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A B S T R A C T

Puncture is a primary failure mechanism occurring in soft materials and biological tissues when subjected to
impact and dynamic deep indentation. While many studies on puncture mechanics focus on the energies and
forces associated with fracture, most of the existing models only capture qualitatively experimental measures
at low rates and lack strong predictive power for the dynamic crack growth and its material basis. In this work,
we employ a novel experimental framework to investigate the relationship between the fracture morphology
and rate-based ultimate properties during dynamic puncture of soft and stretchable materials using a conical
tool. We discover a scaling relationship between the tangents of the half cusp angles of the undeformed
crack and the puncture tool, which gives a constant ratio whose magnitude depends on the combination
of the effective strain rate in the material during puncture, and the visco-hyperelastic constitutive response
of the material. Our theoretical prediction for the relationship between tensile stretch at failure and strain
rate shows a close agreement with the experimental results determined from dynamic conical puncture tests.
These findings, combined with two further case studies, confirm the feasibility of postmortem puncture damage
characterization as a new tool for extracting ultimate stretch in complex soft biomaterials and biological tissues
under dynamic/impact loading.
1. Introduction

Puncture of soft materials or tissues via penetration of a sharp,
pointed tool is a fundamental failure mechanism in the biological
realm [1–9] and bio-related applications [10–21]. Living organisms
have evolved a variety of biological weaponry in the form of teeth [1,
22], claws [23], spines [3,6], stingers [24] and more [2]. Across a wide
pan of sizes and operating rates [2,8], these biological puncture tools
ierce and cut through target soft tissues with remarkable precision and
echanical performance to achieve a wide range of biological functions
uch as prey capture, reproduction, and defense [2–4,23,25,26]. A bet-
er understanding of the physical principles underlying puncture failure
n soft materials and tissues not only has far-reaching implications for
he evolution and comparative biomechanics of biological puncture
ystems; It is also highly instructional for developing more effective bio-
nspired medical tools (e.g., needles and probes) [11,27–30] and tissue
simulants/phantoms [10,14,31] as simulators to improve the safety and
eliability of biomedical operations such as invasive surgery, injection,
nd biopsy [11,15,32]. Additionally, puncture is widely used in soft
aterials as an important testing technique for material characteriza-
ion [19,33,34], design of protective biomaterials [13], and exploration
f soft fracture mechanics [35,36] and injury biomechanics [37].
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E-mail address: bzhang53@illinois.edu (B. Zhang).

Challenges arising during the investigation of puncture mechanics
in soft solids stem from the complex interplay between puncture tool
geometries, contact mechanics, and nonlinear constitutive and failure
responses associated with large deformation [7,27]. This interplay is
ultimately responsible for the initiation and propagation of fracture
inside the material substrate during puncture. Previously established
energy-based models for puncture have demonstrated their effective-
ness in mathematically describing how initial energy investment for
puncture failure is divided into energy contributions for fracture, elastic
deformation, and friction dissipation [7,18,21,27,38–43]. However,
there exists a knowledge gap between the observed unique morphology
of puncture fracture surfaces and the underlying fracture mechanics. In
particular, current theoretical models for puncture assume a preexist-
ing crack with prescribed geometries. It is not fully understood how
the final shape and size of a fracture surface produced by puncture
quantitatively depends on the tool geometry, the loading rates, the
nonlinear constitutive response, and the ultimate properties of the
target material (e.g., stretch at failure). A precise physical description
of the material basis governing the crack growth during puncture is of
great interest to facilitate the standardization of the puncture testing
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Fig. 1. Dynamic conical puncture to characterize fracture morphology. (a) Schematic of the experimental setup. (b) and (c) Still frames from high-speed imaging showing the
onset of impact, the maximum indentation (𝑑𝑒), and the maximum penetration ((b): left to right; (c): top to bottom). Puncture rates: (b): 𝑣 = 9.4 ± 0.2 m/s; (c): 𝑣 = 50.3 ± 1.2 m/s.
range scale bars: 10 mm. (d) A representative planar triangular fracture surface obtained at 𝑣 = 50.3 ± 1.2 m/s to demonstrate the two approaches for characterizing the angular
arameters (Eqs. (1) and (2)). The white solid lines outline the edges of the fracture surface. The white dashed lines indicate the cusp angle of the corresponding puncture tool
2𝜃tool = 30◦). Particularly, the fracture surface shown is aligned with the focal plane of the microscope camera.
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echnique. It holds the potential as a new characterization tool for ma-
erial failure properties through the examination of injuries and damage
orphology in postmortem samples, which can be more effective and
ost-efficient than in operando characterization approaches, especially
n dynamic/ballistic loading scenarios (e.g., Refs. [44–46]).
Previous experimental [21,38,47,48] and computational [18,39,41,

2,49] explorations on the size/morphology of puncture fracture were
primarily focused on puncture with a cylindrical tool under a quasi-
static loading condition. The findings of these studies are insightful
and informative for the development of biomedical tools such as hy-
podermic needles due to their relevance and similarity to cylindrical
puncture [27]. However, natural biological puncture systems com-
only adopt a tapered, conical tool that reduces to a sharp tip (radius
f curvature: 𝑟 ∼ 100 μm) [2,7] and often operate within a spectrum
f dynamic loading rates (𝑣 ∼ 1–100 m∕s) [50] corresponding to a
ange of strain rates orders of magnitude higher than a typical quasi-
tatic loading rate (𝜀̇ ≲ 0.01 1/s). Consequently, predictions from
he established models for quasi-static puncture with cylindrical tools
ight be inadequate to describe the damage morphology and fail-
re behaviors in dynamic, bio-relevant puncture scenarios with sharp
onical tools. Moreover, practical challenges may arise when charac-
erizing the failure response of soft materials and tissues at high strain
ates using conventional mechanical testing methods such as tensile
nd tearing tests [51,52], which are designed primarily for relatively
ow-rate conditions. To address these issues, it is necessary to estab-
ish a quantitative relationship between the measurable postmortem
haracteristics of the dynamic puncture fracture and the ultimate rates-
ependent properties to enable experimental-data-based, theory-driven
irect failure characterization and biomechanical analysis. Particularly,
e introduce a time-dependent constitutive model incorporating both
arge-deformation nonlinearity and viscoelastic effect to elucidate the
ate-based variations in the puncture morphology within a dynamic
pectrum.
In this work, we address the above-mentioned gaps in knowledge

hrough systematic characterization of the morphology of the puncture
racture surfaces produced by conical tools in soft materials and tissues.
n experimental framework recently proposed by the authors [7] is
dapted to achieve highly controllable dynamic conical puncture tests
cross a wide spectrum of bio-relevant tool geometries (cusp angle:
0◦–60◦) and dynamic rates (𝑣 ∼ 9–50 m∕s). Systematic quantification
eveals that the tangent of the half cusp angle of the undeformed
racture scales with that of the puncture tool, which leads to a rate-
ased constant angular ratio. This motivates us to construct a theo-
etical framework within which a quantitative relationship between
he constant angular ratio and the target material’s rate-dependent
2

xtensibility is established. Incorporating the elastic expansion of the
uncture cavity, a visco-hyperelastic constitutive model, and a strain–
nergy–density-based failure criterion, the theoretical framework leads
o the postulation of the critical condition of failure in a material ex-
ibiting a ‘ductile’ fracture response. Predictions for the tensile stretch
t failure across a wide spectrum of strain rates find a close agreement
ith the experimental stretchability results determined independently
rom the measured angular ratios, validating both the theory and the
ffectiveness of the puncture method. Leveraging these findings, we aim
o elucidate the mechanics of dynamic conical puncture in complex soft
aterial systems and provide the experimental and theoretical bases
or the standardization and generalization of the puncture technique as
new method for probing ultimate properties via postmortem failure
haracterization. To this end, we demonstrate potential applications of
he proposed dynamic puncture method in bio-relevant soft materials
ia two case studies in an ultra-soft and adhesive silicone material and
porcine muscle tissue sample, respectively.

