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Abstract: The path-tracking control performance of an autonomous vehicle (AV) is crucially
dependent upon modeling choices and subsequent system-identification updates. Traditionally,
automotive engineering has built upon increasing fidelity of white- and gray-box models coupled
with system identification. While these models offer explainability, they suffer from modeling
inaccuracies, non-linearities, and parameter variation. On the other end, end-to-end black-box
methods like behavior cloning and reinforcement learning provide increased adaptability but
at the expense of explainability, generalizability, and the sim2real gap. In this regard, hybrid
data-driven techniques like Koopman Extended Dynamic Mode Decomposition (KEDMD) can
achieve linear embedding of non-linear dynamics through a selection of “lifting functions”.
However, the success of this method is primarily predicated on the choice of lifting function(s)
and optimization parameters. In this study, we present an analytical approach to construct
these lifting functions using the iterative Lie bracket vector fields considering holonomic and
non-holonomic constraints on the configuration manifold of our Ackermann-steered autonomous
mobile robot. The prediction and control capabilities of the obtained linear KEDMD model are
showcased using trajectory tracking of standard vehicle dynamics maneuvers and along a closed-
loop racetrack.
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1. INTRODUCTION

Wheeled mobile robots, henceforth referred to as WMRs
find applications in increasingly diverse domains rang-
ing from manufacturing shop floors, warehouses, remote
surveillance etc. all the way up to surveying, rescue mis-
sions and planetary exploration. Success in these applica-
tion domains is predicated on the path-tracking control ca-
pabilities of the system, crucially dependent upon model-
ing choices and subsequent system-identification updates.
In this context, we focus on car-like WMRs, a popular ar-
chitectural choice in the mentioned application spaces. The
Ackermann-steered vehicles (car-like robots) exhibit high
controllability and smooth cornering capabilities without
undergoing energy losses and wear from tire skidding,
making them an ideal choice for medium- or high-speed

1 This work was supported by Clemson University’s Virtual Pro-
totyping of Autonomy Enabled Ground Systems (VIPR-GS), under
Cooperative Agreement W56HZV-21-2-0001 with the US Army DE-
VCOM Ground Vehicle Systems Center (GVSC).

use cases. However, the motion of these systems is char-
acterized by non-holonomic velocity constraints making
path-tracking a challenging control problem.

Traditionally, modeling of robotic systems was based on
differential geometric theory were championed by Bar-
raquand and Latombe (1989), Lafferriere and Sussmann
(1991), Laumond et al. (1994) etc., derived upon on
the configuration space of the robot and motion con-
straints. Similary, model linearization through techniques
like input-output feedback linearization and non-linear
passivity-based control design are captured in Morin and
Samson (2008).

While these approaches were revolutionary in providing a
fundamental framework for modeling of robotic systems
and design of feedback controllers for path tracking prob-
lems, they came at the expense of complicated mathemat-
ical formulation and non-linearities that made controller
design a challenging task. Thus, simplified geometric and
linear models were developed, enabling mathematically
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Fig. 1. Proposed approach involving timeseries data collec-
tion of benchmark maneuvers, analytical construction
of candidate functions using Lie bracket formulation,
discovery of dynamics for identification of linear pre-
dictor model using Koopman EDMD, formulation of
linear MPC and experimental validation.

and computationally feasible path-tracking capabilities.
Controllers like the Pure Pursuit Coulter (1992), Stan-
ley Hoffmann et al. (2007) and kinematic model-based
feedback control techniques have proven effective for low-
speed, planar path tracking problems but fail to capture
aspects of operation like wheel terrain interactions, param-
eter variation, etc., limiting their capabilities.

In recent decades, WMRs have seen significant hardware
improvements due to advances in mobile computing, sen-
sor availability, and modular architectural designs. Con-
currently, software stacks have adopted the ”Sense-Think-
Act” paradigm, enabling autonomous navigation. Utilizing
neural network-based architectures, motion commands are
generated without explicitly modeling the system, making
black-box control methods widely adopted in Imitation
Learning and Reinforcement Learning based approaches,
as demonstrated by Joglekar et al. (2022), Salvi et al.
(2022). While end-to-end learning can adapt to different
operating conditions and improve path-tracking control
capabilities, they often suffer from explainability, gener-
alizability, and sim2real transition gaps, which are critical
for safety-critical applications.

