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The magnetotropic susceptibility is the thermodynamic coefficient associated with the rotational
anisotropy of the free energy in an external magnetic field, and is closely related to the mag-
netic susceptibility. It emerges naturally in frequency-shift measurements of oscillating mechanical
cantilevers, which are becoming an increasingly important tool in the quantitative study of the
thermodynamics of modern condensed matter systems. Here we discuss the basic properties of the
magnetotropic susceptibility as they relate to the experimental aspects of frequency-shift measure-
ments, as well as to the interpretation of those experiments in terms of the intrinsic properties of
the system under study.

I. INTRODUCTION.

High-Q mechanical oscillators have long been used
in the study of thermodynamic properties of condensed
matter systems. In Refs. 1–8, for example, oscillations
of a sample in a magnetic field are used to study the
thermodynamic behavior of a vortex lattice. Recent
advances in lithographic techniques have expanded the
use of high-Q mechanical oscillators in studying con-
densed matter systems other than superconductors, such
as spin-liquids,9,10 correlated metals,11,12 and unconven-
tional superconductors.13 In these experiments, the phys-
ical properties of the sample are inferred from the shift of
the resonance frequency of the cantilever-sample assem-
bly. Qualitative insight into the behavior of the physical
systems in this broader scientific context requires a quan-
titative interpretation of frequency shifts.10,12,13

A frequency shift in a mechanical oscillator can be
induced by the oscillating linear motion of a sample
in a non-uniform magnetic field or by the oscillating
rotational motion in a uniform applied magnetic field.
Small frequency shifts are also accompanied by resonance
width broadening associated with relaxation phenomena
in the sample coupled to either the rotational- or linear-
oscillating motion of the sample.

In this paper, we focus on the magnetotropic suscep-
tibility that captures the changes in the free energy of a
magnetically anisotropic sample associated with its ro-
tation in a uniform magnetic field. The frequency shift
of the resonance of the cantilever-sample assembly in a
uniform external magnetic field is captured entirely by
the magnetotropic susceptibility of the sample. Dynamic
magnetotropic susceptibility captures the relaxation phe-
nomena coupled to the rotation of the sample in an ap-
plied magnetic field.

In Section II, we introduce the magnetotropic suscep-
tibility in a rigorous manner, independent of the measure-
ment technique. We define the magnetotropic suscepti-
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FIG. 1. The sample is rotated in an external magnetic field
B around axis n. The magnetotropic susceptibility kn is the
curvature—the second derivative—of the angular dependence
of free energy in the applied magnetic field. n indicates a slice
of rotations by angle θn around axis n.

bility as a thermodynamic correlation function. After
that, we discuss the dynamic, or frequency-dependent,
magnetotropic susceptibility which encapsulates relax-
ation phenomena in the sample induced by its rotation in
an applied magnetic field. Dynamic magnetotropic sus-
ceptibility is accessed directly in the measurements of the
width of the resonance of the cantilever induced by the
relaxation in the sample.

In Section III, we discuss the emergence of the mag-
netotropic susceptibility in frequency-shift measurements
and how certain experimental aspects relate to the in-
trinsic properties of the sample under study. Finally, in
Section IV, we consider the mechanics of the cantilever
in the thin-plate approximation. This section presents a
self-contained discussion of the bending stiffness of the
cantilever, which determines the sensitivity of frequency
shift measurements of the magnetotropic susceptibility.
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II. THE MAGNETOTROPIC SUSCEPTIBILITY.

A. Definition and basic properties.

The free energy of a magnetically anisotropic sam-
ple depends on the direction of the magnetic field with
respect to the crystallographic directions of the sample.
One can study a “slice” of the overall angular dependence
of the free energy, F (θn,B), where the magnetic field B
rotates around axis n without change in its magnitude.
The angular variable θn considered as a thermodynamic
parameter defines the magnetic torque, Tn(B) :

dF (B) = Tn(B) dθn , Tn(B) = −M · (n×B) . (1)

Magnetic torque is determined by the magnetization
M = −dF/dB induced by a small change in magnetic
field δdθnB = (n × B) dθn that is incurred by a small
rotation dθn around axis n (Figure 1).

The diagonal thermodynamic coefficient14 associated
with the thermodynamic parameter θn is the magne-
totropic susceptibility,

dTn(B) = kn(B) dθn ,

kn(B)=(n×B)·(n×M)−(n×B)·χ̂(B)·(n×B) , (2)

where χ̂µν(B) = −dMµ/dBν is the magnetic susceptibil-
ity tensor. The two terms in the second line of Eq. (2)
have a different physical character, which will become
apparent in the discussion of correlation functions in
Sections IID and II E. The explicit dependence of the
magnetic torque Tn(B) = −M · (n × B) on the rota-
tion of magnetic field produces the first term in Eq. (2),
−M · (n× (n×B)). The implicit dependence of torque
on magnetic field through changes in the magnetization
produces the second term.

It will be convenient to rewrite Eq. (2) in a matrix
form using generators of rotation in vector representa-
tion, i(Ŝµ)ij = ϵµij , satisfying the commutation relations

[Ŝi, Ŝj ] = iϵijkŜk where [Ŝi, Ŝj ] ≡ Ŝi · Ŝj − Ŝj · Ŝi,

Ŝ1= i
(

0 0 0
0 0 −1
0 1 0

)
, Ŝ2= i

(
0 0 1
0 0 0
−1 0 0

)
, Ŝ3= i

(
0 −1 0
1 0 0
0 0 0

)
. (3)

Rotation of a vector represented by the cross product
n × B in Eq. (2) can be represented equivalently by a
matrix multiplication

δθnB = (n×B)dθ = (iN̂ ·B)dθ ,

iN̂ = −iŜµnµ =

 0 −nz ny

nz 0 −nx

−ny nx 0

 . (4)

In this representation, the magnetotropic susceptibility
takes the form

kn(B)=B ·N̂ ·N̂ ·M −B ·N̂ ·χ̂·N̂ ·B . (5)

The magnetotropic susceptibility kn(B), as well as
the magnetic torque Tn(B), describes only a slice of the
complete angular dependence of the free energy. For ar-
bitrary rotation slice n, magnetic torque is specified by a
scalar product of an axial vector T = M ×B and vector
n, via Tn(B) = T µnµ. Equations (2) and (5) define the
magnetotropic susceptibility kn(B) as a bilinear function
of the components of the vector n. The generalization of
the torque vector T to the magnetotropic susceptibility
is a symmetric second-rank tensor kµν(B),

kn(B) =kµν(B)nνnµ . (6)

The magnetotropic susceptibility tensor kµν(B) encodes
the second angular derivative of the free energy for all
slice directions n, just like the torque vector T encodes
its first derivative. Tensor components of kµν(B) follow
from Eqs. (4) and (5), with subsequent symmetrization :

kµν(B) =
1

2
B ·(Ŝµ ·Ŝν + Ŝν ·Ŝµ)·M

− 1

2
B ·(Ŝµ ·χ̂·Ŝν + Ŝν ·χ̂·Ŝµ)·B . (7)

The first line can also be written as δµν(B ·M) −
1/2(BµMν +BνMµ).

The product N̂ ·B in Eq. (5) as well as the cross-
product (n×B) in Eq. (2) vanish for n along the magnetic
field B. Therefore, both magnetic torque and magne-
totropic susceptibility vanish. This reflects the physical
fact that rotations of a sample around axis n along mag-
netic field B have no effect on the magnetic part of the
free energy. Therefore, the product kµν(B)nµnν vanishes
for n along B,

kµν(B)BµBν ≡ 0 , (8)

because (ŜµBµ) ·B ≡ 0. This is analogous to the van-
ishing of the scalar product of the torque vector and
the magnetic field, T µBµ ≡ 0. For torque, this iden-
tity means that the magnetic torque vector lives in a
plane perpendicular to vector B. Similarly, the six com-
ponents of the symmetric magnetotropic susceptibility
tensor kµν(B) are constrained by one condition, Eq. (8).

In the linear regime, the magnetotropic susceptibility
is bilinear in the components of magnetic field B. The
magnetization M = χ̂0 ·B is linear in magnetic field
and linear magnetic susceptibility χ̂0 is independent of
magnetic field. Equation (5) reduces to

k0n(B)=B ·N̂ ·[N̂ , χ̂0]·B , (9)

and Eq. (7) to

k0µν(B) =
1

2
B ·(Ŝµ ·[Ŝν , χ̂

0] + Ŝν ·[Ŝµ, χ̂
0])·B . (10)

If we choose the axes x, y, z along the crystallographic
directions a, b, c (Figure 1)—or the principal direc-
tions of magnetic susceptibility χ when the crystal
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symmetry is lower than orthorhombic—then the lin-
ear magnetic susceptibility tensor χ̂0 is diagonal χ̂0 =

diag{χ0
xx, χ

0
yy, χ

0
zz}. The full magnetotropic tensor,

Eq. (10), in this basis has the form,

k0µν(B) =

 (B2
y −B2

z )(χ
0
yy − χ0

zz) −BxBy(χ
0
xx/2 + χ0

yy/2 − χ0
zz) −BxBz(χ

0
xx/2 − χ0

yy + χ0
zz/2)

−BxBy(χ
0
xx/2 + χ0

yy/2 − χ0
zz) (B2

x −B2
z )(χ

0
xx − χ0

zz) ByBz(χ
0
xx − χ0

yy/2 − χ0
zz/2)

−BxBz(χ
0
xx/2 − χ0

yy + χ0
zz/2) ByBz(χ

0
xx − χ0

yy/2 − χ0
zz/2) (B2

x −B2
y)(χ

0
xx − χ0

yy)

 . (11)

Note that only two combinations of the components
of the linear magnetic susceptibility in this expression
are linearly independent. Therefore, the linear magne-
totropic tensor k0µν(B) determines two (out of three)
independent components of linear magnetic susceptibil-
ity, consistent with the more general discussion around
Eq. (8).