. Materials and methods

.1. Sample preparation

The model silicone elastomer (Solaris, Smooth-On, Inc.) was fabri-
ated following documented procedures [7,53,54] by mixing part A and
art B pre-polymer chains as received in a 1:1 ratio (w:w), followed by
egassing (≈ 30 min), molding (standard cube mold, ASTM C-109), and
uring at room temperature for approximately 1 day. Polycarbonate
heets with 0.02-inch thickness were applied to the inner walls of the
old to improve the transparency of the sample. Sample cubes were
xamined for dimensions (≈ 49 mm × 49 mm × 42 mm, 𝑡×𝑤× ℎ) and
eight (≈ 100 ± 1 g) before being tested.
The low-modulus silicone sample was prepared from a commercial

olydimethylsiloxane (PDMS) composite kit as received by mixing the
re-polymer base with the curing agent at a ratio of 55:1 (w:w).
pproximately 95 g of liquid mixer was then degassed and molded
ith a customized cubic polycarbonate mold (≈ 50 mm × 50 mm ×
0 mm). After a curing time of approximately 2 days, another 5 g
f silicone liquid mixer (Solaris, 4:1 mixing ratio (part A: part B))
as prepared and spread evenly on top of the 55:1 Sylgard sample
o create a stiff skin layer after curing for another day. The skin layer
eals and protects the subcutaneous material from contamination due
o adhesion. The final sample was tested as prepared with the skin side
acing the direction of puncture.
A cubic porcine muscle tissue sample (Fig. A6(a), Appendix B)

weight: ≈ 100 g) was cut from a fresh pork loin purchased from a
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local grocery store (Meijer, Champaign, IL) using a sharp fillet knife
and tested within a time window of one hour. Fat tissues were removed
from the test surface. Following the dynamic puncture testing (Sec-
tions 2.2 and 5.3), the sample was placed in a freezer for two hours
ntil it became a solid block. A vertical cross-sectional cut was then
ade along the fracture plane (i.e., the vertical plane passing through

the long axis of the crack opening) by pressing a razorblade to split and
expose the fracture surface, during which process the damage pattern
remains fixed and unmodified (Fig. A6(c): top view; Fig. 6: side view).

2.2. Dynamic puncture method

Dynamic conical puncture tests were performed using a customized
compressed air cannon (Figs. 1(a), (b) and (c)) (Ballistic Loading and
Structural Testing Lab (BLAST), NC State University). 3D printed pro-
jectiles (Form 3 stereolithography (SLA) 3D printer, Formlabs Inc., clear
resin, FLGPCL04) were selected as puncture tools. Each projectile has
a cylindrical base that tapers at a pre-designed cusp angle (2𝜃tool =
30◦, 40◦, 50◦, 60◦]) to a controlled tip radius (𝑟 ≈ 110 ± 12 μm). During
puncture test, a projectile is accelerated by the air cannon to a
ontrolled muzzle velocity (𝑣 = [9.4 ± 0.2 m/s, 16.1 ± 0.3 m/s, 35.1 ±
0.7 m/s, 50.3± 1.2 m/s]) immediately before impacting and penetrating
a material sample. A special projectile with a longer cylindrical base
was used for the highest puncture speed (𝑣 = 50.3 ± 1.2 m/s) to
accommodate a large puncture depth that exceeded the available length
of the conical region of the projectile. The speed of the projectile at the
onset of impact was calculated and calibrated through linear regression
of the time vs. displacement data extracted from high-speed imaging
(FASTCAM SA-Z, Photron Inc., 10000–30000 fps).

2.3. Quasi-static puncture method

Quasi-static puncture tests were performed using a universal test
stand (Instron 5944, Instron Inc.) by inserting a conical projectile into a
material sample at a controlled feeding speed (10 mm/min). A designed
total energy investment (0.26 ± 0.01 J) was applied across the selected
cusp angles (2𝜃tool = [30◦, 40◦, 50◦, 60◦]) by controlling the maximum
isplacement and the area under the corresponding force–displacement
urve. Particularly, the magnitude of the maximum displacement was
uned such that penetration would occur for all tested projectiles
except for the one with 2𝜃tool = 60◦) without exceeding the available
ength of the conical region.

.4. Characterization of fracture surface

The angular parameters of puncture damage were determined from
he resultant triangular planar fracture surfaces in the undeformed con-
iguration. Although the crack produced by puncture may partly close
fter the removal of the puncture tool, no material healing occurs and
he undeformed planar fracture surfaces exhibit good visibility (e.g.,
igs. 1(d) and A1). This allowed us to evaluate the crack geometries
n two different ways: For a puncture test with a low-to-moderately-
igh speed (𝑣 ≤ 35.1 ± 0.7 m/s), identification of the edge lines of
he produced fracture surface verifies that a good approximation of its
usp angle (𝜃frac) can be obtained from measured dimensions using the
elation

tan 𝜃frac =
𝑅max
𝐷max

, (1)

here 𝑅max is the maximum radial size (i.e., the distance from the
enterline to the edge) of the fracture surface, and 𝐷max is the maximum
epth of puncture/length of fracture measured from the undeformed
riangular fracture surface along the centerline. We determined both
max and 𝐷max by averaging measurements from microscopic imag-
ng (stereo microscope, M205C, Leica Microsystems Inc.) and manual
robing.
3

For a fracture surface produced at the highest puncture speed (𝑣 =
50.3 ± 1.2 m/s), due to a large depth of puncture and rate-induced
perturbations of near-surface fracture morphology (as elaborated in
Section A3, Appendix B), tan 𝜃frac was evaluated directly in the near-tip
region of an undeformed fracture surface using the following equation

tan 𝜃frac =
tan 𝜃proj
cos 𝛼

, (2)

where 𝜃proj is the projected half cusp angle measured from the mi-
croscopic image by identifying the edge lines near the crack tip, and
𝛼 is the angle between the fracture plane and the focal plane of the
microscope (or the horizontal plane in this case). Further information
regarding the fracture orientation can be found in Section A1, Ap-
pendix B.

3. Results

3.1. Scaling between fracture and tool cusp angles

In Fig. 2(a), we plot in a log–log scale the tangent values of mea-
ured half cusp angles of undeformed fracture surfaces, tan 𝜃frac, as a
unction of the tangent value of the half cusp angle of the corresponding
uncture tool, tan 𝜃tool, at each of the five applied puncture rate condi-
ions (𝑣 = [9.4±0.2 m/s, 16.1±0.3 m/s, 35.1±0.7 m/s, 50.3±1.2 m/s]). In
all cases, the magnitude of 𝜃frac increases monotonically with increasing
𝜃tool. Comparing with an identity line (Fig. 2(a), dotted line) reveals
that the dependence of 𝜃frac on 𝜃tool at a prescribed puncture rate can
be captured by a simple linear scaling relationship within our selected
range of angles

tan 𝜃frac = 𝑘𝐴 tan 𝜃tool, (3)

where 𝑘𝐴 is a prefactor. The magnitude of 𝑘𝐴 appears to be rate-
dependent. For the same applied 𝜃tool, a fracture surface exhibits a
larger 𝜃frac value at a higher puncture rate except for the quasi-static
condition. In the next section, we show statistically that the ratio
between the tangent values of the two angular parameters is indeed
a rate-based constant.