The design of explainable, high-performance, and safe con-
trol is paramount for any robotic application Huang et al.
(2019). As a result, data-driven methods enabling explicit
model identification through the temporal snapshots of the
system have gained prominence in the community Vaidya
(2022). In this milieu, data-driven Koopman operator-
based algorithms such as the Extended Dynamic Mode De-
composition (EDMD) as highlighted by Korda and Mezić
(2018) have gained popularity due to their potential to
extract a linear system model utilizing only the temporal
data or snapshots of the system. While adoption of the
Koopman EDMD techniques has been showcased in many
non-linear and chaotic systems, this manuscript explores
its application within a vehicle dynamics modeling con-
text. The model obtained from the Koopman EDMD tech-
nique depends on the choice of candidate lifting functions

Ψ used as highlighted in 2.2.1. While there are generalized
candidate function libraries like the polynomial-, radial ba-
sis function- library, they do not consider the application-
specific requirements posed by the plant model/ dynamical
system. Often the choice of these candidate functions is
decided heuristically and is subject to parameter tuning.

This study presents an approach to construct a candidate
function library for our non-holonomic WMR analytically.
We leverage the long-standing knowledge of differential
geometry-based analysis of non-holonomic systems to ob-
tain control vector fields that serve as coefficients for
the coordinate basis transform. This approach improves
over the Dubins car model-based lifting functions Joglekar
et al. (2023). The prediction capabilities of the linear
model, along with the efficacy of the feedback control
law (MPC), are highlighted using a path-tracking problem
involving vehicle dynamics maneuvers and eight-loop race-
track traversal.

2. PRELIMINARY

This section presents mathematical notation and concepts
concerning the kinematics constraints on a robot’s configu-
ration space. The idea behind Lie brackets for controllable
vector fields is also introduced. Finally, a mathematical
formulation for the Koopman EDMD algorithm enabling
data-driven linear embedding of non-linear systems based
on lifted temporal snapshots of states/control is presented.

2.1 Kinematic Constraints on Robot Configuration

Consider a Wheeled Mobile Robot (WMR) with n dimen-
sional configuration vector q and configuration velocities
q̇ subject to: (i) k holonomic constraints (configuration
space constraints) and (ii)m−k non-holonomic constraints
(velocity-level constraints). Combinedly, the constraints
can be treated at the velocity-level and expressed as:

A(q)q̇ = 0 (1)

Here, A(q) is a full rank matrix spanning the Rm×n

manifold. Let G(q) be a full-rank matrix spanning the
smooth and linearly independent vector fields in null space
of N (A) given by A(q)gi(q) = 0 for i = 1, · · · , n−m.
G(q) can now be written as:

G(q) = [g1(q) · · · gn−m(q)] (2)

where ∆ is the manifold spanned by these linearly inde-
pendent vector fields in G(q), which may or may not be
involute.

∆ = span{g1(q) · · · gn−m(q)} (3)

Let ∆∗ be the smallest involute distribution encompassing
∆. The following conditions dictate the holonomic and
non-holonomic constraints on the system as highlighted
by Campion et al. (1991).
Briefly summarized, there are 3 possible cases:

• If k = m, then the system is holonomically con-
strained, and ∆ is involute and spans the entire man-
ifold.

• If k = 0, then the system has only non-holonomic
constraints, thus, ∆∗ spans the entire manifold.

• If 0 < k < m, there are k holonomic constraints
reducing the configuration space where dim(∆∗) =
n− k.
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Fig. 1. Proposed approach involving timeseries data collec-
tion of benchmark maneuvers, analytical construction
of candidate functions using Lie bracket formulation,
discovery of dynamics for identification of linear pre-
dictor model using Koopman EDMD, formulation of
linear MPC and experimental validation.
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(2018) have gained popularity due to their potential to
extract a linear system model utilizing only the temporal
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system. Often the choice of these candidate functions is
decided heuristically and is subject to parameter tuning.

