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Abstract

Edna is a system that helps web applications allow users
to remove their data without permanently losing their ac-
counts, anonymize their old data, and selectively dissociate
personal data from public profiles. Edna helps developers
support these features while maintaining application func-
tionality and referential integrity via disguising and revealing
transformations. Disguising selectively renders user data in-
accessible via encryption, and revealing enables the user to
restore their data to the application. Edna’s techniques allow
transformations to compose in any order, e.g., deleting a pre-
viously anonymized user’s account, or restoring an account
back to an anonymized state.

Experiments with Edna that add disguising and reveal-
ing transformations to three real-world applications show
that Edna enables new privacy features in existing applica-
tions with low developer effort, is simpler than alternative
approaches, and adds limited overhead to applications.

CCS Concepts: « Security and privacy — Data anonymiza-
tion and sanitization; Management and querying of en-
crypted data; Information accountability and usage control;
Usability in security and privacy.
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1 Introduction

Many users today have tens to hundreds of accounts with
web services that store sensitive data, from social media to
tax preparation and e-commerce sites [9, 22, 54]. While users

MO

This work is licensed under a Creative Commons Attribution International
4.0 License.

SOSP ’23, October 23-26, 2023, Koblenz, Germany

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0229-7/23/10.
https://doi.org/10.1145/3600006.3613146

M. Frans Kaashoek Eddie Kohler ¥

7 Brown University ~ + Harvard University

434

Malte Schwarzkopf

now have the right to delete this data (via e.g., the GDPR [21]
or CCPA [8]), users want and deserve more nuanced controls
over their data that don’t exist today.

Consider Twitter: after a change in management [15],
many users wanted to leave the platform and try out al-
ternatives (e.g., Mastodon). But each user faced a tricky ques-
tion: should they keep their Twitter account, or should they
delete it? Advice on how to quit Twitter [4, 36] highlight
how keeping an inactive account leaves sensitive informa-
tion (e.g., private messages) vulnerable on Twitter’s servers;
but deleting the account prevents the user from changing
their mind and coming back. Hence, many users left Twitter
but kept their accounts [3, 40, 48]. A better solution would
let users temporarily revoke Twitter’s access to their data
while having the option to come back.

Similarly, users give dating apps personal data, and fre-
quently deactivate and reactivate their accounts. This sen-
sitive data should be protected from the application and
potential data breaches [17, 39] when a user deactivates their
account, but be readily available when they choose to return.

Users may also prefer old data, such as past purchases in
an online store or their passport details with a hotel, to be
inaccessible to the service after some time of inactivity, and
therefore protected from leaks or service compromises [44,
56]. Or users may prefer to—explicitly or automatically—
dissociate their identity from old data, such as teenage social
media posts or old reviews on HotCRP. Today, users work
around the lack of such support by explicitly maintaining
multiple identities (e.g., Reddit throwaway accounts [43] and
Instagram “finstas” [60]), an inflexible and laborious solution.

Providing this functionality can benefit both the service
and the user. It helps the service comply with privacy reg-
ulations, reduces its liability on data breaches, and appeals
to privacy-conscious users; meanwhile, the user can rest as-
sured that their privacy is protected, but can also get their
data back and reveal their association with it if they want.

1.1 Why is this hard?

Applications lack such functionality today in part because
getting it right is hard. Real applications have complex no-
tions of privacy, data ownership, and data sharing. Simple
solutions that e.g., delete all data associated with a user can
break referential integrity or create orphaned data, which
requires application changes to handle correctly, and lack
support for users to return. To solve this manually, a devel-
oper would have to carefully perform application-specific
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database changes to remove data, store any data removed
to be able to later restore it, and correctly revert the data-
base changes on restoring. Furthermore, stored data must
be inaccessible to the application and protected against data
breaches, but must be accessible if the user chooses to return.

Developers would also have to reason about interactions
between multiple data-redacting features. For example, imag-
ine an application that supports both account deletion and
anonymizing old data: if a user wants to delete all their posts
after they have been anonymized, a SQL query must some-
how determine which anonymized posts belong to the user
in order to remove them. And if the user later wants to return,
the developer must account for the applied anonymization
and restore posts as anonymized.

1.2 Our Approach

We present a system design that moves closer to an internet
where users can leave services and return at any time, where
old data on servers is protected by default, and where services
provide users with control over their identifying data visible
to the service and other users.

Our approach is to create a general system that helps
developers specify and apply two kinds of transformations:
disguising transformations, which render all or some of the
user’s original sensitive data inaccessible to the application;
and revealing transformations, which restore the original
data at a user’s request. Disguising transformations aim to
protect the confidentiality of users’ disguised data (e.g., links
to throwaway accounts or old HotCRP reviews) even if the
application is later compromised (e.g., via a SQL injection or
a compromised admin’s account).

We demonstrate our approach in Edna, a system that real-
izes disguising and revealing transformations for database-
backed web applications via a set of primitives that have well-
defined semantics and compose cleanly. Developers specify
the transformations that their application should provide,
and Edna takes care of correctly applying, composing, and
optionally reverting them, while maintaining application
functionality and referential integrity.

1.3 Challenges

We had to address three challenges to make this approach
work. First, Edna needs to present a simple, yet versatile in-
terface for developers to specify disguising transformations.
Edna addresses this challenge with a restricted programming
model centered around three primitives: remove, modify, and
decorrelate (which reassigns data to placeholder users). This
model limits the potential for developer error, and lets Edna
derive the correct disguising and revealing operations, while
supporting a wide range of transformations.

Second, to work with existing applications in practice,
Edna’s disguising transformations should require minimal
application modifications. To achieve this, Edna introduces

435

L. Tsai, H. Gross, M. F. Kaashoek, E. Kohler, M. Schwarzkopf

pseudoprincipals, anonymous placeholder users that are in-
serted into the database on disguising and exist solely to own
data decorrelated from real users (e.g., because the applica-
tion requires the data to continue operating) and maintain
referential integrity. Pseudoprincipals can also act as built-
in “throwaway accounts,” as they let the user disown data
after-the-fact, as well as potentially later reassociate with
it. To correctly reason about ownership when data may be
decorrelated multiple times (e.g., by global anonymization
after throwaways have been created), Edna maintains an
encrypted speaks-for chain of pseudoprincipals that only the
original user can unlock and modify.

Third, Edna needs to have access to the original data for
users to be able to reveal their data and return to the applica-
tion, but the whole point is to make that data inaccessible to
the service. While Edna could ask users to store their own
disguised data, this would be burdensome. Instead, Edna
stores the disguised data on the server in encrypted form,
and unlocks and restores data to the service only when a
user provides their credentials to reveal.

1.4 Contributions

In summary, this paper makes four key contributions:

1. Abstractions for disguising and revealing, and a small
set of data-anonymizing primitives (remove, modify,
decorrelate) that cover a wide range of application
needs and compose cleanly.

2. Techniques to implement these abstractions, including
pseudoprincipals (§4.2), speaks-for and diff records (§4.3),
and speaks-for chains (§4.6).

3. Case studies that integrate Edna with three real-world
web applications and demonstrate Edna’s ability to
enable composable and reversible transformations.

4. An evaluation of Edna’s effectiveness and performance,
including how Edna contrasts with and complements
related work (Qapla [37] and CryptDB [45]).

