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1. INTRODUCTION

A central goal of human neuroscience is to understand 
how brain functional organization differs across individu-
als, and how these differences relate to differences in 
intelligence, personality, motivation, mental health, and 
many other attributes. Understanding these differences 
is instrumental for providing individualized education and 
training, as well as effective diagnosis and intervention in 
the case of pathology, and ultimately improving educa-
tional, occupational, and health- related outcomes 
( Bijsterbosch  et  al.,  2020;  Dubois  &  Adolphs,  2016; 
 Gabrieli  et al.,  2015;  Gratton  et al.,  2020).

Models of the functional organization of the human brain 
can be summarized into two categories based on their spa-

tial granularity. Typical functional magnetic resonance imag-
ing (fMRI) data of the human brain comprise 20,000– 100,000 
cortical surface vertices (or voxels in volumetric data). 
Coarse- grained models group these vertices into spatial 
units— brain regions, networks, and systems— and reduce 
the brain into tens to hundreds of spatial units ( Glasser 
 et al.,  2016;  Gordon  et al.,  2016;  Yeo  et al.,  2011). Vertices 
with similar, relatively homogeneous functions are studied 
as a group in coarse- grained models, which makes it easier 
to summarize their functions neuroscientifically and com-
putationally ( Bijsterbosch  et al.,  2020;  Eickhoff,  Constable, 
 &  Yeo,  2018;  Eickhoff,  Yeo,  &  Genon,  2018). Recent 
advances of coarse- grained brain models have success-
fully extended group- level models to model individual 
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brains ( Gordon,  Laumann,  Adeyemo,  Gilmore,  et al.,  2017; 
 Harrison  et al.,  2015;  Kong  et al.,  2019;  Wang  et al.,  2015). 
In these models, the cortical topographies of the spatial 
units in an individual are allowed to differ from the group 
template, in order to account for inter- individual variations 
in brain functional organization ( Gordon,  Laumann, 
 Adeyemo,  &  Petersen,  2017;  Gratton  et al.,  2018;  Laumann 
 et al.,  2015). Individualized models help disentangle differ-
ent sources of inter- individual variation ( Bijsterbosch  et al., 
 2018,  2019), and improve brain- behavior predictions 
( Kashyap  et al.,  2019;  Kong  et al.,  2021).

Given this feature aggregation, coarse- grained mod-
els focus on spatial units that are centimeters in scale. 
Modern fMRI data acquisition, however, usually has a 
spatial resolution of 2– 3 mm in each dimension, which is 
close to the spatial precision of blood- oxygen- level- 
dependent (BOLD) signal acquired at 3  T ( Engel  et  al., 
 1997;  Parkes  et  al.,  2005). This fine spatial resolution 
affords access to the rich information encoded in fine- 
grained vertex- by- vertex and voxel- by- voxel spatial pat-
terns ( Haxby  et  al.,  2001,  2014;  Huth  et  al.,  2016; 
 Kriegeskorte  &  Kievit,  2013). This information can be 
used to decode brain responses to different object cate-
gories ( Haxby  et al.,  2001), and also different exemplars 
of the same category, such as different face identities or 
different views of the same face ( Guntupalli  et al.,  2017; 
 Visconti di Oleggio Castello  et al.,  2017,  2021). Individual 
differences in fine- grained responses and connectivity 
are much more reliable than their coarse- grained coun-
terparts ( Feilong  et  al.,  2018). Fine- grained functional 
connectivity captures what information is exchanged 
between regions instead of how much information is 
exchanged, providing a twofold increase in accuracy in 
predicting intelligence ( Feilong  et al.,  2021).

In this work, we present the individualized neural tuning 
(INT) model, a fine- grained individualized model of brain 
functional organization that has three key features. First, 
the INT model has vertex- level granularity, which provides 
access to the rich information encoded in fine- grained 
spatial patterns. Second, it models each individual’s 
unique representational geometry as well as the corre-
sponding topographic organization in cortex, and thus 
affords study of both functional and topographic differ-
ences. Third, the INT model decomposes responses into 
stimulus information, as defined by neural responses that 
are shared across brains, and response tuning functions 
that model individual- specific fine- grained responses to 
any stimulus. Therefore, the INT model affords study of 
individual differences in neural response tuning that are 
independent of stimulus information (Fig. 1).

Using two rich fMRI datasets collected during movie- 
watching, we demonstrate that our INT model of brain 
functional architecture has remarkable reliability and 
validity. Specifically, we show that: (a) two estimates of 
an individual’s model of brain function are highly similar 
based on independent data, but distinctive for different 
individuals; (b) the model can predict idiosyncratic pat-
terns of brain responses to novel stimuli, including object 
categories and retinotopic localizers; (c) the model cap-
tures information encoded in fine- grained spatial pat-
terns and can differentiate response patterns to different 
movie time points (TRs); and (d) the model works well 
with small amounts of movie data but continuously 
improves with more data. Together, these results demon-
strate that our INT model predicts idiosyncratic fine- 
grained functional organization of the brain with high 
sensitivity and specificity.

2. RESULTS

2.1. Estimating the individualized neural tuning model

Here, we briefly describe the individualized neural tuning 
(INT) model in order to build a high- level intuition for how 
the model is constructed; see the “Methods” section for 
a more detailed mathematical treatment. Brain responses 
to external stimuli, such as movies, are broadly similar 
across individuals after anatomical alignment of cortical 
features and show much stronger similarity after the 
information contained in idiosyncratic fine- grained pat-
terns is projected into a common model information 
space using hyperalignment ( Guntupalli  et  al.,  2016, 
 2018;  Hasson  et al.,  2004,  2010;  Haxby  et al.,  2011,  2020; 
 Nastase  et al.,  2019). A substantial amount of an individ-
ual’s responses can be explained by these commonali-
ties. Still, individuals differ from the common space and 
from each other, even though these differences are 
smaller in scale than the commonalities ( Feilong  et  al., 
 2018). Therefore, it is critical to ensure that our model 
captures the idiosyncrasies of each individual’s brain 
functional organization, as well as the shared responses 
across individuals.

The goal of the INT model is to re- represent the brain 
data matrices B(p) acquired for each individual in a way 
that captures precise, individualized vertex- level func-
tional architecture and supports out- of- sample predic-
tion across both individuals and stimuli. First, we 
construct a common functional template M across all 
training participants to serve as a target for functional 
alignment based on all training participants’ data using a 
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searchlight- based algorithm. Next, we estimate a linear 
transformation W(p) for each participant, using ensemble 
ridge regression, that maps between their idiosyncratic 
functional architecture and the functional template M. 
Unlike previous implementations of hyperalignment that 
employed Procrustes- based rotations to resolve topo-
graphic idiosyncrasies while preserving representational 
geometry, here we estimate a linear transformation that 
captures individual differences in both representational 
geometry and cortical topography. Finally, we convert the 
model- estimated brain data, MW(p), into a more compact 
shared stimulus matrix S, with orthogonal feature dimen-
sions, and an individualized tuning matrix T(p) (Fig. 1). This 
decomposition factors the stimulus- specific temporal 
structure of the movie into S, represented as a collection 
of basis functional profiles shared across vertices and 
individuals. The individual- specific tuning matrices T(p) 
can be estimated with independent data using different 
stimuli. The T(p) matrices capture individual differences in 
functional tuning— modeling idiosyncrasies in both repre-
sentational geometry and cortical topography.

2.2. Modeling individualized brain functional organization

To assess how well our model captures individual- specific 
brain functional organization, we evaluated the within- 
subject similarities and between- subject similarities of 
the modeled tuning matrices (T). For each of the n partic-
ipants, we divided the movie data into two parts, and 
computed a tuning matrix independently for each movie 
part. Therefore, we obtained estimates of n tuning matri-
ces based on the first part of the movie, and an indepen-
dent set of n estimated tuning matrices based on the 
second part. Then, we computed an n  ×  n matrix of 
cross- movie- part similarities, where each row corre-
sponds to a tuning matrix based on the first part, and 
each column corresponds to a tuning matrix based on 
the second part. Each entry in the matrix quantifies the 
cross- movie- part similarity of tuning matrices within- 
subject (diagonal entries) and between- subject (off- 
diagonal entries) (Fig. 2A). For both datasets, the similarity 
matrix had a clear diagonal, indicating that the within- 
subject similarities were much higher than the between- 
subject similarities. When all the tuning matrices were 

Fig. 1. Estimating a shared stimulus matrix and individualized tuning matrices. (A) The individualized neural tuning (INT) 
model decomposes the brain response data matrix B(p) (shaped t × v, where t is the number of time points and v is the 
number of cortical vertices) of participant p into a shared stimulus matrix S (t × k, where k is the number of stimulus features) 
and an individualized tuning matrix T(p) (k × v, the number of stimulus features by the number of cortical vertices). Temporal 
information capturing how the stimulus changes over time is factored into S; each row of S is a time point in the stimulus, 
and each column of S is a basis response profile shared across individuals and vertices. Each column of T(p) is a vector of k 
elements describing the response tuning function of a cortical vertex over basis response profiles. (B) If we divide the brain 
responses matrix B(p) into several parts (i.e., responses to different stimuli), each part can be modeled as part of the matrix 
S multiplied by the same T(p). In other words, T(p) models neural response tuning in a way that generalizes across stimuli. 
Moreover, the same T(p) can be estimated from different parts of B(p) (e.g., two halves of a movie B(p,1) and B(p,2)) by using the 
corresponding parts of S (S(1) and S(2)). (C) After obtaining T(p), it can be used to predict the participant’s responses to new 
stimuli B(p,new) using the corresponding S(new) matrix, which can be estimated from other participants’ data.
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Fig. 2. Modeling individual- specific brain functional organization. (A) For each movie part, we obtained n tuning 
matrices, one for each participant, which describes the participant’s response tuning functions. The cross- movie- 
part similarities form an n × n matrix, where rows are tuning matrices based on the first movie part, and columns the 
second movie part; the colored legends at left and top index individual participants. The obvious diagonal indicates 
that within- subject similarities were much higher than between- subject similarities. (B) Multi- dimensional scaling (MDS) 
projection of the 2n matrices onto a 2- D plane. Two dots of the same color denote two estimates of the tuning matrix 
for the same participant, as in (A). Dots from the same participant clustered together. (C) The distribution of within-  
and between- subject tuning matrix similarities, sorted by within- subject similarity. For each tuning matrix, the within- 
subject similarity always exceeded between- subject similarities. (D) We computed a distinctiveness index for each 
tuning matrix based on the difference between within-  and between- subject similarities. The distinctiveness index is 
based on Cohen’s d and, therefore, measures effect size. Based on the distinctiveness index, we estimate the error 
rate for individual identification (bottom). (E) Local functional distinctiveness based on a searchlight analysis (20 mm 
radius), averaged across all participants for each dataset. Extensive occipital, temporal, and lateral prefrontal cortices 
showed high distinctiveness.
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projected to a 2- D plane using multi- dimensional scaling 
(MDS), matrices from the same participant were close 
together, whereas matrices from different participants 
were clearly separated (Fig. 2B).

For every tuning matrix, within- subject similarities 
(Forrest: r = 0.798 ± 0.044 [mean ± SD]; Raiders: r = 0.778 
± 0.076) were higher than between- subject similarities 
(Forrest: r = 0.542 ± 0.037; Raiders: r = 0.503 ± 0.057) 
(Fig. 2C). Simple nearest- neighbor identification of partic-
ipants based on their tuning matrices performs at 100% 
accuracy. To better assess the distinctiveness of each 
tuning matrix, we computed a distinctiveness index 
based on Cohen’s d (Fig. 2D). This distinctiveness index 
measures the difference between the within- subject sim-
ilarity and between- subject similarities of a tuning matrix 
using the standard deviation of the distribution as a unit. 
For example, Cohen’s d = 5 means that the within- subject 
similarity is 5 standard deviations greater than the aver-
age between- subject similarity. On average across par-
ticipants, the distinctiveness index was 12.92 for the 
Forrest dataset, and 9.67 for the Raiders dataset, indicat-
ing that the individual- specific tuning matrices were 
highly distinctive. The distinctiveness index was com-
puted based on Fisher- transformed correlation similari-
ties, which approximately follow a normal distribution. 
Therefore, the identification error rate can be estimated 
based on the distinctiveness index using the cumulative 
distribution function of the distribution, which was 
1.73 × 10- 38 for d = 12.92, and 2.1 × 10- 22 for d = 9.67. 
These small identification error rates make the INT model 
a useful method for individuation in addition to functional 
connectivity ( Finn  et al.,  2015) and forensic DNA analysis 
( Kloosterman  et al.,  2014).

The results so far are based on the entire tuning matrix, 
which comprises response tuning functions of all cortical 
vertices. Which part of the brain has the most distinctive 
responses across individuals? To answer the question, we 
performed a searchlight analysis with a 20 mm radius and 
computed the average distinctiveness index across par-
ticipants for each searchlight (Fig. 2E). Extensive occipital, 
temporal, and lateral prefrontal cortices showed high dis-
tinctiveness, with estimates of Cohen’s d exceeding 10 in 
lateral and ventral occipital and temporal cortices. Even in 
brain regions that do not respond strongly to external 
stimuli, such as medial prefrontal cortex, our model can 
still capture idiosyncratic response tuning functions.