For example, a slice of rotations around the n = ŷ axis
(parallel to b) is described with N̂ = −Ŝ2 in Eq. (9) :

k0ŷ(B) =B ·Ŝ2 ·[Ŝ2, χ̂
0]·B

=B ·

χ0
xx − χ0

zz 0 0
0 0 0
0 0 −(χ0

xx − χ0
zz)

·B . (12)

Note the vanishing eigenvalue corresponding to direction
ŷ. In components,

k0ŷ(B)=(B2
c−B2

a) (χ
0
c−χ0

a) = B2
ac (χ

0
c−χ0

a) cos2θ , (13)

where Bac = (B2
a + B2

c )
1/2 is the component of mag-

netic field B in the ac-plane and θ is the angle between
Bac and the c-axis, (Ba, Bc) = Bac(sin θ, cos θ). The
linear magnetotropic coefficient kŷ(B) has the same an-
gular dependence in the ac-plane as the free energy in
the linear regime, F 0(B) = (1/2)χ0

ijBiBj = −(1/4)(χ0
c−

χ0
a)B

2
ac cos 2θ. The magnetotropic susceptibility does not

vanish for applied magnetic fields along crystallographic
directions. Equation (13) also shows that the magne-
totropic susceptibility is positive for magnetic field along
the easy axis, where the free energy is near its local min-
imum.

For completeness, we can also consider the magne-
totropic susceptibility of a polycrystalline sample. The
free energy of a polycrystalline sample is isotropic,
F (B) = Fiso(|B|), where Fiso(|B|) is the average of the
anisotropic free energy over all crystal lattice orienta-
tions. The magnetotropic susceptibility of a polycrystal
is determined by the angular derivatives of Fiso(|B|) and
therefore is zero. When considering Eq. (2) or Eq. (5)
in a polycrystalline sample, the vanishing of the magne-
totropic susceptibility is not immediately clear because
it arises as a cancellation between the first and second
terms. Such cancellation is obvious in the linear regime,
Eq. (9), where one has to replace the linear magnetic

susceptibility χ̂0 with its polycrystalline average, propor-
tional to the unit matrix.

In the non-linear regime, the character of the first and
second terms in Eq. (2) and Eq. (5) is quite different, and
the cancellation is not evident. It is instructive, though,
to track the cancellation starting from a non-linear mag-
netization and a non-linear magnetic susceptibility,

M = − dF

dB
= − 1

B

dF

dB
B , (14)

χµν =
dMµ

dBν
=

(
1

B

d(M/B)

dB

)
BµBν +

M

B
δµν , (15)

where B = |B| and M = |M |. The first term in Eq. (15)
is proportional to the projector matrix in the direction
of the magnetic field. Therefore, the non-linear magnetic
susceptibility χµν of a polycrystalline sample is a uniaxial
tensor with magnetic field as a symmetry axis. This pro-
jector part of the magnetic susceptibility is projected out
when substituted into Eq. (2), and, therefore, does not
affect the magnetotropic susceptibility. The second term
in Eq. (15) is isotropic. When substituted into Eq. (2),
it cancels with the first term in Eq. (2).

It will be shown in Section II E that the relaxation
phenomena induced by the rotation in an applied mag-
netic field are captured by the imaginary part of the dy-
namic (frequency dependent) magnetotropic susceptibil-
ity. In the polycrystalline sample, these dissipative phe-
nomena are induced independently in each single-crystal
grain and their total effect on the dynamic magnetotropic
susceptibility does not add up to zero. Therefore, the
polycrystalline sample has a non-zero imaginary part of
the dynamic magnetotropic susceptibility (Section II E)
and, by analyticity, a non-zero real part at finite fre-
quency.

B. Example: An isolated spin-1/2

As a simple example, here we briefly discuss the mag-
netotropic susceptibility of an isolated spin-1/2 with an
anisotropic g-factor, described with Hamiltonian

H0 = µBB ·ĝ ·(σ/2) , (16)
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FIG. 2. The magnetotropic susceptibility calculated for an isolated
spin-1/2 with an anisotropic g-factor, ga,b = 2, gc = 1. The rotation
axis is along the b-axis of the crystal lattice. A. Field scans up to 100
T. Magnetic field is along the a-axis. B. Angular scans at 20 K. Easy
axis is along the ab-plane. The hard axis is along the c-axis.

where σ = {σj} are three Pauli matrices and ĝ = gij
is a symmetric g-factor tensor. The free energy can be
calculated in a closed form,

e−
F (B)

T = Tr e−
H0
T ,

F (B) = f(a) = −T log

(
2cosh

√
a

2T

)
,

a = µ2
B B · ĝ · ĝ⊤ ·B , (17)

where Tr · · · stands for a trace of 2x2 matrices and
T is temperature measured in energy units. In the
basis a, b, c where the g-factor tensor ĝ is diagonal,
a = µ2

B

(
g2aaB

2
a + g2bbB

2
b + g2ccB

2
c

)
, the torque Tn and the

magnetotropic susceptibility kn are

Tn =
df(a)

dθ
=

df(a)

da
× da

dθ
,

kn =
d2f(a)

dθ2
=

d2f(a)

da2
×
(
da

dθ

)2

+
df(a)

da
× d2a

dθ2
, (18)

where the angular derivatives of magnetic field vector are
evaluated using Eq. (4). We have

da

dθ
= µ2

BB · [ĝ · ĝ⊤, iN̂ ] ·B ,

d2a

dθ2
= µ2

BB · [[ĝ · ĝ⊤, iN̂ ], iN̂ ] ·B . (19)

Alternatively, one can use Eqs. 1 and 2 with the magne-
tization and magnetic susceptibility of an isolated spin

1/2 given by

M =− df(a)

da
× da

dB
= µ2

B

df(a)

da
× (−2 ĝ ·ĝ⊤·B) ,

χ̂µν =
dMµ

dBν
= µ2

B

df(a)

da
(−2 ĝ ·ĝ⊤)µν − d2f(a)/da2

(df(a)/da)
2 MµMν .

(20)

Figure 2 shows the angular- and magnetic field depen-
dence of the magnetotropic coefficient of an isolated spin-
1/2 with an anisotropic g-factor. As discussed in Section
III B, for a 0.1 nanomol size sample of spin-1/2 system,
the shift of the frequency of the fundamental resonance
mode at 50 kHz of a 180 nJ bending stiffness cantilever is
a few kilohertz at 50 K and 50 T (Figure 2A), much larger
than the resonance width of a fraction of a hertz. The
frequency shifts of a millihertz and smaller are readily
measured by standard locking techniques.

A non-interacting spin-1/2 system provides the sim-
plest example of a scale-invariant behavior—the scale and
the character of the magnetic-field dependence are deter-
mined by the temperature alone. In particular, at high
magnetic fields, µBB ≫ kBT , the free energy is a linear
function of the applied magnetic field. Consequently, the
magnetotropic susceptibility is also linear-in-field in this
high-field regime. Figure 2 shows that all field sweeps
approach the same B-linear line at high magnetic fields,
with smaller temperatures reaching it at smaller fields,
and higher temperatures–at higher fields.

We note that, despite being an idealized example, real
spin-1/2 systems might exhibit a behavior similar in mag-
nitude and character to that shown in Figure 2 at tem-
peratures and magnetic fields larger than the exchange
energy scale in the system, hence the choice of the tem-
perature range in Figure 2.

C. Magnetotropic susceptibility as a
thermodynamic coefficient

Magnetotropic susceptibility is a thermodynamic co-
efficient, the second derivative of the free energy. As
such, its behavior across the thermodynamic phase
boundaries is constrained by general thermodynamic
considerations.14 For example rotation of the sample in
the applied magnetic field is described with a matrix of
thermodynamic coefficients(

dS
dTn

)
=

(
C
T ξn
ξn kn

)(
dT
dθn

)
, (21)

where ξn = dS/dθn = dTn/dT is the rotational analog
of magnetocaloric coefficients.