While Edna enables disguising and revealing transforma-
tions in a broad class of applications, Edna has some limita-
tions. First, Edna assumes bug-free disguise specifications,
and that applications use Edna correctly. Second, while Edna
helps developers add user data controls to single applications,
Edna does not tackle the problem of data sharing between
services. Third, Edna does not aim to protect undisguised
data in the database against compromise; combining Edna
with an encrypted database can add this protection. Finally,
attacks to identify users from Edna’s metadata (e.g., the size
of stored disguised data) or placeholder data left in the data-
base (e.g., embedded text) are out of scope.

2 Related Work

Edna is the first system to address the problem of reversible
and composable data transformations for selective data re-
moval in web applications. Existing systems aim instead to
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support data deletion, prevent unauthorized data access, or
protect against database server compromise—valuable, but
complementary goals to Edna’s.

Data deletion tools, such as DELF at Meta [14], help
correctly delete data. DELF lets developers specify deletion
policies via annotations on social graph edges and object
types, and ensures correct cascading data deletion. Other
systems support wholesale user data deletion by tracking
data ownership by modifying the data layout [16, 52] or
tracking information flow [32]. While Edna also supports
GDPR account deletion, Edna’s focus is on more nuanced use
cases beyond simple deletion: Edna allows users to return
after deletion, hides old data for inactive users, or hides some
but not all data so the user can continue using the application.
Edna could, however, benefit from these systems’ proposed
techniques to track a user’s data.

Policy enforcement systems such as Qapla [37] aim
to prevent unauthorized access to data and protect against
leakage via compromised accounts or SQL injections. They
enforce developer-specified visibility and access control poli-
cies via information flow control [13, 24, 28, 50, 62], autho-
rized views [6], per-user views [35], or by blocking or rewrit-
ing database queries [37, 42, 64]. Policy-enforcing systems
do not help users anonymize data or maintain application
integrity constraints, which is Edna’s explicit goal. Instead of
denying access to data, Edna changes the database contents
so sensitive data is no longer available in the database, and
thus unavailable even to the service itself.

Encrypted storage systems such as CryptDB [45] and
Mylar [46] protect against database server compromise, with
some limitations [26]. These systems encrypt data in the
database, and ensure that only users with access to the right
keys can decrypt the data. Applications must handle keys,
and send queries either through trusted proxies that decrypt
data [45], or move application functionality client-side [46].
Encrypted databases have orthogonal goals to Edna’s: while
they protect data at all times against attackers who do not
have the keys, encrypted databases do not help applications
anonymize or temporarily remove data, which Edna does.
Any user with legitimate access can view the data in an
encrypted database, whereas Edna removes disguised data
from the database.

Other related work. Devices using i0S [2], Android [2],
or CleanOS [55] revoke data access via encryption, like Edna
does. However, these systems operate in settings that store
only a single user’s data; Edna instead tackles the problem of
transformations that operate over multiple users’ data and
shared data without breaking the application.

Vanish [23] provides users with self-destructing data and
a proof of data deletion using decentralized infrastructure
and cryptographic techniques (with limitations against Sybil
attacks [61]). Unlike Edna, Vanish cannot restore deleted
data and requires extensive application restructuring.
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Figure 1. Developers write disguise specifications and add
hooks to invoke Edna from the application (green); in nor-
mal operation, clients use these hooks in the application to
disguise and reveal their data in the database (blue).

Sypse [18] pseudonymizes user data and partitions per-
sonally identifying information (PII) from other data. Instead
of partitioning data, Edna modifies the database and stores
disguised data encrypted.

Decentralized platforms such as Solid [49], BSTORE [12],
Databox [38], and others [1, 10, 11, 33, 41] put data directly
under user control, since users store their own data. But
decentralized platforms burden users with maintaining in-
frastructure, lack the capacity for server-side compute, and
break today’s ad-based business model. By contrast, Edna
leaves the data and business models unchanged, and stores all
data, including disguised data, on the application’s servers.

Some platforms can prove that server-side processing re-
spects user-defined policies via cryptographic means [7] or
systems security mechanisms [59]. This may restrict feasible
application functionality (e.g., to additively homomorphic
functions), or restrict combining data with different poli-
cies. Edna protects data only after disguising, but allows
unrestricted application functionality before disguising.

3 Edna Overview

Edna helps developers realize new options for users to
control their data via disguising transformations. The devel-
oper integrates an application with Edna by writing disguise
specifications and adding hooks to disguise or reveal data
using Edna’s API (Figure 1). This proceeds as follows:

(1) An application registers users with a public—private
keypair that either the application or the user’s client gener-
ates; Edna stores the public key in its database, while the user
retains the private key for use in future reveal operations.

(2) When the application wants to disguise some data, it
invokes Edna with the corresponding developer-provided
disguise specification and any necessary parameters (such as
a user ID). Disguise specifications can remove data, modify
data (replacing some or all of its contents with placeholder
values), or decorrelate data, replacing links to users with
links to pseudoprincipals (fake users). Edna takes the data it
removed or replaced and the connections between the user
and any pseudoprincipals it created, encrypts that data with
the user’s public key, and stores the resulting ciphertext—the
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# instantiate the disguise spec with the provided tag to anonymize

Anonymize Tagged Content dis g_spec =

Verify Password:
disg_id =

Tag to anonymize: starwars - star wars content v

Yes, anonymize content with this tag

end

edna.instantiate_spec("tag_anon.json",params[:tag])

# apply the disguising transformation
edna.apply_disguise(@user.id,params[:passwd],disg_spec)
# email the disguise ID to the user to allow revealing
SendDisguiseEmail (@Quser,

disg_id)

Figure 2. The Lobsters developer adds a hook in the Ul and code to perform topic-based anonymization.

disguised data—such that it cannot be linked back to the user
without the user’s private key.

(3) When a user wishes to reveal their disguised data, they
pass credentials to the application, which calls into Edna to
reveal the data. Credentials are application-specific: users
may either provide their private key or other credentials
sufficient for Edna to re-derive the private key. Edna reads
the disguised data and decrypts it, undoing the changes to
the application database that disguising introduced.

Edna provides the developer with sensible default disguis-
ing and revealing semantics (e.g., revealing makes sure not
to overwrite changes made since disguising).

Threat Model. Edna protects the confidentiality of dis-
guised data between the time when a user disguises their
data and the time when they reveal it. During this period,
Edna ensures that the application cannot learn the contents
of disguised data, nor learn what disguised data corresponds
to which user, even if the application is compromised and
an attacker dumps the database contents (e.g., via SQL injec-
tion). Edna stores disguised data encryptedly, so its confi-
dentiality stems from “crypto shredding,” a GDPR-compliant
data deletion approach based on the fact that ciphertexts are
indistinguishable from garbage data if the key material is
unavailable [19, 25, 47, 57].

We make standard assumptions about the security of cryp-
tographic primitives: attackers cannot break encryption, and
keys stored with clients are safe. If a compromised appli-
cation obtains a user’s credentials, either because the user
provides them to the application for reveal, or via external
means such as phishing, Edna provides no guarantees about
the user’s current or future disguised data. Edna also expects
the application to protect backups created prior to disguis-
ing;] and external copies of the data (e.g., Internet Archive
or screenshots) are out of scope.

While Edna hides the contents of disguised data and rela-
tionships between disguised data and users, it does not hide
the existence of disguised data. (An attacker can see if a user
has disguised some data, but cannot see which disguised
data corresponds to this user.) An attacker can also see any
data left in the database, such as pseudoprincipal data or

Uf the application restores a backup, Edna continues operating as if only
the transformations up to the time of the snapshot had been applied.
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embedded text. Edna puts out of scope attacks that lever-
age this leftover data and metadata to infer which principal
originally owned which objects.