To summarize, our model of brain functional organiza-
tion is highly specific to each individual. For both datasets, 
within- subject similarities of modeled tuning matrices were 
several standard deviations higher than between- subject 

similarities. Our model also captures idiosyncrasies in 
local response tuning functions throughout the cortex, 
excluding somatosensory and motor regions. Individual 
differences were most prominent in occipital and temporal 
regions, and reliable individual differences were also found 
in parietal and prefrontal regions.

2.3. Predicting category- selectivity and retinotopic maps

To assess whether the modeled tuning matrix accurately 
reflects a participant’s brain functional organization, we 
examined to what extent it can predict brain responses to 
new stimuli. Specifically, we examined whether our model 
trained with movie data could accurately predict 
category- selectivity maps and retinotopic maps in a 
leave- one- subject- out cross- validation analysis.

2.3.1. Predicting category- selectivity maps

Both the Forrest dataset and the Raiders dataset had 4 
object category localizer runs, which were based on 
static images for Forrest, and dynamic videos for Raid-
ers. Taking the “faces” category as an example, we 
computed a face- selectivity map for each participant 
and each run, which was the contrast between faces 
and all other categories. Due to measurement noise, the 
four maps generated for each individual participant (one 
for each run) differ from one another (Fig.  3B and 3C 
bottom rows). We averaged the four maps for each par-
ticipant to reduce noise and used the average map as 
the localizer- based map for that participant. Based on 
the similarity between these four maps, we computed 
the Cronbach’s alpha coefficient for each participant, 
which estimates the reliability of the average map. That 
is, if we were to scan the participant for another four 
localizer runs and correlate the new average map with 
the current average map, the expected correlation 
would be Cronbach’s alpha.

For each cross- validation fold, we divide the data into 
n−1 training participants and a test participant. To estimate 
the stimulus descriptors for the target object category 
(e.g., S(faces)), we trained a regression model to predict the 
localizer- based maps for the training participants (depen-
dent variables) from their tuning matrices (T) (independent 
variables). The resultant S(faces) vector contains the coeffi-
cients derived from the regression model. T was estimated 
from the independent movie data for each participant  
and applied to this analysis. Then, we computed the prod-
uct of the S(faces) vector of coefficients and the test partici-
pant’s tuning matrix (T) to estimate the test participant’s 
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face- selectivity map. We evaluated the quality of this pre-
dicted localizer map by computing the correlation between 
the model- based map and the test participant’s actual 
localizer map based on their own localizer data.

For both datasets, the localizer- based and model- 
predicted face- selectivity maps were highly correlated  

(Forrest: r  =  0.618  ±  0.089 [mean  ±  SD], Raiders: 
r = 0.716 ± 0.074), and the correlations were higher than our 
previous state- of- the- art hyperalignment model with the 
same dataset ( Jiahui  et al.,  2020). Across all participants, 
the average Cronbach’s alpha was 0.606 ± 0.126 for For-
rest, and 0.764 ± 0.089 for Raiders. For approximately a 

Fig. 3. Predicting category- selectivity maps of individual participants. (A) Face- selectivity map of an example participant 
and a zoomed- in view focusing on right ventral temporal cortex. (B) The localizer- based (top) and model- predicted (middle) 
face- selectivity maps for two example participants from the Forrest dataset. Each localizer- based map was the average of 
four maps, one from each localizer run. Individual maps for each localizer run are shown at bottom. (C) Face- selectivity maps 
of two example participants from the Raiders dataset. (D) Similarity of each participant’s localizer- based face- selectivity 
map to the participant’s own predicted map (green) and to other participants’ predicted maps (orange). Cronbach’s alpha 
(purple) for each participant was calculated based on the similarity of the four localizer runs and is shown as a reference. 
(E) Cronbach’s alpha (purple), within- subject correlation (green), and between- subject correlation (orange) for all category- 
selectivity maps. Error bars are standard errors of the mean. For both datasets, the within- subject correlations were similar 
to, and sometimes higher than Cronbach’s alpha. Between- subject correlations were much lower, suggesting that our 
prediction models were able to capture each participant’s idiosyncratic category- selectivity topographies.
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third of the participants (Forrest: 6 out of 15, 40%; Raiders: 
6 out of 20, 30%), the correlation exceeded the Cronbach’s 
alpha of localizer- based maps. In other words, for these 
participants, the predicted maps based on our model were 
more accurate than the maps based on a typical localizer 
scanning session comprising four runs.

Besides the high accuracy, the model- predicted maps 
were also highly specific to each individual (See Fig. 3B 
and 3C for examples). The correlation between one par-
ticipant’s localizer- based map and another participant’s 
model- predicted map (orange circles in Fig. 3D; Forrest: 
0.337 ± 0.071; Raiders: 0.384 ± 0.062) was always lower 
than the correlation with own model- predicted map 
(green circles in Fig. 3D). This indicates that our model 
accurately predicts the idiosyncratic topographies of 
each participant’s category- selectivity map. See Supple-
mentary Figs. S8 and S9 for measured and predicted 
face-selectivity maps for every participant.

We replicated our analysis for all other categories 
and found similar results (Fig.  3E; Table  1). For all 
object categories and both datasets, the within- subject 
similarity (correlation between own localizer- based 
map and own model- predicted map) was numerically 
similar to Cronbach’s alpha and much larger than 
between- subject similarities (correlation between each 
participant’s localizer- based map and others’ model- 
predicted maps).

2.3.2. Predicting retinotopic maps

We examined whether our model can accurately predict 
eccentricity and polar angle maps based on the retino-
topic data of the Forrest dataset. Similar to category- 
selectivity maps, we trained our model using the movie 
data and used it to predict retinotopic maps based on 
leave- one- subject- out cross- validation. Note that each 
retinotopic map, eccentricity and polar angle, has two 
components: an amplitude map, which measures to what 
extent a cortical vertex responds to retinotopic stimuli, 
and a phase map, where the phase is associated with 
eccentricity or polar angle. For the eccentricity map, the 
phase is 0° for the center of the visual field, and 360° for 
the most peripheral part. For the polar angle map, the 
phase is 0° and 180° for the upper and lower vertical 
meridians, and 90° and 270° for the right and left horizon-
tal meridians.

The model- predicted maps for each participant resem-
ble the corresponding localizer- based maps, and they 
capture the idiosyncratic features of each map well (Fig. 4A 
and 4B). To quantify these similarities, we assessed the 
similarity of amplitude maps and phase maps separately.

Each retinotopic map (e.g., an eccentricity map) was 
based on a standard univariate analysis of two runs 
where the stimuli were displayed in reversed order (e.g., 
expanding rings and contracting rings), and an amplitude 

Table 1. Summary of model performance in predicting object category selectivity maps.

The Forrest dataset

Category Cronbach's alpha
Within- subject  

similarity
Between- subject  

similarity
(within > between) 

%
(within > alpha) 

%

Bodies 0.756 ± 0.073 0.759 ± 0.041 0.482 ± 0.037 100% 40.0%
Faces 0.606 ± 0.126 0.618 ± 0.089 0.337 ± 0.064 100% 40.0%
Houses 0.653 ± 0.128 0.669 ± 0.106 0.412 ± 0.070 100% 46.7%
Objects 0.485 ± 0.153 0.540 ± 0.079 0.353 ± 0.058 100% 60.0%
Scenes 0.681 ± 0.107 0.721 ± 0.063 0.483 ± 0.040 100% 53.3%
Scrambled 0.608 ± 0.096 0.615 ± 0.070 0.427 ± 0.051 100% 60.0%

The Raiders dataset

Category Cronbach's alpha
Within- subject  

similarity
Between- subject 

similarity
(within > between) 

%
(within > alpha) 

%

Bodies 0.758 ± 0.083 0.749 ± 0.056 0.493 ± 0.042 100% 45.0%
Faces 0.764 ± 0.089 0.716 ± 0.074 0.384 ± 0.051 100% 30.0%
Objects 0.604 ± 0.113 0.652 ± 0.077 0.390 ± 0.061 100% 65.0%
Scenes 0.796 ± 0.061 0.771 ± 0.043 0.500 ± 0.034 100% 30.0%
Scrambled 0.730 ± 0.096 0.671 ± 0.089 0.461 ± 0.057 100% 40.0%

All contrasts were based on the target category versus all others. The format for Cronbach’s alpha and similarities is mean ± standard 
deviation.
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map and a phase map were obtained from each run. For 
each participant, we compared the similarity of these two 
amplitude maps and estimated Cronbach’s alpha. The 
mean (± standard deviation) for Cronbach’s alpha was 
0.701 ± 0.047 for the eccentricity map, and 0.663 ± 0.069 

for the polar angle map. We also compared the similarity 
between the localizer- based amplitude map (average of 
the two runs) and the model- predicted map. On average 
across all participants, the similarity was 0.774 ± 0.027 
for the eccentricity map, and 0.746 ± 0.049 for the polar 

Fig. 4. Predicting retinotopic maps of individual participants. (A) The localizer- based (upper) and model- predicted (lower) 
left hemisphere eccentricity and (B) polar angle maps for five example participants. (C) Similarity of each participant’s 
localizer- based amplitude map (i.e., to what extent a vertex responds to retinotopic stimuli) to the participant’s own 
predicted map (green), other participants’ predicted maps (orange), and its Cronbach’s alpha (purple). (D) The average 
phase difference in early visual areas between the participant’s two retinotopic runs (e.g., expanding and contracting 
rings; purple), between the participant’s localizer- based map and own model- predicted map (green), and between the 
participant’s localizer- based map and other participants’ predicted maps (orange). In both (C) and (D), participants are 
sorted along the x- axis according to within- subject similarity (green). Note that we inverted the y- axis in (D) because 
smaller differences indicate higher similarity.
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angle map. Note that for every participant the similarity 
was higher than Cronbach’s alpha, which means the 
model- predicted amplitude map is more accurate than 
the localizer- based map. The similarity between a partic-
ipant’s localizer- based map with the participant’s own 
model- predicted map is higher than with others’ model- 
predicted maps (eccentricity: 0.682 ± 0.029; polar angle: 
0.635  ±  0.054), indicating that the model- predicted 
amplitude map is individual- specific.

To assess the quality of the phase maps, we computed 
the absolute value of the phase difference in early visual 
areas (V1, V2, V3, and V4; ( Glasser  et al.,  2016)) between 
two retinotopic runs, between the localizer- based map 
and the participant’s own model- predicted map, and 
between one participant’s localizer- based map and others’ 
model- predicted maps. Note that the phase is circular, and 
thus the difference between 360° and 1° is the same as 1° 
and 2°. On average across participants, the average phase 
difference between a participant’s localizer- based and 
model- predicted maps was 39.1° ±  4.8° for eccentricity 
maps, and 41.5° ± 6.0° for polar angle maps. This differ-
ence was smaller than the difference between two local-
izer runs (eccentricity: 43.7° ± 6.0°; polar angle: 48.2° ± 7.7°) 
and the difference with others’ model- predicted maps 
(eccentricity: 53.9° ± 6.9°; polar angle: 52.3° ± 4.7°). The 
average phase difference for random data would be 90°.

For both category- selectivity maps and retinotopic 
maps, our model can accurately predict individualized 
maps with high fidelity and high specificity. See Supple-
mentary Fig. S10 for measured and predicted retinotopic 
maps for every participant. The quality of the model- 

predicted maps was similar to or higher than that of maps 
derived from actual localizer data. These results demon-
strate that the modeled response tuning functions are not 
only individualized and reliable across independent data, 
but also can accurately predict responses to new stimuli.

2.4. Predicting brain responses to the movie

The previous analyses show that our model accurately 
predicts brain responses for category- selectivity and ret-
inotopic maps. These maps reflect coarse- grained func-
tional topographies of the brain: they are relatively 
spatially smooth, and neighboring vertices on the cortex 
(especially vertices in the same brain region) have similar 
category- selectivity or adjacent receptive fields. In the 
analysis below, we examine whether our model can 
accurately predict fine- grained functional topographies; 
that is, the vertex- by- vertex spatial patterns which vary 
substantially even within a brain region. Rich visual, audi-
tory, and social information is encoded in fine- grained 
spatial patterns of response ( Haxby  et al.,  2014). Specifi-
cally, we trained our model using half of the movie data 
and predicted the other half.