3.2. Identification of a constant angular ratio

Fig. 2(b) depicts the relationship between tan 𝜃frac∕ tan 𝜃tool and
tan 𝜃tool using the data from Fig. 2(a). The colored dashed lines repre-
sent the best results for 𝑘𝐴 obtained by fitting Eq. (3) to the angular
data in Fig. 2(a) at each applied puncture rate. The resultant 𝑘𝐴
and the corresponding 𝑅2 values are listed in Table 1. It is evident
from Fig. 2(b) and the close-to-one 𝑅2 values that the angular ratio,
tan 𝜃frac∕ tan 𝜃tool, is approximately a constant independent of variations
in tan 𝜃tool at a prescribed puncture rate. Further statistical analysis of
the data within the dynamic range using one-way ANOVA confirms
that the magnitude of the angular ratio (Fig. 2(b)) statistically differs
between the applied puncture rates (𝑝 < 0.001), and a higher 𝑘𝐴 values
occurs at a higher rate.

Nevertheless, it appears the rate dependence of the angular ratio is
limited within a dynamic range, as the quasi-static results significantly
deviate from the dynamic ones (𝑝 < 0.001), exhibiting the highest 𝑘𝐴
value (𝑘𝐴 ≈ 0.899). However, the angular ratios calculated from quasi-
static puncture tests are only nominal values based on the maximum
dimensions (Eq. (1)) and might not accurately reflect the relative mag-
nitude of the cusp angle due to the alteration of fracture morphology.
In Sections 5.4 and A11 (Appendix B), we discuss the limitations of
the angular ratio evaluation arising from the fundamental difference
between the fracture mechanics of dynamic and quasi-static conical
puncture. Moreover, we include in Figs. 2(a) and (b) a theoretical limit
corresponding to the minimum angular ratio (𝑘𝐴,0, solid lines) derived
from measured material properties and a rate-independent hyperelastic
constitutive model (Eq. (10)). A detailed derivation of 𝑘𝐴,0 as well
as further discussion is provided in Section 4.2. Here we note that
the calculated angular ratio approaches the theoretical limit as the

puncture rate decreases within the dynamic range.
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Fig. 2. Dependence of angular parameters on rate and tool geometries for both dynamic and quasi-static puncture. (a) tan 𝜃frac versus tan 𝜃tool results obtained at different puncture
rates (𝑣 = [9.4 ± 0.2 m/s, 16.1 ± 0.3 m/s, 35.1 ± 0.7 m/s, 50.3 ± 1.2 m/s]) and tool geometries (2𝜃tool = [30◦ , 40◦ , 50◦ , 60◦]) plotted on a log–log scale. (b) A log–log plot identifying
rate-based constant angular ratios, tan 𝜃frac∕ tan 𝜃tool. The dashed lines indicate the best-fit results (𝑘𝐴) from (a) using Eq. (3). Significant differences (𝑝 < 0.001) between the dynamic
data are marked by *. A black dotted line of a slope of 1 is included in (a) as the upper bound of the ‘ductile’ puncture response (tan 𝜃frac∕ tan 𝜃tool < 1). The results in both (a)
and (b) are compared with the theoretical rate-independent limit (Eq. (10), black solid lines) and finite element (FE) results obtained from Ref. [7]. Normalized root mean square
error (NRMSE) between the theoretical limit and the FE results: NRMSE ≈ 2%.
Table 1
Resultant angular ratios and ultimate properties at different puncture rates*.
𝑣 [m/s] 1.67 × 10−4** 9.4 ± 0.2 16.1 ± 0.3 35.1 ± 0.7 50.3 ± 1.2 Theoretical limit

𝜀̇ [1/s] 0.02 1175 ± 25 2013 ± 38 4388 ± 88 6288 ± 150 –
𝑘𝐴 0.899 0.398 0.419 0.472 0.483 0.354
𝑅2(𝑘𝐴) 0.974 0.999 0.994 0.989 0.996 –
𝜆∗𝜃(experimental) 1.11 2.51 2.39 2.12 2.07 2.82
𝜆∗1(experimental) 1.13 2.59 2.46 2.19 2.14 2.90
𝜆∗1(theoretical) 2.90 2.55 2.44 2.25 2.18 2.90

* The errors correspond to standard deviations.
** The quasi-static experimental results represent nominal values.
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4. Theory

In this section, we explore the material basis of the unique fracture
pattern occurring in a dynamic conical puncture scenario. It is evident
from Figs. 2(a) and (b) that at a prescribed puncture rate, the damage-
ool angular ratio (tan 𝜃frac∕ tan 𝜃tool ∼ 𝑘𝐴) is a rate-dependent material
onstant. The magnitude of tan 𝜃frac∕ tan 𝜃tool approaches a limiting
value (i.e., 𝑘𝐴,0) when the rate decreases within the dynamic range.
Here we propose a physical description of the critical deformation state
at the onset of puncture crack growth. This, combined with a nonlinear
visco-hyperelastic constitutive model incorporating a strain–energy–
density-based failure criterion, establishes a theoretical framework that
links the experimentally observed constant angular ratios with the rate-
dependent elastic stretchability of the model soft elastomeric material
via measurable mechanical and failure properties. Ultimately, we aim
to lay the groundwork, through generalization, for utilizing the punc-
ture technique as a characterization method to better understand the
mechanics and failure of soft biomaterials and biological tissues under
dynamic/impact loading.

4.1. Puncture cavity expansion

As a starting point, we assume an ideal dynamic puncture scenario
n which a conical tool with cusp angle 2𝜃tool and an extremely sharp
ip penetrates a hyperelastic homogeneous half-space composed of a
oft, highly deformable material with negligible rate-dependent effect.
4

p

Although the effective sharpness of a real conical puncture tool depends
on both its cusp angle and finite radius of curvature at the tip [2,9,55,
56], we note that the puncture tools used in this work have on average
a small tip radius of curvature (𝑟 ∼ 100 μm) that is two orders of
magnitude smaller than the length scale of the conical puncture region
(∼ 10 mm). Therefore, we assume that such a sharp tip has a negligible
effect on the resultant puncture damage compared to the effect of
the cusp angle, as validated by previous dynamic conical puncture
experiments by authors [9]. In this case, based on previous [7] and
current observations of the puncture damage morphology (Fig. 1(d),
Fig. A1, and Section A2 (Appendix B), we assume that a ‘ductile’ failure
response prevails in our selected model material (1:1 Solaris) within a
dynamic range. Consequently, the deformed fracture surface conforms
to the puncture tool shape; and the undeformed configuration exhibits
a smaller planar triangular shape and satisfies tan 𝜃frac∕ tan 𝜃tool < 1, as
hown in Figs. 1(d) and 2, respectively.
To show the connection between the angular parameters and crack

rowth, we first consider the elastic expansion of a puncture frac-
ure surface (Fig. 3) from the undeformed configuration (Fig. 3(a),
range solid line) to a fully deformed configuration (orange dashed
ine) perfectly matching the tool shape. Unless otherwise specified,
ere we use the term ‘radial size’ to consistently describe either the
ateral size (𝑅(𝑦)) of an undeformed planar crack or the radius of a
onical cavity during the expansion process at an arbitrary depth 𝑦
rom the top surface (Fig. 3). Following the previously established
uncture theory [7], we assume that the initial undeformed triangular
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Fig. 3. Illustration of the theoretical elastic expansion of puncture cavity. (a) Left: The cavity expands elastically from the initial configuration (orange solid line) to the final
eformed configuration conforming to the tool shape (orange dashed line) (𝐷max ≈ 𝑑max). Right: For any arbitrary finite growth of depth of puncture, 𝛿𝐷, the radial size of the crack
t a coordinate 𝑦 grows from 𝑅 to 𝑅1 to maintain the geometric similarity. (b) Cross-sectional top view of an infinitesimal slice 𝑑𝑦 at 𝑦. Within 𝑑𝑦, The radial elastic expansion
f the opened cavity with a radius 𝑅(𝑦) can be approximated by the axisymmetric expansion of a plain-strain cylindrical hole.
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lanar crack is energetically equivalent to a conical cavity having the
ame radial size 𝑅(𝑦) and cusp angle 2𝜃frac. The final deformed conical
avity is described by a larger radial size 𝑟(𝑦) and cusp angle 2𝜃tool
orresponding to the puncture tool geometries. As shown in Fig. 3,
ithin an infinitesimal slice, 𝑑𝑦, at coordinate 𝑦, the radial expansion
f the cavity can be approximated by the axisymmetric growth of a
lain-strain circular hole in a cylindrical space (Fig. 3(b)). Therefore,
he deformation state at an arbitrary point on the fully deformed cavity
all can be described by the principal stretch components, (𝜆𝑟, 𝜆𝜃 ,1),

where the radial stretch, 𝜆𝑟, and the hoop/circumferential stretch, 𝜆𝜃 ,
satisfy 𝜆𝑟 = 𝜆−1𝜃 under incompressibility [7]. 𝜆𝜃 can be estimated using
the expression