Edna’s choice of threat model and its limitations stem
from Edna’s goal of practicality and usability by existing
applications, and from design components that support this
goal. For example, decorrelation with pseudoprincipals re-
moves explicit user-content links, but leaves placeholder
information in the database to avoid application code having
to handle dangling references. Similarly, leveraging server-
side storage to hold disguised data leaves metadata available
to attackers, but avoids burdening users with data storage
management.

4 Design

We now describe how Edna’s API and disguise specifications
work via a disguising transformation for Lobsters [34].

4.1 Example: Lobsters Topic Anonymization

Lobsters [34] is a link-sharing and discussion platform with
15.4k users. Its database schema consists of stories, tags on
stories, comments, votes, private messages, user accounts,
and other user-associated metadata. Users create accounts,
submit URLs as stories, and interact with other users and
their posted stories via comment threads and votes.

Consider topic-based anonymization, which allows
users to hide their interest in a topic (a “tag” in Lobsters)
by decorrelating their comments and removing their votes
on stories with that tag. For instance, a Lobsters user Bea
who posts about their interests—Rust, static analysis, and
Star Wars—might want to hide associations with Star Wars
before sharing their profile with potential employers. This
is currently not possible in Lobsters.

The Lobsters developer can realize topic-based anonymiza-
tion as a disguising transformation. First, the developer writes
a disguise specification (§4.2) and provide it to Edna. They
also add frontend code and UI elements that allow authen-
ticated users to trigger the disguising transformation (Fig-
ure 2). When Bea wants to anonymize their contributions
on content tagged “Star Wars”, Lobsters invokes Edna with
a disguise specification that instructs Edna to decorrelate
comments and remove votes on “Star Wars” stories (§4.3).
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// Decorrelate comments on stories w/tag {{TAG}}

"comments": [{

"type": "Decorrelate",

"predicate": "tags.tag = {{TAG}}",

"from": "comments JOIN stories
ON comments.story_id = stories.id
JOIN taggings
ON stories.id = taggings.story_id
JOIN tags ON...",

"group_by": "stories.id",

"principal_£fk": "comments.user_id" } 1],

// Remove votes on stories w/tag {{TAG}}

"votes": [{
"type": "Remove",
"predicate": "tags.tag = {{TAG}}",
"from": "votes JOIN stories...",

"principal_fk": "votes.user_id",

o]

Figure 3. Lobsters topic-based anonymization disguise spec-
ification (JSON pseudocode), which decorrelates comments
and removes votes on stories with the specific topic tag.

4.2 Disguise Specifications

Disguise specifications tell Edna what application data ob-
jects to disguise and how to disguise them. A disguise speci-
fication identifies objects by database table name, principal,
and predicate, where a predicate is a SQL WHERE clause. Edna
by default disguises all objects related to the given princi-
pal, as defined by a foreign-key relationship provided in the
disguise specification (using principal_f£k), but predicates
can narrow the transformation’s scope (e.g., to stories with
specific tags). For each selected group of objects, developers
choose to remove, modify, or decorrelate them. The example
specification in Figure 3 decorrelates all comments and re-
moves all votes on stories with a particular tag, specified by
the TAG parameter provided at invocation time.

To ensure that decorrelation preserves referential integrity,
Edna generates pseudoprincipals to replace the original prin-
cipal. Decorrelation can use pseudoprincipals at different
granularities. In the extreme, the disguise specification may
tell Edna to create a unique pseudoprincipal for each decor-
related application object. In our example, however, all com-
ments by the same user on the same story decorrelate to
the same pseudoprincipal ("group_by": "stories.id"),
thus keeping same-story comment threads intact. The same
user’s comments on different stories, however, decorrelate
to different pseudoprincipals; an alternative might group
comments by comments.user_id, so a single pseudoprin-
cipal adopts all of a user’s TAG-related comments (effectively
creating a “Star Wars” throwaway account).

Developers can inform Edna to, upon revealing, check for
any objects added after disguising that refer to pseudoprinci-
pals; for example, a decorrelated comment might have new
responses. This enables Edna to preserve referential integrity
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Edna's Data

speaks-for

AnonFox

Figure 4. When Edna applies topic-based anonymization to
Bea’s comments on stories tagged “Star Wars” (red), these
comments are decorrelated to pseudoprincipals (“AnonPig”,
“AnonFox”) and Edna stores encrypted speaks-for records
mapping Bea to their pseudoprincipals.

for data referring to pseudoprincipals. Edna provides three
options if it finds such objects: (i) change the object’s refer-
ence to point to the original principal; (ii) delete the object;
and (iii) continue referring to the pseudoprincipal.

4.3 Disguising
To apply a disguising transformation, Edna creates a unique
disguise ID and queries for the data to disguise based on the
disguise specification predicates. Edna then performs the
specified database changes by first applying all removals,
and then decorrelations and modifications in specification
order, potentially generating and storing pseudoprincipals.
Edna next generates diff records that contain the origi-
nal data, the changes the disguise made to the original data
(e.g., the value of any modified columns), and the disguise
ID. For each new pseudoprincipal, Edna generates a public—
private keypair and a speaks-for record that contains a pair
of (original principal, pseudoprincipal) IDs and the pseudo-
principal’s private key. Edna registers the pseudoprincipal
with its public key to enable composition of disguises (§4.6).
Edna then encrypts diff and speaks-for records—collectively
called disguise records—with the principal’s key, and stores
them in the database. Finally, Edna returns the disguise ID
to the application. A client can use the disguise ID and the
principal’s credentials to reveal the transformation later.
To perform Bea’s topic-based anonymization (Figure 4),
Edna thus: (i) queries the database to fetch comments and
votes by Bea affiliated with “Star Wars”; (ii) creates a pseu-
doprincipal (e.g., “AnonFox”) for every “Star Wars”-tagged
story that Bea commented on, and inserts it as a new user;
(iit) modifies the database by rewriting comment foreign keys
to point to the created pseudoprincipals, and removing Bea’s
votes on those stories; (iv) creates speaks-for records that
map Bea to the created pseudoprincipals, diff records contain-
ing Bea’s votes on “Star Wars” stories, and diff records that
document Bea’s original ownership of “Star Wars”-tagged
comments; (v) encrypts the speaks-for and diff records with
Bea’s public key, stores them; and (vi) returns a unique dis-
guise ID to the application.
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Edna adds a disguise table and a principal table to the
application database to store principals’ disguised data. The
disguise table contains lists of per-principal disguise records
encrypted with the principal’s public key. The principal table
is indexed by application user ID; each row contains the
principal’s public key, and a list of disguise table indexes
encrypted with the public key. To store disguise records for
principal p, Edna (i) encrypts the records with p’s public
key; (ii) stores the ciphertext in the disguise table under
index idx; (iii) encrypts idx (salted to prevent rainbow table
attacks) with p’s public key; and (iv) appends the encrypted
idx to p’s list of encrypted disguise tables indexes in the
principal table.

This allows Edna to store records without needing access
to the principal’s private key, and to do so securely: the
principal table adds a layer of indirection from user ID to
encrypted disguise records, so an attacker cannot link prin-
cipals to their records. At reveal time, Edna can efficiently
find disguised data for a given user by decrypting and using
disguise table indexes in the principal table.

Disguising transformations may completely remove a prin-
cipal from the application database. When this happens, Edna
moves the corresponding list of encrypted disguise table in-
dexes from the principal table to a deleted principal table
indexed opaquely, e.g., by the public key. This removes the
user ID from the database while allowing future reveal oper-
ations by the principal to find their disguise table indexes.