We used a leave- one- subject- out cross- validation to 
evaluate the performance of our INT model. We derived 
the tuning matrix T of the test participant based on the 
first half of the participant’s movie data, and combined it 
with S(2) (the part of S for the second part of the movie, 
derived from the training participants’ data) to predict 
the test participant’s responses to the second part of the 
movie. The response pattern at each time point (i.e., TR) 

Fig. 5. Predicting brain response patterns to movie time points (TRs). (A) The similarities between measured and 
predicted brain response patterns for the first 100 time points of an example Forrest participant (the full matrices for 
Forrest and Raiders contain 1818 and 1680 time points, respectively). The red diagonal indicates that the model- predicted 
response pattern at each time point was highly similar to the actual response pattern for the corresponding time point. The 
response patterns were based on 150 principal components (PCs) reduced from all cortical vertices. (B) The similarities 
between measured response patterns of one participant and predicted patterns of another. The less obvious diagonal 
suggests that our model predicted both the shared functional topographies (which generalize across participants) 
and each participant’s idiosyncratic functional topographies (which does not generalize across participants). (C) The 
distribution of response pattern similarities across participants and time points. When the measured and the predicted 
patterns were for the same time point of the movie, the average within-  and between- subject similarities were 0.356 and 
0.211, respectively, for the Forrest dataset, and 0.408 and 0.209, respectively, for the Raiders dataset. Cross- time- point 
similarities were centered around 0. This indicates that the predicted movie response patterns were highly specific to 
both the participant and the time point. (D) Binary (2- alternative forced choice) movie time point classification based on 
a nearest- neighbor classifier and pattern similarities. The within- subject accuracy peaked at 99.0% for Forrest (180 PCs) 
and 98.6% for Raiders (250 PCs), and it was fairly robust across the number of PCs. The peak between- subject accuracy 
was 95.2% (50 PCs) and 94.1% (60 PCs), respectively. (E) Multiclass movie time point classification. The number of 
choices was 1818 for Forrest and 1680 for Raiders, and chance accuracy was less than 0.1% for both datasets. The peak 
within- subject accuracy was 51.9% for Forrest (190 PCs) and 44.8% for Raiders (220 PCs), and the peak between- subject 
accuracy was 20.1% for Forrest (90 PCs) and 15.8% for Raiders (80 PCs). (F and G) Searchlight binary classification. The 
accuracy was high for much of the cortex for both datasets, with the highest accuracies in temporal and occipital regions.
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of the movie comprises 18,742 values, one for each  
cortical vertex. Similar to our previous work ( Guntupalli 
 et al.,  2016), we trained a principal component analysis 
(PCA) based on the first half of the movie to reduce 
dimensionality from 18,742 vertices to a few hundred 
principal components (PCs) and projected responses to 
the other half of the movie onto these PCs. Analysis of 
whole- brain spatial patterns of response was based on 
these normalized PCs.

The model- predicted response patterns for the movie 
were highly specific to both the time point and the partic-
ipant. Note that these model- predicted patterns are 
based on other participants’ neural responses projected 

into the native, fine- grained cortical topography of the 
left- out test participant’s brain. The predicted pattern for 
a certain time point for a left- out test participant’s brain 
was much more similar to the measured response pat-
tern to the same time point in that participant’s brain 
(Fig.  5A diagonal) than responses to other time points 
(Fig. 5A off- diagonal). The average correlation similarity 
between predicted and measured response patterns for 
the same time point was 0.356 for the Forrest dataset, 
and 0.408 for the Raiders dataset, whereas the average 
similarity between predicted and measured patterns from 
different time points was close to 0 for both datasets. For 
the same time point, the measured response patterns 
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were more similar to predicted patterns in a participant’s 
native space than to predicted patterns in other partici-
pants’ native spaces (Fig. 5B diagonal). The average sim-
ilarity of the same time point for different participants was 
0.211 for the Forrest dataset, and 0.209 for the Raiders 
dataset (Fig. 5C).

Considering the similarity between measured and pre-
dicted response patterns, we assessed whether we could 
classify which time point of the movie the participant was 
viewing based on these patterns. We performed the clas-
sification analysis using a one- nearest- neighbor classifier 
in two different ways. First, we used binary classification 
(2- alternative forced choice); that is, we compared the 
measured response pattern for one time point with the 
predicted patterns for the same single time point paired 
with each other time point to determine which pair is 
more similar, and then averaged across all pairs, resulting 
in a chance accuracy of 50%. Second, we used multi-
class classification; that is, whether the similarity with the 
same time point is higher than with all other time points. 
The number of time points was 1818 for Forrest and 1680 
for Raiders, resulting in a multiclass chance accuracy 
less than 0.1% for both datasets. We varied the number 
of PCs used in the analysis from 10 to 300 with an incre-
ment of 10 and repeated the analysis at each number of 
PCs. For binary classification, the accuracy peaked at 
99.0% for Forrest (180 PCs) and 98.6% for Raiders (250 
PCs) (Fig.  5D). For multiclass classification, the peak 
accuracy was 51.9% for Forrest (190 PCs) and 44.8% for 
Raiders (220 PCs) (Fig. 5E). Note that these classification 
results are robust against the number of PCs used, and 
the accuracy was stable with 100– 300 PCs for both 
approaches and both datasets.

The response patterns of different participants’ share 
some similarities (Fig. 5C, dark orange), and we were able 

to classify which time point one participant was viewing 
based on the predicted patterns in another participants’ 
native space to some extent. For the binary classification 
analysis, the peak accuracy was 95.2% for Forrest (50 
PCs) and 94.1% for Raiders (60 PCs) (Fig.  5D, orange 
lines). For the multiclass classification analysis, the peak 
accuracy was 20.1% for Forrest (90 PCs) and 15.8% for 
Raiders (80 PCs) (Fig.  5E, orange lines). Note that the 
classification accuracy for mismatching participants 
drops dramatically after peaking at 50– 90 PCs, whereas 
the classification accuracy for the matching participant 
monotonically improves until the number of PCs is 
roughly 200. This suggests that a considerable amount of 
the information in our model- predicted response patterns 
are specific to the test participant.

To localize cortical areas where the fine- grained pat-
terns are most accurately predicted, we performed a 
searchlight analysis (20  mm radius) with the binary 
classification approach. Due to the limited number of 
vertices in each searchlight, we performed the classifi-
cation analysis without dimensionality reduction. We 
found that the accuracy was highest for visual, audi-
tory, and corresponding association cortices (Fig.  5F 
and G) with significant classification across almost all 
of the cortex.

2.5. Model performance with less data

The datasets used so far in this work comprise relatively 
long- duration movie- watching fMRI acquisitions (Forrest: 
120 minutes; Raiders: 56 minutes), which may not be fea-
sible for every fMRI experiment due to limited scanning 
resources. How well does our INT model work with 
smaller amounts of movie data? To address the question, 
we systematically manipulated the amount of movie data 

Fig. 6. Effect of data volume on model performance. (A) Effect of data volume on the distinctiveness of an individual’s 
tuning matrix (cf. Fig. 2D). With 10 minutes or more movie data, the within- subject similarity of tuning matrices was 
more than 6 standard deviations away from between- subject similarities on average, corresponding to a participant 
identification error rate of less than 1/109. (B) Effect of data volume on the distinctiveness of local tuning matrices  
(cf. Fig. 2E). Different lines denote different percentiles across searchlights, from an average searchlight (50th percentile) to 
a highly distinctive searchlight (99th percentile). (C) Predicting face- selectivity map with lower volumes of movie data  
(cf. Fig. 3C). Face- selectivity maps can be accurately predicted with 20 minutes of movie data, but the prediction 
performance continues to grow with more data. Based on psychometrics and the quality of predicted maps, we estimated 
the amount of localizer data needed to achieve a similar quality (right panel). For the Forrest dataset, 30 minutes of movie 
data works better than standard localizers (21 minutes). Dashed horizontal lines indicate Cronbach’s alpha (left panel) or 
the actual duration of localizer scans (right panel). (D) Predicting retinotopic maps based on less movie data (cf. Fig. 4C).  
(E) Quality of predicted response patterns for movie time points based on a model estimated from varying volumes of data 
(classification accuracy; cf. Fig. 5C and 5D). Binary classification results on the left panel; multiclass results on the right 
panel. Both were based on 100 PCs. To summarize, the performance of our model continuously grows with more training 
data, but for certain tasks (e.g., individual identification, predicting category- selectivity and retinotopic maps), only a small 
amount of movie data (e.g., 30 minutes) is needed to achieve satisfying performance.
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for the test participant and assessed our model perfor-
mance for key benchmarking indices. For the Forrest 
dataset, the durations were 5, 10, 15, 20, 30, 40, 50, 60, 
and 120 minutes; for the Raiders dataset, the durations 
were 5, 10, 15, 20, 28, and 56 minutes. Depending on the 

analysis, up to half of the movie data (60 and 28 minutes, 
respectively) or the entire movie dataset was used.

With more movie data used for estimating a tuning 
matrix, the distinctiveness of that modeled tuning matrix 
increased monotonically (Fig.  6A). With 10  minutes or 
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more movie data, the average Cohen’s d was more than 
6, which means within- subject similarity of tuning matri-
ces exceeded between- subject similarities by more than 
6 standard deviations on average. Given that Fisher- 
transformed correlation similarities are approximately 
normally distributed, the chance of a between- subject 
similarity exceeding the within- subject similarity was less 
than 10- 9. In other words, if we were to identify an average 
individual using the tuning matrix based on 10 minutes of 
movie data, the error rate would be less than 10- 9.

We observed a similar effect of data volume on func-
tional distinctiveness in local brain areas based on a 
searchlight analysis (Fig. 6B). The distinctiveness based 
on movie responses differs inherently across brain regions 
and is highest in temporal and occipital regions and low-
est in somatosensory and motor regions (Fig. 2E). There-
fore, instead of a simple average value, we assessed key 
percentiles of the distribution. Specifically, we assessed 
the effect of data volume on the 50th, 80th, 90th, 95th, and 
99th percentiles of the distribution, representing local brain 
areas with low to high distinctiveness. With 15 minutes of 
movie data, the Cohen’s d for the 95th percentile was 5.83 
for the Forrest dataset and 7.19 for the Raiders dataset.

The prediction performance for face- selectivity maps 
also increases with more movie data (Fig. 6C). For the For-
rest dataset, the correlation between localizer- based and 
model- predicted maps was 0.557, 0.592, 0.610, and 0.618 
for 15, 30, 60, and 120 minutes of movie data, respectively. 
For the Raiders dataset, the similarity was 0.684, 0.702, 
and 0.716 for 15, 28, and 56 minutes of data, respectively. 
Note that for the Forrest dataset, the similarity sometimes 
exceeded Cronbach’s alpha, which means the model- 
predicted map is more accurate than a map based on four 
localizer runs (21 minutes). The quality of localizer- based 
maps increases with more localizer data, which can be 
estimated using the Spearman– Brown prediction formula 
( Brown,  1910;  Spearman,  1910). Based on Cronbach’s 
alpha and the Spearman– Brown prediction formula, we 
estimated the amount of localizer data needed to achieve 
similar accuracy as our model. For the Forrest dataset, the 
maps predicted by 15, 30, 60, and 120 minutes of movie 
data were as accurate as 17.0, 22.4, 26.2, and 30.1 min-
utes of localizer data, respectively. For the Raiders data-
set, the maps predicted by 15, 28, and 56  minutes of 
movie data were as accurate as 9.7, 11.4, and 12.8 min-
utes of localizer data, respectively.

Note that brain responses to movies contain richer 
information than traditional experimental paradigms. 
Besides the face- selectivity map, many different maps can 
be estimated using the same movie data, such as retino-

topic maps. With 15, 30, 60, and 120 minutes of Forrest 
data, the correlations between localizer- based and model- 
predicted amplitude maps were 0.744, 0.759, 0.766, and 
0.774, respectively, for the eccentricity map; and 0.717, 
0.732, 0.740, and 0.746, respectively, for the polar angle 
map (Fig. 6D). These similarities were much higher than 
the corresponding Cronbach’s alpha values. Based on the 
Spearman– Brown prediction formula, the quality of the 
predicted maps was equivalent to 22.1, 27.7, 31.4, and 
35.8 minutes of retinotopic scans, respectively.

The prediction performance for fine- grained response 
patterns to the movie also increases with the amount of 
movie data (Fig. 6E). For the Forrest dataset, the accu-
racy for binary time point classification was 98.1%, 
98.6%, and 98.9% for 15, 30, and 60 minutes of training 
movie data, respectively. For multiclass classification, the 
accuracy was 37.3%, 44.8%, and 50.3%, respectively. 
Similar results were observed for the Raiders dataset, 
where the binary classification accuracy was 98.1% and 
98.5% for 15 and 28  minutes of training movie data, 
respectively, and the multiclass classification accuracy 
was 38.8% and 43.1%, respectively.

To sum up, the performance of our model grows con-
tinuously with more data. For certain tasks (e.g., individ-
ual identification, predicting retinotopic maps), 10 to 
20 minutes of movie data might be sufficient to achieve 
satisfying performance. Additional data will further 
improve the performance of our model, at least up to the 
typical duration of a feature film (2 hours). Besides the 
amount of data for the test participant, using more data 
to build the template also increases the performance of 
these tasks (Supplementary Fig. S7).

3. DISCUSSION

In this work, we present an individualized model of fine- 
grained brain functional organization. Through a series of 
analyses, we demonstrate that (a) the individualized tun-
ing functions recovered by our model for each person are 
highly reliable across independent data; (b) our model 
can accurately predict an individual’s topographic brain 
responses to new stimuli, such as object categories and 
retinotopic localizers; (c) our model accurately predicts 
fine- grained response patterns to movies, which can be 
used to distinguish different time points (TRs) of the 
movie; and (d) the performance of our model continu-
ously improves with more training data. Besides high reli-
ability and high prediction accuracy, our model also 
shows high specificity— the predicted responses tuned 
to a given individual are much more similar to the actual 
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responses for that person than the predicted responses 
tuned to other individuals. Different from previous area- 
level individualized models ( Gordon,  Laumann,  Adeyemo, 
 Gilmore,  et al.,  2017;  Harrison  et al.,  2015;  Kong  et al., 
 2019;  Wang  et al.,  2015; see  Huth  et al.,  2016 for fine- 
tuning area- level models to fit individual vertices), the INT 
model is an individualized model of brain function that 
offers vertex- level (voxel- level for volumetric data) spatial 
resolution. That is, our INT model provides out- of- sample 
generalization to new participants at the quality and spa-
tial resolution of within- subject data acquisition.

