with others’ model-predicted
maps, and the average phase difference between the two
runs for each kind of retinotopic map. Note that the phase
differences between the two runs are driven by both hemo-
dynamic delay and noise, and their influences cannot be
fully separated based on the current data.

4.8. Predicting response patterns to the movie

The previous analyses demonstrate the power of our model
in predicting brain responses to new stimuli, such as object
categories and retinotopic localizers. However, both object-
category representation and retinotopy correspond to rela-
tively coarse-grained cortical topographies. To assess the
spatial granularity of our model, we further tested how well
it could predict fine-grained spatial response patterns,
such as time-point-by-time-point responses to a movie.

4.8.1. Cross-validation scheme

For each movie dataset, we used leave-one-subject-out
cross-validation to assess the model predictions. Each
time, we built a template based on the full movie data of
the n-1 training participants. Similar to the distinctive-
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ness analysis, we estimated the test participant’s tuning
matrix using only half of the test participant’s movie data,
and in this case it is the first half of the movie data. The
second half of the test participant’s movie data was held
out for test. Then, we multiplied the stimulus matrix for
the second part of the movie with the estimated tuning
matrix of the test participant to get the model-predicted
response patterns to the second part of the movie that
are based on other participants’ responses. We assessed
the model prediction by comparing the measured
response patterns and the model-predicted responses
patterns of the test participant. Note that unlike our pre-
vious methods, in which we compared a participant’s
response patterns to others’ patterns in the common
model space, our INT model allows this comparison to be
made in the native anatomical space (normalized to the
fsaverage template) of each individual participant’s brain.

4.8.2. Dimensionality reduction

For each time point (i.e., each TR), the response pattern
is a vector of 18,742 elements. Similar to our previous
work (Guntupalli et al., 2016, 2018; Haxby et al., 2011),
we performed dimensionality reduction using principal
component analysis (PCA) and compared the similarity of
response patterns based on normalized PCs. We
repeated the analysis using different numbers of PCs,
ranging from 10 to 300 with an increment of 10. Note that
the key results of this analysis (Fig. 5D and 5E) are very
robust against the choice of the number of PCs.

4.8.3. Similarity between measured and predicted patterns

To illustrate the similarities of measured and predicted
response patterns, we computed the correlations between
measured and predicted response patterns based on 150
PCs. Specifically, we computed the similarities of patterns
from the same participant and those from different partici-
pants; we also computed similarities of patterns for the
same time point and those for different time points. These
allowed us to evaluate the specificity of the model-predicted
response patterns both to the participant and to the time
point. Examples of the similarities are shown in Figure 5A
and 5B, and the similarity distribution for each of the four
conditions is summarized in Figure 5C.

4.8.4. Binary movie time point classification

For each test participant, the similarity between the
measured and predicted patterns for the same time
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point was much higher than those from different time
points. We assessed to what extent this difference in
similarity could be used to predict which time point of
the movie the participant was viewing based on a binary
classification task. The binary classification task is a
2-alternative forced choice. For each time point of the
movie, we computed the correlation of its measured
response pattern to two other response patterns—one
was the pattern predicted from other participants’
responses to the same time point, and the other was
the pattern predicted from other participants’ responses
to another time point. The classification was successful
if the similarity of patterns of the same time point was
higher than the different time point, and thus the chance
accuracy is 50%. We looped through all choices of the
test time point, and for each test time point, looped
through all choices of the foil time point and averaged
the accuracies. Note that the difficulty of the binary
classification task does not change with the length of
the movie data, and its accuracy can be considered as
a measure of effect size in that sense. For example, the
binary classification accuracy based on a dataset with
500 time points and another with 1000 time points are
comparable. To evaluate the specificity of the predicted
patterns to the test participant, we replaced the test
participant’s predicted patterns with another partici-
pant’s predicted patterns and repeated the analysis.

4.8.5. Multiclass movie time point classification

The classification accuracy of the binary classification
task was close to 100%. To demonstrate the accuracy
and specificity of the response patterns predicted by
the INT model, we performed a multiclass movie time
point classification analysis. That is, we compared the
measured response pattern to a time point of the movie
to all the model-predicted response patterns (i.e., pre-
dicted response patterns to all time points). We exam-
ined whether the pattern similarity was highest for the
model-predicted response pattern of the same time
point. The second part of the movie contains 1818 time
points in total for the Forrest dataset, and 1680 time
points for the Raiders dataset. Therefore, the number of
choices was over 1000 for both datasets, and the
chance accuracy was less than 0.1%. Note that the foils
also included the time points right before or after the
target time point, which was only 2 seconds (Forrest) or
1 second (Raiders) apart, and the inclusion of these
neighboring time points made the classification task
even more challenging.
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4.9. Model performance with less data

In practice, it is not always feasible to collect a large
amount of fMRI data during movie-watching as the data-
sets used in the current study (Forrest: 120 minutes; Raid-
ers: 56 minutes). To assess the performance of our INT
model with smaller data volume, we trained the model with
smaller amounts of movie data for the test participant and
evaluated its performance as a function of data volume.

First, we assessed how data volume affected the dis-
tinctiveness of the tuning matrix. This analysis requires
two estimates of the same tuning matrix based on inde-
pendent data, and thus each estimate can use up to half
of the movie data (Forrest: 60 minutes; Raiders: 28 min-
utes). For the Forrest dataset, we repeated the analysis
with 5, 10, 15, 20, 30, 40, 50, and 60 minutes of movie
data for each estimate. For the Raiders dataset, we
repeated the analysis with 5, 10, 15, 20, and 28 minutes
of movie data for each estimate.

Second, we assessed how data volume affected the
distinctiveness of local neural tuning based on a search-
light analysis. The same amounts of movie data as the
whole-brain distinctiveness analysis were used. Instead
of focusing on the average across searchlights, we
assessed the 50", 80, 90, 95™, and 99" percentiles of
the distribution.

Third, we assessed how data volume affected the esti-
mation of category selectivity maps and retinotopic maps.
Note that the objective of the analysis is to predict responses
to new stimuli, and thus up to the entire movie data can be
used to train the INT model and estimate the tuning matri-
ces. For the Forrest dataset, we repeated the analysis with
5,10, 15, 20, 30, 40, 50, 60, and 120 minutes of movie data.
For the Raiders dataset, we repeated the analysis with 5, 10,
15, 20, 28, and 56 minutes of movie data.

Fourth, we used movie time point classifications to
assess how data volume affected the quality of predicted
response patterns to the movie. For this analysis, we used
the same test data to evaluate the model, which was the
second half of movie data for the test participant. There-
fore, the movie data used to estimate the tuning matrix of
the test participant was the first half of movie data or part
of the first half. For the Forrest dataset, we repeated the
analysis with 5, 10, 15, 20, 30, 40, 50, and 60 minutes of
movie data. For the Raiders dataset, we repeated the anal-
ysis with 5, 10, 15, 20, and 28 minutes of movie data.

DATA AND CODE AVAILABILITY

All data and code will be made available through DatalLad
(https://www.datalad.org/) and MF’s GitHub repository
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(https://github.com/feilong) upon publication. The For-
rest dataset is also openly available through studyforrest
(https://www.studyforrest.org/).
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