Thermodynamic coefficients experience a discontinu-
ous jump across the boundary of a continuous (second-
order) phase transition. The magnitudes of the jumps
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in thermodynamic coefficients are related to one an-
other via the Ehrenfest relations, which express the con-
tinuity of the thermodynamic potentials (first deriva-
tives) across the boundary of a continuous phase tran-
sition. Equation (21) relates the jump in the magne-
totropic susceptibility to the jump in the heat capacity
via ∆kn = −∆C/Tc×(dTc/dθn)

2
. Here (dTc/dθn) is the

change in the transition temperature when the sample is
rotated in the applied magnetic field at a fixed temper-
ature. The sign of the jump ∆kn in the magnetotropic
susceptibility across the phase boundary is fixed by ther-
modynamics. Similar to elastic moduli, or magnetic sus-
ceptibility, the magnetotropic susceptibility decreases as
we enter into a lower symmetry phase.10

D. Magnetotropic susceptibility as a
thermodynamic response.

In this section, we discuss the magnetotropic suscepti-
bility in relation to microscopic degrees of freedom in the
system, i.e., as a correlation function. This Section also
sets up the discussion in the next section (Section II E),
where we will introduce dynamics.

The angular dependence of the free energy F (∆θ) is
generated by the term in the Hamiltonian H1(∆θ) that
depends on the direction of magnetic field,

e−βF (∆θ) =Tr e−β(H0+H1(∆θ)) , (22)

where β = 1/T is the inverse temperature (throughout
this section the temperature is measured in energy units.
In these units, kB = 1). Tr · · · stands for the sum of
expectation values over a complete set of states of the
Hamiltonian, Tr · · · =

∑
n ⟨n| · · · |n⟩. Here H1(∆θ) is

defined in such a way that H1(∆θ = 0) = 0. The free
energy can be expanded in powers of ∆θ as

F (∆θ) = F0 + F1∆θ + F2 ∆θ2/2 . (23)

The magnetotropic susceptibility is equal to F2.

We want to express F2 directly in terms of thermo-
dynamic averages of the operators H0 and H1(∆θ). Be-
cause operators H0 and H1(∆θ) do not commute, the
Taylor expansion of the matrix exponent in Eq. (22)
in powers of H1(∆θ) has to be carried out by way of

the identity eA+B = limn→∞
(
eA/neB/n

)n
generated by

the “interaction representation”15. Using the fact that
exp{−βF0} = Tr exp{−βH0}, we can write

e−βF1∆θ−β(F2/2)∆θ2

=
[
Tr eβH0

] [
Tr e−β(H0+H1)

]
= 1 + ⟨−βH1⟩+ ⟨⟨(−βH1), (−βH1)⟩⟩ + · · · , (24)

where ⟨A⟩ = Tr[exp{−βH0}A]
/
Tr[exp{−βH0}] is the

thermodynamic average and ⟨⟨A , B⟩⟩ is the average of the

(imaginary) time-ordered correlation function defined as

⟨⟨A , B⟩⟩ = 2T 2

β∫
0

β∫
0

dτ1dτ2 θ(τ1 − τ2) ⟨A(τ1)B(τ2)⟩ , (25)

where θ(τ1 − τ2) = 1 for τ1 > τ2 and 0 otherwise
and A(τ) = exp{τH0}A exp{−τH0} is the (imaginary)
“time-evolution” of operator A under the action of H0.
Because the thermodynamic average ⟨A(τ1)B(τ2)⟩ de-
pends only on the difference τ1 − τ2, the double integral
in Eq. (25) can converted into a single integral :

⟨⟨A , B⟩⟩ = 2T

∫ β

0

dτ (1− Tτ) ⟨A(τ)B(0)⟩ . (26)

This equivalent form of ⟨⟨A , B⟩⟩ can be used in numeric
calculations based on Eq. (24).

F1 and F2 in Eq. (24) define the torque and magne-
totropic susceptibility. To identify them, we exponentiate
the second line in Eq. (24) and keep terms that are linear
and quadratic in H1,

e−βF1∆θ−β(F2/2)∆θ2

= e⟨−βH1⟩+⟨⟨(−βH1), (−βH1)⟩⟩− ⟨−βH1⟩2/2+··· , (27)

where the last term in the second line is there to cancel
the square of the first term in the expansion of the expo-
nent. Magnetic torque and magnetotropic susceptibility
can now be read off from Eq. (27),

Tn =

〈
dH

dθn

〉
,

kn =

〈
d2H

dθ2n

〉
+

1

T

〈
dH

dθn

〉2

− 1

T

〈〈
dH

dθn
,
dH

dθn

〉〉
. (28)

We have omitted the subscript in H1 because dH1/dθn =
dH/dθn.

As an example, we consider a collection of spin-1/2
spins with an anisotropic g-factor and exchange interac-
tions, described by the Hamiltonian,

H0 = µBB ·ĝ ·
∑
n

(σn/2) +
1

4

∑
⟨n,m⟩

σn ·Ĵnm ·σm , (29)

where n,m represent different lattice sites and 1/2σn is
the spin operator on site n. Only the first (g-factor) term
depends explicitly on the external magnetic field,

H1(θn) =− (δθnB) · M , M = −µB ĝ ·
∑
n

σn/2 ,

(30)

where M is the magnetization operator. We need to
expand δθnB to second order in the rotation angle ∆θ,

δθnB =∆θ(iN̂) ·B +
∆θ2

2
(iN̂) · (iN̂) ·B . (31)
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We have

dH

dθ
= Tµnµ = −B · (iŜµnµ) · M = (M×B)µ · nµ ,

(32)

where Tµ is the torque operator, and

d2H

dθ2
=− B · (iŜµnµ) · (iŜνnν) · M . (33)

Substituting these into Eq. (28) we obtain

Tµ = ⟨Tµ⟩ = −B · (iŜµ) · ⟨M⟩ , (34)

kµν =
1

2
B · (Ŝµ · Ŝν + Ŝν · Ŝµ) · ⟨M⟩

+
1

T
⟨Tµ⟩ ⟨Tν⟩ −

1

T
⟨⟨Tµ , Tν⟩⟩ . (35)

The first line in kµν is equal to the first line in Eq. (7). Be-
cause the torque operator is T = −M·(n×B), Eq. (32),
the second line has the same structure as the microscopic
correlation function for magnetic susceptibility,

χµν =
1

T
⟨Mµ⟩ ⟨Mν⟩ −

1

T
⟨⟨Mµ , Mν⟩⟩ . (36)

Substituting Eq. (32) into Eq. (35) and using Eq. (36)
one can see that the second line in Eq. (35) is equal to
−(n×B) · χ̂ · (n×B), the second term in Eq. (2).

Equation (35) applies more generally, beyond the spe-
cific example it was derived for. The magnetotropic sus-
ceptibility has two qualitatively different parts as will
become clear in the discussion of dynamic magnetotropic
susceptibility in Section II E. The linear-in-magnetization
part in Eq. (35) originates from the fact that the mag-
netic torque operator depends explicitly on the external
magnetic field, described by the second derivative term
d2H/dθ2 in Eqs. (32), (28), and (33). It does not de-
scribe the actual response of the system to rotation in the
applied field. Instead, it captures the “redefinition” of
the torque operator in the rotated reference frame. The
second term in Eq. (35) describes the proper response
function part of the magnetotropic susceptibility given
by the torque-torque correlation function, as required by
fluctuation-dissipation analysis16,17.

E. Rotation-in-field-induced relaxation phenomena
captured in the frequency-dependent magnetotropic

susceptibility.

Given the nature of the experimental setup in
which magnetotropic susceptibility arises (Section III),
we now discuss the dynamic—frequency-dependent—
magnetotropic susceptibility kn(B, ω). It captures the
relaxation phenomena coupled to the rotation of the sam-
ple in an applied magnetic field. The time-dispersed mag-
netotropic susceptibility kn(t−t′) describes time-delayed

response of the torque ∆Tn(B) to rotation of the sample
in applied magnetic field,

∆Tn(B, t) =

t∫
−∞

dt′ kn(B, t− t′) ∆θn(t
′) . (37)

Its Fourier transform defines the dynamic magnetotropic
susceptibility kn(B, ω) =

∫∞
0

dt exp(iωt)kn(B, t).

Kubo analysis15 starting from Eq. (37) suggests
that the dynamic response kn(ω) is equal to the dy-
namic torque-torque correlation function, kn(ω) =∫∞
0

dt exp(iωt) ⟨Tn(t)Tn(0)⟩. This is because the torque
operator is conjugate to the angle variable ∆θn in the
microscopic Hamiltonian, Eq. (32), and therefore, de-
termines the time-evolution of the torque under time-
dependent ∆θ(t). This is similar to the microscopic in-
terpretation of the dynamic magnetic susceptibility as
a correlation function of magnetization operators. This
argument captures the entire imaginary part of the dy-
namic magnetotropic susceptibility kn(B, ω) as well as
that part of the real part of kn(B, ω) that is related to
the imaginary part by Kramers-Kronig (analyticity) re-
quirements. In particular, it shows that the dynamic
magnetotropic susceptibility kn(ω) is identical in its an-
alytic properties to the dynamic magnetic susceptibility
χ(ω) and contains the same physical information. Di-
rect calculation of the dynamic torque-torque correlation
function results in

Imkn(ω) = −(n×B) · Imχ̂(ω) · (n×B) . (38)

However, without Im, Eq. (38) does not produce a cor-
rect relation between kn and χ̂ in the static limit ω = 0
given by Eq. (2). This is because the time-dispersed mag-
netotropic susceptibility kn(t− t′) contains an instanta-
neous part, proportional to delta-function δ(t− t′) asso-
ciated with the direct dependence of the magnetic torque
on magnetic field, Eq. (1).