This study presents an approach to construct a candidate
function library for our non-holonomic WMR analytically.
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model, along with the efficacy of the feedback control
law (MPC), are highlighted using a path-tracking problem
involving vehicle dynamics maneuvers and eight-loop race-
track traversal.
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concerning the kinematics constraints on a robot’s configu-
ration space. The idea behind Lie brackets for controllable
vector fields is also introduced. Finally, a mathematical
formulation for the Koopman EDMD algorithm enabling
data-driven linear embedding of non-linear systems based
on lifted temporal snapshots of states/control is presented.

2.1 Kinematic Constraints on Robot Configuration
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q̇ subject to: (i) k holonomic constraints (configuration
space constraints) and (ii)m−k non-holonomic constraints
(velocity-level constraints). Combinedly, the constraints
can be treated at the velocity-level and expressed as:

A(q)q̇ = 0 (1)

Here, A(q) is a full rank matrix spanning the Rm×n

manifold. Let G(q) be a full-rank matrix spanning the
smooth and linearly independent vector fields in null space
of N (A) given by A(q)gi(q) = 0 for i = 1, · · · , n−m.
G(q) can now be written as:

G(q) = [g1(q) · · · gn−m(q)] (2)

where ∆ is the manifold spanned by these linearly inde-
pendent vector fields in G(q), which may or may not be
involute.

∆ = span{g1(q) · · · gn−m(q)} (3)

Let ∆∗ be the smallest involute distribution encompassing
∆. The following conditions dictate the holonomic and
non-holonomic constraints on the system as highlighted
by Campion et al. (1991).
Briefly summarized, there are 3 possible cases:

• If k = m, then the system is holonomically con-
strained, and ∆ is involute and spans the entire man-
ifold.

• If k = 0, then the system has only non-holonomic
constraints, thus, ∆∗ spans the entire manifold.

• If 0 < k < m, there are k holonomic constraints
reducing the configuration space where dim(∆∗) =
n− k.

Controllability using Lie Brackets: Assuming that our
system has non-holonomic constraints imposed on it, there
are constraints on the tangent space of the configura-
tion. Physically, it means that a direct path to a cer-
tain configuration may not yield a feasible trajectory for
our systems. This is where the concept of controllabil-
ity dictates a locally accessible set of motions given the
non-holonomic constraints. Consider the following systems
with n dimensional configuration space q ∈ Rn and m
control inputs u ∈ Rm. The control vector fields can be
given as q̇ = G(q)u where G(q) ∈ Rn×m. Assuming,
r non-holonomic constraint equations restrict the span
of the distribution to (n − r) → ∆. These constraints
are written as control vector fields in G(q) allowing for
a locally accessible set of motions in our configuration
space. Assume there are currently 2 vector control fields
in G(q) = [g1(q), g2(q)], let X = [g1] and Y = [g2]. Lie
brackets of the vector fields X and Y can be written as
[X,Y ] = ∂X.Y −∂Y.X. The Lie algebra of our distribution
LA(∆) is the smallest distribution containing ∆ and is
closed under the Lie brackets. The Lie Alegbra Rank
Condition (LARC) is said to be full rank at configuration
qt, if there exists a neighbourhood in this configuration
where all points are reachable by the system. We apply
Lie brackets to obtain linearly independent n vectors en-
abling control of the robot across the neighbourhood of qt
through a series of motions thus satisfying the Small Time
Local Controllability (STLC) condition. The Lie brackets-
based formulation, while allowing for linearly independent
control vectors spanning the configuration space, contains
non-linear terms. Detailed formulation highlighting appli-
cation for our Ackermann-steered robot can be found in
4.2.2.

2.2 Finite-Dimension Koopman Operator Theory

This section discusses the Koopman operator in the form
of Koopman EDMD, allowing for the linear embedding of
our non-linear system. The fundamental idea behind the
Koopman operator is a mathematical framework enabling
linearization of non-linear dynamics by transforming the
basis vectors to a new high-dimensional coordinate space,
also called “lifting” of the system.

