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Abstract: The engineering community currently encounters significant challenges in the
development of intelligent transportation algorithms that can be transferred from simulation to
reality with minimal effort. This can be achieved by robustifying the algorithms using domain
adaptation methods and/or by adopting cutting-edge tools that help support this objective
seamlessly. This work presents AutoDRIVE, an openly accessible digital twin ecosystem designed
to facilitate synergistic development, simulation and deployment of cyber-physical solutions
pertaining to autonomous driving technology; and focuses on bridging the autonomy-oriented
simulation-to-reality (sim2real) gap using the proposed ecosystem. In this paper, we extensively
explore the modeling and simulation aspects of the ecosystem and substantiate its efficacy by
demonstrating the successful transition of two candidate autonomy algorithms from simulation
to reality to help support our claims: (i) autonomous parking using probabilistic robotics
approach; (ii) behavioral cloning using deep imitation learning. The outcomes of these case
studies further strengthen the credibility of AutoDRIVE as an invaluable tool for advancing the
state-of-the-art in autonomous driving technology.
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1. INTRODUCTION
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platforms accelerate the process of designing experiments,
recording datasets as well as re-iteratively prototyping and
validating autonomy solutions. In educational contexts,
such platforms facilitate the creation of interactive demon-
strations, hands-on assignments, projects, and competi-
tions centered around CAV technology.

However, existing platforms catering to the development
and validation of connected autonomy solutions have been
observed to impose limitations on throughput. Firstly,
a significant portion of these platforms lacks the essen-
tial integrity necessary to foster hardware-software co-
development. Some platforms solely offer software sim-
ulators, while others merely provide scaled vehicles for
testing autonomy algorithms. Such isolated platforms not
only impede the prototyping phase due to compatibil-
ity issues but also hinder the validation phase involving
the transition from simulation to real-world. Secondly,
a majority of these platforms concentrate exclusively on
vehicles, neglecting the holistic integration of an intelli-

Fig. 1. AutoDRIVE Ecosystem offers of a tightly inte-
grated trio for designing, simulating and deploying
autonomy solutions using a unified workflow.

gent transportation ecosystem encompassing infrastruc-
ture, traffic elements, and peer agents. Consequently, their
applications remain limited in scope. Thirdly, certain plat-
forms are confined to specific domains or applications,
featuring restricted sensing modalities, stringent design
requirements, and fixed development frameworks. Such
constraints further inhibit the versatility and adaptabil-
ity of these platforms for broader use cases in connected
autonomy research and education.

This research presents AutoDRIVE ! Samak et al. (2023),
a publicly accessible ecosystem specifically designed to
facilitate the integrated development, simulation, and de-

1 https://autodrive-ecosystem.github.io
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ployment of cyber-physical solutions pertaining to au-
tonomous driving technology. This seamless workflow is
made possible by a tightly integrated trio, consisting of
an algorithm development kit for designing autonomy so-
lutions, a software simulator for virtual prototyping and
testing them under a variety of conditions and edge-
cases, and a hardware testbed for physical deployment and
validation (refer Fig. 1). The synergy among these three
sub-systems not only enhances the hardware-software co-
development of autonomy solutions but also effectively
bridges the gap between simulation and reality. This work
places particular emphasis on the challenges associated
with bridging the sim2real gap for autonomy-oriented ap-
plications using the proposed ecosystem. In this context,
we delve into the percepto-dynamics modeling and sim-
ulation aspects of a scaled vehicle and infrastructure us-
ing the proposed ecosystem. Furthermore, we substantiate
our claims by showcasing the successful transition of two
candidate autonomy algorithms from simulation to reality
to help support our claims: (i) autonomous parking using
probabilistic robotics approach for mapping, localization,
path planning and control; (ii) behavioral cloning using
computer vision and end-to-end deep imitation learning.

2. STATE OF THE ART
2.1 Software Simulators

Over the years, open-source community has contributed
several simulators for autonomous driving applications.
Gazebo Koenig and Howard (2004), natively integrated
with Robot Operating System (ROS) Quigley et al. (2009),
is commonly used for scaled autonomous robots. TORCS
Wymann et al. (2021) has been an early focus in the
self-driving community, particularly for manual and au-
tonomous racing. Other notable examples include CARLA
Dosovitskiy et al. (2017), AirSim Shah et al. (2018),
and Deepdrive Voyage (2021), developed using the Un-
real game engine, as well as Apollo GameSim Baidu Inc.
(2021), LGSVL Simulator Rong et al. (2020) and Au-
toRACE Simulator Samak et al. (2021a), created using
the Unity game engine.