Like most biological systems, the functional architec-
ture of the brain is “degenerate,” such that roughly the 
same information can be instantiated in structurally differ-
ent ways across different brains ( Edelman  &  Gally,  2001; 
 Haxby  et  al.,  2020). In this work, we used searchlight 
hyperalignment algorithms ( Guntupalli  et al.,  2016) to cre-
ate a functional template of brain responses based on the 
training participants. The template is a common, high- 
dimensional response space, and its column vectors 
(response time series of features) span the space of 
response time series across vertices and participants. We 
took advantage of this property and created a set of basis 
vectors, so that we could express the response time series 
of each vertex and each participant as a linear combina-
tion of the same set of basis vectors. These weights offer 
a way to directly compare the functional architecture of 
different participants and different vertices. Based on 
these weights, we created the individualized tuning matri-
ces that describe the brain functional organization of each 
participant, which can be used to accurately predict the 
participant’s idiosyncratic responses to various stimuli.

The present model provides a theoretical advance over 
previous hyperalignment algorithms by capturing not only 
topographic idiosyncrasies, but also inter- individual differ-
ences in representational geometry. The first component 
of the model introduces a new hyperalignment algorithm 
that we refer to as warp hyperalignment (WHA). WHA 
warps the representational geometry of one participant (or 
the template) to match the unique representational geom-
etry of another participant, and thus it captures both topo-
graphic idiosyncrasies and representational idiosyncrasies. 
The second component of the model derives individual-
ized tuning matrices in each participant’s native cortical 
topography from the WHA model, which we refer to as the 
individualized neural tuning (INT) model. In contrast to our 
earlier hyperalignment algorithms for creating a common 
model information space with individual transformation 
matrices calculated using the Procrustes algorithm (which 
preserves representational geometry) ( Busch  et al.,  2021; 

 Feilong  et al.,  2018,  2021;  Guntupalli  et al.,  2016,  2018; 
 Haxby  et al.,  2001,  2020;  Jiahui  et al.,  2020), WHA calcu-
lates transformations using ensemble regularized regres-
sion that allows for individualized representational 
geometries. Compared to classic Procrustes hyperalign-
ment, the INT model based on WHA can better predict 
individualized response time series, representational 
geometry, category- selectivity maps, retinotopic maps, 
and response patterns to the movie (Supplementary 
Figs. S1– S6). WHA also introduces a new way to calculate 
a template matrix M in a single step that more accurately 
reflects the central tendency for cortical topography and is 
not biased towards the topography of a “reference brain.” 
The common model space in our previous models, M, had 
as many dimensions as cortical vertices (approximately 
20,000 to 60,000). In the INT model, a change of basis 
from M to S recasts the common model space into a 
smaller orthogonal basis with approximately 3000 dimen-
sions. In our previous algorithms, we studied individual 
differences in responses and connectivity as residuals 
around shared content in the model space, M. In the INT 
model, by contrast, we model individual differences in the 
transformation matrices, T, which capture individual differ-
ences in both content and cortical spatial topography of 
functional patterns in participants’ native cortical topogra-
phies. Because individual differences in representational 
geometry are now contained in the individual transforma-
tion matrices, T, the new model space, S, is a neural data- 
driven stimulus matrix that is not confounded with 
individual differences in representational geometry. More-
over, comparable estimates of T can be calculated from 
responses to different stimuli, giving the INT model more 
flexibility in its application, as well as greater precision. In 
our previous algorithms, we performed between- subject 
classification of response patterns after projecting all par-
ticipants’ data into the common model space, M. In the 
INT model, we perform between- subject classification by 
comparing each test participant’s response pattern in their 
native space to response patterns from other participants 
projected into that test participant’s native space.

The INT model separates neural responses into 
stimulus- related information and stimulus- general neural 
tuning, which can be estimated separately. The stimulus- 
related information is represented as the stimulus matrix S, 
which is derived based on the neural responses of the 
training participants when the functional template is cre-
ated. After the functional template has been created, 
descriptors for additional stimuli can be estimated based 
on a subset of training participants for whom responses to 
the new stimuli are available. These descriptors for new 

Downloaded from http://direct.mit.edu/imag/article-pdf/doi/10.1162/imag_a_00032/2183252/imag_a_00032.pdf by guest on 08 January 2024



15

M. Feilong, S.A. Nastase, G. Jiahui et al. Imaging Neuroscience, Volume 1, 2023

stimuli extend the original stimulus matrix S, and they can 
be used to predict individualized responses to the new 
stimuli for the left- out test participants. For example, we 
built the functional template based on responses to the 
movie, estimated the stimulus descriptors for object cate-
gories and retinotopic localizers, and used these stimulus 
descriptors to estimate the category selectivity maps and 
retinotopic maps of left- out test participants. In other 
words, the original stimulus matrix S can be extended 
based on a subset of participants, provided that we have 
their neural responses to the new stimuli and their tuning 
matrices. On the other hand, the tuning matrix T of a new 
participant, which represents stimulus- general neural tun-
ing, can be accurately estimated with several minutes of 
movie data (Fig. 6). Therefore, our INT model makes it pos-
sible to accurately predict individualized, out- of- sample 
responses to a wide range of stimuli based on a rich nor-
mative functional template and a relatively small amount of 
fMRI data from a new participant.

A major objective of studying individual differences in 
brain functional organization is to build biomarkers that 
are associated with cognition, behavior, and disorders. 
Our model focuses on semi- shared components of 
brain functional organization and is ideal for this pur-
pose. By “semi- shared” we mean that the same compo-
nent exists in multiple brains but differs in amplitude 
and topography. These reliable variations across indi-
viduals may covary with phenotypes of interest and pro-
vide accurate biomarkers. A fully shared component, 
which is identical across brains, cannot covary with 
other variables by definition. A fully idiosyncratic com-
ponent that only exists in one brain, on the other hand, 
cannot be used to build generalizable models. For 
example, a specific component that only exists in one 
schizophrenic brain may be of interest for a case study 
but cannot be used to diagnose other schizophrenic 
individuals because it does not exist in other brains. Our 
model focuses on how the same set of components are 
instantiated in different forms across the functional 
organization of different brains. Given the large number 
of components (over 3000 in the current implementa-
tion) and observation that they vary across brains in a 
variety of ways, these semi- shared components provide 
a promising basis for developing biomarkers. Similar to 
our previous work ( Feilong  et  al.,  2018), brain regions 
that have the most shared and synchronized responses 
( Guntupalli  et al.,  2016;  Hasson  et al.,  2004,  2010) are 
also the regions showing the most reliable differences, 
suggesting the great potential of using semi- shared 
components to study individual differences.

In this work, we evaluated our model using two different 
movie datasets, both of which yielded highly similar results. 
The Forrest dataset was collected using a 3  T Philips 
Achieva dStream MRI scanner in Germany, with German- 
language audio, a TR of 2 seconds, and a spatial resolu-
tion of 3 mm. The Raiders dataset was collected using a 
3 T Siemens Magnetom Prisma MRI scanner in the US, 
with English- language audio, a simultaneous multi- slice 
acceleration factor of 4, a TR of 1 second, and a spatial 
resolution of 2.5 mm. Despite these differences, our model 
worked well for both datasets, suggesting it is robust over 
differences in scan parameters and other details. Recently, 
many large- scale neuroimaging datasets have become 
openly available ( Alexander  et al.,  2017;  Horien  et al.,  2020; 
 Nastase  et al.,  2021;  Snoek  et al.,  2021;  Taylor  et al.,  2017), 
and many have naturalistic movie- viewing sessions similar 
to our datasets. The synergy between our individualized 
model of brain function and large- scale neuroimaging 
datasets offers a great opportunity to study individual dif-
ferences in brain functional organization and their cor-
relates with various phenotypes.

In this work, we focused on neural response profiles to 
the movie. However, in theory, the algorithm itself can be 
applied to any kind of data matrices. In our previous 
hyperalignment algorithms, the searchlight procedure 
originally developed based on response profiles (RHA) 
( Feilong  et al.,  2018;  Guntupalli  et al.,  2016;  Haxby  et al., 
 2020;  Jiahui  et al.,  2020) has been applied successfully to 
connectivity profiles (CHA) ( Feilong  et al.,  2021;  Guntupalli 
 et al.,  2018;  Nastase  et al.,  2020) and a hybrid of both 
(H2A) ( Busch  et  al.,  2021); and the original algorithm 
developed based on fMRI data of humans ( Haxby  et al., 
 2011) has been applied successfully to electrophysiology 
recording data of rodent neurons ( Chen  et  al.,  2021). 
Generalizability of models trained on responses to mov-
ies is satisfactory for much of cortex, and these models 
have been shown to work for both visual information 
( Guntupalli  et al.,  2016;  Haxby  et al.,  2011,  2020;  Jiahui 
 et al.,  2020) and high- level semantic information, such as 
familiarity for a face ( Visconti  di  Oleggio  Castello  et al., 
 2021). However, it is unknown whether these models also 
generalize to brain activations that are less time- locked 
to content of the movie or are often absent during movie- 
watching; for example, brain activations related to mov-
ing one’s own body or solving math problems. Additional 
data are needed to assess the generalizability of INT 
models trained on movie data in these scenarios, and 
additional functional indices, such as functional connec-
tivity, may help increase the generalizability of the model 
in these cases. We leave it to future works to assess the 
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generalizability of the INT model to other functional pro-
files, modalities, and species. Different modalities may 
highlight different aspects of individual differences. For 
example, individual differences in association cortices 
are more prominent than other areas based on functional 
connectivity ( Mueller  et al.,  2013), whereas regions that 
have synchronized responses across individuals exhibit 
more individual differences than other regions based on 
responses to the movie ( Feilong  et al.,  2018). Future work 
that combines multiple modalities might provide a more 
comprehensive description of individual differences in 
brain functional architecture, and potentially provide bet-
ter models of brain– behavior associations.

4. METHODS

4.1. Overview of the INT model

The fine- grained functional architecture of the brain 
encodes rich information ( Haxby  et al.,  2001,  2014,  2020) 
and affords reliable measures of individual differences in 
brain functional organization that are predictive of differ-
ences in behavior ( Feilong  et  al.,  2018,  2021). In this 
work, we present the individualized neural tuning (INT) 
model, an individualized model of fine- grained brain 
functional organization, to better model these differ-
ences. The INT model has three key features. First, it has 
fine spatial granularity, which affords access to the rich 
information encoded in vertex- by- vertex (or voxel- by- 
voxel) patterns. Second, it models each individual’s 
idiosyncratic functional organization as well as that  
individual’s topographic projection onto the cortex, and 
thus it can be used to study both functional differences 
and topographic differences. Third, it models the individ-
ualized response tuning of cortical vertices in a way that 
generalizes across stimuli, and therefore the model 
parameters can be estimated from different stimuli, such 
as different parts of a movie that have different durations. 
These three features make the INT model a powerful tool 
to study individual differences in fine- grained functional 
organization of the brain.

The INT model is based on the conceptual framework 
of hyperalignment ( Guntupalli  et  al.,  2016,  2018;  Haxby 
 et  al.,  2011,  2020). Hyperalignment models the fine- 
grained functional organization of each brain as a high- 
dimensional feature space, and it creates a high- dimensional 
common space based on the shared functional profiles of 
a group of participants. Hyperalignment also provides a 
way to transform between different spaces using a high- 
dimensional rotation, which can be used to project the 

data from the common space to a participant’s native ana-
tomical space, from a participant’s space to the common 
space, or from a participant’s space to another’s ( Jiahui 
 et al.,  2020). This high- dimensional rotation resolves topo-
graphic differences, which is critical to study individual dif-
ferences in fine- grained functional organizations ( Feilong 
 et al.,  2018,  2021).

The INT model starts with creating a functional tem-
plate M (a matrix of shape t × v) based on the data of the 
training participants (n −1 for leave- one- subject- out 
cross- validation), which corresponds to the hyperalign-
ment common space. The template M has the same 
shape as the data matrix B of a participant, and its func-
tion and topographies are representative of the group of 
participants used to create the template. The data matrix 
B(p) of the participant p is modeled as a matrix multiplica-
tion of the shared functional template M and an idiosyn-
cratic linear transformation W(p) (v  ×  v). We use a new 
hyperalignment algorithm (“warp hyperalignment”, WHA) 
to derive the transformation instead of Procrustes- based 
hyperalignment, so that the transformation is a linear 
transformation instead of an improper rotation. An 
improper rotation (rotation and reflection) changes how 
the information is encoded on the cortex (“where”) but it 
does not change the content information (“what”), and 
thus it only accounts for topographic differences across 
individuals. A linear transformation allows scaling and 
shearing, which also warp the representational geometry 
of the template to model the idiosyncratic representa-
tional geometry of each participant, and therefore it 
accounts for both topographic (“where”) and functional 
(“what”) differences.