Consider a non-linear system,

xt+1 = f(xt,ut) (4)

where x ∈ X ⊆ Rn and u ∈ U ⊆ Rm ; f : (X ,U) → X
governs the evolution of dynamics in time. Let (g(x)) be a
set of new basis vectors transforming our vector space to
a functional space. While f(x) propagates the dynamics
in the vector space, the Koopman operator K is a linear
operator in the functional space.

[Kg](x) = g ◦ f(x, u) (5)

This basis transformation lifts the system to an infinite
dimensional space in the seminal work by Koopman et
al. Koopman (1931). However, as highlighted in the next
section, we need a finite-dimensional approximation of the
Koopman operator for practical purposes.

Koopman EDMD for Finite-Dimensional Linear Predic-
tor: Finite dimension approximation of the Koopman
operator allows us to leverage the mathematical framework
discovery of linear dynamics while retaining computational

feasibility. This extends to applying traditional mathemat-
ical tools for system analysis and designing linear optimal
feedback control. The Extended Dynamic Mode Decom-
position (EDMD) method allows for approximating finite
dimensional Koopman eigenfunctions and modes. As we
demonstrate, the EDMD technique allows for constructing
these basis functions through standard libraries or analyt-
ically.

Numerical Optimization for Linear Predictor: Consider
temporal snapshots of the states and control inputs as
Xt = [x0, . . . ,xt−1] ∈ Rn×t,U = [u0, · · · ,ut−1] ∈ Rm×t,
with Xt+1 = [x1, . . . ,xt] ∈ Rn×t being a single time step
progression of Xt. The relationship between elements of
X,Xt+1 and U matrix can be written as a non-linear
discrete system in the vector space as:

xt+1 = Ãxt + B̃ut (6)

Let Ψ be a functional basis vector in lifted space such that
Ψ = [Ψ1(x), . . . ,ΨN (x)] ∈ RN . The temporal snaphots in
Xt andXt+1 are lifted along the directions ofΨ. The lifted
linear system can be represented as

Ψ(xt+1) = AΨ(xt) +But (7)

Let zt = Ψ(Xt) and zt+1 = Ψ(Xt+1) denote the lifted
states where zt, zt+1 ∈ RN×t where N >> n. From Eq.(7),
we have:

zt+1 = Azt +But (8)

The state matrix corresponding and control matrices in
the lifted space are A and B, respectively. C is the inverse
transform allowing estimation of the state vector from
the lifted state. Numerically, the analytical solution for
obtaining A,B and C as highlighted by Korda and Mezić
(2018) is:

argmin
A,B

∥∥∥∥zt+1 − [A B]

[
zt
U

]∥∥∥∥
2

F

(9)

argmin
C

∥X−Czt∥2F (10)

3. MOTIVATION AND PROBLEM STATEMENT

The primary contribution of this study is to assess the
performance of a data-driven Koopman EDMD model for
path-tracking capabilities if components of vector fields are
derived from Lie brackets of a non-holonomic Ackermann-
steered vehicle. The mathematical framework for analyt-
ical construction of lifting function Ψ along with model
identification with EDMD are presented, enabling dynam-
ics prediction. A feedback law in the form of linear MPC is
implemented to enable path tracking on critical dynamic
maneuvers.

To support our research, we utilized the AutoDRIVE
Ecosystem Samak et al. (2023) to collect dynamics data
of Nigel, a 1:14 scale robotic vehicle platform suitable
for in-lab AV research experiments. The AutoDRIVE
Simulator recorded time-synchronized percepto-dynamic
data of the ego vehicle across various trajectory profiles
and maneuvers. For this study, we selected a subset
of this data, focusing on vehicle dynamics. The choice
of this ecosystem was driven by its seamless sim2real
transferability, ensuring the applicability of our approach
in real-world scenarios going forward.
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4. METHODOLOGY

4.1 Data Collection

Consider the 1:14 scale Nigel vehicle performing standard
vehicle dynamics maneuvers (skidpad, fishhook, slalom
and eight) within the “Testing Track” scenario of Au-
toDRIVE Simulator. The said maneuvers are described
below:

• Skidpad: Skidpad maneuvers were realized using
an open-loop controller, which set the throttle and
steering inputs of the vehicle to a set of constant
values sampled uniformly from within the actuation
limits of the vehicle (refer Table 1). This made the
vehicle drive in circular trajectories of varying radii.