However, these simulators pose 3 major limitations:

e Firstly, some simulation tools prioritize photorealism
over physical accuracy, while others prioritize physical
accuracy over graphics quality. In contrast, Auto-
DRIVE Simulator strikes a balance between physics
and graphics, providing a range of configurations to
accommodate varying compute capabilities.

e Secondly, the dynamics and perception systems of
scaled vehicles and environments differ significantly
from their full-scale counterparts. Existing simulation
tools do not adequately support scaled ecosystems to
their full capacity. Consequently, transitioning from
full-scale simulation to scaled real-world deployment
necessitates substantial additional effort to re-tune
the autonomy algorithms.

e Thirdly, the existing simulators may lack precise real-
world counterparts, rendering them unsuitable for
“digital twin” applications, involving synthetic data
generation, variability testing, reinforcement learn-
ing, real2sim and sim2real transfer, among others.

2.2 Hardware Testbeds

In recent times, numerous educational institutions have
embarked on the development of scaled autonomous vehi-
cles. Popular examples include the MIT Racecar Karaman
et al. (2017), FITENTH O’Kelly et al. (2019), and Au-
toRally Goldfain et al. (2019). Additionally, community-
driven platforms like HyphaROS RaceCar HyphaROS
Workshop (2021) and Donkey Car Donkey Community
(2021) have emerged, tailored to specific applications like
map-based navigation and vision-aided imitation learning,
respectively. Duckietown Paull et al. (2017) is another
platform, which employs differential-drive robots instead
of kinodynamically constrained car-like vehicles, thereby
falling short of the community’s requirements. Neverthe-
less, it remains a popular platform for teaching autonomy
fundamentals, much like TurtleBot3 Robotis Inc. (2021).

However, these platforms pose 3 major limitations:

e Firstly, some of these platforms lack diverse sens-
ing modalities, sufficient computational power, con-
strained actuation mechanisms, and active or passive
infrastructural elements.

e Secondly, most platforms utilize commercial radio-
controlled (RC) cars as their base-chassis, which are
expensive, may not be readily available worldwide,
and limit exploration in the realm of mechatronics en-
gineering. Additionally, many platforms are confined
to specific software frameworks like ROS, creating a
skill-set dependency for end-users.

e Thirdly, some platforms lack any form of simulation
support, some support simulation using RViz Hersh-
berger et al. (2021) or Gazebo, while others provide
task-specific Gym Brockman et al. (2016) environ-
ments for machine learning; none of which is ideal.

3. AUTODRIVE ECOSYSTEM

This section primarily focuses on digital-twin capabili-
ties of AutoDRIVE Ecosystem, highlighting the strong
resemblance between AutoDRIVE Simulator Samak et al.
(2021c); Samak and Samak (2022b) and AutoDRIVE
Testbed for seamless sim2real transfer of autonomy algo-
rithms developed using AutoDRIVE Devkit.

3.1 Physical Vehicle
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Fig. 2. Native vehicle (Nigel) of AutoDRIVE Ecosystem
with its components and sub-systems highlighted.
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AutoDRIVE’s native vehicle, named Nigel (refer Fig. 2),
offers realistic driving and steering actuation, compre-
hensive sensor suite, high-performance computational re-
sources, and a standard vehicular lighting system.

Chassis  Nigel is a 1:14 scale vehicle, which adopts
front/rear/all-wheel-drive Ackermann-steered mechanism,
thereby resembling car-like kinodynamic constraints.

Power Electronics  An 11.1 V 5200 mAh lithium-polymer
(LiPo) battery acts as the power-source for the vehicle.
Other components such as the buck converter, motor
driver, switch and voltage checker help route the raw power
to appropriate sub-systems of the vehicle.

Sensor Suite  Nigel hosts a comprehensive sensor suite
comprising throttle and steering feedbacks, 1920 CPR
incremental encoders, 3-axis IPS, 9-axis IMU, two 62.2°
FOV cameras with 3.04 mm focal length and a 7-10 Hz,
360° FOV LIDAR with 0.15-12 m range and 1° resolution.

Computation, Communication and Software  Nigel relies
on Jetson Nano Developer Kit - BO1 for high-level compu-
tation (autonomy algorithms), communication (V2V and
V2I), and software installation (JetPack SDK and Auto-
DRIVE Devkit). It also utilizes Arduino Nano (running
the vehicle firmware) for sensor data acquisition and fil-
tering, and actuators/lights control.