4.4 Revealing

To apply a reveal transformation, Edna first locates and de-
crypts the corresponding disguise records using a disguise
ID and the user’s reveal credentials. Edna supports two forms
of reveal credentials: (i) the principal’s private key itself; or
(i1) the principal’s application password or a recovery token
(in case they forget their password), either of which Edna can
use to rederive the private key. Developers can use either
or both of these credentials depending on application needs.
In our Lobsters example, Edna rederives the user’s private
key using their password. Password or keypair changes re-
quire an application to re-register the user with Edna, which
generates new recovery tokens and re-encrypts the user’s
disguised data.

Edna’s reveal procedure (Figure 5) first looks up all dis-
guise records related to the provided reveal credentials via
Edna’s principal and disguise tables. Edna then applies diff
records created for the disgID disguise transformation to
the database, thus restoring the relevant application objects
to their pre-disguised state.

To preserve referential integrity, Edna first restores dis-
guised data that was removed. Edna then reveals any modifi-
cations, and finally performs recorrelations using decrypted
speaks-for records. Finally, Edna de-registers any pseudo-
principal who no longer has any associated disguised data,
removing them from the principal table and the application’s
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Reveal (disgID,
encrypted_disg_table_idxs :=
decrypted_disg_table_idxs :=

decrypt (encrypted_disg_table_idxs, privkey)
for idx in decrypted_disg_table_idxs:

records = decrypt(disg_table[idx], privkey)

for rec in records:

uid, privkey):

principal_table[uid]

if rec.disgID == disgID:
//
//

else

apply rec to application database
remove rec from disg_table

if rec.type == SPEAKS_FOR:

// recursively reveal for pseudoprincipal
// generated by another disguise

Reveal (disgID, rec.pp_uid, rec.pp_privkey)

Figure 5. Pseudocode for revealing a disguising transforma-
tion while application principal uid exists. Recursive reveal-
ing (the else clause) walks the speaks-for chain to reveal
composed records of pseudoprincipals created by other dis-
guising transformations if necessary (§4.6).

users table. Developers can configure Edna to also check
for references to pseudoprincipals prior to removing them,
and depending on the application’s needs, configure Edna to
delete, rewrite, or leave the references in place. After reveal-
ing, the disguised data is no longer needed, so Edna clears
the corresponding disguise records.

Edna’s reveal semantics rely on consistency checks to
handle database changes (e.g., application updates to undis-
guised data). Edna reveals data only if revealed data: (i) will
still satisfy uniqueness and primary key constraints; (ii) will
not overwrite modifications that occurred while data was
disguised; and (iii) will maintain referential integrity.

For (i), Edna checks that removed disguised data is still
removed from the database; and for (ii), Edna ensures that
modified disguised data is in the same modified state and
decorrelated disguised data is still affiliated with the same
pseudoprincipal in the database using the new value stored in
the diff record. To ensure (iii), Edna checks for the existence
of all objects referenced by the data to reveal (e.g., a post
referenced by a to-be-revealed comment).

Edna is conservative and will never reveal rows for which
checks fail; the affected data remains disguised. §8 describes
ways to increase the scope of Edna’s checks.

In the example, if Bea wants to reveal their “Star Wars”
contributions, Lobsters invokes Edna with the disguise ID
and Bea’s password as reveal credentials. Edna uses the pass-
word to reconstruct Bea’s private key, retrieve and decrypt
Bea’s disguise records, and filter those records for those with
the disguise ID. Edna then restores deleted votes and Bea’s
ownership of decorrelated comments.

4.5 Shared Data

Many applications support shared data; in Lobsters, for ex-
ample, messages between users are owned by both users.
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Edna’s default semantics for shared data implement an own-
ership model inspired by a common treatment of messages.
When a user disguises shared data, Edna decorrelates the
data from the disguising user, but preserves the data and
its association with other owners. Edna removes the data
once all users have disguised it and all ownership links are
to pseudoprincipals. For instance, consider a Lobsters mes-
sage between Bea and Chris: after Bea disguises the message,
the message is owned by Chris and a pseudoprincipal; if
Chris then disguises the message, Edna removes it. Either
owner can reveal the message, which restores the message to
the database and recorrelates the revealing user. Regardless
of the reveal order, if all owners reveal the message, Edna
returns the message to its original state.

4.6 Composing Disguising Transformations

Edna supports composition of disguising transformations,
which occurs when a transformation applies to data that
Edna had previously disguised in some other way. Reasoning
about composition of transformations can be broken down
to reasoning about the composition of primitive operation
pairs, e.g., remove after modify, or remove after decorrelation.
Many pairs result in trivial composition: no operation can
be composed after a remove (the data is gone), and any
operation after a modify updates the data as expected.

However, operations after decorrelation results in more
complex composition scenarios. For instance, decorrelation
after decorrelation could occur if a user decorrelates some
posts, after which an administrator decorrelates all posts. In
this scenario, the administrator’s disguising operation ap-
plies to pseudoprincipal-owned posts in the same way as it
does to unmodified posts. This creates pseudoprincipals that
can speak-for other pseudoprincipals. Edna uses the pseudo-
principal’s registered public key to encrypt pseudoprincipal
disguise records, so Edna does not need to know its link to
an original principal in order to encrypt and disguise its data.

Removal or modification after decorrelation also require
special handling. For instance, a Lobsters user might first
decorrelate some of their comments and then request to
delete all their comments (e.g., by deleting their account).
But the decorrelated comments are no longer linked to the
original user; how can the deletion transformation find them?
Edna addresses this question by accepting optional reveal cre-
dentials as part of the disguise operation. These credentials
let Edna decrypt the user’s previous disguise records, find all
pseudoprincipals corresponding to that user, and apply dis-
guising transformations on behalf of those pseudoprincipals
as well as the user. Edna uses pseudoprincipal private keys
in decrypted speaks-for records as credentials to recursively
find pseudoprincipals from multiple decorrelations.

Finally, Edna must handle reveals of transformations in
any order. As before, many scenarios are straightforward:
revealing removals is trivial (data can only be removed and
restored once), and revealing modified data simply restores
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the original (subject to consistency checks). Handling out-of-
order reveals of multiple decorrelations presents the greatest
challenge. Edna’s semantics enforce that data that is decor-
related multiple times will not be recorrelated until all dis-
guises are removed. For example, if Bea separately decorre-
lates their comments on “bears” and “Star Wars” posts, then
later reveals the “bears” posts, they might want Ewok-related
comments (tagged both “Star Wars” and “bears”) to remain
disguised, even though they were initially disguised under
the “bears” transformation. To support this, Edna maintains
a chain of speaks-for records that represent speaks-for rela-
tionships between pseudoprincipals. All reveal operations
walk the full speaks-for chain to reveal all necessary records
(cf. Figure 5), and if reveal operations happen out of order,
Edna removes an intermediate link in the speaks-for chain.

4.7 Authenticating As Pseudoprincipals

As described so far, if Bea wanted to modify a decorrelated
“Star Wars” comment, they would have to reveal the com-
ment, edit it using their normal credentials, and then re-
disguise the comment. Edna applications can also let users
modify decorrelated records without the reveal step. To sup-
port this, an application accepts reveal credentials along with
a modification request. Edna uses these credentials to vali-
date that the user speaks-for a specific pseudoprincipal, and
updates the database with the modification.

4.8 Security Discussion

Edna’s design achieves confidentiality of disguised data be-
tween the time of disguising and revealing, its key goal. Some
aspects of Edna’s design help make Edna practical and de-
ployable without major application modifications, but give
up stronger security in exchange for usability.