𝜆𝜃 ≈
𝑟(𝑦)
𝑅(𝑦)

, (4)

he conical geometries in Fig. 3 give

tan 𝜃frac =
𝑅(𝑦)

𝐷𝑚𝑎𝑥 − 𝑦
, (5)

and

tan 𝜃tool =
𝑟(𝑦)

𝑑𝑚𝑎𝑥 − 𝑦
, (6)

where 𝐷𝑚𝑎𝑥 and 𝑑𝑚𝑎𝑥 are the depths of the initial and deformed cav-
ties, respectively. For simplicity, we assume that the boundary effect
ssociated with elastic indentation has a minor influence on the contact
epth. Namely, the undeformed and the deformed cavities largely
verlap, and 𝐷max ≈ 𝑑max (Fig. 3(a)). Such an assumption has been
alidated via FE simulations [7]. Substituting Eqs. (5) and (6) into
Eq. (4) yields
tan 𝜃frac
tan 𝜃tool

≈ 1
𝜆𝜃

. (7)

q. (7) links the angular ratio to the circumferential deformation on the
xpanded fracture surface. However, it does not contain information
bout material failure properties.

.2. Angle regularization in puncture crack growth

Further inspection of the growth of puncture fracture reveals that
5

he deformation state on the wall surface of the fully expanded conical
avity corresponds to the critical conditions at the onset of steady-state
rack growth in the radial direction. Such speculation is supported by
wo particular observations during puncture

1. The radial crack fronts occur on the deformed conical cavity
wall, which coincides with the puncture tool surface;

2. The growth of the triangular planar crack surface is self-similar.

he first behavior can be attributed to the high elastic deformability
nd the associated ‘ductile’ failure response of the model material (Sec-
ion A2, Appendix B). Essentially, the steady-state crack propagation
is directly driven by the tool-material contact. The second property
stems from the continuity of the triangular fracture shape and the
invariability of the angular ratio within the same test system. An
ensuing implication is that, as illustrated in Fig. 3(a), for any arbitrary
finite increase of depth of puncture, 𝛿𝐷, a radial growth of the fracture
surface must occur, which satisfies the geometric similarity

𝑅
𝑅1

|

|

|

|𝑦
≈

𝐷max − 𝑦
𝐷max − 𝑦 + 𝛿𝐷

, (8)

where 𝑅 and 𝑅1 are the corresponding radial sizes at an arbitrary
coordinate of 𝑦 before and after the growth, respectively. Relating
Eq. (8) to Eq. (5) yields

𝛿𝑅(𝑦) ≡ (𝑅1 − 𝑅)|
|𝑦 = 𝛿𝐷 tan 𝜃frac, (9)

where 𝛿𝐷 leads to a finite magnitude of the radial crack growth,
𝛿𝑅(𝑦). Eq. (9) verifies that the tool-material contact imposes a critical
deformation field for crack growth across the entire depth of puncture.
Therefore, the crack opening stretch on the deformed fracture cavity,
i.e., the hoop stretch 𝜆𝜃 is theoretically at its ultimate limit, 𝜆∗𝜃 . Con-
sequently, following from Eq. (7), the angular ratio corresponds to the
inverse of the material’s hoop stretch at failure, i.e.,
tan 𝜃frac
tan 𝜃tool

≈ 1
𝜆∗𝜃

. (10)

To estimate the magnitude of 𝜆∗𝜃 for our model material (1:1 Solaris)
in the rate-independent limit, we assume that the onset of failure occurs
at a critical strain–energy–density, 𝑤∗ [53,54,57]. We approximate 𝑤∗

by combining a hyperelastic constitutive model and experimentally de-
termined uniaxial tensile extensibility. The constitutive response of 1:1
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Solaris silicone elastomer can be well described by the incompressible
Arruda-Boyce model [53,54], where the strain–energy–density function
takes an approximated form using a five-term series expansion of the
inverse Langevin function [58]

𝑤 = 𝜇0
5
∑

𝑖=1

𝐶𝑖

𝜆2𝑖−2𝑚

(

𝐼 𝑖1 − 3𝑖
)

, (11)

where 𝐶1 = 1
2 , 𝐶2 = 1

20 , 𝐶3 = 11
1050 , 𝐶4 = 19

7000 , and 𝐶5 = 519
673750 , 𝐼1 =

2
1 + 𝜆22 + 𝜆23 is the first invariant of the left Cauchy–Green deformation
ensor, and 𝜇0 and 𝜆𝑚 are material-dependent fitting parameters. At the
ritical strain–energy–density for failure, Eq. (11) satisfies
∗ = 𝑤(𝐼∗1 ). (12)

he critical first invariant, 𝐼∗1 , can be calculated as

∗
1 =

(

𝜆∗1
)2 + 2

𝜆∗1
≈ 9.1, (13)

nder quasi-static uniaxial tension, with the documented tensile stretch
t failure, 𝜆∗1 ≈ 2.90 for 1:1 Solaris [53]. In the case of puncture, the
ritical first invariant for failure on the surface of the fully deformed
onical cavity can be written as
∗
1 =

(

𝜆∗𝜃
)2 +

(

𝜆∗𝜃
)−2 + 1, (14)

nder incompressibility. Substituting Eqs. (11), (13), and (14) into
q. (12), we find that the critical strain–energy–density criterion leads
o equal 𝐼∗1 values between the two deformation states at failure. There-
ore, equating and solving Eqs. (13) and (14) gives an estimation, 𝜆∗𝜃 ≈
2.82, in the rate-independent limit. Correspondingly, we can estimate
a theoretical minimum value for the angular ratio using Eq. (10), i.e.,
tan 𝜃frac∕ tan 𝜃tool = 𝑘𝐴,0 ≈ 1∕𝜆∗𝜃 ≈ 0.35. In Figs. 2(a) and (b), we present
this theoretical limit in different forms (black solid lines) in comparison
with angular data obtained at different rates (circles) as well as FE
results (gray diamonds) calculated from puncture damage simulations
in the previous work by the authors [7]. The FE model implements a
rate-independent hyperelastic constitutive model and a similar failure
criterion based on 𝑤∗. The FE angular ratios collapse on the theoretical
limit (NRMSE ≈ 2%), which validates the above-proposed elastic expan-
sion process and critical hoop deformation state governing the crack
angle regularization. Further technical details of the FE simulations for
puncture can be found in Appendix B (Section A6) and Ref. [7].

4.3. Visco-hyperelastic constitutive model

The above theoretical calculations provide a material basis for the
constant angular ratio and its fundamental relationship with the radial
crack growth. However, the experimental data in Figs. 2(a) and (b)
demand a more comprehensive constitutive model incorporating the
ultimate properties at failure (i.e., 𝑤∗ and 𝜆∗1) to address the monotonic
rate dependence of the angular constant within the dynamic range.
Based on Eq. (10) and the critical energy density criterion (Eqs. (12),
(13), and (14)), we estimate lower values of 𝜆∗𝜃 and 𝜆∗1 at higher applied
puncture rates for our model material (as tabulated in Table 1) from
the best fits for the dynamic angular ratios (𝑘𝐴) in Fig. 2(b). There-
fore, we hypothesize that the proposed rate-dependent constitutive
model should satisfy the following conditions: (1) The stiffness and
the magnitude of stress increase monotonically with the applied strain
rate; (2) A lower stretch at failure occurs at a higher strain rate. For
this reason, in Appendix A, we adapt the established rate-dependent
constitutive model for elastomeric materials [51,59–62] and develop a
visco-hyperelastic model by integrating the above Arruda-Boyce model
with a linear viscoelastic model via superposition.