Actuators  Nigel is equipped with two 6V 160 RPM rated
DC geared motors to drive its rear wheels, and a 9.4 kgf.cm
servo motor (saturated at £ 30° w.r.t. zero-steer value) to
steer its front wheels. All the actuators are operated at
5V, providing a top speed of ~0.26 m/s for driving and
~0.42 rad/s for steering.

Lights and Indicators  Nigel’s lighting system comprises

of dual-mode headlights, triple-mode turning indicators,
and automated taillights and reverse indicators.

3.2 Virtual Vehicle

Colliders

L
Il
oM "Encoders

Fig. 3. Simulation of vehicle dynamics, sensors and actua-
tors. The left inset depicts actuator dynamics model
and the right inset depicts tire dynamics model.

The vehicle is jointly modelled as a rigid-body and a
collection of sprung masses with inherent damping (refer
Fig. 3). The “sprung-mass” representation computes the
suspension forces, which, aggregated with the tire forces,
are applied to the “rigid-body” representation that exactly
mimics the mass, center of mass and moment of inertia of
the “sprung-mass” representation. Needless to say, the two

representations are related through the rigid-body center
. "TMx*X .

of mass equation: Xcon = —W; where, Xcoar is the

rigid-body center of mass offset, *M are the sprung masses

such that M = " %M is the total mass of rigid-body, and

X are the sprung mass coordinates w.r.t. *M.

Suspension Dynamics  The vehicle is modeled with a
rather stiff suspension system to simulate the selective
passive compliance between wheel mounts and vehicle
chassis to account for losses at these interfaces due to
vibration, friction, wear, damping, loosening, deformation,
fatigue and fretting. The suspension force acting on each of
the sprung masses can be then computed using a second-
order dynamic model: *M ' Z+Bx("Z—1)+ K+ (*Z—2);
where, *B and ‘K are the damping and spring coefficients
of i-th suspension, respectively. The computed suspension
forces jointly affect the rigid-body dynamics of the vehicle
as well as the tire forces being computed at that time
instant (since it affects the load bearing down on the tires).

Wheel Dynamics  The wheels of the vehicle are also mod-
elled as rigid bodies of mass m, acted upon by gravitational
and suspension forces: ‘mx’ 34+ Bx (2~ Z)+ K x("2—"Z);
and the wheel rotations are damped to mimic rotational
losses due to rolling resistance.

Tire Dynamics  The tire forces are broken down into
longitudinal F}, and lateral F}, components, and are com-
puted based on the respective friction curve for each tire:

‘F,, = F('S,)

‘Fy, = F('Sy)
and lateral slips of i-th tire, respectively. Here, the friction
curve is approximated as a two-piece spline F'(S); one
from zero (Sp, Fy) to extremum point (S, Fe), and other
from extremum point (S,, F,) to asymptote point (S,, Fy)
(refer right inset in Fig. 3): F'(S) = {}?Egg: g: § g : gs,
where, fi(S) = ar x S + by x SZ + cx x S + dy is a
cubic polynomial function, and F'(.S) is saturated after the
asymptote point (S,, Fy).

: where, 'S, and iSy are the longitudinal

Now, slip is in-turn dependent on the various factors
like tire stiffness, steering angle, wheel speeds, suspension
forces and rigid-body momentum. Longitudinal slip S is
determined based on the difference between the longitudi-
nal components of surface velocity of the wheel compared
to the angular velocity of the wheel: S, = T*+I_”’,
where, v, is the longitudinal linear velocity of the vehicle
(i.e., surface velocity of the wheel), ‘r is the radius of i-th
wheel, and ‘w is the angular velocity of i-th wheel. Lateral
slip Sy is determined by the angle (commonly denoted as
«) between the direction the tire is moving in and the
direction the tire is pointing in: 'S, = ‘%‘; where, v,
is the longitudinal linear velocity of the vehicle, and v,
is the lateral linear velocity of the vehicle (a.k.a. sideslip
velocity).