Under Edna’s threat model, Edna achieves:

1. confidentiality of disguised data, via encrypting dis-
guised data using asymmetric encryption, so only the
owning user’s private key can reveal it;

2. confidentiality of which encrypted disguised data be-
longs to which user, via opaque, encrypted indexing
to reference a user’s disguised data; and

3. reduced linkability between parts of a user’s data, via
splitting data ownership among pseudoprincipals.

However, an attacker sees all application database content
and code, and Edna’s disguise, principal, and deleted princi-
pal tables. Thus, what the attacker learns includes:

1. any undisguised data in the application database;

2. the active principals that have disguised data, via Edna’s
principal table;

3. the pseudoprincipals currently registered, from Edna’s
principal table and the application DB;

4. the number of deleted principals, via the size of the
deleted principal table;

5. the amount of disguised data in Edna; and

6. the disguise specifications, from application code.
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Edna provides decorrelation with pseudoprincipals to ease
integration with existing applications, even though pseudo-
principals (and their mere existence) can reveal information
to the attacker. Pseudoprincipals preserve application data
and referential integrity, ensuring that e.g., every post al-
ways has an author, or that vote counts on posts remain
unchanged, without requiring the developer to handle spe-
cial cases of deleted users and orphaned data. However, this
necessarily leaves information in the database.

Similarly, leveraging the application database to store dis-
guised data increases Edna’s practicality as it reuses existing
server-side storage and avoids burdening users with manag-
ing their disguised data, but leaves potentially exploitable
metadata available to attackers. An attacker could leverage
pseudoprincipal groupings (e.g., a pseudoprincipal owning
posts in both “CMU 2018” and “BayArea” topics), undisguised
data (e.g., comments signed with the user’s name), and Edna
metadata (e.g., that some anonymous user has more disguised
data than another, as Edna stores disguised data without
padding for efficiency) to infer the identity of the original
owning principal.

Finally, Edna makes no guarantees for users who actively
use disguised data after compromise (e.g., by revealing or
editing decorrelated data): after an attacker compromises
the application at time ¢, they can harvest private keys that
clients provide after t. However, Edna always protects users’
disguised data if they remain inactive.

The attacker never has access to a user’s private key unless
the user actively provides their credentials. The attacker also
cannot access the private key of any pseudoprincipal because
it is in an encrypted speaks-for record. If an application uses
password-based reveal credentials, Edna guarantees security
equivalent to the security of the user’s password.

5 Implementation

We implemented our Edna prototype in 7.9k lines of Rust.

APIL. An application can use the prototype if: (i) it uses
a MySQL database; (ii) rows to disguise have direct foreign
key relationships to a users table, where each user corre-
sponds to a row of that table; (iii) all rows to disguise are
owned by one or more principals; and (iv) all rows can be
uniquely identified (e.g., via primary key). Applications that
do not satisfy these assumptions—e.g., because they have
complex ownership chains or use a NoSQL database—could
be supported with extensions to the prototype.

Secure Record Storage. When encrypting diff and speaks-
for records, Edna appends a random nonce to the record
plaintext to prevent known-plaintext attacks. It then gener-
ates a new public/private keypair for x25519 elliptic curve
key exchange. Using the newly created private key and the
principal’s public key, Edna performs the x25519 elliptic
curve Diffie-Hellman ephemeral key exchange to generate a
shared secret. Edna encrypts the record data with the shared
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secret, and saves the ciphertext along with the freshly gen-
erated public key (required to decrypt the data given the
principal’s private key). This public key algorithm lacks key
anonymity, so an attacker can determine which records be-
long to the same principal, but this is not fundamental [5].
Reveal Credentials. Our prototype supports two forms
of reveal credentials: (i) private keys; or (ii) principals’ pass-
words, and recovery tokens in case they forget their pass-
words. If an application chooses to use the latter, it pro-
vides the principal’s password to Edna upon user registra-
tion. Our prototype uses a variant of Shamir’s Secret Shar-
ing [53] to generate three shares from the private key, any
two of which can reconstruct the private key. Shares are
(x, f(x) mod p) tuples, where f(x) = privkey + rand - x
and p > privkey is a known prime. One share derives
x from the user’s password using a Password-Based Key
Derivation Function (PBKDF) [29]. Edna stores the resulting
f(x) half of the share, allowing Edna to derive one full share
from the password. Edna returns the second full share as
a recovery token and stores the third full share. Edna can
combine this third share with the recovery token or a full
share derived from the password to recover the private key.
The PBKDF ensures that Edna cannot guess the password-
derived value with dictionary and rainbow table attacks [63],
and that Edna cannot brute force the recovery token.
Password-based secret-sharing is only one possible im-
plementation for backup secrets; Edna could also support
password-based backup secrets by e.g., storing an version of
the private key encrypted with the user’s password.
Concurrency. Edna runs disguising and revealing trans-
formations in transactions, providing serializable isolation to
application users. If a query within a transformation fails, the
entire transformation aborts (returning an error to the appli-
cation). Edna provides an option to run long-running trans-
formations that touch large amounts of data (e.g., anonymiza-
tion of all users’ posts) without a transaction, at the expense
of clients potentially observing intermediate states.

6 Case Studies

This section evaluates Edna by using it to add new data-
redacting features to several applications; §7 evaluates the
effort needed to do so and the resulting performance.

We add disguising and revealing transformations based
on the motivating examples in §1 to three applications—
Lobsters [34], WebSubmit [51], and HotCRP [31].

6.1 Lobsters

Lobsters is a Ruby-on-Rails application backed by a MySQL
database. Beyond the previously-mentioned stories, tags, etc.,
Lobsters also contains moderations that mark inappropriate
content as removed. We added three disguising transfor-
mations: account deletion with return; account decay;, i.e.,
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automatic dissociation and protection of old data; and topic-
specific throwaway accounts.

GDPR-compliant account deletion (i) removes the user
account; (ii) removes information that’s only relevant to the
individual user, such as their saved stories; (iii) modifies story
and comment content to “[deleted content]”; (iv) decorrelates
private messages; and (v) decorrelates votes, stories, com-
ments, and moderations on the user’s data. This preserves
application semantics for other users—e.g., vote counts re-
main consistent even after account deletion, and other users’
comments remain visible—while protecting the privacy of re-
moved users. Important information such as moderations on
user content remains in the database, and Edna recorrelates
it if the user restores their account. After Edna applies the
disguising transformation, Lobsters emails the user a URL
that embeds the disguise ID. The user can visit this URL and
provide their credentials to restore their account.

The account decay transformation protects user data
after a period of user inactivity. We added a cron job that
applies account decay to user accounts that have been in-
active for over a year. This (i) removes the user’s account;
(ii) removes information only relevant to the user, such as
saved stories; (iii) and decorrelates votes, stories, comments,
and moderations on the user’s data by associating them with
pseudoprincipals. Lobsters sends the user an email which
informs them that their data has decayed, and includes a
URL with an embedded disguise ID that can reactivate or
completely remove the account if credentials are provided.

Finally, topic-based throwaway accounts via topic-based
anonymization enable users to decorrelate their content
relating to a particular topic. As per §4.1, this disguises contri-
butions associated with the specified tag by (i) decorrelating
tagged stories and comments associated with tagged stories,
and (ii) removing votes for tagged stories. Again, Lobsters
sends the user an email with links that allow reclaiming or
editing these contributions.

With Edna and its support for composing disguising trans-
formations, users can delete accounts that have been decayed
or dissociated into throwaways, and can later reveal them.