The instantaneous part in kn(t − t′) produces a
frequency-independent real function on the real axis of
frequency, in kn(ω). Such a constant function has zero
imaginary part everywhere in the complex plane. The
instantaneous term in the magnetic torque originates
in the explicit dependence of magnetic torque operator
Tn(B) = −M · (n × B) on applied magnetic field B.
This term is reactive—it is not associated with the time
evolution of torque under the action of time-dependent
Hamiltonian, as captured by the Kubo argument. The
complete relation between the dynamic magnetic suscep-
tibility χ̂ and magnetotropic susceptibility kn is given
by

kn(B, ω)=(n×B) · (n×M)

− (n×B) · χ̂(B, ω) · (n×B) . (39)

The first term here is not associated with relaxation- or
dispersion phenomena in the sample. It is a mere re-
definition of the torque operator in the rotated frame
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of reference. The second term has the structure of dy-
namic correlation function15 of magnetic torque opera-
tors, Tn(B) = −M · (n×B).

III. THE MAGNETOTROPIC SUSCEPTIBILITY
IN FREQUENCY-SHIFT MEASUREMENTS.

A. The frequency shift of an oscillating
cantilever-sample assembly.

The magnetotropic susceptibility emerges naturally
in frequency shift measurements of oscillating cantilever-
sample assembly in a uniform applied magnetic field1–13.
In these measurements, the sample is attached at the
free end of a cantilever. The oscillation amplitude is
read out by a piezo-mechanical transducer1–11 or by laser
optics12,13. When driven near its nth mechanical reso-
nance mode at frequency ωn, the cantilever behaves as a
simple harmonic oscillator with mechanical energy

E =
In
2

(
d∆θ

dt

)2

+
Sn

2
∆θ2 , (40)

where ∆θ is the bending angle at the free end of the can-
tilever. This defines the effective bending stiffness Sn and
the effective moment of inertia In of a cantilever near its
n-th resonance mode. Sn and In depend on the resonance
mode n as well as on the geometry and the construction of
the cantilever (Section IV). The resonance frequency ωn

of the cantilever is determined by the bending stiffness Sn

and the effective moment of inertia In as ωn =
√
Sn/In.

For a thin cantilever driven near the fundamental
“flapping” mode (Section IV, Figure 3),

S0 = 1.63
γ

L
= 0.136

wh3Y

L
, I0 = 0.132 ρwhL3 ,

ω0 =

√
S0

I0
= 1.02

h

L2

√
Y

ρ
, (41)

where Y is the Young’s modulus of the cantilever, ρ is
its density, w is the width, L is its length, and h is its
thickness. γ is the arc stiffness of the cantilever discussed
in Section IV.

In the experiments where the displacement of the can-
tilever is detected optically12,13, it might be convenient
to define the energy of the cantilever in terms of the dis-
placement ∆X at the tip of the cantilever rather than
the rotation angle ∆θ,

E =
mn

2

(
d∆X

dt

)2

+
cn
2
∆X2 , (42)

where mn is the effective n-th mode mass coefficient, and
cn is the effective n-th mode spring constant. For an
oscillating cantilever, ∆X and ∆θ are proportional to

each other, with a mode-dependent coefficient (Figure
3). For the fundamental mode :

∆X = 0.73L∆θ . (43)

For higher-n modes, the coefficient of proportionality
is given in Eq. (95). The spring constant of the fun-
damental mode, c0 = S0/(0.73L)

2 = 3.06 γ/L3 =
0.255 Y wh3/L3,13 is obtained by comparing Eqs. (40)
and (42). The effective mass coefficient m0 of the funda-
mental mode in Eq. (42) is given by m0 = I0/(0.73L)

2 =
0.248 mL where mL is the mass of the cantilever. In Sec-
tion III C we discuss calibrating the arc stiffness γ of the
cantilever in static measurements. The bending stiffness
Sn and spring constant cn are then determined by the
arc stiffness γ.

When a sample is attached at the tip of the cantilever,
the angular dependence of the energy of the cantilever-
sample assembly acquires a small additional magnetic
field-dependent potential energy, originating from the
magnetically-anisotropic free energy of the sample,

δEsample = T (B) ∆θ + k(B)
∆θ2

2
. (44)

The effect of the ∆θ-linear term is to shift the equilibrium
value of ∆θ away from zero, by an amount proportional
to the torque T (B) on the sample. The effect of the
∆θ-bilinear term is to shift the frequency of the mechan-
ical resonance of the cantilever, determined now by the
combined effect of the bending stiffness Sn of the can-
tilever and the magnetotropic susceptibility k(B) of the
sample—both describe the quadratic-in-∆θ change in en-
ergy in Eq. (40). For arbitrary magnitude of the magne-
totropic susceptibility of the sample, the frequency shift
∆ω is determined by

(ω0 +∆ω)2 =
k(B) + Sn

In
. (45)

When the magnetotropic susceptibility of the sample is
small compared to the bending stiffness of the cantilever,
k(B) ≪ Sn, the frequency shift ∆ω is small compared to
ω0, and we can expand,

∆ω

ω0
≈ k(B)

2Sn
, k(B) ≪ Sn . (46)

The magnetotropic susceptibility of the sample is pro-
portional to the shift of the resonance frequency of the
cantilever-sample assembly in magnetic field.

Equation (45) assumes that the mass of the sample,
mS, is much smaller than the mass of the cantilever, mL.
When considering the finite mass of the sample, an ad-
ditional kinetic energy term is introduced in Eqs. (40)
and (44), expressed as mS/2 × (d∆X/dt)2. This term
is equivalent to an increase in the effective moment of
inertia, In. For instance, for the fundamental mode, I0
becomes I0 + mS(0.73L)

2. It is important to note that
when this change in the effective moment of inertia is
small, it does not affect the relative frequency shift in
Eq. (46).
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B. Examples

To illustrate the quantitative aspects of the resonance
frequency shift measurements, we consider two studies:
an interacting system of spin-1/2’s in RuCl310 and quan-
tum fluxes in a superconducting ring13.

The silicon cantilever in Ref. 10 measures 3.4 µm in
thickness, 60 µm in width, and 300 µm in length. From
Eq. (41), the bending stiffness is 180 nJ and the frequency
of the fundamental resonance mode is close to 50 kHz. At
cryogenic temperatures in low-pressure exchange gas, the
cantilever has a Q-factor of around 3 ×104 (Section IIID)
and a resonance width of a few hertz.

Below 5 K, RuCl3 is characterized by an anisotropic
magnetic susceptibility, χa − χc = of 0.06 J/mol-f.u.T2,
or 0.01 µB/T per Ru spin. The RuCl3 sample in Ref. 10
measures 50 × 70 × 2 µm3 with a mass of 20 nanogram
or 0.1 nanomol-f.u. molar mass, has magnetic suscepti-
bility of 6 pJ/T2. In 1 T magnetic field along the a axis,
the magnetotropic susceptibility of the sample is 6 pJ,
from Eq. (13). This shifts the resonance frequency of the
180 nJ-stiffness cantilever by 0.8 Hz (Eq. 46), compara-
ble with the resonance width. Such frequency shifts are
well within detection limits. The frequency shift changes
sign to -0.8 Hz, when the same magnetic field is applied
along the c-axis, as long as we stay in the linear regime at
this field along the c-axis. The frequency shift increases
quadratically with the magnetic field, Eq. (13), as long
as we stay in the linear regime.

At even higher magnetic fields, beyond the energy of
the effective spin-exchange interaction and the thermal
energy, kBT , the spin-1/2 system in RuCl3 becomes scale-
invariant, i.e., the free energy is a function of external
energy scales only. This implies that the free energy and
magnetotropic susceptibility are linear function of mag-
netic field at low temperatures and large magnetic fields
(Section II B)10.

A 0.1 nanomol-f.u. system of non-interacting spin-½’s
with a g-factor anisotropy of 2 (Figure 2) has the mag-
netotropic susceptibility of 10 nJ at 10 K and 25 T, and
at 50 K and 50 T. For the cantilever of 180 nJ bending
stiffness, the magnetotropic susceptibility of 10 nJ would
result in a frequency shift close to 3 kHz. Frequency shifts
of similar magnitude were observed in RuCl3 sample of
similar molar mass10.

The finite mass of the cantilever, 150 ng, results in
a maximum gravitational frequency shift of 10 mHz,
Eq. 63, small compared to the frequency shift associated
with magnetic anisotropy of the sample.