Sensor Simulation  As described earlier, the vehicle is
provided with an abundance of sensing modalities, all of
which are modeled and simulated close to their real-world
counterparts.
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Throttle Feedback: Instantaneous feedback of throt-
tle command [—1,1], where positive values indicate
driving forward and negative values indicate driving
reverse.

o Steering Feedback: Instantaneous feedback of steering
command [—1, 1], where positive values indicate left
turns and negative values indicate right turns.

e Incremental Encoders: These are simulated by mea-
suring the rotation of each of the rear wheels (based
on their rigid-body transform update) and factoring
in the resolution of the encoders.

e [PS: Position of the vehicle is measured based on
its rigid-body transform update. The values are con-
verted from Unity’s left-handed coordinate system to
the right-handed coordinate system widely adopted
for robotics applications. This mimics the AprilTag-
based fiducial localization system on the physical
vehicle.

e JMU: Orientation of the vehicle is measured based
on its rigid-body transform update. Additionally, the
linear acceleration and angular velocity of the vehicle
are measured based on temporally-coherent rigid-
body transformations, using rigid-body equations of
motion. This mimics the MPU-9250 on the physical
vehicle.

e LIDAR: Planar laser scan is recorded by 360° iter-
ative ray-casting at 1° resolution and 7 Hz update
rate. The raycast hits are recorded between the min-
imum (0.15 m) and maximum (12.0 m) ranges of the
LIDAR, respectively. This mimics the RPLIDAR A1l
on the physical vehicle.

e (Cameras: Physical cameras are simulated based on

their focal length (3.04 mm), field of view (62.2°),

sensor size (4.6 mm) and target resolution (720p).

Additionally, lens and film effects are simulated by

post-processing the raw frames. This mimics the two

PiCamera V2.1 modules on the physical vehicle.

Actuator Simulation  As described earlier, the vehicle has
driving and steering actuators, the response delays and
saturation limits of which are matched with their real-
world counterparts by tuning their torque profiles and
actuation limits, respectively (refer left inset in Fig. 3).

e Driving Actuators: Each of the rear wheels is driven
using a rotary motor, which applies a torque to it:
Tarive = "Ly * "y; where, I, = 3% "my, * 'ry,? is
the moment of inertia of i-th wheel, and %, is the
angular acceleration of i-th wheel. Additionally, the
holding torque of the driving actuators is simulated
by applying an idle motor torque equivalent to the
braking torque: *Tigie = “Thrake-

o Steering Actuators: The front wheels are steered using
a steering actuator coupled to the steering mechanism
of the vehicle. The steering actuator also produces
a torque proportional to the moment of inertia of
the steering mechanism: 7Tgteer = Isteer * Wsteer- Lhe
individual turning angles, §; and §,, for left and
right wheels, respectively, are calculated based on the
commanded steering angle §, using the Ackermann
steering geometry defined by wheelbase [ and track

5 = tan—1 ( 2xlxtan(d) )

2xl+w*tan(d)
5 —tan_l( 2sxlxtan(d) )
=

2xl—w+tan(d)

width w, as follows:

3.8 Physical Infrastructure

AutoDRIVE provides a modular and reconfigurable in-
frastructure development kit, enabling swift design and
construction of customized driving scenarios.

a

(a) Parking School in simulation.  (b) Parking School in reality.
AtaDRVE Smlatar = 1 o |

=

g

(d) Driving School in reality.

(c) Driving School in simulation.

Fig. 4. Infrastructure setup in simulation and reality.
Note the degree of dimensional and visual similarity
between real and virtual worlds.

Environment Modules  Environment modules include
static terrain and road layouts as well as obstruction
objects for rapidly designing custom scenarios. Apart from
these, experts may also choose to design scaled real-world
or imaginary scenarios using third-party tools, and import
them into AutoDRIVE Ecosystem.

Traffic Elements  Traffic signs and lights define traffic
laws within a particular driving scenario, thereby gov-
erning the traffic flow. These modules support IoT and
V2I communication technologies, and can be therefore
integrated with AutoDRIVE Smart City Manager (SCM).

Surveillance Elements  AutoDRIVE features a surveil-
lance element called AutoDRIVE Eye to view the scene
from a bird’s eye view. The said element is also integrated
with AutoDRIVE SCM, and is capable of estimating ve-
hicle’s 2D pose within the map by detecting and tracking
the AprilTag markers attached to each of them.

Preconfigured Maps This work focuses on two of the sev-
eral preconfigured maps offered by AutoDRIVE Ecosys-
tem. Parking School (refer Fig. 4a, 4b) is designed specif-
ically for autonomous parking applications, wherein con-
struction boxes define static obstacles and all the available
free-space is drivable. On the other hand, Driving School
(refer Fig. 4c, 4d) covers driving over straight roads, curved
roads and crossing an intersection.