With warp hyperalignment, we obtain a modeled data 
matrix B̂ p( ), which are the brain responses that can be 
accounted for by the functional template and the linear 
transformation (i.e., MW(p)). To derive a measure of neural 
response tuning that generalizes across stimuli, we 
decompose B̂ p( ) into two matrices: a stimulus matrix S 
(t × k) shared by all participants, and a tuning matrix T(p) 
(k × v) that is specific to the participant p. With the decom-
position, the temporal information, such as contents of a 
movie over time, is factored into S. In the tuning matrix 
T(p), the response tuning function of each cortical vertex is 
depicted using a column vector of k elements, which is 
the same for all stimuli.

To sum up, with the INT model we use the tuning 
matrix T(p) to model each participant’s individualized func-
tional organization. The tuning matrix has a fine- grained 
spatial granularity, models the participant’s topographic 
and functional idiosyncrasies, and generalizes across 
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stimuli. In the next few sections, we describe in detail the 
steps we used to derive the tuning matrices and to 
benchmark the reliability, validity, accuracy, and specific-
ity of our INT model.

4.2. Building the functional template

In each cross- validation fold, we built a functional tem-
plate based on the training participants and modeled 
each test participant’s data matrix as the linearly trans-
formed template in a high- dimensional space. Both the 
data matrix and the functional template have the same 
shape t × v; that is, the number of time points by the num-
ber of cortical vertices. The template was created in a 

way that its functional properties— both in terms of repre-
sentational geometry and cortical topography— are rep-
resentative of the training participants (Fig. 7).

4.2.1. Searchlight- based algorithm

We built the template using a searchlight- based algorithm. 
For each searchlight, we built a local template based on all 
vertices within the searchlight. We then combined all the 
local templates into a whole- brain template. Each local 
template contains modeled response profiles of vertices in 
the corresponding searchlight. Each vertex is included in 
multiple searchlights, and each searchlight and the corre-
sponding local template offers a modeled response profile 

Fig. 7. Schematic illustration of local functional template creation. (A) First, we concatenated all participants’ data in 
the searchlight along the vertices dimension and performed SVD on the concatenated data matrix. The representational 
geometry of the SVs is representative of the representational geometry of the training participants. For convenience, we 
only kept the first v(sl) SVs, where v(sl) is the number of vertices in the searchlight. (B) We concatenated all participants’ data 
along the time series dimension, and concatenated duplicated M(pc)’s in a similar manner. We derived a rotation matrix 
R using the orthogonal Procrustes algorithm, and applied it to M(pc) to derive the final local template M(sl). The rotation 
makes the functional topography of M(sl) also representative of the group of training participants. Together, these two steps 
create a local functional template that accurately reflects both (a) what information is encoded in the region, and (b) how 
the information is encoded on the cortical surface. (C) After creating a local template for each searchlight, these local 
templates were aggregated into a whole- brain template using weighted average.
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for the vertex. We combined these modeled response pro-
files of the same vertex into a single response profile for 
the vertex, which is the vertex’s response profile in the 
whole- brain template. In our previous algorithms, we com-
bined local searchlight templates by adding together the 
modeled response profiles of the vertex to form the final 
response profile of the vertex ( Guntupalli  et  al.,  2016, 
 2018). In this work, we instead used a distance- based 
weighted average instead of summation. Specifically, the 

weight was computed as 
r − d
r

, where r is the searchlight 

radius (20 mm), and d (0 <= d <= r) is the distance between 
the vertex and the center of the searchlight. In other words, 
the weight is 1 when the center of the searchlight is the 
vertex itself, and close to 0 when the vertex is close to the 
boundary of the searchlight. This improved procedure 
makes the searchlights closer to the vertex contribute 
more to the final modeled response profile of the vertex 
(due to weighting local templates), and the scale of the 
modeled response profile for a vertex similar to the actual 
response profile for that vertex (due to using averaging 
instead of summation).

4.2.2. Building local templates

In order to estimate the INT model, we must first create 
a functional template capturing the consensus func-
tional organization (which we refer to as M). Within each 
searchlight, we created a local template using a PCA- 
Procrustes algorithm, and the matrix shape of the local 
template is the same as a local data matrix (i.e., the 
number of features is the same as the number of verti-
ces in the searchlight, not the total number of vertices). 
First, we concatenated all training participants’ data 
matrices in the searchlight along the features dimension 
to form a group data matrix with n × v features; that is, 
the number of participants times the number of vertices 
in the searchlight. We then applied principal component 
analysis (PCA) to this concatenated data matrix. To 
keep the total variance the same for a single partici-
pant’s local data matrix and the local template, we 
divide the PC time series by n. Similar to our previous 
work ( Haxby  et al.,  2011), here we chose to make the 
dimensionality of the local template the same as a sin-
gle participant’s local data matrix, thus retaining the first 
v PCs and discarding the remaining. Note that the PCA 
is based on the data of all training participants, and thus 
the PCs summarize across all vertices and participants; 
each PC is a weighted sum of all vertices (in a given 
searchlight) across all training participants. The PCs 

capture the representational geometry for a given in 
searchlight in a way that is representative of the repre-
sentational geometries of the training participants. In 
other words, the PCs provide a template that models 
the shared function of the searchlight.

The group- PCA approach creates a local template 
that is representative of the representational geometries 
of the training participants. However, the dimensions of 
this local template are PCs, which are optimized for their 
explained variance. For neuroscientific interpretability, it 
is desirable to map the PCs back to cortical vertices, so 
that the neural responses can be associated with topo-
graphic locations on the cortex instead of abstract PC 
dimensions. Moreover, it is also desired to have the local 
templates in vertex space for combining local templates 
to form a whole- brain template. Neighboring searchlights 
share some of the vertices, but their PCs do not neces-
sarily have one- to- one correspondence. Therefore, if all 
local templates are in the same vertex space, time series 
for the same vertex from different local templates can be 
averaged directly. For these reasons, for each search-
light, we derived a second local template, which is the 
first local template rotated from the PC space to a vertex 
space. The rotation was optimized so that the functional 
topographies of the second template are representative 
of those of the training participants, and the features of 
the second template can be interpreted as vertices.

We then used the orthogonal Procrustes algorithm to 
“align” the PCs to the training participants’ data, so that 
the functional topographies of the local template are also 
representative of the training participants. Mathemati-
cally, we want to find a rotation matrix R which minimizes 
the topographic differences without changing the infor-
mation content.

R = argminR
p=1

n

∑ !M PC( )R −  B p( )!F
2

In this equation, M PC( ) is the PC matrix, B(p) is the local 
data matrix of the p- th participant, n is the number of 
participants, and ! !F is the Frobenius norm.

To find the solution R, we applied the orthogonal Pro-
crustes algorithm to concatenated data matrices. This 
time, we concatenated all training participants’ data along 
the samples (i.e., time points) dimension to form another 
group data matrix, where the number of rows is n × t; that 
is, the number of participants times the number of time 
points. We copied the template PC matrix n times and con-
catenated them in the same way, so that the concatenated 
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PC matrix had the same shape as the concatenated group 
data matrix. We applied the orthogonal Procrustes algo-
rithm to these two data matrices to get a rotation matrix R.

R = argminR

B 1( )
!

B n( )

⎡

⎣

⎢
⎢
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⎤

⎦

⎥
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−
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!

M PC( )

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

R

F

2

Note that the solution for this formula is the same as 
the previous one. However, because the matrices have 
been concatenated, the solution of the orthogonal Pro-
crustes algorithm can be computed directly based on the 
singular value decomposition of the covariance matrix, 
which provides an analytical solution to the problem.

Similar to Procrustes- based hyperalignment algo-
rithms, this rotation matrix R does not change the repre-
sentational geometry or the information content in the 
data matrix. Instead, it changes the functional topogra-
phies so that one data matrix is “aligned” to another. In 
this case, a single rotation is estimated that best aligns 
the coordinate axes (i.e., PCs) of the template matrix and 
the coordinate axes (i.e., cortical vertices) of all partici-
pants, so that the functional topographies of the rotated 
template matrix maximally resemble those of the training 
participants. The final local template M is the PC matrix 
multiplied by the rotation matrix R: M = M PC( )R.

In short, we used the PCA- Procrustes algorithm to 
create a local template for each searchlight, which is rep-
resentative of the training participants both in terms of 
representational geometry and cortical topography. The 
PCA step ensures that the functional profiles and repre-
sentational geometry of the local template are close to 

those of the training participants, and the orthogonal Pro-
crustes step ensures that the topographical distribution 
of these functions on the cortex is also representative of 
the training participants. After iterating over all search-
lights, the local templates were combined into a single 
whole- brain template using the distance- based weighted 
average method described above.

4.3. Modeling response tuning functions

We modeled each participant’s response data matrix B(p) 
as the template data matrix M multiplied by a linear trans-
formation W(p), plus some noise E:

B p( ) = B̂ p( ) + E = MW p( ) + E

Unlike Procrustes- based hyperalignment ( Haxby  et al., 
 2011), in which the transformation matrix W(p) (often 
denoted as R) is a rigid improper rotation, the linear trans-
formation W allows warping of representational geometry. 
Consequently, individual differences in representational 
geometry are embedded in the transformation matrices, W, 
rather than in the individual information projected into the 
model space, M. We name the new algorithm “warp hyper-
alignment” (WHA) to emphasize its capacity to warp repre-
sentational geometries and to distinguish it from previous 
algorithms (Fig.  8). Compared to Procrustes hyperalign-
ment, WHA captures individual differences in representa-
tional geometry and better predicts individualized 
responses to new stimuli (Supplementary Figs. S1– S6).

We computed the linear transformation W(p) using a 
searchlight- based algorithm, similar to the procedure we 
used to create the template M. That is, for each of the 

Fig. 8. Schematic illustration of modeling a participant’s brain functional organization as a linearly transformed functional 
template. (A) A participant’s brain responses constitute a data matrix, where rows are stimuli (e.g., time points in a 
movie) and columns are cortical vertices (left). Multiple vertices form a high- dimensional space, where each vertex is a 
dimension, and each stimulus is a point in the space (middle). Information is encoded in the distances between the points. 
Such information can be summarized using a representational dissimilarity matrix (RDM), where each entry is the (dis)
similarity between a pair of stimuli (right). (B) The RDM of the template resembles that of a participant (right), but the data 
matrix is usually quite different (left). This is because different brains encode the same information using different cortical 
topographies— the vertices collectively perform similar functions across individuals, but the function for each single vertex 
is quite different across individuals. (C) The participant’s idiosyncratic topographies can be predicted by a rotation of the 
template’s feature space (middle), calculated with the Procrustes transformation. The rotation changes the topographies 
of the template and makes the spatial patterns (rows of the data matrix) more similar to the participant’s (left), without 
changing the information content, or the RDM (right). (D) A linear transformation of the template, calculated with ridge 
regression (warp hyperalignment, WHA), can fully predict a participant’s responses by modeling both the participant’s 
idiosyncratic topographies and idiosyncratic information content; that is, both the “what” and “where” of a participant’s 
brain functional organization. Note that the schematic illustration is oversimplified; a typical fMRI data matrix contains 
thousands of stimuli/time points (rows) and tens of thousands of vertices (columns), and a real neural feature space is a 
high- dimensional space (hyperspace).
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searchlights, we computed a local transformation, and 
these local transformations were combined using the 
distance- based weighted average (Fig. 9).

Typically, a model needs to be regularized to avoid 
overfitting and to increase its generalizability to new data. 
For the orthogonal Procrustes algorithm, the linear trans-
formation W(p) is constrained to be orthogonal (i.e., an 
improper rotation in a high- dimensional space), which 

can be considered as a strong regularization. In this work, 
we allowed scaling and shearing in the transformation, 
which models individual differences in function, such  
as representational geometry. We used two methods  
to avoid overfitting in model estimation. First, we used 
ridge regression with a regularization parameter of 103 
based on independent pilot data not presented here. 
Second, we used an ensemble method which we call 
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k- fold bagging. That is, for each participant and each 
searchlight, we trained 100 ridge regression models 
based on bootstrapped samples (bootstrapped time 
points; sampled with replacement), and we averaged the 
weights of these 100 models to serve as the weights for 
the final model (described in detail below).

4.3.1. Ensemble ridge regression models

We used ensemble learning ( Zhou,  2012) to improve the 
accuracy and generalizability of our models. Specifically, 
we adapted the bootstrap aggregating (“bagging”) algo-
rithm ( Breiman,  1996) for our time series data. Bagging is 
commonly used to reduce model variance and avoid 
overfitting by averaging across models trained on boot-
strapped samples. It also provides estimation of model 
performance on new data through out- of- bag cross- 
validation. During out- of- bag cross- validation, the pre-
dicted value of a data point is the average prediction of 
models that were not trained with the time point (i.e., out- 
of- bag models). In this case, this data point serves as the 
test data and the other time points as training data. Typi-
cally, bootstrapped samples are randomly drawn with 
replacement from the original sample. A participant’s 
fMRI data (e.g., responses to movies) usually comprises 
hundreds or thousands of time points. With the classic 
bagging algorithm, it often happens that some time 

points are drawn by all bootstrapped samples, which 
makes them inappropriate for model evaluation using 
out- of- bag cross- validation (i.e., no out- of- bag models 
for these data points). To use as much data as possible 
for cross- validation, we augmented the classic bagging 
algorithm with a k- fold scheme (Fig. 10).