The second example is the study of quantum jumps of
magnetic flux in a small superconducting ring, reported
in Ref. 13. In this paper, a much thinner silicon cantilever
was employed, with dimensions of 0.1 µm thickness, 3 µm
width, and 80 µm length. The bending stiffness of such

cantilever is 1 pJ and the resonance frequency 20 kHz,
as determined by Eq. 41. The observed resonance fre-
quency is somewhat lower at 16 kHz, possibly due to the
added inertia of the sample mass of 50 pg. The spring
constant measured in Ref. 13, is 3.6 ×10−4 N/m, which
corresponds to an effective bending stiffness of 1.2 pJ for
the fundamental mode, close to our estimate (see Sec-
tion III C for the relation between the two). The observed
Q-factor of 6.5 ×104 corresponds to a resonance width of
0.3 Hz.

We can estimate the energy change that accompanies
a single quantum flux entering the superconducting ring
as ∆fluxE ≃ −Φ0Φext/d

18. Here, Φ0 is the flux quan-
tum, Φext is the flux of the external magnetic field cross-
ing the superconducting ring, and d is the diameter of
the ring. The angular dependence of ∆fluxE(θ), is the
same as the angular dependence of Φext at a fixed ex-
ternal magnetic field, proportional to cos θ. Between the
jumps, the magneto-static energy of the superconducting
ring changes quadratically with field with a coefficient
proportional to cos 2θ. This estimate does not account
for the impact of a finite (and anisotropic) penetration
depth or the finite difference between the ring’s inner
and outer diameters. We note that ∆fluxE is negative, in
accordance with Le Chatelier’s principle. This requires
that the frequency must jump up as one extra flux enters
the ring, consistent with the measurements13.

Given the 1 µm diameter of the superconducting
ring, the jump in magnetotropic susceptibility, calcu-
lated using Eq. (2), ∆k = d2∆fluxE(θ)/dθ2, is ∆fluxk =
+Φ0Φext/d = 1×10−4 pJ when the external field compo-
nent perpendicular to the loop is 10 G. For a cantilever
of bending stiffness 1 pJ and a resonance frequency of
20 kHz, such a jump in the magnetotropic susceptibility
of the superconducting ring corresponds to a frequency
shift of 1 Hz, comparable to the resonance width of 0.3
Hz13. If, instead, we used the thicker cantilever from the
first example, the frequency shift corresponding to the
flux jump would be 1.5 ×10−5 Hz.

The mass of the cantilever is 50 pg, which results
in a maximum gravitational frequency shift of 0.1 Hz
(Eq. 63), comparable to the resonance shift in the flux-
jump. Consequently, in this measurement, the angular
dependence of the frequency shift has a smooth, field-
independent background of a magnitude comparable to
that of the flux-jump shifts, both having the same an-
gular dependence ∝ cos θ. The gravitational shift, as-
sociated with the sample mass of roughly 50 pg as in
Ref. 13, has a similar magnitude and the same angular
dependence (Eq. 65).

At cryogenic temperatures in vacuum, the resonance
width is determined by the thermoelastic friction in
the cantilever (Section IIID) and the energy dissipation
within the superconducting ring. We can estimate the
thermoelastic friction in the cantilever using Eqs. (50)
and (51). The heat diffusion time τh across the can-
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tilever’s thickness h is 3(h/c)2/τe, where τe is the mean
free time of phonons in silicon at cryogenic temperatures.
Assuming τh of about 10 ps, the resonance frequency of
20 kHz, and a thermodynamic factor in Eq. (51) of 1%14,
the estimated thermoelastic friction limit on the Q-factor
is around 109. For the thicker lever in Ref. 10, the ther-
moelastic friction puts a stricter limit on the Q-factor, of
a few times 106. The observed Q-factor of 6.5 ×104 sug-
gests that the thermoelastic friction is not the limiting
factor on the resonance width. The observed resonance
width of 0.3 Hz might originate from a small viscous fric-
tion in the surrounding exchange gas, in which case, the
resonance width would be independent of magnetic field.

Alternatively, the resonance width could originate
from the energy dissipation in the superconducting ring
oscillating in an external magnetic field, via the imagi-
nary part of the magnetotropic susceptibility of the su-
perconducting ring in Eq. (48). In this scenario, the res-
onance width will depend on an applied magnetic field.
If the resonance width ∆Γ originates in the dissipative
phenomena in the superconducting ring, an accompany-
ing shift in resonance, ∆f , of comparable magnitude is
expected, i.e., ∆f ≃ ∆Γ. This is because the measured
response f(ω) in Eq. (48) is an analytic function limited
by causality (Kramers-Kronig relations). It would be in-
teresting to see how much of the observed frequency shift
is associated with the dissipation in the superconducting
ring associated with the flux jump.

C. Arc stiffness of the cantilever in the static
measurements.

The effective bending stiffness S0, or the effective
spring constant c0, can be inferred from the frequency
shift in uniform gravity or uniform magnetic field gradi-
ent (Section III F). They can also be calibrated by ap-
plying a static force or static torque at the tip of the
cantilever, or by using the weight of the cantilever as a
source of force. In each of these measurements, one can
determine arc stiffness γ of the cantilever and, through it,
the effective bending stiffness S0, Eq. (100) or the spring
constant c0, Eq. (42).

Applying a static torque T at the free end of the can-
tilever creates a uniform cross-sectional torque, Eq. (80)
(Figure (3) along the cantilever, T (z) = T , and, there-
fore, uniform curvature ∇2ζ(z). The bending shape of
the cantilever is a parabola ζ(z) = T/γ × z2/2 for which
∆X = (1/2)L∆θ. The bending angle at the free end of
the cantilever is ∆θ = 2∆X/L = TL/γ.

Applying a static force F along the x-axis (Figure (3)
at the free end of the cantilever, creates the linear-in-
z cross-sectional torque, T (z) = F (L − z). The bend-
ing shape of the cantilever is a cubic parabola, ζ(z) =
FL/γ × (3 − z/L) z2/6, for which ∆X = (2/3)L∆θ.
The displacement at the free end of the cantilever is

∆X = 1/3 × FL3/γ, and, therefore, the spring constant
c = F/∆X is c = 3γ/L3.

If the weight of the cantilever in Earth’s gravity is
the source of static force, the cross-sectional torque is
T (z) = mLg cos θ × (L − z)2/2L, where θ is the angle
between the cantilever and the direction of the force of
gravity. The displacement is ζ(z) = mLgL

3/γ × cos θ ×
[ 6 (z/L)2 − 4 (z/L)3 + (z/L)4 ] / 24, with ∆X = (3/4)L∆θ.
The displacement at the free end of the cantilever is
∆X = 1/8 × mLgL

3/γ × cos θ.

D. Effects of friction in the sample and in the
cantilever and the resonance width.

The width of the resonance is determined by those
relaxation phenomena in the sample and the cantilever
that are coupled effectively to the rotation of the sample
and the cantilever in the applied magnetic field. It is
important for this discussion that the measurement of
the mechanical oscillations of the cantilever produces a
response function with the same analytic properties as
the magnetotropic susceptibility of the sample.

For the sake of this discussion, it suffices to model
the amplitude readout in these experiments to be pro-
portional to the rotation angle ∆θ(t) at the tip of the
cantilever. For example, in optical-readout setups12,13

the readout is proportional to the displacement ∆X(t)
at the free end of the cantilever. In piezo-readout se-
tups, (e.g., Ref. 10), the measured signal is proportional
to the stress induced by the lever at the attachment end
of the cantilever, which, in turn, is proportional to the
cross-sectional torque T (z = 0) at the attached end of
the cantilever (see Eq. (80) for details). All these are
proportional to each other for small displacements of the
cantilever.

Therefore, quite generally, the measured response is
proportional to the mechanical response f(ω) =

∫∞
0

d(t−
t′) exp(iω(t− t′))∆θ(t)∆θ(t′). Near the mechanical res-
onance, Eqs. (40) and (46), ω2

n = [Sn(ω) + k(ω)]/In the
response function f(ω) has a broadened Lorentzian form

f(ω) ∝ 1

ω2 − [Sn(ω) + k(ω)]/In

=
1

ω2 − ω2
0 + iω0Γ

. (47)

The relaxation phenomena in the sample and in the can-
tilever shift the poles of the response function f(ω) of
the cantilever below the real axis, ±ω0 − iΓ/2, where
Γ is the width of the resonance. The width of the
resonance, Γ, is determined by the imaginary part of
ω2
0 = [S0(ω) + k(ω)]/I0. For the fundamental mode,

Γ = − 1

I0ω0
[ImS0(ω0) + Imk(ω0)] . (48)
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The partial resonance width produced by relaxation phe-
nomena in the sample is proportional to the imaginary
part of the dynamic magnetotropic susceptibility k(ω0)
discussed in Section II E.