• Slalom: Slalom maneuvers were performed using an
open-loop controller, setting the vehicle’s throttle to
a constant value within its actuation limits (refer
Table 1). The steering actuator was subjected to a
time-shifted and limit-scaled sinusoidal signal input
(δ = δlim ∗sin(π/2+ t)), leading the vehicle to follow
sinusoidal trajectories with varying amplitudes.

• Eight: Eight maneuvers were realized using a human-
in-the-loop teleoperation approach, wherein the throt-
tle of the vehicle was set to a constant value sam-
pled uniformly from within the actuation limits of
the vehicle (refer Table 1) and the human operator
teleoperated the steering actuator using an analog
input modality (dragging a standard computer mouse
across the screen to proportionately set the steering
angle). This made the vehicle drive in slightly variable
trajectories around the eight track.

This work utilized data collected at a target sampling rate
of 30 Hz, which included the 2D positional coordinates x, y
and yaw angle θ of the vehicle w.r.t. the static world frame,
linear speed v and yaw rate ω. Additionally, the low-level
throttle and steering control inputs (τ , δ) provided to the
vehicle were recorded and used to deduce the standard
torque-velocity (τ , v) mapping for the vehicle to be used
in conjunction with the steering input δ.

4.2 Analytical Construction of Candidate Functions

This section highlights two main approaches to construct-
ing candidate basis functions for obtaining the lifted dy-
namics. The first method is the Dubins car model, high-
lighted in Joglekar et al. (2023)

Dubins Car based Candidate Function Selection: The
Dubins car model provides a framework for generating
a smooth feasible path between two points in a config-
uration space for car-like robots as highlighted by Du-
bins (1957) Lamiraux and Laumond (2001). Utilizing the
robot’s configuration space and Dubin’s car model, an
analytical library of lifting functions can be obtained for
Koopman EDMD. We have successfully demonstrated this
formulation in Joglekar et al. (2023).

Lie Brackets based STLC Candidate Functions: This
section builds on the construct of Lie brackets, as high-
lighted in 2.1.1, for a car-like robot having non-holonomic
velocity constraints on the motion. Iterative Lie brackets
result in vector fields allowing smooth motion across the

configuration space through a series of locally accessible
maneuvers. Consider a car-like robot with configuration
space q = [x, y, θ, δ]T with control inputs linear velocity v
and steering input δ. The feasible motion under this con-
figuration space is the translation and rotational motion of
the vehicle chassis corresponding to velocities in ẋ, ẏ, and
θ̇ direction along with the angular motion of the steering
wheel δ̇ bounded by the steering limits. The non-holonomic
constraints to this configuration space arise from lateral
velocity constraints on the front and rear axle.

Considering discrete-time snapshots of the system for
our Koopman EDMD model, the state vector consists of
x, y, θ, δ coordinates. The instantaneous center of rotation
for any steered maneuver aligns with the vehicle’s rear
axle. Assuming there is no wheel slip, there are two
constraints on the motion imposed by the rear and front
wheels. The movement of the rear axle w.r.t the reference
point can be given as:

− sin (θ)ẋ+ cos (θ)ẏ = 0 (11)

Similarly, the motion of the front axle is:

− sin (θ + δ)ẋ+ cos (θ + δ)ẏ + l cos δθ̇ = 0 (12)

These constraints can be written in the form:

A(q)q̇ = 0 (13)

where,

A(q) =

 − sin (θ) cos (θ) 0 0
− sin (θ + δ) cos (θ + δ) l cos δ 0

0 0 0 1


(14)

Let G(q) = [g1(q), g2(q)] be our two control vector fields
derived from Eq.(14) satisfying A(q)G(q) = 0.