6.2 WebSubmit

We integrated Edna as a Rust library with WebSubmit [51].
WebSubmit is a homework submission application used at
Brown University, and its schema consists of tables for lec-
tures, questions, answers, and user accounts. Clients cre-
ate an account, submit homework answers, and view their
submissions; course staff can also view submissions, and
add/edit questions and lectures. The original WebSubmit re-
tains all user data forever. We added support for two disguis-
ing transformations: GDPR-compliant user account removal
with return, and instructor-initiated answer anonymization,
which protects data of prior years’ students by decorrelating
student answers for a given course. These transformations
allow instructors to retain FERPA-compliant [58] answers
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after the class has finished. With Edna, students can delete
their accounts or access and view their answers even after
class anonymization, and can always restore their deleted
accounts, including restoring them to anonymized state.

6.3 HotCRP

HotCRP is a conference management application whose
users can be reviewers and/or authors. HotCRP’s schema
contains papers, reviews, comments, tags, and per-user data
such as watched papers and review ratings [31]. HotCRP
currently retains past conference data forever and requires
manual requests for account removal [30]. We wrote two
disguise specifications for HotCRP: conference anonymiza-
tion to protect old conference reviews, and GDPR account
removal with return.

Conference anonymization is invoked by PC chairs af-
ter the conference and decorrelates users from their submis-
sions, reviews, comments, and per-user data such as watched
papers. User accounts remain in the database with no asso-
ciated data. Conference anonymization protects users’ data
after the conference; with Edna, users can come back to view
or edit their anonymized reviews and comments.

Account removal (i) removes the user’s account; (ii) re-
moves information only relevant to the user, such as their
review preferences; (iii) removes their author relationships
to papers; and (iv) decorrelates the remainder of their data,
such as reviews. Decorrelating a review removes its asso-
ciation with the reviewing user, but importantly keeps the
review itself around to preserve utility for others (e.g., the PC
and the authors of the reviewed paper). With Edna, users can
remove their accounts even after conference anonymization
has taken place, and can always restore their accounts.

7 Evaluation

Our evaluation seeks to answer five questions:

1. How much developer effort and application modifica-
tion does Edna require? (§7.1)

2. How expensive are common application operations,
as well as disguising, revealing, and operations over
disguised data with Edna? (§7.2)

3. What overheads does Edna impose, and where do they
come from? (§7.3)

4. How does the effort required to implement Edna’s
functionality in a related system (Qapla [37]), and its
performance, compare with using Edna? (§7.4)

5. What is the performance impact of composing Edna’s
guarantees with those of encrypted databases? (§7.5)

We compare Edna to three alternative settings: (i) a man-
ual version of each disguising transformation that directly
modifies the database (e.g., via SQL queries that remove data),
which lacks support for revealing and does not support com-
position of multiple transformations; (ii) an implementation
of disguising and revealing in Qapla [37] using Qapla’s query
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rewriting and access control policies; and (iii) an integration
of Edna with CryptDB [45], an encrypted database.

All benchmarks run on a Google Cloud n1-standard-16
instance with 16 CPUs and 60 GB RAM, running Ubuntu
20.04.5 LTS. Benchmarks run in a closed-loop setting, so
throughput and latency are inverses. We use MariaDB 10.5
with the InnoDB storage engine atop a local SSD.

7.1 Edna Developer Effort

We evaluate the developer effort required to use Edna by
measuring the difficulty of implementing the disguising and
revealing transformations in our three case studies. This took
one person-day per case study for a developer familiar with
Edna but unfamiliar with the applications.

A developer supporting these transformations must first
add application infrastructure to allow users to invoke them
and notify users when they happen. This is required even
if the developer were to implement transformations man-
ually without Edna. These changes add 179 LoC of Ruby
to Lobsters (160k LoC), and 312 LoC of Rust to the original
WebSubmit (908 LoC). They implement HTTP endpoints,
authorization of anonymous users, and email notifications.

A developer using Edna also writes disguise specifications
and invokes Edna. Lobsters’ disguise specifications are writ-
ten in 518 LoC, WebSubmit’s in 75 LoC, and HotCRP’s in 357
LoC (all in JSON). The specification size is proportional to
schema size and what data each application disguises.

The developer effort required to use Edna—writing Edna
specifications, and invoking Edna—is small, even though
these applications were not written with Edna in mind.

7.2 Performance of Edna Operations

We now evaluate Edna’s performance using WebSubmit,
HotCRP, and Lobsters (§6). We measure the latency of com-
mon operations, disguising transformations, and operations
over disguised data enabled by Edna (e.g., account restora-
tion and editing disguised data). The three applications do
not create new data that references pseudoprincipals, but to
fully capture any overheads we configure Edna to neverthe-
less run the checks for lingering pseudoprincipal references
on revealing. A good result for Edna would show no over-
head on common operations, competitive performance with
manual disguising, and reasonable latencies for revealing
operations only supported by Edna (e.g., a few seconds for
account restoration)

WebSubmit. We run WebSubmit with a database of 2k
users, 20 lectures with four questions each, and an answer
for each question for each user (160k total answers). We
measure end-to-end latency to perform common application
operations (which each issue multiple SQL queries), as well
as disguising and revealing operations when possible (re-
vealing operations are impossible in the baseline). Figure 6a
shows that common operations have comparable latencies
with and without Edna. Edna adds 9ms to account creation;
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(c) Lobsters (16k users, Zipf-distributed data/user).

Figure 6. Edna adds no latency overhead to common appli-
cation operations and modestly increases the latencies of
disguising operations compared to a manual implementation
that lacks support for revealing or composition. Bars show
medians, error bars are 5%/95th percentile latencies.

and disguising and revealing operations take longer in Edna
(13.1-53.2ms), but allow users to reveal their data and take
less developer effort.

HotCRP. We measure server-side HotCRP operation la-
tencies for PC members on a database seeded with 3,080
total users (80 PC members) and 550 papers with eight re-
views, three comments, and four conflicts each (distributed
evenly among the PC). HotCRP supports the same disguising
transformations as WebSubmit, but PC users have more data
(200-300 records each), and HotCRP’s disguising transfor-
mations mix deletions and decorrelations across 12 tables.

Figure 6b shows higher latencies in general, even for the
manual baseline, which reflects the more complex disguis-
ing transformations. Edna takes 63.8—84.6ms to disguise and
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Figure 7. Applying disguising transformations to previously-
decorrelated accounts increases latency linear in the number
of pseudoprincipals involved. Hatched lines indicate the pro-
portion of cost attributed to cryptographic operations.

reveal a PC member’s data, again owing to the extra crypto-
graphic operations necessary. HotCRP’s account anonymiza-
tion is admin-applied and runs for all PC members, so its total
latency is proportional to the PC size. With 80 PC members,
this transformation takes 6.8s, which is acceptable for a one-
off operation. As before, Edna adds small latency to common
application operations, and 9ms to account creation.

Lobsters. We run Lobsters benchmarks on a database
seeded with 16k users, and 120k stories and 300k comments
with votes, comparable to the late-2022 size of production
Lobsters [34]. Content is distributed among users in a Zipf-
like distribution according to statistics from the actual Lob-
sters deployment [27], and 20% of each user’s contributions
are associated with the topic to anonymize. The benchmark
measures server-side latency of common operations and dis-
guising/revealing transformations.