In each k- fold repetition, we first divide all time points 
randomly into k- folds. For a given fold, we set aside the 
data in that fold to serve as candidate test data, while 
data in the other k—  1 folds serve as candidate training 
data. We then drew a bootstrapped sample from the 
candidate training data and used it to train a model. This 
procedure guarantees that the candidate test data can 
be used for model evaluation because they were not 
used in model training. Some candidate training data 
may not get chosen by the bootstrapped sample and 
these data also serve as test data for model evaluation. 
In other words, for each model, the actual test data 
include both candidate test data and the candidate 
training data not drawn by the bootstrapped sample. 
After an iteration over all k- folds, we obtained k trained 
models. For each data point, our resampling procedure 
ensures that at least one of the k models was not trained 
with the data point. In this work, we used k  =  5 and 
repeated the k- fold scheme for 20 times, and thus the 
prediction for each data point was the average of at 
least 20 out- of- bag models.

Fig. 9. Schematic illustration of the warp hyperalignment (WHA) algorithm. (A) For each searchlight, we used ridge 
regression to derive a local transformation matrix that best predicted brain responses B(sl) using the functional template 
M(sl). (B) Local transformations were aggregated using a weighted average to derive a whole- brain transformation matrix 
W(p) for the participant p.
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To account for temporal autocorrelation caused by the 
hemodynamic response function, we also introduced 
temporal “buffers” for out- of- bag cross- validation. That 
is, when we evaluate model performance on a certain 
time point, we exclude not only models trained with the 
time point itself, but also models trained with time points 

less than 10 seconds away from the time point used for 
evaluation. For example, for a 2 seconds TR length, when 
we evaluate model performance for the i- th TR, we 
exclude models trained with any of the 11 TRs from i—  5 
to i + 5. To avoid removing too many buffer time points 
from the training data, we divided time points into groups 

Fig. 10. Schematic illustration of the k- fold bagging ensemble method. In classic bagging (bootstrap aggregating), a time 
point might be chosen as training data in every bootstrapped sample, making it unusable for validation. We combined 
bagging with the k- fold scheme to overcome this problem. In this schematic example, we use a movie that is 300 seconds 
long (TR = 1 second) and k = 5 for k- fold. (A) We divided the movie into 30 segments of 10 seconds each, and we split 
the 30 segments into 5 subsets of equal length. Each subset is the candidate test data of a cross- validation fold. (B) For 
each fold, the time points that are at least 10 seconds away from any candidate test data are chosen as candidate training 
data. This ensures that training and test data are not temporally adjacent, and therefore the model cannot rely on temporal 
autocorrelation to make the prediction. (C) We resampled 300 time points with replacement from the candidate training 
data, and these 300 bootstrapped time points are the actual training data of the model. Note that some candidate training 
data are not chosen, and some time points are chosen more than once. (D) Besides candidate test data, additional time 
points can be used as test data as well, as long as they are also at least 10 seconds away from any training data. For 
example, a segment immediately adjacent to two candidate test segments might not be chosen as candidate test data 
in the beginning; however, because it is far away from any training data, the segment can be used as test data as well. In 
other words, any training and test data are at least 10 seconds away in each cross- validation fold. In this process, we train 
five models in total, and each time point can be used as validation data for at least one of the five models.
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by grouping them into 10 seconds segments (5- TR seg-
ments for a 2 seconds TR), and assigned all time points 
in the same segment to the same fold.

The adapted bagging algorithm and the out- of- bag 
cross- validation procedure were only based on the train-
ing data (for the test participant). Similar to the inner- loop 
of nested cross- validation, the training and test folds dis-
cussed in this context were both part of the training data. 
Because independent data were used in out- of- bag eval-
uation, this procedure provides an unbiased way to esti-
mate model performance on new data, such as the actual 
test data.

4.3.2. Separating stimulus and tuning information

Based on the whole- brain functional template M and the 
linear transformation W(p) derived by warp hyperalign-
ment, we obtained a modeled brain response matrix B̂ p( ) 

(t × v) for the participant p, which are the responses of the 
participant that can be accounted for by the linearly 
transformed template. To model the participant’s neural 
response tuning independent of stimulus information, we 
derived a tuning matrix T(p) (k × v) by a matrix decomposi-
tion of B̂ p( ) (Fig. 11).

This matrix decomposition factors the temporal infor-
mation into the matrix S (t × k). The columns of S are a set 
of basis response profiles (i.e., response time series to 
the movie). The response profile of each vertex is mod-
eled as a linear combination (i.e., weighted sum) of the 
basis profiles, and the weights of the linear combination 
are the corresponding column in T(p), which is a column 
vector of k elements. This column vector is independent 
of the stimulus, and it reflects the response tuning func-
tion of the vertex. We refer to this column vector as the 
tuning profile of the cortical vertex to distinguish it from 
the response profile (response time series).

Fig. 11. Separating stimulus and neural tuning information using the INT model. (A) We used a group SVD to derive 
the normalized PCs, which we used as a basis set that contains stimulus information. (B) The stimulus information was 
factored out in the modeled brain responses, so that the derived tuning matrix T(p) is stimulus general. For example, 
estimates of T(p) based on different parts of the movie are highly similar. (C) The participant’s responses to new stimuli can 
be predicted using the new stimulus matrix S(new) and the participant’s tuning matrix T(p).
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To use the tuning matrices to model differences in neu-
ral tuning across vertices and across individuals, ideally 
the tuning matrices should have several properties: (a) cor-
tical vertices that have larger differences in response time 
series also have larger differences in their tuning profiles; 
(b) individuals who are more similar based on their response 
profiles are also more similar based on their tuning matri-
ces; and (c) the same tuning matrix can be estimated from 
different stimuli, such as different parts of the movie with 
different durations. These objectives motivate us to find a 
matrix S with three properties: (a) the columns are orthog-
onal to each other; (b) each column has unit variance; and 
(c) the columns of S form a basis set of response profiles. 
Orthogonality is necessary to make S a similarity transfor-
mation, so that differences in T(p) across vertices and 
across individuals are proportional to their differences in 
B̂ p( ). Unit variance ensures that the scale of the estimated 
T(p) is the same for different amounts of data, such as data 
matrices from different parts of the movie. That the col-
umns of S form a set of basis response profiles means the 
response profile of each vertex and each participant can 
be expressed as a linear combination of the basis profiles. 
In other words, S can be used to fully model B(p) and B̂ p( ) 
without any loss of information.

There are many choices of S which have all these 
properties and work similarly well for our purposes. In 
this work, we use the normalized principal components 
(PCs) from a group- PCA. The normalized PCs work well 
in practice, as is shown by the benchmarking analyses. 
Furthermore, due to the nature of PCA, they provide an 
easy way to reduce data dimensionality when less dimen-
sions are desired. In this work, we did not reduce dimen-
sionality, and thus k equals the rank of the concatenated 
matrix, which is the same as the number of time points in 
the movie in practice (approximately 3000). We per-
formed the group- PCA using a singular value decompo-
sition (SVD) on the concatenated data matrices of all 
participants, and rescaled the first matrix U to get S.

B 1( ), B 2( ),!, B n( )  ⎡
⎣

⎤
⎦ = UΣVT

S =  nU

Based on the conceptual framework of hyperalign-
ment ( Haxby  et al.,  2011,  2020), different brains share the 
same functional basis. In practice, the shared functional 
basis is instantiated as a hyperalignment common space, 
which is a functional template. The response profiles of 
the template’s vertices form a set of basis response  

profiles, and the response profile of each cortical vertex 
is expressed as a linear combination of these basis 
response profiles. The weights of the linear combination 
are the elements in the corresponding column of the 
transformation matrix. Note that the transformation 
matrix based on the searchlight algorithm is highly 
sparse, and the weights of the linear combination are 
non- zero only for local neighborhoods of vertices (i.e., 
vertices included in the same searchlight) in the template. 
As a result, the response profile of each vertex is mod-
eled using a different set of vertices, whose response 
profiles highly covary due to spatial autocorrelations.

In the INT model, the columns of matrix S serve as the 
set of basis response profiles, which are orthogonal vec-
tors with unit variance. The response profiles of all vertices 
and all participants are all expressed as a linear combina-
tion of the same basis set, which affords the study of func-
tional tuning differences across vertices and across 
individuals based on tuning matrices, whose columns 
comprise the linear combination weights. In other words, 
we are replacing local basis sets (response profiles of adja-
cent vertices) with a single global basis set of response 
profiles (columns of S). Conceptually, S is also a common 
space, but different from M, the features in S are completely 
virtual and do not correspond to specific cortical loci.

The features in S are neural data- driven stimulus 
descriptors. They are derived from shared brain responses 
and reflect the primary ways cortical vertices respond to 
stimuli. Each stimulus (e.g., movie time point) is described 
as a row in S, which is a vector of k elements, and each 
element indexes to what extent a virtual feature responds 
to the stimulus. In other words, the row vector describes 
the key features of the corresponding stimulus based on 
neural responses. Therefore, here and elsewhere we refer 
to S as the stimulus matrix.

Because stimulus information is factored into S, the 
information in the tuning matrix T(p) is neural response 
tuning of cortical vertices that is the same for a wide 
variety of stimuli from the space spanned by a naturalis-
tic, audiovisual movie stimulus. For example, when we 
divide the neural response data matrix B into two halves, 
each half can be modeled using the corresponding half 
of S and the same T(p) (Fig.  1B). This property has an 
important implication for T(p): Once the functional tem-
plate is created, the same individualized T(p) can be esti-
mated from independent data of the same individual 
(e.g., different parts of a movie), and the amount of data 
used to estimate T(p) can be less than the amount of data 
used to create the functional template (e.g., responses 
to part of the movie instead of the entire movie).
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Furthermore, the INT model can be extended to model 
responses to stimuli that were not used to create the 
template. Given the neural responses to new stimuli from 
a group of participants (which can be a subset of all par-
ticipants) and their tuning matrices, the stimulus descrip-
tors S(new) for the new stimuli can be estimated (Fig. 1C) 
and used to predict other participants’ responses to the 
new stimuli.

In the sections below, we use a series of analyses to 
demonstrate the reliability, validity, accuracy, and spec-
ificity of our INT model. In the first analysis, we show 
that the tuning matrices estimated from different parts 
of the movie are highly similar for the same individual 
but dissimilar for different individuals. In the second 
and third analysis, we show that individualized 
responses to new stimuli (category selectivity and ret-
inotopic maps) can be accurately predicted by estimat-
ing the stimulus descriptors for the new stimuli. In the 
fourth analysis, we show that the INT model can accu-
rately predict individualized fine- grained spatial 
response patterns, such as responses to a specific time 
point of a movie. In the fifth analysis, we show that 10– 
20  minutes of movie data are sufficient for satisfying 
performance of the INT model, but the performance 
grows continuously with more data.

4.4. Datasets

4.4.1. The Forrest dataset

The Forrest dataset is part of the Phase 2 data of the 
studyforrest project ( Hanke  et al.,  2014). It contains 3 T 
fMRI data collected from 15 right- handed German adults 
(mean age 29.4 years, 6 females) during movie- watching, 
retinotopic mapping, and object category localizers 
( Hanke  et al.,  2016;  Sengupta  et al.,  2016). Each partici-
pant’s movie data comprised eight runs of approximately 
15 minutes each, while the participant watched a short-
ened version of the audiovisual feature movie Forrest 
Gump. In total, 3599 volumes were collected over the 
course of 2 hours of scanning. The retinotopic data com-
prises four 3- minute runs (12 minutes in total), and the 
four runs corresponded to expanding rings, contracting 
rings, clockwise wedges, and counterclockwise wedges. 
The object category localizer data contain four runs that 
are 5.2  minutes each (20.8  minutes in total). Each run 
contains two 16 seconds blocks for each of the 6 catego-
ries (bodies, faces, houses, objects, scenes, and phase 
scrambled images). During each block, 16 grayscale 
images were displayed for 900 ms each with a 100 ms 

interval. During the object category localizer scans, the 
participant performed a central letter reading task to 
maintain attention and fixation.

All these data were acquired with a Philips Achieva 
dStream MRI scanner with a 32- channel head coil and a 
gradient- echo EPI sequence. Every 2 seconds, a whole- 
brain volumetric image containing 3 mm isotropic voxels 
was acquired with the sequence. The volume comprises 35 
axial slices with a 3- mm thickness and a 10% inter- slice 
gap, acquired in ascending order. Each slice had an 80 × 80 
matrix and an FOV of 240 × 240 mm3. The TE was 30 ms, 
flip angle was 90°, and the phase encoding direction was 
anterior– posterior. The acquisition was accelerated with a 
SENSE factor of 2. More details of these datasets can be 
found in the data descriptors for the 3 T studyforrest data 
( Hanke  et al.,  2016;  Sengupta  et al.,  2016).