G(q) =



0 cos (θ)
0 sin (θ)
0 tan δ

l
1 0


 (15)

The 2-dimensional control vector field does not span the
distribution of our entire configuration space. We com-
pute successive Lie brackets to span the four-dimensional
space of the configuration space. As a result, we compute
successive Lie brackets that do not lie in the distribution
spanned by g1 and g2. The resultant are g3 = [g1(q), g2(q)]
and g4 = [g1(q), g3(q)].

G(q) = [g1, g2, g3, g4] =



0 cos (θ) 0 sin θ

l cos2 θ

0 sin (θ) 0 − cos θ
l cos2 θ

0 tan δ
l

1
l cos2 θ 0

1 0 0 0


 (16)

The distribution spanned by the G(q) is involutive and
spans the configuration space. The vectors in the G(q)
matrix are linearly independent, allowing the robot to
access any configuration in terms of position and orien-
tation with incremental motion sequences. This satisfies
the STLC conditions.

The terms in the G(q) matrix can be utilized along with
the state measurements to construct a candidate basis
function library Ψ. The original coordinate space is trans-
formed along the directions of coefficients of the vector
fields in G(q). The lifted space is represented by zt :=
Ψ(xt) and captures the kinematically feasible motion of
our non-holonomic system. The basis vectors in the lifted
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toDRIVE Simulator. The said maneuvers are described
below:

• Skidpad: Skidpad maneuvers were realized using
an open-loop controller, which set the throttle and
steering inputs of the vehicle to a set of constant
values sampled uniformly from within the actuation
limits of the vehicle (refer Table 1). This made the
vehicle drive in circular trajectories of varying radii.

• Slalom: Slalom maneuvers were performed using an
open-loop controller, setting the vehicle’s throttle to
a constant value within its actuation limits (refer
Table 1). The steering actuator was subjected to a
time-shifted and limit-scaled sinusoidal signal input
(δ = δlim ∗sin(π/2+ t)), leading the vehicle to follow
sinusoidal trajectories with varying amplitudes.

• Eight: Eight maneuvers were realized using a human-
in-the-loop teleoperation approach, wherein the throt-
tle of the vehicle was set to a constant value sam-
pled uniformly from within the actuation limits of
the vehicle (refer Table 1) and the human operator
teleoperated the steering actuator using an analog
input modality (dragging a standard computer mouse
across the screen to proportionately set the steering
angle). This made the vehicle drive in slightly variable
trajectories around the eight track.

This work utilized data collected at a target sampling rate
of 30 Hz, which included the 2D positional coordinates x, y
and yaw angle θ of the vehicle w.r.t. the static world frame,
linear speed v and yaw rate ω. Additionally, the low-level
throttle and steering control inputs (τ , δ) provided to the
vehicle were recorded and used to deduce the standard
torque-velocity (τ , v) mapping for the vehicle to be used
in conjunction with the steering input δ.

4.2 Analytical Construction of Candidate Functions

This section highlights two main approaches to construct-
ing candidate basis functions for obtaining the lifted dy-
namics. The first method is the Dubins car model, high-
lighted in Joglekar et al. (2023)

Dubins Car based Candidate Function Selection: The
Dubins car model provides a framework for generating
a smooth feasible path between two points in a config-
uration space for car-like robots as highlighted by Du-
bins (1957) Lamiraux and Laumond (2001). Utilizing the
robot’s configuration space and Dubin’s car model, an
analytical library of lifting functions can be obtained for
Koopman EDMD. We have successfully demonstrated this
formulation in Joglekar et al. (2023).