The results are in Figure 6¢c. The median latencies for
entire-account removal or decay are small (9.7-13.4ms for
Edna, and 4.0-5.2ms for the baseline), since the median Lob-
sters user has little data. Revealing disguised accounts takes
13.1-17.6ms in the median. Highly active users with lots
of data raise the 95" percentile latency to 100-180ms for
disguising and 45-80ms for revealing. Topic anonymization
touches less data and is faster than whole-account transfor-
mations, taking 3.6ms and 13.1ms for the median user to
disguise and reveal, respectively.

Summary. Edna necessarily adds some latency compared
to manual, irreversible data removal, since it encrypts and
stores disguised data. However, most disguising transfor-
mations are fast enough to run interactively as part of a
web request. Some global disguising transformations—e.g.,
HotCRP’s conference anonymization over many users—take
several seconds, but an application can apply these incre-
mentally in the background, as in Lobsters account decay.

7.2.1 Edna Performance Drill-Down. We next break
down the cost of Edna’s operations into the cost of database
operations and the cost of cryptographic operations. Edna’s
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database operations are fast; in our prototype, they generally
take 0.2-0.3ms but vary depending on the amount of data
touched. Edna’s cryptographic operations are comparatively
expensive. PBKDF2 hashing for private key management
incurs a 8ms cost and affects account registration and opera-
tions on disguised data that reconstruct a user’s private key;
this accounts for up to 79% of these operations’ cost when
the operation issues only a few database queries.

Encryption and decryption incur baseline costs of 0.1ms
and 0.02ms respectively; their cost grows linearly with data
size. In the common case, disguising or revealing data per-
forms two cryptographic operations: one to encrypt/decrypt
the disguise records, and one to encrypt/decrypt the ID at
which they are stored.

Edna also generates a new key for each pseudoprincipal
created, which takes 0.2ms. Edna’s cryptography accounts
for up to 35% of the cost of disguising/revealing operations
such as account removal or anonymization; this proportion
decreases as the number of database modifications made by
a transformation increases. When the application applies
multiple disguising transformations and disguises the data
of pseudoprincipals, doing so may require several encryp-
tions/decryptions. We evaluate this cost next.

7.2.2 Composing Disguising Transformations. To un-
derstand the overhead of composing transformations in Edna,
we measure the cost of composing account removal on top
of a prior disguising transformation to anonymize and decor-
relate all users’ data. We consider WebSubmit and HotCRP,
and compare three setups: (i) manual account removal (as
before); (ii) account removal and restoration without a prior
anonymization disguising transformation; and (iii) account
removal and restoration with a prior anonymization disguis-
ing transformation. With prior anonymization, a subset of
the user’s data has already been decorrelated when removal
occurs, and removal therefore performs per-pseudoprincipal
encryptions of disguised data with pseudoprincipals’ pub-
lic keys. Restoring the removed, anonymized account must
then individually decrypt pseudoprincipal records and re-
store them. Hence, disguising and revealing in the third setup
should take time proportional to the number of pseudoprin-
cipals created by anonymization.

Figure 7 shows the resulting latencies. WebSubmit account
removal and restoration latencies increase by ~1ms per pseu-
doprincipal (18.2ms and 21.8ms respectively); 50% of this in-
creased cost comes from the additional, per-pseudoprincipal
encryption and decryption of records, the rest comes from
database operations. HotCRP removal and restoration laten-
cies also increase by ~1ms per pseudoprincipal (191.2ms and
230.4ms respectively); again, cryptographic operations add
~0.5ms per pseudoprincipal, and the remaining cost increase
comes from per-pseudoprincipal database queries and up-
dates. WebSubmit and HotCRP do not create new references
to pseudoprincipals after data gets disguised, but if they did,
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Edna would need to issue additional per-pseudoprincipal
queries to rewrite or remove these references (if configured
to do so). Compared to accounts in WebSubmit, accounts in
HotCRP have more data and 14-15X more pseudoprincipals
after anonymization, which accounts for the larger relative
slowdown.

Importantly, disguising latencies stabilize when Edna com-
poses further disguising transformations: since cost is pro-
portional to the number of pseudoprincipals affected, latency
does not grow once the application has maximally decorre-
lated data (to one pseudoprincipal per record), as done by
HotCRP anonymization.

7.3 Edna Overheads

Edna adds both space and compute overheads to the applica-
tion; we measure the impact of these next.

7.3.1 Space Used By Edna. To understand Edna’s space
footprint, we measure the size of all data stored on disk by
Edna before and after 10% of users in Lobsters (1.6k users)
remove their accounts. Cryptographic material adds over-
head and each generated pseudoprincipal adds an additional
user to the application database; Edna also stores data for
each registered principal (a public key and a list of opaque
indexes) as well as encrypted records.

Edna’s disguise record storage uses 12 MB, which grows
to 58.5 MB after the users remove their accounts, and the
application database size increases from 261 MB to 290 MB
(+11%). (Edna also caches some of this data in memory.)
The space used is primarily proportional to the number of
pseudoprincipals produced: each pseudoprincipal requires
storing an application database record, a speaks-for record,
and row in the principal table. In this experiment, Lobsters
produces 78.1k pseudoprincipals. Edna removes the public
keys and database data for the 1.6k removed principals, but
stores encrypted diff records with their information, which
uses another 2.2 MB.

7.3.2 Impact On Concurrent Application Use. For Edna
to be practical, the throughput and latency of normal appli-
cation requests by other users must be largely unaffected by
Edna’s disguising and revealing operations.

We thus measure the impact of Edna’s operations on other
concurrent requests in Lobsters. In the experiment, a set
of users make continuous requests to the application that
simulate normal use, while another distinct set of users con-
tinuously remove and restore their accounts. Edna applies
disguising transformations sequentially, so only one trans-
formation happens at a time. We measure the throughput of
“normal” users’ application operations, both without Edna
operations (the baseline) and with the application contin-
uously invoking Edna. The Lobsters workload is based on
request distributions in the real Lobsters deployment [27].

Since users’ disguising/revealing costs vary in Lobsters,
we measure the impact of (i) randomly chosen users invoking
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Figure 8. Continuous disguising/revealing operations in
Lobsters have a <7% impact on application request through-
put when disguising a random user; an extreme case of a
heavy-hitter user with lots of data repeatedly disguising and
revealing causes a 3-17% drop in throughput.

account removal/restoration, and (ii) the user with the most
data continuously removing and restoring their account (a
worst-case scenario). We show throughput in a low load
scenario (220% CPU load), and a high load scenario (~95%
CPU load). Finally, we measure settings with and without a
transaction for Edna transformations. A good result for Edna
would show little impact on normal operation throughput
when concurrent disguising transformations occur.

Figure 8 shows the results. If a random user disguises and
reveals their data (the common case), normal operations are
mostly unaffected by concurrent disguising and revealing:
throughput drops <3.7% without transactions and <7.0%
with transactions. Constantly disguising and revealing the
user with the most data (the worst-case scenario) has a larger
effect, with throughput reduced by up to 7.4% (without trans-
actions) and up to 17% (with transactions, high load).

This shows that Edna’s disguising and revealing transfor-
mations have acceptable impact on other users’ application
experience in the common case.

The latency of disguising operations depends on load:
the expensive user’s account removal and revealing take 4.4
and 3.6 seconds under high load, and 3.3 and 2.6 seconds
under low load. This is acceptable: 50% of data deletions at
Facebook take five minutes or longer to complete [14].

7.4 Comparison to Qapla

We compare Edna’s performance and the effort to use Edna
to an implementation of the same disguising and revealing
functionality for WebSubmit in Qapla.