We note that Eq. (47) implies that relaxation phe-
nomena in the sample result not only in resonance width
broadening proportional to the imaginary part of mag-
netotropic susceptibility Imk(ω0) but also in a finite fre-
quency shift ∆ω ∝ Rek(ω0) associated with Imk(ω0) via
Kramers-Kronig (analyticity) relations. These consider-
ations become especially important in experiments where
the frequency shifts are exceedingly small.13

Equation (47) can also be used as a starting point
for discussion of the frequency shift and resonance width
broadening in a polycrystal. The ”thermodynamic” part
of the magnetotropic susceptibility vanishes in a poly-
crystal. The magnetotropic susceptibility in the poly-
crystal is determined entirely by the relaxation phenom-
ena in the sample. For a polycrystal, the entire frequency
shift in Eq. (47) is related to the resonance width broad-
ening by Kramers-Kronig relations.15

We now discuss the relaxation phenomena in the can-
tilever captured in the imaginary part of the dynamic
bending stiffness S(ω). In complete analogy to the dis-
cussion in Section II E, in the presence of slow relaxation
phenomena in the cantilever, its mechanical response of
the cantilever (e.g., stress) is no longer an instantaneous
function of the bending angle ∆θ(t). In particular, one
cannot, strictly speaking, define an instantaneous effec-
tive energy Eq. (40). This situation is described by in-
troducing a variable ∆Θ = dE/d∆θ, which is thermody-
namically conjugate to the bending angle ∆θ at the free
end of the cantilever. Equation (40), defines the instan-
taneous response of Θ to the bending angle ∆θ in the
absence of relaxation phenomena, Θ(t) = S∆θ(t). Dy-
namic bending stiffness S(ω) defines the time-dispersed,
non-instantaneous, relation between ∆Θ(t) and ∆θ(t′) :

∆Θ(t) =

∫ t

−∞
dt′ S(t− t′) ∆θ(t′) . (49)

Dynamic bending stiffness S(ω) is the Fourier trans-
form of its time-dispersed counterpart, S(ω) =∫∞
0

dt exp(iωt)S(t) .

Relaxation phenomena in the cantilever include ther-
moelastic friction19,20 and the viscous friction in the sur-
rounding exchange gas.21,22 The motion of the cantilever
in the surrounding He gas or liquid leads to viscous fric-
tion. For a 100 x 50 µm2 cantilever oscillating at 10
kHz, the Reynold’s number is small, ∼ 0.5 in air and
∼ 5 in liquid He-4 at 2K.23 Therefore, we can use the
Stokes formula for the viscous force. The ratio of the
resonance width to the resonance frequency can be es-
timated as the ratio of the energy dissipated per cycle
to the energy stored, Γ/f =

(
6πηRfu2

)
/
(
S0(u/L)

2
)
=

6πη
√
wLfL2/S where u is the amplitude of oscillations.

For a 300 x 60 µm2 cantilever the viscous resonance width

is about 30 Hz in the air at room temperature and atmo-
spheric pressure and about 3 Hz in liquid He-4 at 2K.23

Regardless, the Q-factor of the cantilever is intrinsi-
cally limited by internal thermoelastic friction.19,20 Bend-
ing of the cantilever induces nonuniform strain across
the thickness of the cantilever, which, via thermal ex-
pansion coefficients, induces temperature gradient across
the thickness of the cantilever, δT ∝ x. Irreversible
relaxation of the temperature gradient via heat diffu-
sion across the thickness of the cantilever results in
entropy production and, therefore, energy dissipation.
The effect of such thermoelastic friction on the dynamic
bending stiffness S(ω) can be captured (via Eq. (100))
by the dynamic (frequency dependent) Young modulus,
Y (ω) = YT + (YS − YT )A(ω), where YS and YT are adia-
batic and isothermal values of Young’s modulus respec-
tively and A(ω) is a dimensionless factor normalized as
A(ω = 0) = 0 and A(ω = ∞) = 1. The value of
(YS − YT )/YT is about 1 % at room temperature and
smaller at lower temperatures.14 For a thin cantilever,

A(ω) =48
∑

kn=(2n+1)π

1

k4n

−iωτh
−iωτh + k2n

=1− 12

−iωτh
+

24

(
√
−iωτh)3

tanh

√
−iωτh
2

, (50)

where τh is the heat diffusion time across the thickness
of the cantilever, 1/τh = D/h2. Here D = κ/CV is the
heat diffusion coefficient. The Q-factor :

Q−1 = −YS − YT

YT
ImA(ω) . (51)

We can estimate τh as 3(h/c)2/τe where τe is the mean
free time of phonons in the cantilever and h/c is the time
it takes for sound to traverse the thickness of the can-
tilever. For thin cantilevers, ωτh is small and Eq. (50) be-
haves as A(ω) = −iωτh/10. The Q-factor of a 1-micron-
thick silicon cantilever with a resonant frequency of 100
kHz and phonon mean free path of 10 microns at cryo-
genic temperatures is limited by 107.

E. Adiabatic evolution of freely oscillating
cantilever.

The frequency shift can be detected using lock-in
techniques.3,6,9,10,12,13 In some experiments, such as in
pulsed magnetic fields, it is more straightforward to ob-
serve the free oscillation of the cantilever in the time-
dependent magnetic field.10 Here we discuss some gen-
eral properties of the oscillating cantilever relevant to
such measurements. The free evolution of the cantilever
in a slowly changing environment is described by

d2∆θ

dt2
+ ω0(t)

2∆θ = 0 , (52)
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where the time dependence of the “spring constant” pa-
rameter,

ω0(t)
2 = [S + k(t)]/I , (53)

is determined by the slow evolution of the magnetotropic
susceptibility k(t) = k(B(t) in an external magnetic field
B(t). When the magnetic field changes slowly, the os-
cillation frequency of the cantilever adiabaticallyfollows
the instantaneous value of ω0(t) — the instantaneously
observed oscillation frequency is equal to the parameter
ω0(t) in Eq. (52) :

∆θ(t) =A(t)eiφ(t) , φ(t) =

t∫
ω0(t

′)dt′ . (54)

The quantitative measure of the slowness of ω0(t) is the
adiabaticity parameter α = d(ω−1

0 )/dt defined as the
fractional change of frequency in one oscillation period.24

While the observed frequency of the cantilever follows
adiabatically the instantaneous value ω0(t) determined
by the magnetic field B(t) and the magnetic response of
the sample, the amplitude A(t) of the oscillation decays.
In a typical setup, the source of amplitude decay is en-
ergy dissipation in the surrounding exchange gas, in the
components of the setup susceptible to irreversible defor-
mations, as well as, and possibly dominantly so at low
temperatures, energy dissipation associated with ther-
moelastic friction and solid viscosity in the cantilever it-
self (Section IIID).

The amplitude of oscillations of the cantilever evolves
reversibly (as well as irreversibly, due to energy dissipa-
tion) in a time-dependent magnetic field. This is because
the cantilever-sample assembly in an external magnetic
field is not a closed mechanical system. The mechanical
energy of the sample-cantilever assembly changes by the
amount of work done by the magnetic field on the sample.
In the adiabatic regime, this reversible energy exchange
is captured by the weak time dependence of the adiabatic
invariant,

J =
E(t)

ω0(t)
, (55)

which does not change when the spring constant pa-
rameter ω0(t)

2 varies slowly in time24. Here E(t) =
I ω0(t)

2A(t)2 is the average mechanical energy of the can-
tilever. Therefore, the oscillation amplitude of the can-
tilever will change reversibly according to

A(t)2 ∝ 1/ω(t) , (56)

in addition to the irreversible changes associated with
energy dissipation.

F. Frequency shift in Earth’s gravity.

Piezoresistive cantilevers can be calibrated by mea-
suring their bending in Earth’s gravity. Similarly, the

oscillating cantilever exhibits a characteristic resonance
frequency shift in Earth’s gravity. The reason for such
a frequency shift is that each segment of the cantilever
performs a ”pendulum” motion in the external gravita-
tional field. Left to itself, the length of the rope—or,
in this case, the radius Rn of the circle containing the
oscillating trajectory of the segment of the cantilever—
would determine the frequency of swinging oscillations.
Instead, because the segments are coupled to each other
by much stronger elastic forces, the swinging in a gravita-
tional field leads to a small frequency shift, proportional
to the ratio of gravitational energy mLgL and the bend-
ing stiffness, Eq. (63).