4.4.2. The Raiders dataset

The Raiders dataset contains data from 23 participants 
(mean age ± SD: 27.3 ± 2.4 years; 12 females) while they 
were watching the second half of the movie Raiders of 
the Lost Ark ( Nastase,  2018). The movie scan comprised 
four runs that were 14– 15 minutes each (850, 860, 860, 
and 850  seconds, respectively). In total, 3420 volumes 
were collected for each participant, with a 1 second TR 
and 2.5 mm isotropic voxels. The movie clips of adjacent 
runs had 20 seconds of overlapping content, and thus we 
removed 10 seconds of data from the end of the first run 
and 10 from the beginning of the second run during anal-
ysis. After chopping off the overlapping content, the 
remaining movie data were 14 minutes (840 TRs) per run 
and 56 minutes in total. Among the 23 participants, 20 
also had localizer data. The localizer data were the same 
data used in  Jiahui  et  al.  (2020). They were collected 
using the same scan protocol as the movie, and they 
comprised four runs of 3.9 minutes each (15.6 minutes in 
total). Each run comprised 10 blocks, 2 per category 
(faces, bodies, scenes, objects, and scrambled objects), 
and each block was 18 seconds long. Each block com-
prised 6 video clips that were 3 seconds each. During the 
localizer scans, the participant performed a 1- back repe-
tition detection task based on the video clips.

The Raiders dataset was collected using a 3  T Sie-
mens Magnetom Prisma MRI scanner with a 32- channel 
head coil at the Dartmouth Brain Imaging Center, with the 
same scan protocols as ( Visconti  di  Oleggio  Castello 
 et  al.,  2020). Each second, a volume was collected  
with 2.5 mm isotropic voxels and whole- brain coverage. 
The volume comprised 52 axial slices collected in an 
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interleaved fashion with gradient- echo echo- planar ima-
ging. Each slice had a 96  ×  96 matrix and an FOV of 
240 × 240 mm3. The TE was 33 ms, flip angle was 59°, 
and the phase encoding direction was anterior– posterior. 
The imaging was accelerated using a simultaneous multi- 
slice (SMS) factor of 4 and no in- plane acceleration. All 
participants gave written, informed consent, and were 
paid for their participation. The study was approved by 
the Institutional Review Board of Dartmouth College.

4.4.3. MRI preprocessing

We ran fMRIPrep ( Esteban  et al.,  2019) on all MRI data, 
using version 20.1.1 for the Forrest dataset, and 20.2.0 
for the Raiders dataset. After fMRIPrep, functional data 
from all participants were projected onto a cortical sur-
face and were in alignment with the fsaverage template 
( Fischl  et al.,  1999) based on cortical folding patterns. 
We then performed downsampling and nuisance regres-
sion in the same way as  Feilong  et al.  (2018). First, we 
downsampled functional data to a standard cortical sur-
face mesh with 9372 vertices for the left hemisphere 
and 9370 vertices for the right hemisphere (approxi-
mately 3  mm vertex spacing; 10,242 per hemisphere 
before removing non- cortical vertices). Then, we per-
formed a linear regression to partial out nuisance vari-
ables from functional data separately for each run. The 
nuisance regressors include 6 motion parameters and 
their derivatives, global signal, framewise displacement 
( Power  et al.,  2014), 6 principal components from cere-
brospinal fluid and white matter ( Behzadi  et al.,  2007), 
and polynomial trends up to the 2nd order. Finally, we 
normalized the residual time series of each vertex to 
zero mean and unit variance.

4.5. Assessing the reliability and specificity of tuning matrices

To make the tuning matrices a useful measure of brain 
functional organization, they need to have high reliability 
and specificity. That is, tuning matrices of the same indi-
vidual based on independent data should be similar, and 
tuning matrices from different individuals should be dis-
similar. Therefore, we split each participant’s movie data 
into two parts, and estimated a tuning matrix based on 
each part of the movie.

B̂ p,1( ) = S 1( )T p,1( )

B̂ p,2( ) = S 2( )T p,2( )

Where
 
B p( ) = 

B p,1( )
B p,2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, and S = 
S 1( )
S 2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
. T(p,1) and T(p,2)

 
are both estimations of T(p), but they are estimated based 
on different parts of the movie (independent data).

To assess the reliability and specificity of the mod-
eled tuning matrices, we computed a cross- movie- part 
similarity matrix for each dataset based on the esti-
mated tuning matrices. The matrix has a shape of n × n, 
where each row corresponds to a tuning matrix based 
on the first part of the movie, each column corresponds 
to a tuning matrix based on the second part of the 
movie, and each entry is the correlation- based similarity 
between the two matrices. The diagonal of the matrix is 
the within- subject similarities, and the off- diagonal ele-
ments are between- subject similarities. A clear differ-
ence between diagonal and off- diagonal elements 
indicates a substantial difference between within- 
subject and between- subject similarities.

4.5.1. Multi- dimensional scaling

To better visualize the similarities between estimates tun-
ing matrices, we performed multi- dimensional scaling 
(MDS) using the T- distributed Stochastic Neighbor 
Embedding (t- SNE) algorithm ( Van  der  Maaten  &  Hinton, 
 2008). We used a full individual differences matrix (i.e., 
2n × 2n elements, comprising both same- movie- part and 
cross- movie- part dissimilarities based on correlation dis-
tance) as input to the t- SNE algorithm. The 2n tuning 
matrices were projected to a 2D space by t- SNE. Given 
any MDS algorithm would unavoidably distort distances 
during the projection, we used a perplexity parameter of 
10 to reduce the distortions of distances between closer 
neighbors, which in this case are within- subject dissimi-
larities and several smallest between- subject dissimilari-
ties. These dissimilarities are key to determine whether 
an individual can be easily identified based on the tuning 
matrix and a nearest- neighbor classifier.

4.5.2. Distribution of tuning matrix similarities

For each tuning matrix, we extracted its within- subject 
similarity and between- subject similarities based on the 
cross- movie- part similarity matrix. These similarities cor-
respond to the diagonal (within- subject) and off- diagonal 
(between- subject) elements of a row of the similarity 
matrix. We plotted the distribution of the within- subject 
similarity and between- subject similarities for each tuning 
matrix in Figure 2C, sorted by within- subject similarity.
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4.5.3. Distinctiveness index

For all tuning matrices, we found that within- subject 
similarity was far greater than the distribution of 
between- subject similarities. In other words, any partic-
ipant can be identified by the modeled tuning matrix 

with an accuracy of 100% based on a simple one- 
nearest- neighbor classifier. To better describe how dis-
tinctive an individual is based on the modeled tuning 
matrix, we computed the distinctiveness index based 
on Cohen’s d:

The distinctiveness index is a measure of effect size, 
and thus is comparable across datasets with different 
sample sizes. The similarities used to compute the dis-
tinctiveness index were Fisher- transformed correlation 
similarities, and therefore they approximately follow a 
normal distribution, and the distinctiveness index can 
serve as a z- statistic. Using the cumulative distribution 
function of the standard normal distribution, an identifi-
cation error rate can be estimated based on the distinc-
tiveness index.

4.5.4. Searchlight analysis

To locate the brain regions where the functional organiza-
tion is the most distinctive, we performed a searchlight 
analysis ( Kriegeskorte  et  al.,  2006) using a searchlight 
radius of 20 mm. Within each searchlight, we computed 
a distinctiveness index for each tuning matrix based on 
vertices in the searchlight, and we averaged the distinc-
tiveness index across all tuning matrices to get an aver-
age distinctiveness index for the searchlight. We repeated 
this process for each searchlight and obtained an aver-
age index for each searchlight. These average distinc-
tiveness indices formed a map of distinctiveness for each 
dataset (Fig. 2E).

4.6. Predicting category- selectivity maps

The previous analyses have shown that our model has  
high reliability and specificity. The modeled brain functional 
organization is highly similar for the same individual (based 
on independent data), and much less similar for different 
individuals. In this part, we tested the generalizability of our 
model. Specifically, we tested whether our model could 
predict responses to new stimuli that were not used in 
model training. Therefore, we trained our model based on 
the movie data and tested whether the model can be used 
to predict responses to various object categories. Here,  
we use the “faces” category as an example to illustrate the 

procedure of our analysis, and the same procedure was 
applied to other object categories.

4.6.1. Quality of localizer- based maps

The Forrest dataset has 4 static object category localizer 
runs per participant (for all participants), and the Raiders 
dataset has 4 dynamic object category localizer runs  
per participant (for 20 out of the 23 participants). For 
each run of each participant, we used the general linear 
model to estimate the contrast of interest (faces vs. all 
other categories) and obtained a map of t- statistics for 
the contrast.

From a psychometrical perspective, each cortical vertex 
has a specific face selectivity, and the face- selectivity map 
based on each localizer run is a test of face- selectivity, 
which assigns a score to each vertex. The score is a sum of 
the true score of the vertex (its ground truth face- selectivity) 
and some noise. Accordingly, the variance of measured 
face- selectivity across vertices is a sum of true score vari-
ance and noise variance. The ratio between true score vari-
ance and total variance is an indicator of the quality of the 
measured face- selectivity map, which is known as the reli-
ability of the measured map and denoted as ρ. When we 
average over k independent maps, the noise variance is 1/k 
of each single map (because the noise is assumed to have 
no covariance with the noise from another map nor the true 
score map). This relationship can be used to estimate how 
the reliability increases with larger k, which is known as the 
Spearman– Brown prediction formula. Specifically, the reli-
ability of the average map is:

ρavg =  
ρ

1−  ρ( )
k

+  ρ
= kρ
1+ k −1( )ρ

For each participant’s face- selectivity map, we have k 
measured maps X1, X2, …, Xk, each of which is from an 
independent localizer run and is represented as a vector. 
For i = 1…k, Xi = T + Ei, where T is the true score map, 

distinctiveness =
within-subject similarity − mean between-subject similarity( )

SD between-subject similarity( )
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and Ei is the noise for the i- th map. The variance of the sum  
map is:

var X1+…+ Xk( ) = var kT + E1+…+ Ek( ) = k2var T( )
+ var E1( )+…+ var Ek( )

and the ratio between the sum of variance for each map 
and the variance of the sum map is:

 
kvar T( )+ var E1( )+…+ var Ek( )
k2var T( )+ var E1( )+…+ var Ek( ) =

kρ+ k 1−  ρ( )
k2ρ+ k 1−  ρ( ) =

1
kρ+1−  ρ

This ratio is often used to compute Cronbach’s alpha, 
which is an estimate of the reliability of the average map:

α = k
k −1

1−  
kvar T( )+ var E1( )+…+ var Ek( )
k2var T( )+ var E1( )+…+ var Ek( )

⎛

⎝
⎜

⎞

⎠
⎟

= k
k −1

1−   1
kρ+1 − ρ

⎛
⎝⎜

⎞
⎠⎟
=  

kρ
1+ k −1( )ρ = ρavg

The covariance between one map and another map is:

cov X + Ei,  X + E j( ) =  var X( ) .

Therefore, the correlation between the two maps is:

ri, j =
cov X + Ei,  X + E j( )
var X + Ei( )var X + E j( )

= ρiρj

Note that when ρi > ρj, ri,j > ρj. In other words, if a pre-
dicted map has comparable quality with the average 
map, their correlation will be the same as average map’s 
Cronbach’s alpha; if a predicted map has superior quality 
than the average map, their correlation will exceed Cron-
bach’s alpha. Therefore, we choose Cronbach’s alpha as 
a baseline when we present the correlation between 
measured maps and predicted maps of the INT model. 
Note that in this analysis, the objective is to predict 
category- selectivity maps, and both “more accurate” and 
“superior quality” mean that the model- predicted map 
has a higher correlation with the true score map, which 
should not be confused with better construct validity.

4.6.2. Model- predicted category selectivity maps

We used a leave- one- subject- out cross- validation 
scheme to evaluate model performance. We built the 
template based on the n−1 training participants’ movie 

data. We then computed a tuning matrix T(p) for each of 
the n participants based on the movie data. We modeled 
the face- selectivity map as the brain response pattern to 
the specific “faces” category:

B p,faces( ) = S faces( )T p( ) + E

Here, B p,faces( )  denotes the face- selectivity map for 
participant p, and S faces( ) denotes the stimulus descrip-
tors for the “faces” versus other categories contrast. In this 
case, both B p,faces( )  and S faces( ) are row vectors because 
there is only one stimulus (category). Both B p,faces( )  and 
T(p) were known for the training participants, and thus 
S faces( ) can be estimated using a general linear model 
(e.g., ordinary least squares) by finding the S faces( ) that 
minimizes the Frobenius norm ! B p,faces( )  − S faces( )T p( ) !F.  
This solution can be computed using ordinary least 
squares (“vanilla” regression), but here we used ensem-
ble linear ridge regression to increase the accuracy and 
generalizability of our model. The ensemble model is sim-
ilar to the algorithm we used to build the INT model, 
which is based on k- fold bagging. The final prediction 
model was the average of 50 ridge regression models 
(k = 5, 10 repetitions), and the choices for the regulariza-
tion parameter were 21 values evenly distributed in a log-
arithmic scale, ranging from 0.01 to 100. Similar to nested 
cross- validation, the choice of the regularization parame-
ter was determined based on out- of- bag cross- validation, 
and thus it is only based on the training data. For each 
single model in the ensemble, we bootstrapped n−1 par-
ticipants with replacement from the n−1 training partici-
pants and trained the ridge regression model based on 
the bootstrapped sample. To further increase the diver-
sity of models in the ensemble, each time a participant 
was chosen by a bootstrapped sample, we also boot-
strapped four runs with replacement from the partici-
pant’s data, and the face- selectivity map used in the 
regression was the average of the four bootstrapped 
runs. After all n−1 participants had been chosen for the 
bootstrapped sample, we concatenated their vertices, 
and trained a ridge regression model based on the con-
catenated data. We obtained an estimated S(n– 1, faces) for 
each bootstrapped sample (coefficients of the regression 
model), and the final estimation of S(n– 1, faces) was the aver-
age across all bootstrapped samples.