Lie Brackets based STLC Candidate Functions: This
section builds on the construct of Lie brackets, as high-
lighted in 2.1.1, for a car-like robot having non-holonomic
velocity constraints on the motion. Iterative Lie brackets
result in vector fields allowing smooth motion across the

configuration space through a series of locally accessible
maneuvers. Consider a car-like robot with configuration
space q = [x, y, θ, δ]T with control inputs linear velocity v
and steering input δ. The feasible motion under this con-
figuration space is the translation and rotational motion of
the vehicle chassis corresponding to velocities in ẋ, ẏ, and
θ̇ direction along with the angular motion of the steering
wheel δ̇ bounded by the steering limits. The non-holonomic
constraints to this configuration space arise from lateral
velocity constraints on the front and rear axle.

Considering discrete-time snapshots of the system for
our Koopman EDMD model, the state vector consists of
x, y, θ, δ coordinates. The instantaneous center of rotation
for any steered maneuver aligns with the vehicle’s rear
axle. Assuming there is no wheel slip, there are two
constraints on the motion imposed by the rear and front
wheels. The movement of the rear axle w.r.t the reference
point can be given as:

− sin (θ)ẋ+ cos (θ)ẏ = 0 (11)

Similarly, the motion of the front axle is:

− sin (θ + δ)ẋ+ cos (θ + δ)ẏ + l cos δθ̇ = 0 (12)

These constraints can be written in the form:

A(q)q̇ = 0 (13)

where,

A(q) =

 − sin (θ) cos (θ) 0 0
− sin (θ + δ) cos (θ + δ) l cos δ 0
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
(14)

Let G(q) = [g1(q), g2(q)] be our two control vector fields
derived from Eq.(14) satisfying A(q)G(q) = 0.

G(q) =


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0 cos (θ)
0 sin (θ)
0 tan δ
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1 0


 (15)

The 2-dimensional control vector field does not span the
distribution of our entire configuration space. We com-
pute successive Lie brackets to span the four-dimensional
space of the configuration space. As a result, we compute
successive Lie brackets that do not lie in the distribution
spanned by g1 and g2. The resultant are g3 = [g1(q), g2(q)]
and g4 = [g1(q), g3(q)].

G(q) = [g1, g2, g3, g4] =


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0 cos (θ) 0 sin θ

l cos2 θ

0 sin (θ) 0 − cos θ
l cos2 θ

0 tan δ
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
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The distribution spanned by the G(q) is involutive and
spans the configuration space. The vectors in the G(q)
matrix are linearly independent, allowing the robot to
access any configuration in terms of position and orien-
tation with incremental motion sequences. This satisfies
the STLC conditions.

The terms in the G(q) matrix can be utilized along with
the state measurements to construct a candidate basis
function library Ψ. The original coordinate space is trans-
formed along the directions of coefficients of the vector
fields in G(q). The lifted space is represented by zt :=
Ψ(xt) and captures the kinematically feasible motion of
our non-holonomic system. The basis vectors in the lifted

Table 1. Parameter variation for collection of time-synchronized vehicle state-input data.

Maneuver Throttle τ (norm%) Steering Angle δ (rad) Initial x (m) Initial y (m) Initial θ (rad)

Skidpad {0.2, 0.4, 0.6, 0.8, 1.0} {0.1047, 0.2094, 0.3142, 0.4189, 0.5236} 0.0 0.0 0.0
Slalom {0.2, 0.4, 0.6, 0.8, 1.0} {0.1047, 0.2094, 0.3142, 0.4189, 0.5236} 0.0 0.0 0.0
Eight {0.2, 0.4, 0.6, 0.8, 1.0} {0.1047, 0.2094, 0.3142, 0.4189, 0.5236} 1.327 0.711 5.498

(a) Trajectory for skidpad maneuver. (b) Trajectory for slalom maneuver. (c) Trajectory for eight maneuver.

(d) State propagation for skidpad maneuver. (e) State propagation for slalom maneuver. (f) State propagation for eight maneuver.