8.4 Virtual Infrastructure

At every time step, the simulator performs mesh-mesh col-
lision /interference detection and accordingly computes the
contact forces, frictional forces and momentum transfer,
along with linear and angular drag acting over each of the
rigid bodies (vehicle/infrastructure) present in the scene.
This closely emulates the interactions among vehicle(s),
infrastructure elements and the environment.
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4. CASE STUDIES

This work showcases sim2real capability of AutoDRIVE
Ecosystem through two different case-studies. Although
this paper cannot furnish exhaustive details pertaining
to either case study, we recommend interested readers to
peruse this technical report Samak and Samak (2022a).

.l. .
| NS | E——

wocnszsmon [l coouerey |
i
; '

(a) Autonomous parking.

(b) Behavioral cloning.

Fig. 5. Architectures of the two presented case-studies.

4.1 Autonomous Parking

This case study was implemented using the probabilistic
robotics approach comprising 5 different stages. Firstly,
the vehicle mapped its surroundings using the Hector
SLAM algorithm Kohlbrecher et al. (2011). It then lo-
calized itself against this known static map using range-
flow-based odometry Jaimez et al. (2016) and an adaptive
particle filter algorithm Fox (2001). For autonomous nav-
igation, the vehicle planned a feasible global path from its
current pose to the parking pose using the A* algorithm
Hart et al. (1968). Simultaneously, it re-planned its local
trajectory for dynamic collision avoidance, leveraging the
timed-elastic-band approach Rdsmann et al. (2017). A
proportional controller generated driving (throttle/brake)
and steering commands to enable the vehicle to follow the
local trajectory accurately.

(a) Virtual-world deployment. (b) Real-world deployment.

Fig. 6. Sim2real transition of autonomous parking algo-
rithm. Video: https://youtu.be/piCyvIM2dek

During simulation-based testing (refer Fig. 6a), parame-
ter variations such as infusion of Gaussian noise in LI-
DAR measurements [njgqr ~ N (0,0.025) m] and actu-
ator commands [ngrive ~ N (0,0.013) m/s and ngeer ~
N (0,0.018) rad/s]. Furthermore, perturbation of wall
modules’ poses [ng , ~ N (0,0.01) m and ng ~ N (0,0.087)
rad] as well as introduction of unmapped obstacles were
performed. Going forward, the same pipeline was de-
ployed on the real vehicle (refer Fig. 6b) using Auto-
DRIVE Testbed to validate seamless sim2real transfer.
The pipeline performed flawlessly owing to realistic LI-
DAR and vehicle dynamics models as well as variability
analysis during simulation.

4.2 Behavioral Cloning

This case study was based on Samak et al. (2021b),
wherein the objective was to utilize a convolutional neural
network (CNN) for cloning the end-to-end driving be-
havior of a human (refer to Fig. 5b). To achieve this,
AutoDRIVE Simulator was employed to record 5-laps of
temporally-coherent labeled manual driving data. This
data was then balanced, augmented, and pre-processed
using standard computer vision techniques to train a 6-
layer deep CNN model for 4 epochs with a learning rate
of 1e-3 using the Adam optimizer Kingma and Ba (2014).
Following training, the model was deployed back into Au-
toDRIVE Simulator to evaluate its performance (refer to
Fig. 7a).

(a) Virtual-world deployment.

(b) Real-world deployment.

Fig. 7. Sim2real transition of behavioral cloning algorithm.
Video: https://youtu.be/rejpoogaX0E

Variability testing concerning light intensity and direction
as well as vehicle’s initial conditions and velocity limit was
performed to ensure algorithm robustness. Further, the
same CNN model was deployed onto AutoDRIVE Testbed
for validating the sim2real transition of this vision-based
algorithm (refer Fig. 7b). Despite subtle variations in the
environmental conditions, the model generalized well and
the vehicle was able to complete several laps along the
track without major deviation and/or collision.

5. CONCLUSION

In this paper, we presented AutoDRIVE, a publicly ac-
cessible digital twin ecosystem for CAVs developed with
an aim of tightly integrating reality and simulation into
a unified toolchain, without compromising on the com-
prehensiveness, flexibility and accessibility required for
prototyping and validating autonomy solutions. This work
focused on bridging the autonomy-oriented sim2real gap
using the proposed ecosystem. Furthermore, we exten-
sively discussed the modeling and simulation aspects of the
ecosystem and substantiated its efficacy by demonstrat-
ing the successful transition of two candidate autonomy
algorithms including autonomous parking and behavioral
cloning from simulation to reality to help support our
claims. Further research will delve into the investigation
of handling real and virtual world uncertainties, formulat-
ing qualitative/quantitative evaluation metrics and bench-
marks, as well as improving the robustness and generaliza-
tion of sim2real frameworks for autonomous vehicles.
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