In Fig. 4(a), theoretical constitutive response curves corresponding
to various applied nominal strain rates in puncture at two different
orders of magnitude (quasi-static: 𝜀 = 0.02 1/s, and dynamic: 𝜀 ∼
1000 1/s) are constructed from Eq. (A.6) using the experimentally-
6

determined Prony series constants (Appendix A). In the limit of the
lowest strain rate corresponding to quasi-static puncture, the constitu-
tive response coincides with the rate-independent hyperelastic model.
Within the dynamic range, however, the predicted constitutive re-
sponse exhibits a higher stress magnitude and a significant stiffening
effect at a higher strain rate due to the viscoelastic contribution.
Such strain-rate-based stiffening behavior is commonly observed in
silicone-based elastomeric materials, with extensive experimental ev-
idence from mechanical characterization across a wide spectrum of
strain rates (∼ 0.01–1000 1/s) [51,59,63–65].

4.4. A failure criterion for rate-based ultimate stretch

The reduced extensibility at higher strain rates, which theoretically
leads to a lower 𝜆∗𝜃 and higher angular ratio (Eqs. (13), (14), and
(10)), necessitates the implementation of an additional failure criterion
for the constitutive model (i.e., Eq (A.6)). Following the discussion in
Section 4.2 (Eq. (12)), we again assume that the tensile failure occurs at
a critical strain–energy–density, 𝑤∗ = 𝑤(𝐼∗1 ). Additionally, we hypoth-
esize that 𝑤∗ is an intrinsic material failure property independent of
rate variations. Therefore, the magnitude of 𝑤∗ can be determined from
either the rate-independent hyperelastic strain–energy–density function
(Eq. (11)) or the area under the 𝑆elas1 -𝜆 constitutive curve (i.e., Eq. (A.3),
between 𝜆 = 0 and 𝜆 = 𝜆∗1 = 2.9). In Section A8 (Appendix B), we
provide a theoretical explanation of the rate independence of 𝑤∗ based
on its scaling relationship with the rate-based critical strain energy
release rate (𝐺) postulated via a dissipative characteristic length scale
and linear viscoelasticity.

With 𝑤∗ obtained from the hyperelastic model and the knowledge
of experimentally determined material constants, we can theoretically
predict the rate-dependent tensile extensibility, 𝜆∗1(𝜀̇), at a given finite
strain rate, 𝜀̇, by solving the following constitutive equation

𝑤∗ = ∫

𝜆∗1 (𝜀̇)

1
𝜎eng1 (𝜆, 𝜀̇)𝑑𝜆, (15)

where 𝜎eng1 (𝜆, 𝜀̇) is given by (A.6), and the integral represents the area
under the constitutive curve. The resultant 𝜆∗1(𝜀̇) values at each applied
puncture rate are listed in Table 1 in comparison with experimental
results and visualized in Fig. 4(a) (vertical dotted lines). As anticipated,
the strain-rate-based stiffening effect in conjunction with the assump-
tion of equal tensile toughness (i.e., 𝑤∗) gives rise to a lower 𝜆∗1(𝜀̇) value
at higher applied 𝜀̇. Finally, we construct a theoretical trend for 𝜆∗1(𝜀̇)
in Fig. 4(b) across a wide spectrum of 𝜀̇.

4.5. Comparison between the constitutive model and puncture experiments

We include in Fig. 4(b) experimental 𝜆∗1 values as a function of
applied 𝜀̇, which are estimated from the angular ratio data of dynamic
puncture in Fig. 2(b) using Eqs. (10), (13), and (14). The nominal strain
rates for dynamic puncture are determined following the approach
described in Section A4 (Appendix B). The data points correspond to the
best-fit 𝑘𝐴 values, with error bars reflecting the standard deviation of
the angular ratio variations across different 𝜃tool values in Fig. 2(b). The
theoretical predictions in Table 1 and Fig. 4(b) find a good agreement
(𝑅2 ≈ 0.95) with experimentally determined 𝜆∗1 values within our
tested dynamic range. Particularly, we emphasize that no data fitting
is employed in Table 1 or Fig. 2(b) between the theoretical model and
the experimental results; and the rheological data used to determine
the Prony series constants (Section A7, Appendix B) are independent
of the puncture angular data. The close match between the theoretical
and experimental 𝜆∗1 values offers solid quantitative evidence that
the rate-based variations in puncture angular ratio originate from the
viscoelasticity-mediated extensibility of soft materials. It validates the
effectiveness of both the visco-hyperelastic model and the dynamic
puncture testing for estimating rate-dependent ultimate deformation
at high strain rates. Overall, despite the simplicity of our viscoelastic
model, it seems that the integration of the Maxwell representation of
the stress relaxation function with three elements and six Prony series
constants (Appendix A) provides the necessary accuracy to approximate
the dynamic response of nonlinear hyperelastic soft materials.
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Fig. 4. Comparison between the visco-hyperelastic constitutive model and the dynamic puncture experiments for calculated tensile failure response. (a) Theoretical engineering
stress (𝜎eng1 ) versus stretch (𝜆) curves predicted by the visco-hyperelastic constitutive model (Eq. (A.6)) at different strain rates corresponding to the puncture rates of interest. The
curve corresponding to 𝜀̇ = 0.02 coincides with the experimental constitutive response obtained via quasi-static uniaxial tensile tests [53]. The vertical dotted lines indicate the
estimations for 𝜆∗1 . (b) The experimental 𝜆

∗
1 versus 𝜀̇ results determined from dynamic puncture tests (circles) find a good agreement with the theoretically predicted relationship

(dash line) (coefficient of determination: 𝑅2 ≈ 0.95). The scaling relationships between the angular ratio (tan 𝜃frac∕ tan 𝜃tool), 𝜆∗𝜃 , and 𝜆∗1 are formulated according to Eqs. (10)–(14).
The data points correspond to the best-fit 𝑘𝐴 values from Fig. 2. Vertical error bars are determined from the standard deviation of the variations in the average tan 𝜃frac∕ tan 𝜃tool
values in Fig. 2(b). Horizontal error bars correspond to the standard deviation of each selected puncture rate.
5. Discussion

5.1. Dynamic conical puncture for probing stretchability

The above experimental results in accordance with the visco-hyper-
elastic constitutive model provide the quantitative basis for the gen-
eralization of the dynamic conical puncture method for assessing the
stretchability of highly deformable, soft materials. In principle, the
puncture technique can serve as an alternative experimental approach
to verify and calibrate measurements of stretch at failure obtained
via standard mechanical characterization methods such as uniaxial
tensile testing. More importantly, it provides a powerful toolbox for
the extraction of ultimate properties via postmortem characterization
of characteristics of fracture, which is desired in time-sensitive dynamic
loading scenarios or at extreme test conditions where conventional
mechanical methods might not be feasible — for example, at extremely
high strain rates exceeding the operating range of common tensile
test devices; in extremely soft and stretchable solids or biomaterials
with strong adhesion that are difficult to prepare and manipulate; or
in complex biological tissues where it is challenging to obtain test
specimens with uniform, controlled geometries. We further demon-
strate the capability and potential of dynamic conical puncture in
Sections 5.2 and 5.3 via two case studies. In general, to estimate the
limiting extensibility of a highly deformable soft material at a given
dynamic strain rate, one can potentially carry out dynamic puncture
tests according to the following workflow:

1. select a sharp conical puncture tool having a relatively small
cusp angle and tip radius (e.g., 2𝜃 ≤ 30◦ and 𝑟 ≲ 100 μm);

2. use a preliminary dynamic puncture test to calibrate the punc-
ture speed and the elastic indentation depth in the tested mate-
rial and determine the desired test conditions corresponding to
the target nominal strain rate;

3. perform dynamic puncture tests and measure the cusp angle of
the resultant undeformed fracture surfaces following Section 2;

4. calculate the average angular ratio and the corresponding hoop
stretch at failure using Eqs. (10);

5. estimate the tensile limiting stretch value using the critical
strain–energy–density failure criterion (Eqs. (13) and (14)).
7

5.2. A case study for an extremely soft and adhesive elastomer

To further demonstrate the capability of the puncture technique for
estimating the extensibility of soft materials having extreme properties,
we carry out dynamic puncture tests (𝑣 ∼ 10 m∕s) in an ultra-soft
and stretchable, commercially available silicone elastomer (Sylgard
184, 55:1 mixing ratio). (Samples preparation follows the procedures
introduced in Section 2.1). 55:1 Sylgard is selected because of its
unique mechanical characteristics and biomechanical application po-
tential. Silicone-based materials having an extremely low modulus (<
100 KPa) are widely utilized for fundamental research on mechanics of
soft material [66–68] and soft biomaterials [19,69–71] for their trans-
parency, high deformability (𝜆∗1 ≳ 3), strong adhesion, and excellent
biocompatibility [72]. In particular, 55:1 Sylgard has a reported elastic
modulus of 𝐸 ≈ 15 KPa [69], which agrees well with the equilibrium
shear modulus of porcine subcutaneous adipose tissue (≈ 5.6 KPa)
obtained via rheology [73]. Therefore, 55:1 Sylgard holds the potential
as a candidate material to develop a tissue stimulant/phantom for
investigating the biological puncture performance in subcutaneous tis-
sues. Nevertheless, the extreme properties of the low-modulus silicone
materials can also give rise to various technical complications during
sample preparation, handling, and loading due to behaviors such as
deformation under self-weight, self-adhesion, folding, and adhesion to
untreated surfaces [68,70]. Implementation of traditional mechanical
characterization methods is, therefore, challenging and susceptible to
uncertainty. Fundamentally, the unique characteristics of low-modulus
elastomers stem from a low concentration of the cross-linking agent (<
3% by weight) during fabrication [68], which results in a large number
of uncross-linked free polymer chains. Although a special chemical
treatment [68] may be used for a silicone sample to extract unreacted
polymer molecules and improve its handleability, the process will
irreversibly change the mechanical properties of the original material.
For the above reasons, an indirect testing mechanism, such as puncture,
serves as an adequate alternative approach for estimating the stretch
at failure of these low-modulus, ultra-soft materials due to its simple
sample preparation and straightforward testing procedures.

In Fig. 5, we show microscopic images of two undeformed fracture
surfaces in two 55:1 Sylgard samples produced separately by a puncture
tool having cusp angle 2𝜃 = 30◦ and tip radius 𝑟 = 40 μm at a
tool
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Fig. 5. Undeformed fracture surfaces in two 55:1 Sylgard silicone samples. Extra crack
extension due to the interfacial effect between the protecting skin layer and the 55:1
Sylgard substrate is visible near the interface, as annotated and separated from the
triangular crack region by the orange dashed lines. Puncture rate: 𝑣 ≈ 10.5 m∕s; Tool
geometries: 2𝜃tool = 30◦, 𝑟 = 40 μm.

puncture rate of 𝑣 ≈ 10.5 m∕s. Although the tip of the crack is not visible
due to partly closed surfaces, the upper region of the damage (excluding
the irregular crack extension caused by the interfacial effect of the
protecting skin layer) exhibits a triangular shape and a significantly
smaller angle between the two edges compared to that in 1:1 Solaris,
indicating a low angular ratio and a large stretch at failure. It allows
us to calculate the value of tan 𝜃frac using Eq. (2), where the projected
alf angle 𝜃proj is measured between the two edge lines. Measurements
rom two individual puncture tests yield an average angular ratio
an 𝜃frac∕ tan 𝜃tool ≈ 9.35× 10−2, which corresponds to average hoop and
ensile stretches at failure, 𝜆∗𝜃 ≈ 10.70 and 𝜆∗1 ≈ 10.74, respectively.
otably, the calculated 𝜆∗1 value is significantly higher (by a factor
lose to 3) than the interpolated stretchability value for 55:1 Sylgard
𝜆∗1 ≈ 3.8) using tensile data for low-modulus PDMS materials by Glover
t al. [68]. However, such discrepancy is likely contributed by the low
efect/flaw tolerance of 55:1 Sylgard under quasi-static loading. A sim-
lar flaw-induced significant reduction of stretchability was observed in
ighly stretchable double-network hydrogels having a similar maximal
∗
1 value [74]. Overall, this case study provides experimental evidence
or the effectiveness of puncture testing in probing large-deformation
ailure properties of extremely stretchable and adhesive complex soft
olymeric materials.

.3. A case study of puncturing biological tissues

To explore the potential of the puncture method in biomechanics
or probing the stretchability of soft biological tissues under dynamic
oading, we carried out a case study through a dynamic puncture test
n a porcine muscle tissue sample at prescribed test conditions (tool
eometries: 2𝜃tool = 30◦, 𝑟 ≈ 104 μm; puncture rate: 𝑣 ≈ 10.3 m∕s).
echnical details for the sample preparation and images of the sample
re provided in Section 2.1 and SI, respectively. An important charac-
eristic of the selected muscle tissue discovered during puncture testing
s the absence of a ‘brittle’ crack extension. This is evident from the
ost-puncture image (Fig. A6(b), Appendix B) with the puncture tool
till embedded inside the tissue sample: No visible gap exists between
he contact surfaces of the tool and the damage produced. Such failure
ehavior implies a high defect/flaw tolerance of the muscle tissue. We
peculate that it is potentially contributed by both the hierarchical,
ibrous microstructures of muscle as a composite [75,76] and the
onlinear elasticity of passive muscle tissues that incorporates a strong
train-stiffening effect at large deformation [75,77]. A similar high
efect tolerance has been previously reported in fibrous collagenous
8

issues [78], which is associated with a strong crack-blunting effect
Fig. 6. Side-view images of the cross-sectioned porcine muscle tissue sample revealing
the triangular puncture damage. (a) Original image. (b) Image with enhanced color
saturation. (c) Gray-scale image with enhanced contrast. (d) Dashed guidelines and an
orange shaded area identify the crack edge lines and the damaged region, respectively.
Extrapolation of the guidelines is indicated by yellow dashed lines. White scale bars:
5 mm.

mediated by microstructures [78]. This unique failure characteristic
enables the estimation of the stretchability in the porcine tissue sample
using our proposed approach based on either a damage-tool relative
size or an angular ratio smaller than one. Fig. 6 shows the post-puncture
images of the sample, which was vertically cross-sectioned along the
plane of fracture. Despite an anticipated lower stretchability [79] than
hat of synthetic silicone materials (e.g., 1:1 Solaris), the muscle tis-
ue sample exhibits a puncture morphology corresponding to a more
ductile’ type of failure response. The puncture damage is planar-like
nd has a penny-shaped opening in the undeformed configuration. It
xhibits a triangular shape from the cross-sectional side view (Fig. 6).
An estimation of the cusp angle by identifying the edge lines of the
damage (Fig. 6(d)) gives an average value, 2𝜃frac ≈ 22.5◦ ± 1◦ (the
error indicate the uncertainty of measurement), which corresponds to
an angular ratio, tan 𝜃frac∕ tan 𝜃tool ≈ 0.74±0.04 and stretches at failure,
𝜆∗𝜃 ≈ 1.35 ± 0.06 and 𝜆∗1 ≈ 1.39 ± 0.07, calculated from the theory
established in Section 4. The magnitude of the estimated stretchability
falls into a range of reported tensile stretchability values for various
mammalian passive muscle tissues (𝜆∗1 = 1.25–1.61), including rabbit
skeletal muscles [79–83], goat skeletal muscles [84], and porcine
skeletal muscle fibers [85,86].