Fig. 2. Experimental validation of vehicle trajectory and state propagation: Kinematic bicycle model with NMPC
feedback law (red) and Koopman EDMD model with linear MPC feedback law (blue) against ground-truth data
(black) for various maneuvers.

space zt consist the follow terms:

[
x y v δ v cos θ v sin θ tan δ

l
1

l cos2 θ
sin θ

l cos2 θ
− cos θ
l cos2 θ

]
(17)

4.3 Linear Approximation using Koopman EDMD

In section 4.2.1 we described a set of candidate functions
Ψ using the Lie brackets formulation for our WMR. Using
the lifting function, we transform our data matrixX andY
as (zt, zt+1) with control inputs (ut). The lifted system’s
state and control vectors (A and B) can be determined
from Eq.(9). This is the finite dimension approximation
of the Koopman operator for our controlled dynamical
system.

4.4 Linear MPC for Trajectory Tracking

A feedback control law similar to Joglekar et al. (2023) is
designed for our finite dimensional Koopman operator for
trajectory tracking using the Splitting Conic Solver (SCS).
System dynamics are defined by:

zt+1 = Azt +But

xt+1 = Czt+1
(18)

The MPC feedback law solves the following optimization
at each step:

min
ut,zt

t=Np∑
t=1

(
Czt −Czreft

)⊤
Q
(
Czt −Czreft

)

+

(
ut − ut−1

∆t

)⊤

P

(
ut − ut−1

∆t

)
(19a)

subject to

umin ≤ ut ≤ umax ∀t (19b)

Cz0 = [x0, y0, v0, ψ0, δ0]
⊤ (19c)

We penalize the error between the predicted and measured
state by ([Czref−Czpred]), where (Czpred) is the predicted
state of the robot. An additional penalty term penalizes
sudden changes in control input that can cause instability.
The state and control penalty matrix (P and Q) are
positive semidefinite matrices.

5. RESULTS AND DISCUSSION

In this section, we compare and verify the path-tracking
abilities of our newly proposed Koopman EDMD model
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and linear MPC feedback law with the standard bench-
mark kinematic bicycle model employing NMPC feed-
back law. The linear model and feedback control law are
highlighted in section 4.2,4.4, respectively. Our test data
contains random trajectories sampled from the Skidpad,
Slalom and Eight maneuvers described in section 4.1 not
previously used in training the KEDMD model. Fig. (2a-
2f) compare the path-tracking capabilities of the two ap-
proaches for our selected maneuvers.

In the context of the Skidpad maneuver (Fig. (2a, 2d)) and
the Eight maneuver (Fig. (2c, 2f)), our proposed KEDMD
and linear MPC methodology exhibit performance on par
with the kinematic model using NMPC. This observation
can be attributed to the low excitement of dynamics ex-
perienced during the steady state conditions of these ma-
neuvers. The distinction in performance becomes evident,
particularly during the execution of the Slalom maneuver
(Fig. (2b, 2e)), where the roll-plane and yaw-plane dy-
namics are continuously stimulated. Here, the superiority
of our KEDMD model over the kinematic bicycle model is
evident, indicating its successful capture of the underlying
dynamics of the system.

The average MSE for tracking errors for a collection
of skidpad, slalom, eight runs from the test dataset is
provided in Table 2.

Table 2. Tracking performance of KEDMD
model + linear MPC and kinematic bicycle

model + NMPC across test maneuvers

Maneuver Control
x-MSE
(m)

y-MSE
(m)

θ-MSE
(rad)

Skidpad Koopman model + linear MPC 1.7e-4 1.9e-3 1.09e-6
Kinematic model + NMPC 4.9e-4 2.8e-4 0.08

Slalom Koopman model + linear MPC 1.8e-5 5.8e-5 3.4e-5
Kinematic model + NMPC 1.4e-4 0.010 0.0015

Eight Koopman model + linear MPC 0.0024 0.0093 0.039
Kinematic model + NMPC 1e-4 9.0e-4 1e-4

6. CONCLUSION

This study presents an analytical construction of lifting
functions based on Lie brackets, which form the fundamen-
tal basis vectors for our lifted Koopman EDMD model. We
postulate that utilizing Lie brackets-based STLC vector
fields as basis vectors adequately account for the non-
holonomic constraints inherent in our robotic system. The
effectiveness of our hypothesis is confirmed through the
feedback control performance of the Koopman EDMD
model, which demonstrates superior tracking capabilities
over the sampled trajectories.
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