The model- predicted map of the left- out test partici-
pant was simply the matrix multiplication of the estimated 
stimulus descriptors S(n– 1, faces) based on the n−1 training 
participants and the estimated tuning matrix T(p) of the 
test participant:
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B̂ p,faces( ) = S n−1,faces( )T p( )

4.6.3. Evaluating model- predicted maps

We evaluated the quality of model- predicted maps in the 
same way as  Jiahui  et al.  (2020). That is, for each test par-
ticipant, we computed the Pearson correlation between 
the localizer- based map and the model- predicted map of 
the participant. Note that we estimated the reliability of the 
localizer- based map using Cronbach’s alpha, which is the 
expected correlation between two average maps, each 
based on four runs of independent data. Based on the 
Spearman– Brown prediction formula, we can estimate 
how Cronbach’s alpha changes with the amount of data 
(i.e., the number of localizer runs), and correspondingly, 
how much localizer data is needed to achieve the quality 
of the model- predicted map.

We also evaluated the specificity of our model- 
predicted maps. For each test participant, we also com-
puted the correlations between the participant’s own 
localizer- based map and model- predicted maps of other 
participants. If the model- predicted map is highly specific 
to the participant, we expect the between- subject cor-
relations to be much lower than the correlation with the 
participant’s own model- predicted map.

4.7. Predicting retinotopic maps

4.7.1. Estimating retinotopic maps based on localizers

The Forrest dataset contains 4 retinotopic scans per par-
ticipant that are 3 minutes each. The four runs are expand-
ing rings, contracting rings, clockwise wedges, and 
counterclockwise wedges, respectively. We followed the 
steps of  Warnking  et al.  (2002) and estimated an eccentric-
ity map based on the runs of expanding rings and con-
tracting rings and a polar angle map based on clockwise 
wedges and counterclockwise wedges for each partici-
pant. Specifically, we performed Fourier transformation on 
the time series data that were collected during stimulus 
presentation (5 cycles of 16 TRs [32  seconds] each; 80 
TRs [160 seconds] in total; started 4 seconds after scan 
onset) and located the frequency component that had the 
same period as the stimuli (i.e., 5 cycles in 80 TRs). The 
amplitude of the component indicates to what extent a 
vertex’s response time series can be explained by retino-
topic stimuli, and the phase of the component indicates 
the eccentricity or the polar angle that a vertex responds 
maximally to. Considering the hemodynamic response 

function of BOLD signal, we shifted the phase by 5 sec-
onds to account for hemodynamic delay. For each kind of 
retinotopic map (i.e., eccentricity and polar angle), we 
averaged the Fourier transformation results of the two cor-
responding runs (e.g., expanding and contracting rings for 
eccentricity map) to get the final map. The amplitude was 
the mean amplitude of the two runs, and the phase was 
the circular mean of the two runs (which removes the 
remaining effects of hemodynamic delay).

4.7.2. Model- predicted retinotopic maps

Each retinotopic map comprises two parts, namely an 
amplitude map and a phase map.

B ret( ) = Acos θ −ϕ( )

Here, A is the amplitude, θ is the preferred phase (i.e., 
eccentricity or polar angle) for each vertex, and ϕ is the 
phase corresponding to the current stimulus. A vertex 
responds maximally when the phase of the current stimu-
lus corresponds to its preferred phase, and the response 
decreases when the phase moves away from the vertex’s 
preferred phase. The retinotopic map can be modeled as 
a weighted sum of a sine map and a cosine map.

Acos θ − ϕ( ) = Acos θ( )cos ϕ( )+ Asin θ( )sin ϕ( )
= xcos ϕ( )+ ysin ϕ( )

Note that the original phase θ is a circular variable and 
it is difficult to predict it using a linear model (e.g., the 
model we used to predict category- selectivity maps). 
After the transformation, we have two new variables x 
and y, which contain the same information as the original 
amplitude map A and the phase map θ. However, both x 
and y are weights of the linear combination, and thus 
they can be predicted directly using linear models.

We used similar prediction procedures as the 
category- selectivity analysis for the current analysis. 
Specifically, we used leave- one- subject- out cross- 
validation, and the prediction models were ensembles 
of ridge regression models. For each test participant 
and each kind of retinotopic map, we trained two sets of 
ensemble models: one for predicting the weight map x, 
and the other for predicting y. After estimating the stim-
ulus descriptors for x and y based on the training partic-
ipants, we multiplied them by the estimated tuning 
matrix of the test participant to get the estimated x and 
y maps for the test participant. The model- predicted 
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amplitude and phase maps can be computed from the 
estimated x and y maps:

A =  x2 + y2

θ = arctan2 x, y( )

4.7.3. Evaluating model- predicted maps

We evaluated the amplitude map and the phase map 
separately for each kind of retinotopic map. For the 
amplitude map, we computed the correlation between 
the test participant’s localizer- based map and the partic-
ipant’s own model- predicted map, as well as the correla-
tions with others’ model- predicted maps. We also 
computed Cronbach’s alpha based on the amplitude 
maps from the two runs from each kind of retinotopic 
map. In general, the amplitude maps were assessed in a 
similar way as the category- selectivity maps.

For the phase map, we computed the average (abso-
lute) phase difference between the test participant’s 
localizer- based map and the participant’s own model- 
predicted map in the early visual cortex— an area known to 
have retinotopic responses. The early visual cortex was 
located based on regions V1, V2, V3, and V4 of the Glasser 
parcellation ( Glasser  et al.,  2016). Similarly, we computed 
the average phase difference with others’ model- predicted 
maps, and the average phase difference between the two 
runs for each kind of retinotopic map. Note that the phase 
differences between the two runs are driven by both hemo-
dynamic delay and noise, and their influences cannot be 
fully separated based on the current data.

4.8. Predicting response patterns to the movie

The previous analyses demonstrate the power of our model 
in predicting brain responses to new stimuli, such as object 
categories and retinotopic localizers. However, both object- 
category representation and retinotopy correspond to rela-
tively coarse- grained cortical topographies. To assess the 
spatial granularity of our model, we further tested how well 
it could predict fine- grained spatial response patterns, 
such as time- point- by- time- point responses to a movie.

4.8.1. Cross- validation scheme

For each movie dataset, we used leave- one- subject- out 
cross- validation to assess the model predictions. Each 
time, we built a template based on the full movie data of 
the n−1 training participants. Similar to the distinctive-

ness analysis, we estimated the test participant’s tuning 
matrix using only half of the test participant’s movie data, 
and in this case it is the first half of the movie data. The 
second half of the test participant’s movie data was held 
out for test. Then, we multiplied the stimulus matrix for 
the second part of the movie with the estimated tuning 
matrix of the test participant to get the model- predicted 
response patterns to the second part of the movie that 
are based on other participants’ responses. We assessed 
the model prediction by comparing the measured 
response patterns and the model- predicted responses 
patterns of the test participant. Note that unlike our pre-
vious methods, in which we compared a participant’s 
response patterns to others’ patterns in the common 
model space, our INT model allows this comparison to be 
made in the native anatomical space (normalized to the 
fsaverage template) of each individual participant’s brain.

4.8.2. Dimensionality reduction

For each time point (i.e., each TR), the response pattern 
is a vector of 18,742 elements. Similar to our previous 
work ( Guntupalli  et al.,  2016,  2018;  Haxby  et al.,  2011), 
we performed dimensionality reduction using principal 
component analysis (PCA) and compared the similarity of 
response patterns based on normalized PCs. We 
repeated the analysis using different numbers of PCs, 
ranging from 10 to 300 with an increment of 10. Note that 
the key results of this analysis (Fig. 5D and 5E) are very 
robust against the choice of the number of PCs.

4.8.3. Similarity between measured and predicted patterns

To illustrate the similarities of measured and predicted 
response patterns, we computed the correlations between 
measured and predicted response patterns based on 150 
PCs. Specifically, we computed the similarities of patterns 
from the same participant and those from different partici-
pants; we also computed similarities of patterns for the 
same time point and those for different time points. These 
allowed us to evaluate the specificity of the model- predicted 
response patterns both to the participant and to the time 
point. Examples of the similarities are shown in Figure 5A 
and 5B, and the similarity distribution for each of the four 
conditions is summarized in Figure 5C.

4.8.4. Binary movie time point classification

For each test participant, the similarity between the 
measured and predicted patterns for the same time 
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point was much higher than those from different time 
points. We assessed to what extent this difference in 
similarity could be used to predict which time point of 
the movie the participant was viewing based on a binary 
classification task. The binary classification task is a 
2- alternative forced choice. For each time point of the 
movie, we computed the correlation of its measured 
response pattern to two other response patterns— one 
was the pattern predicted from other participants’ 
responses to the same time point, and the other was 
the pattern predicted from other participants’ responses 
to another time point. The classification was successful 
if the similarity of patterns of the same time point was 
higher than the different time point, and thus the chance 
accuracy is 50%. We looped through all choices of the 
test time point, and for each test time point, looped 
through all choices of the foil time point and averaged 
the accuracies. Note that the difficulty of the binary 
classification task does not change with the length of 
the movie data, and its accuracy can be considered as 
a measure of effect size in that sense. For example, the 
binary classification accuracy based on a dataset with 
500 time points and another with 1000 time points are 
comparable. To evaluate the specificity of the predicted 
patterns to the test participant, we replaced the test 
participant’s predicted patterns with another partici-
pant’s predicted patterns and repeated the analysis.

4.8.5. Multiclass movie time point classification

The classification accuracy of the binary classification 
task was close to 100%. To demonstrate the accuracy 
and specificity of the response patterns predicted by 
the INT model, we performed a multiclass movie time 
point classification analysis. That is, we compared the 
measured response pattern to a time point of the movie 
to all the model- predicted response patterns (i.e., pre-
dicted response patterns to all time points). We exam-
ined whether the pattern similarity was highest for the 
model- predicted response pattern of the same time 
point. The second part of the movie contains 1818 time 
points in total for the Forrest dataset, and 1680 time 
points for the Raiders dataset. Therefore, the number of 
choices was over 1000 for both datasets, and the 
chance accuracy was less than 0.1%. Note that the foils 
also included the time points right before or after the 
target time point, which was only 2 seconds (Forrest) or 
1  second (Raiders) apart, and the inclusion of these 
neighboring time points made the classification task 
even more challenging.

4.9. Model performance with less data

In practice, it is not always feasible to collect a large 
amount of fMRI data during movie- watching as the data-
sets used in the current study (Forrest: 120 minutes; Raid-
ers: 56  minutes). To assess the performance of our INT 
model with smaller data volume, we trained the model with 
smaller amounts of movie data for the test participant and 
evaluated its performance as a function of data volume.

First, we assessed how data volume affected the dis-
tinctiveness of the tuning matrix. This analysis requires 
two estimates of the same tuning matrix based on inde-
pendent data, and thus each estimate can use up to half 
of the movie data (Forrest: 60 minutes; Raiders: 28 min-
utes). For the Forrest dataset, we repeated the analysis 
with 5, 10, 15, 20, 30, 40, 50, and 60 minutes of movie 
data for each estimate. For the Raiders dataset, we 
repeated the analysis with 5, 10, 15, 20, and 28 minutes 
of movie data for each estimate.

Second, we assessed how data volume affected the 
distinctiveness of local neural tuning based on a search-
light analysis. The same amounts of movie data as the 
whole- brain distinctiveness analysis were used. Instead 
of focusing on the average across searchlights, we 
assessed the 50th, 80th, 90th, 95th, and 99th percentiles of 
the distribution.

Third, we assessed how data volume affected the esti-
mation of category selectivity maps and retinotopic maps. 
Note that the objective of the analysis is to predict responses 
to new stimuli, and thus up to the entire movie data can be 
used to train the INT model and estimate the tuning matri-
ces. For the Forrest dataset, we repeated the analysis with 
5, 10, 15, 20, 30, 40, 50, 60, and 120 minutes of movie data. 
For the Raiders dataset, we repeated the analysis with 5, 10, 
15, 20, 28, and 56 minutes of movie data.

Fourth, we used movie time point classifications to 
assess how data volume affected the quality of predicted 
response patterns to the movie. For this analysis, we used 
the same test data to evaluate the model, which was the 
second half of movie data for the test participant. There-
fore, the movie data used to estimate the tuning matrix of 
the test participant was the first half of movie data or part 
of the first half. For the Forrest dataset, we repeated the 
analysis with 5, 10, 15, 20, 30, 40, 50, and 60 minutes of 
movie data. For the Raiders dataset, we repeated the anal-
ysis with 5, 10, 15, 20, and 28 minutes of movie data.

DATA AND CODE AVAILABILITY

All data and code will be made available through DataLad 
(https://www . datalad . org/) and MF’s GitHub repository 
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(https://github . com / feilong) upon publication. The For-
rest dataset is also openly available through studyforrest 
(https://www . studyforrest . org/).
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