The close match between the estimations of the stretch at failure
(𝜆∗𝜃 and 𝜆∗1) for our porcine muscle sample and the documented val-
ues support the case study as an initial quantitative verification for
the proposed puncture technique in biological tissues. However, it is
important to point out that additional considerations regarding the
anisotropic behavior and variability of passive muscle tissue need to



International Journal of Impact Engineering 187 (2024) 104911B. Zhang and P.S.L. Anderson
be included when utilizing our proposed puncture model to specify its
limitations and applicable range, as we discuss in detail in Section A9
(Appendix B).

Broadly, the above case study serves as a proof of concept for
future applications of the proposed puncture technique as a new char-
acterization tool for the ultimate properties of biological tissues under
dynamic/impact loading. An important scenario of application would
be the experimental biomechanics of biological puncture systems. A
long-standing challenge in systematic comparative analyses of punc-
turing organisms varying greatly in scales and functions is the in-
corporation of a wide spectrum of material properties across both
dynamic and static ranges in correlation with conventional mechanical
metrics for puncture performance such as the forces and energies re-
quired for puncture [2]. With the capability to directly extract ultimate
properties associated with large deformation and high strain rates
without the assistance of additional mechanical characterization, our
proposed method paves the way towards an evidence-based, theory-
assisted framework for understanding the biomechanics of puncture.
Our future research avenue will focus on the generalization of the punc-
ture method in biological tissues. For example, the currently produced
puncture damage has reduced visibility in an opaque tissue sample than
in transparent synthetic samples (e.g., Fig. 6(a)) due to the low contrast
and similar appearances between the damaged and intact tissues. To
address this, a new visualization technique may be introduced to trace
the damaged region via, e.g., coloring or powdering.

5.4. Limitations in puncture testing: ‘ductile’ vs. ‘brittle’ failure

Despite its promising application potential as a characterization
tool, the currently proposed experimental framework relies on a key
assumption of a ‘ductile’ failure response. The nearly conformal contact
between the tool and crack surfaces necessitates high deformability
(comparable or superior to 1:1 Solaris) or a strong crack-blunting effect
as a shielding mechanism for flaw growth and crack extension [78].
Otherwise, the apparent fracture morphology can change markedly in
a material system exhibiting a ‘brittle’ failure response. Consequently, a
large lateral crack extension exceeding the tool width can significantly
complicate the failure characterization. In Section A10 (Appendix B),
we further discuss the distinct characteristics between the two types of
puncture failure.

Other limitations of the puncture technique likely arise from the
rate-mediated transition from a ‘ductile’ dynamic puncture response to
a ‘brittle’-like quasi-static response, as observed in our model material
(e.g., Fig. 2 and Fig. A1). Compared to the dynamic puncture response,
the quasi-static puncture in our model material exhibits not only a
unique fracture morphology but also apparent deviations from the
theoretical predictions for dynamic conical puncture (Sections 3.2 and
A11). This transition of puncture failure behavior implies that the
assumption of a ‘ductile’ failure breaks down as the puncture transitions
to a more ‘brittle’ response at a quasi-static condition. As a result, the
predicted relationship between angular ratio and rate-based ultimate
stretch values may have a limited applicable range of dynamic strain
rates, In Section A11 (Appendix B), we provide further discussion on
the morphological differences between quasi-static and dynamic punc-
ture and the possible mechanisms underlying their transition based on
the flaw-sensitivity-induced brittleness and reduction of stretchability.
Puncture experiments in an expanded range of rates (Fig. A5) provide
an estimation for the lower limit of the applicable puncture rates in
1:1 Solaris silicone elastomer (∼ 10 m∕s, or 𝜀̇ ∼ 1250 1/s), below
which it is practically challenging to estimate the flaw-insensitive, undi-
minished stretchability. However, we note that in general the critical
condition at the onset of failure-behavioral transition is presumably
heavily dependent on the inherent flaw/defect tolerance mediated
by microstructures. Therefore, a more flaw-resistant material might
exhibit a wider applicable range of rates for probing stretchability via
puncture. Future standardization of the puncture technique may focus
on the generalization of the criterion for rate-based test conditions
9

across a broader range of soft material systems.
6. Concluding remarks

As useful as puncture has been as a mechanical testing technique
in exploring the mechanics of biological puncture systems [2,7,8],
injury biomechanics [37], and medical tool designs [11,27–30], its
potential in characterization of material failure properties is not fully
explored. In this work, we demonstrate that at dynamic loading rates,
a conical puncture tool produces unique and consistent damage pat-
tern in soft and highly deformable materials. We identify, for the
first time, via dynamic conical puncture experiments across a wide
spectrum of controlled strain rates and tool geometries that the cusp
angles of the damage and tool follow a scaling relationship, and the
angular ratio (tan 𝜃frac∕ tan 𝜃tool) is a rate-based material constant. Our
theory employing a visco-hyperelastic constitutive model confirms that
the magnitude of the angular ratio is related to the rate-dependent
hoop and tensile stretches at failure via a strain–energy–density-based
failure criterion. Finally, the two case studies demonstrate the capa-
bility of the proposed framework and serve as an important initial
proof-of-concept towards standardization and future applications of the
puncture technique in bio-inspired materials and biological tissues.

Overall, dynamic conical puncture holds the potential of being de-
veloped into a standard testing method for probing the rate-dependent
ultimate properties of soft solids. However, its current range of ap-
plication is limited by the type of failure response (Section 5.4), and
additional considerations and modifications are necessary for some
complex synthetic materials and biological tissues. For example, in
swollen hydrogels, poroelasticity may need to be incorporated into the
constitutive model to consider the migration of solvent molecules [87].
Such consideration, however, might not be necessary for highly stretch-
able hydrogels (e.g., double-network (DN) hydrogels) with relatively
low or no water content [88] or high-rate dynamic puncture where
the local time scale satisfies 𝑡 ≪ 𝜏 and 𝑡 ≪ 𝑙2𝑐∕𝐷 (where 𝜏: relaxation
time; 𝑙𝑐 : the characteristic length scale associated with the dissipative
process; 𝐷: diffusivity) [87]. In both cases, the hydrogels behave like a
hyperelastic solid. Additionally, the brittleness of some hydrogels may
also limit the application of the proposed puncture model, as we point
out in Section 5.4. Other examples include biological tissues with pre-
existing defects in either macroscale damages/scars caused by trauma
or diseases [89], or microstructural imperfections and inhomogeneities.
We believe that modification of the proposed puncture model may be
necessary, depending on the size, location, and type of the defects, to
determine the effect of defect-induced local weaknesses and variations
in local properties on the failure process for either diagnostic purposes
or isolating the ultimate properties of the tissue matrix. However, such
modification might not be required for tissues with small, far-field
defects or fibrous materials with strong defect/flaw tolerance [78],
where the influence on the homogeneity of the punctured region is
limited.