To describe this in better detail, we note that as each
short segment on the cantilever moves perpendicular to
the plane of the cantilever (ζn(z, t), along x in Figure 3),

it also moves along the length of the cantilever (Ξ
∥
n(z, t),

along z in Figure 3) by a much smaller amount,

Ξ∥
n(z) ≈ − ζn(z)

2

2Rn(z)
. (57)

Geometrically, the curve {ζn(z), ζn(z)2/2Rn(z)} de-
scribes a small arc of a circle of radius Rn(z) with the
center on the z-axis. Because the strain ϵzz vanishes on
the neutral surface, Eq. (74), an arbitrary deformation
of a thin cantilever leaves the length of a neutral surface
unchanged. This property of neutral surface determines
the ”effective rope radius” Rn(z) in Eq. (57) for arbitrary
ζ(z). Specifically, we label each point by its distance s
to the attachment point along the neutral surface of the
bent cantilever, 0 < s < L, and can describe the bent
shape of the cantilever parametrically with {x(s), z(s)},
subject to constraint (dx/ds)2 + (dz/ds)2 = 1. The dis-

placement Ξ
∥
n(z) along the z axis of segment of the can-

tilever can be represented as

Ξ∥(s) =z(s)− s =

s∫
0

ds′
(
dz(s′)

ds′
− 1

)

=

s∫
0

ds′

√
1−

(
∂ζ(s′)

∂s′

)2

− 1

 . (58)

Expanding Ξ∥ for small ζ(s) gives equation Eq. (57) with
effective rope radius

1

Rn(z)
=

1

ζn(z)2

z∫
0

dz′
(
∇ζn(z

′)
)2

, (59)

where we have relaxed the distinction between z and s.
For the fundamental mode, the rope radius R0(z)/z in-
creases approximately linearly from 0.75 at the base of
the cantilever, z = 0, to 0.86 at the free end, z = L,

R0(L) = 0.86L . (60)
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Together, Eqs. (57), (59), (93), and (94) define the
gravitational energy of the cantilever, bilinear-in-∆θ,

δEgravity
cantilever =µg cos θ ×

L∫
0

dz Ξ∥(z)

=mLg cos θ × bnL× ∆θ2

2
, (61)

where mL = ρAL is the total mass of the cantilever and
g cos θ is the component of the Earth’s gravity along the
length of the cantilever. The numeric mode-dependent
factor bn is

bn =

∫ L

0

dz

L

(
1− z

L

)
(∇ζn(z))

2
. (62)

The gravitational shift of the fundamental mode, b0 ≈
0.21, is (see Eqs. (44) and (46) for comparison),(

∆ω0

ω0

)
L

= 0.21
mLgL

2S0
cos θ . (63)

The sample attached at the end of the cantilever itself
moves on a small arc of a circle of radius R(L), Eq. (59).
The bilinear-in-∆θ gravitational energy is

δEgravity
Sample = mSg cos θ ×Rn(L)×

∆θ2

2
. (64)

For the fundamental mode, Eq. (60),(
∆ω0

ω0

)
S

= 0.86
mSgL

2S0
cos θ . (65)

G. Effects of non-uniform magnetic field

A non-uniform magnetic field can shift the resonance
frequency of the cantilever through several mechanisms.
Unless the experiment is specifically designed to observe
these effects, the resonance shifts resulting from a non-
uniform magnetic field are much smaller than the fre-
quency shifts associated with sample rotation in the mag-
netic field. Typically, they are smaller by a factor pro-
portional to the first or second power of the ratio of the
cantilever’s length to the size of the coil generating the
applied magnetic field (which determines the size of the
gradients of magnetic field). Here we provide a brief semi-
quantitative discussion of the frequency shifts associated
with spatial gradients and spatial curvatures of magnetic
field.

Small changes in the free energy of the sample in a
non-uniform magnetic field

dF = −M · dB (66)

originate from the finite extent ∆X of the trajectory of
the sample at the free end of the cantilever (Eq. (43)

for the fundamental mode) along the x-axis (Figure 3)
as well as the pendulum-like motion of the sample along
the z-axis, Eq. (57). The frequency shifts associated with
these two orthogonal motions have different characters.

The field gradient along the length of the cantilever
acts on the sample in the same way as a force of gravity,
Eq. (64). The sample experiences a uniform force along
the length of the cantilever :

Fz = −dF

dz
= M · dB

dz
(67)

The associated frequency shift is obtained from Eq. (65)
by replacing mSg cos θ with M ·dB/dz. For example, the
gravitational frequency shift of a sample with 1 µB/f.u
magnetization and an atomic number of 100/f.u. is about
100 times smaller than the frequency shift in magnetic
field gradient of 0.1 T/cm.

The inhomogeneity of magnetic field along the x-axis
introduces a parabolic potential that depends on both
gradients and spatial curvature of the inhomogeneous
magnetic field,

∆F =
∆X2

2

(
−Mµ

d2Bµ

dx2
− χ̂µν

dBν

dx

dBµ

dx

)
, (68)

where χ̂µν = dMµ/dBν is the magnetic susceptibility.
Equation (68) produces a small ∆X2 term in Eq. (42),
and through Eq. (43), a small ∆θ2 term in Eq. (40).
For the fundamental mode, the associated frequency shift
is given by Eq. (46) with parenthesis factor in Eq. (68)
replacing the magnetotropic coefficient.

For a cantilever, where oscillations rotate as well as
displace the sample simultaneously, Eq. (95), the fre-
quency shift associated with the spatially non-uniform
magnetic field is suppressed compared to “rotational
shift”, Eq. (46), by a factor of the square of the ratio
of the size of the cantilever to the size of the magnet. We
note, however, that the two shifts have different angular
dependence as well as different dependence on compo-
nents of the magnetization and magnetic susceptibility.

IV. MECHANICS OF AN OSCILLATING
CANTILEVER

A. Thin cantilever and arc stiffness.

For completeness, we discuss here the mechanics of
a thin cantilever25. Throughout this discussion, we
shall assume that the thickness of the cantilever is much
smaller than either of its lateral dimensions, h ≪ L,w
(Figure 3). In such a thin-plate approximation, the bent
state of the cantilever is described completely by the x-
axis displacement of the cantilever at a distance z from
the point of attachment, ζ(z). The mechanical energy of
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the cantilever is a bilinear function of the displacement
ζ(z),

Etot =
µ

2

L∫
0

dz

(
∂ζ(z, t)

∂t

)2

+
γ

2

L∫
0

dz

(
d2ζ(z, t)

dz2

)2

. (69)

The mechanical energy of the cantilever determines the
resonant frequencies and the effective bending stiffnesses.
The first term in Eq. (69) is the kinetic energy of the
oscillating cantilever, proportional to the square of the
velocity of each segment of the cantilever, µv(z)/2 =
µ[dζ(z)/dt]2/2. Here µ is the mass of the lever per unit
length, µ = ρA where A = wh is the cross-sectional area
of the cantilever, w is the width of the cantilever, and h
is its thickness. ρ is the density of the cantilever.

The second term in Eq. (69) is the elastic energy, pro-
portional to the second derivative—curvature—of ζ(z)
for each segment of the cantilever, 1/r(z) = ∂2ζ(z)/∂z2,
where r(z) is the local radius of curvature at z.

The arc stiffness γ in Eq. (69) determines the elas-
tic energy of the cantilever for arbitrary ζ(z). The arc
stiffness γ is itself determined by the elastic deformation
inside the cantilever. For small deformations of a thin
cantilever, only one component, σzz, of the stress tensor
is nonzero, and it alone determines γ. This is because
the perpendicular component of the elastic stress on the
free surface of the cantilever is zero which requires that
all stress components except σzz must vanish there. For
a thin cantilever, this implies that all stress components,
with the exception of σzz, are zero, not only on the sur-
face of but also inside of the cantilever.25

The stress σzz is a linear function of the distance to
the ”neutral surface” and vanishes on it, σzz = b(z)x,
where x runs from −h/2 to h/2 (Figure (3). For a thin
cantilever, the neutral surface is in the middle of the
cross-sectional area. b(z) can be found from elastic equa-
tions that connect the strains (described via ζ(z)) to the
stresses. Assuming that the cantilever is cut out of a cu-
bic crystal parallel to its crystallographic directions, the
elastic equations are

σxx + σyy + σzz = (c11 + 2c12)× (ϵxx + ϵyy + ϵzz) ,

σxx − σyy = (c11 − c12)× (ϵxx − ϵyy) ,

σxx + σyy − 2σzz = (c11 − c12)× (ϵxx + ϵyy − 2ϵzz) ,

σi̸=j = c66 ϵi̸=j . (70)

Here, only one, σzz, component of a stress tensor is
nonzero. Therefore, only compressional strains are non-
zero,

ϵzz =
1

Y
σzz , ϵxx = ϵyy = −σϵzz = − σ

Y
σzz . (71)

where σ is the Poisson’s ratio and Y is the Young’s mod-
ulus of the cubic crystal,

Y =
(c11 − c12) (c11 + 2c12)

c11 + c12
, σ =

c12
c11 + c12

. (72)
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C

∆θ
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L

ζ(z)
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r
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σzz(x)
zy

x h/2

-h/2
zy

x

ζ n
(z
)

ζ0(z)

ζ1(z)

ζ2(z)
z

FIG. 3. Resonating cantilever. A. Schematic of an oscillating
cantilever. The angle of ∆θ at the tip of the cantilever (z=L)
is equal to the gradient of the displacement, ∆θ = ∇ζ(z). B.
Cross-section of the cantilever. The blue dashed line indicates
a neutral surface. The purple arrow indicates the magnitude
of σzz that changes sign across the neutral surface. The or-
ange line indicates the radius of curvature 1/r(z) = ∇2ζ(z).
The green arrow indicates the cross-sectional torque in the
cantilever, Eq. (80). C. Plot of the shape of the cantilever in
fundamental (blue) and the next two modes of the cantilever,
Eqs. (93) and (94).