The postmortem damage characterization via dynamic conical punc-
ture approach offers an alternative, time-and-cost-efficient experimen-
tal approach for complex material systems having extreme properties,
rate-dependent effects, or subjected to dynamic/impact loading with
high strain rates (𝜀̇ ≳ 1000 1/s). In addition to the damage-tool
angular ratio, our proposed experimental framework can also be used
for characterizing the depth/length scale of puncture damage [7,9],
as a quantitative indicator of the puncture performance. The tradeoffs
between the effects of tool sharpness and puncture rate, combined
with the findings from this work, can have important implications
in engineering and evolutionary biology [7,9]: A dynamic conical
puncture system may compensate for suboptimal sharpness by applying
a higher puncture rate, which increases the relative size of damage
in both the lateral and puncture directions. Moreover, we recognize
that our findings from dynamic conical puncture can be generalized
to other testing geometries such as sharp-tipped cylindrical puncture
tools producing Mode-I ‘ductile’ fracture (e.g., Ref. [47]). In this case,

a cylindrical puncture configuration may be interpreted as a limiting
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case of conical puncture where 2𝜃frac → 0, and the angular ratio is
educed to a ratio between the radial sizes of the damage and the
ool. Ultimately, we hope this work can pave the way for optimized
iomedical tool designs and a better understanding of the biomechanics
f living puncture systems by offering a theory-assisted experimental
ramework for characterizing the dynamic failure of biological tissues.

RediT authorship contribution statement

Bingyang Zhang: Conceptualization, Data curation, Formal anal-
sis, Investigation, Methodology, Validation, Visualization, Writing –
riginal draft, Writing – review & editing. Philip S.L. Anderson:
unding acquisition, Methodology, Project administration, Resources,
upervision, Writing – original draft, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.

cknowledgments

The authors wish to thank Professor Shelby Hutchens for helpful dis-
ussion. This work was supported by the National Science Foundation,
nited States (grant No. NSF IOS 19-42906 CAR to P. S. L. A.).

ppendix A. Derivation of the visco-hyperelastic model

In general, a visco-hyperelastic model assumes that the constitutive
esponse of an elastomeric material originates from the superimposition
f hyperelasticity and viscoelasticity, which corresponds to low-rate
nd high-rate responses, respectively. The decoupling of the effects of
quilibrium deformation and rate leads to a generalized form for the
rue stress tensor [62]

(𝜺, 𝑡) = 𝛔𝐞𝐥𝐚𝐬(𝜺) + 𝛔𝐯𝐢𝐬(𝜺, 𝑡), (A.1)

here 𝛔𝐞𝐥𝐚𝐬 is the Cauchy stress tensor, 𝛔𝐯𝐢𝐬 is the viscoelastic stress
ensor, and 𝜺 is the strain tensor. 𝛔 and 𝛔𝐯𝐢𝐬 are both functions of the
ocal time scale, 𝑡. The stress state described by Eq. (A.1) may be visu-
alized using a classic linear viscoelastic spring-dashpot representation
as illustrated in Fig. A.7. In this case, the hyperelastic component 𝛔𝐞𝐥𝐚𝐬
is represented by an elastic spring; Three Maxwell spring-dashpot joint
elements aligned in parallel correspond to the viscoelastic component
𝛔𝐯𝐢𝐬.

For an incompressible hyperelastic material, the elastic stress tensor,
𝛔𝐞𝐥𝐚𝐬, takes a general form [7,62]

𝛔𝐞𝐥𝐚𝐬 = −𝑝𝐈 + 2
[(

𝜕𝑤
𝜕𝐼1

+ 𝐼1
𝜕𝑤
𝜕𝐼2

)

𝐁 − 𝜕𝑤
𝜕𝐼2

𝐁 ⋅ 𝐁
]

, (A.2)

where 𝑝 is an unknown hydrostatic pressure, 𝐈 is the identity tensor,
𝐁 is the left Cauchy–Green tensor, and 𝐼2 is the second invariant of
𝐁. Substituting Eq. (11) into Eq. (A.2) and using the loading conditions
under uniaxial tension (i.e., 𝜎elas2 = 𝜎elas3 = 0, and 𝜆1 = 1∕𝜆22 = 1∕𝜆23 = 𝜆),
we may calculate the engineering tensile stress, 𝑆elas1 = 𝜎elas1 ∕𝜆, for the
Arruda-Boyce model

𝑆elas1 (𝜆) = 2𝜇0

(

𝜆 − 1
𝜆2

) 5
∑

𝑖=1

𝑖𝐶𝑖

𝜆2𝑖−2𝑚
𝐼 𝑖−11 , (A.3)

where the constants 𝐶1 to 𝐶5 are given in Eq. (11). Here we adopt
documented material parameters for 1:1 Solaris silicone elastomer: 𝜇0 ≈
0.08 MPa and 𝜆 ≈ 2.1 [7]. They correspond to the best fitting results
10

𝑚 t
Fig. A.7. A spring-dashpot representation of the visco-hyperelastic model with three
Maxwell elements. 𝐸𝑒 denotes the equilibrium modulus corresponding to the hy-
perelastic component. The relaxation time for the 𝑖th Maxwell element is given by
𝜏𝑖 = 𝜂𝑖∕𝐸𝑖.

f the Arruda-Boyce model (Eq. (A.3)) to the experimental stress–
tretch data obtained via standard quasi-static uniaxial tensile failure
haracterization (strain rate: ∼ 0.02 1/s) [7].
The viscoelastic engineering tensile stress component is approxi-
ated using the first three time-dependent terms of the Prony series
xpansion of the stress relaxation function [51,61,62]

vis
1 (𝜆, 𝑡) =

3
∑

𝑖=1
∫

𝑡

0

𝜕(𝑆 ins1 (𝜆)𝑔𝑖)
𝜕𝜏

exp
(

− 𝑡 − 𝜏
𝜏𝑖

)

𝑑𝜏, (A.4)

where 𝑆 ins1 (𝜆) denotes the instantaneous tensile stress corresponding to
an extremely high rate or a time scale 𝑡 = 0, and 𝑔𝑖 and 𝜏𝑖 are the
th Prony series coefficients. Particularly, 𝜏𝑖 is the relaxation time for
he 𝑖th Maxwell element. The partial derivative in Eq. (A.4) takes the
ollowing form in the Maxwell model

𝜕(𝑆 ins1 (𝜆)𝑔𝑖)
𝜕𝜏

= 𝐸𝑖𝜀̇, (A.5)

where 𝐸𝑖 is the elastic spring constant of the 𝑖th Maxwell element, and
̇ is the nominal strain rate of the system. To estimate the Prony series
oefficients, we analyze reported rheological data for 1:1 Solaris by
arby et al. [90] using a Prony series function for storage modulus
orresponding to three Maxwell elements [91,92]. Technical details and
he results for the data fitting are presented in Section A7 and Fig. A4
Appendix B). The estimated values for the Prony series constants are
1 ≈ 0.04 MPa, 𝐸2 ≈ 0.45 MPa, 𝐸3 ≈ 0.29 MPa, 𝜏1 ≈ 7.7 × 10−2 s,

𝜏2 ≈ 1.12 × 10−4 s, and 𝜏3 ≈ 9.56 × 10−6 s. We note that the spring
constants agree in order of magnitude with either the elastic constant
𝜇0 or the elastic modulus of 1:1 Solaris. Particularly, the resultant
equilibrium shear modulus calculated from the Prony series fitting,
i.e., 𝐺𝑒 ≈ 0.13 MPa (see Section A7, Appendix B) coincides with the
experimental shear modulus value of 1:1 Solaris (𝜇 = 0.13 MPa) [7].
To summarize, combining Eqs. (A.3), (A.4), and (A.5), we may rewrite
q. (A.1) and obtain the engineering visco-hyperelastic constitutive
esponse under tension, i.e.
eng
1 (𝜆, 𝜀̇) = 𝑆elas1 (𝜆) + 𝑆vis1 (𝜆, 𝜀̇). (A.6)

e note that the expanded form of Eq. (A.6) is mathematically equiv-
lent to the classic Fung quasi-linear viscoelastic (QLV) model with a
onlinear separable representation of the relaxation function [61] and
umber of time-dependent terms, 𝑁 = 3. This approximate form is cho-
en with considerations of both accuracy and simplicity for describing
he nonlinear viscoelastic constitutive response of the model material.
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Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijimpeng.2024.104911.
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