Equations (71) show that the strains ϵxx, ϵyy, and ϵzz
are all linear in x because σzz(x) = b(z)x is linear in
x. The linear-in-x strain ϵzz = x/r(z) implies that the
shape of the bent cantilever is an arc of a thin annulus.
This is because under such deformation each vertical line
z = const will deform into radial segments and each hor-
izontal line x = const will deform into an arc of a circle,
with the same center as the arc of the neutral surface
(Figure 3). r(z) is the radius of curvature of a neutral
surface (Figure 3) :

1

r(z)
= ∇2ζ , (73)

where ∇ = ∂/∂z denotes the derivative with respect to
z. This establishes the connection between the strain and
the bent shape of the cantilever,

ϵzz(x, z) = x ∇2ζ(z) . (74)

Elastic equations, Eq. (71), in turn, require that the co-
efficient b(z) in the stress σzz(x, z) = b(z)x is equal to
b(z) = Y/r(z) = Y∇2ζ(z), and, therefore,

σzz(x, z) = x Y ∇2ζ(z) . (75)
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The arc stiffness γ in Eq. (69) determines the elastic
energy of the cantilever per unit length. We can integrate
the elastic energy of the cantilever in a small volume,
dE = (1/2)ϵijσijdV ,

∆E

∆V
=

1

2
ϵzzσzz =

1

2Y
σ2
zz =

Y

2

(
∇2ζ

)2

x2 , (76)

over the cross-sectional area to obtain the elastic energy
of the cantilever per unit length,

∆E

∆z
=

γ

2

(
∇2ζ

)2

. (77)

which defines the arc stiffness,

γ = Y wh
〈
x2
〉
= Y wh3/12 , (78)

in terms of geometric and mechanical parameters of
the cantilever (Figure 3). Here

〈
x2
〉
= (1/h)

∫
x2dx is

the average x2 over the cross-section of the cantilever.〈
x2
〉
wh is the geometric “moment of inertia” of the cross-

sectional area of the cantilever25. For a thin cantilever,〈
x2
〉
= h2/12.

The boundary conditions for the equations of motion
follow from an expression for the mechanical energy of a
non-uniform cantilever for which w(z), Y (z), ρ(z), and
h(z) vary along its length,

Etot =
1

2

L∫
0

dz µ(z)

(
dζ(z, t)

dt

)2

+
1

2

L∫
0

dz γ(z)

(
d2ζ(z, t)

dz2

)2

,

(79)

where µ(z) = w(z)h(z)ρ(z), and γ(z) =
Y (z)w(z)h(z)3/12. For example, if the cantilever
consists of two unequal uniform segments such that w(z)
and/or h(z) have a sharp step, the equations of motion
require the continuity of ζ(z), ∇ζ(z), γ(z)∇2ζ(z), and
γ(z)∇3ζ(z) across the step.

When the cantilever is bent locally into an arc of
curvature ∇2ζ(z), a finite cross-sectional torque T (z)
is developed in its cross-section (Figure 3). The cross-
sectional torque T (z) is equal to the change in elastic en-
ergy of the cantilever, Eq. (69), when local curvature of
the cantilever is varied, δ(dE/dz) = T (z)δ(∇2ζ). Equa-
tion (69) gives T (z) = γ∇2ζ(z). Therefore, the arc stiff-
ness γ in Eq. (69) has the meaning of the coefficient of
proportionality between crossectional torque T (z) and
the local curvature of the cantilever. The same result is
found by direct integration of the stress σzz(x) in Eq. (75)
over the cross-sectional area of the cantilever,

T (z) =

∫
xσzz(x)dA = γ∇2ζ(z) , (80)

where arc stiffness γ is given by Eq. (78).

B. Oscillating cantilever.

The motion of the cantilever near one of its mechani-
cal resonances is determined by the equations of motion
for ζ(z, t),

d2ζ(z, t)

dt2
+

γ

µ
∇4ζ(z, t) = 0 , (81)

which follow from the energy functional in Eq. (69)24.
Near the resonance, the cantilever oscillates at a single
frequency ω,

ζ(z, t) = ζn(z)e
iωnt , (82)

determined by one of the eigenvalues of the Bilaplacian

∇4ζn(z) =
κ4
n

L4
ζn(z) , ω2

n =
κ4
n

L4

γ

µ
, (83)

subject to the boundary conditions of the cantilever. For
a cantilever clamped at one end, z = 0, and free at the
other, z = L,

∇2ζn(L) = 0 , ∇3ζn(L) = 0 , ∇ζn(0) = 0, ζn(0) = 0 .
(84)

The eigenfunctions of the Bilaplacian in Eq. (83) is solved
with

ζn(z)=A cos
κnz

L
+B sin

κnz

L
+C cosh

κnz

L
+D sinh

κnz

L
,

(85)

where A,B,C,D are constant factors determined by the
boundary conditions,

−A cosκn −B sinκn + C coshκn +D sinhκn = 0

A sinκn −B cosκn + C sinhκn +D coshκn = 0

B +D = 0

A+ C = 0 .
(86)

The eigenvalues κn of the Bilaplacian are determined by
the condition that the matrix in Eq. (86) has zero deter-
minant,

Det

− cosκn − sinκn coshκn sinhκn

sinκn − cosκn sinhκn coshκn

0 1 0 1
1 0 1 0

 = 0 , (87)

which simplifies to

1 + cosκn coshκn = 0 . (88)

Finally, we obtain

κ0 ≈ 0.597π, κn=1,2,... ≈ (n+ 1/2)π . (89)
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The set of resonant frequencies of the cantilever is now
determined via Eq. (83),

ωn =
κ2
n

L2

√
γ

µ
. (90)

The frequency of the lowest frequency (fundamental)
mode of a thin cantilever with a uniform cross-section
is given by combining Eqs. (83, 89, 78),

ω0 = 1.02
h

L2

√
Y

ρ
, (91)

where the numerical factor, (0.597π)2/
√
12 ≈ 1.02.

The bending shape of the cantilever near the reso-
nance ζn(z) is found from Eq. (86),

A =− C = coshκn + cosκn,

B =−D = sinκn − sinhκn , (92)

and Eq. (85),

ζn(z) = L Nn

[
(coshκn + cosκn)

(
cosh

κnz

L
− cos

κnz

L

)
− (sinhκn − sinκn)

(
sinh

κnz

L
− sin

κnz

L

) ]
. (93)

The normalization factor Nn can be chosen to fix the
bending angle ∆θ(t) = ∇ζ(z = L, t) at the free end of
the cantilever, z = L. We parametrize the motion of the
cantilever near the resonance as ζn(z, t) = ζn(z)∆θ(t)
where ζn(z) is normalized to have a unit slope at the
free end, ∇ζn(z = L) = 1, and ∆θ(t) oscillates at the
resonance frequency, ∆θ(t) = ∆θeiωnt,

Nn =
1

2κn
× 1

coshκn sinκn + cosκn sinhκn
. (94)

The displacement ∆Xn = ζn(L) and the angle ∆θn =
∇ζn(L) at the free end of the cantilever are proportional
to each other,

∆Xn =
1

κn(cotκn + cothκn)
L∆θn . (95)

This gives ∆X0 = 0.73L∆θ0 for the fundamental mode,
n = 0, and 0.21, 0.13, · · · for n = 1, 2, · · ·.

C. The effective bending stiffness Sn in the vicinity
of a resonance.

Together, Eqs. (93), (94), and (69) describe the ki-
netic and potential energy of the cantilever near the n-th

resonance mode in terms of the rotation angle at the tip
of the cantilever, ∆θ(t) = ∆θeiωnt :

E =
In
2

(
∂∆θ

∂t

)2

+
Sn

2
∆θ2. (96)

The values of Sn and In are evaluated by substituting
the shape of the cantilever in the n-th resonance mode,
Eqs. (93), and (94), into the kinetic and elastic energy
terms in Eq. (69) and expressing both as bilinear func-
tions of the angle ∆θ. Calculating the kinetic energy in
Eq. (69),

(
∂∆θ

∂t

)2
L∫

0

dzζn(z)
2
= L3

(
an
κ3
n

) (
∂∆θ

∂t

)2

, (97)

where an=0,1,2,... = {0.870, 1.13, 1.97, ...} is a mode-
dependent numeric factor defined by the average square
of the displacement of the cantilever,

an =
κ3
n

L3

L∫
0

dz
(
ζn(z)

)2

, (98)

with ζn(z) from Eq. (93) and normalization factor Nn

from Eq. (94) where ∆θ is set to unity. We obtain the
parameter In in Eq. (96),

In =
an
κ3
n

× µL3 =
an
κ3
n

× ρwhL3 . (99)

The integral in the elastic energy in Eq. (69) can be re-
duced to the one in Eq. (98) using equations of motion,
Eq. (81), and we obtain

Sn = anκn × γ

L
= anκn × Y wh3

12L
. (100)

Equations (99) and (100), through their definition in
Eq. (96), produce the correct resonance frequency,
Eq. (90).
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