Effort. Specifying disguising transformations as Qapla
policies requires far more explicit reasoning about transfor-
mations’ implementations and their compositions. In Qapla,
a developer would realize disguising transformations via
metadata flags that they add to the schema (e.g., is_deleted
for removed data) and toggles in application code. They then
provision Qapla with a predicate that checks if this meta-
data flag is true before returning a row. Developers must
carefully craft Qapla’s predicates, which grow in complex-
ity with the number of disguising transformations that can
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Figure 9. Edna achieves competitive performance with a
manual baseline and outperforms Qapla on nearly all com-
mon WebSubmit operations (2k users, 80 answers/user). Bars
show medians, error bars are 5/95th percentile latencies.

compose. For example, an application supporting both ac-
count removal and account anonymization must combine
predicates such that removal always takes precedence. Each
additional transformation increases the number of predicates
whose combinations the developer must reason about. De-
velopers must also optimize Qapla predicates (e.g., reducing
joins, adding schema indexes and index hints) to achieve
reasonable performance.

To modify data, the application developer can use Qapla’s
“cell blinding” mode, which dynamically changes column
values (to fixed values) based on a predicate before return-
ing query results. The developer must manually implement
more complex modifications and decorrelation (i.e., creating
pseudoprincipals and rewriting foreign keys).

Realizing WebSubmit transformations in Qapla required
576 lines of C/C++, and 110 lines of Rust to add pseudoprin-
cipal, modification, and decorrelation support.

Overall, Qapla requires more developer effort than Edna,
particularly in writing composable and performant predi-
cates, and manually implementing modifications and decor-
relations. However, Qapla’s approach does make some things
easier. Because data remains in the database, revealing simply
requires toggling metadata flags, and data to reveal can adapt
to database changes (e.g., schema updates). But keeping the
data in the database also means that developers cannot use
Qapla to achieve GDPR-compliant data removal.

Performance. We measure Qapla’s performance (Fig-
ure 9) on the same WebSubmit operations (Figure 6a). Qapla
performs well on operations that require only writes, since
Qapla does not rewrite write queries. Removing and restor-
ing accounts requires only a single metadata flag update in
Qapla, whereas Edna encrypts/decrypts user data and actu-
ally deletes it from the database. However, Qapla rewrites
all read queries, so Qapla performs poorly on operations
that require reads, such as listing answers and editing (dis-
guised or undisguised) data. Qapla’s query rewriting takes
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Figure 10. Latencies of WebSubmit (2k users, 80 answer-
s/user) operations when implemented with Edna+CryptDB
(adding encrypted database support). Bars show median la-
tency; error bars are 5%/95% percentile latencies.

~1ms, and rewrites SELECT queries in ways that affect per-
formance (e.g., adding joins to evaluate predicates). Overall,
Edna achieves better performance on common operations.

7.5 Edna+CryptDB

We combine Edna with CryptDB to evaluate the cost of com-
posing Edna’s guarantees with those of encrypted databases.
CryptDB protects undisguised database contents against at-
tackers who compromise the database server itself (with
some limitations [26]), in addition to Edna’s existing protec-
tions for disguised data.

Edna+CryptDB operates in CryptDB’s threat model 2
(database server and proxy can be compromised). A de-
veloper using Edna+CryptDB deploys the application (and
Edna) atop a proxy that encrypts and decrypts database rows.
Queries from Edna and the application operate unchanged
atop the proxy, but to ensure proper access to user data,
the application and Edna must handle user sessions. Edna+
CryptDB exposes an API to log users in and out using their
credentials. Prior to applying transformations to a user’s
data, Edna performs a login to ensure that Edna has legiti-
mate access to their data (e.g., the user, an admin, or someone
sharing the data is logged in).

Edna+CryptDB handles keys in the same way as CryptDB:
Edna+CryptDB encrypts database rows with per-object keys,
and object keys are themselves encrypted with the public
keys of the users who can access the object. After a user logs
in, the application gives the proxy their private key, thus
allowing decryption of their accessible objects.

Our prototype only supports the CryptDB deterministic
encryption scheme (AES-CMC encryption), which limits it
to equality comparison predicates. It also does not support
joins, a limitation shared with multi-principal CryptDB.

Performance. We measure the latency of WebSubmit
operations like before, and compare a manual baseline, Edna,
and Edna+CryptDB. Edna+CryptDB is necessarily more ex-
pensive than Edna, and a good result for Edna+CryptDB
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would therefore show moderate overheads over Edna, and
acceptable absolute latencies.

Figure 10 shows the results. Normal application operations
are 2-3X slower with Edna+CryptDB than in Edna, with the
largest overheads on operations that access many rows, such
as the admin viewing all answers. Disguising and revealing
operations are also 2-7X slower than Edna.

These overheads result from the cryptographic operations
and additional indirection in Edna+CryptDB. Edna+CryptDB
relies on a MySQL proxy, which adds latency: a no-op ver-
sion of our proxy makes operations 1.03-1.5x slower. Cryp-
tographic operations themselves are cheap (< 0.2ms), but ev-
ery object inserted, updated, or read also requires lookups to
find out which keys to use, query rewriting to fetch the right
encrypted rows, and execution of more complex queries.

This is particularly expensive when the user owns many
keys (e.g., the WebSubmit admin). Admin-applied anonymiza-
tion incurs the highest overhead (+156.4ms) as it issues many
queries to read user data and execute decorrelations. Among
the common operations, an admin getting all the answers
for a lecture suffers similar overheads (+127.7ms).

Like CryptDB, Edna+CryptDB increases the database size
(4-5x for our WebSubmit prototype). Edna+CryptDB also
stores an encrypted object key and its metadata (1KB per
key) for each user with access to that object.

8 Discussion and Future Work

Edna is a first step towards a world in which web services
routinely manage, store, and reveal disguised user data. In
this setting, new questions and directions for research arise.

Retention of Disguised Data. When a user reveals their
data, Edna removes it from the disguise table. However, Edna
currently retains disguised data until a user reveals it, which
could be forever if users choose to never reveal data. Edna
could allow applications to put reasonable, coarse-grained
time limits (e.g., 10 years) on disguised data to eventually
clean it up, without leaking fine-grained information about
which data was disguised at the same time.

Reveal Semantics. Edna today provides basic correctness
guarantees when revealing data, but further work might
make Edna’s current reveal semantics more precise.

Consider an example: a user’s disguise modifies posts to
scrub their username from it, and a moderator later edits
posts to remove swear words. As the disguise modifies the
post, Edna today does not restore the original post content
upon reveal, since the application has modified the post.
However, Edna could restore the post if it knew how to
subsequently remove the swear words again. Likewise, if
Edna removed the post instead of scrubbing its content, the
moderator would never see it (and could not edit it), but
Edna would reveal the post with swear words still present.
In the first scenario, Edna knows that an update was applied,
and refuses to reveal the modified post; in the second, Edna
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does not know that moderation happened and reveals the
removed post. Neither might be what the application desires.

Edna could handle this situation by tracking operations
applied in a replay log. The application would invoke Edna
when it performs operations that need to hold over revealed
data—e.g., moderations or schema changes—to log these up-
dates (as e.g., SQL queries) in Edna’s replay log. When reveal-
ing data, Edna would apply every relevant entry in the replay
log to the data about to be restored into the database. This
approach faces some limitations, such as assuming determin-
istic changes and requiring additional application changes,
and would need to ensure that the replay log can be stored
and applied efficiently.

Pseudoprincipal references. Edna currently supports
a global specification for checking and fixing references to
pseudoprincipals. Edna could also support a menu of op-
tions, such as per-table checks and fixes (where the devel-
oper to specifies per-table policies) or per-inserted-object
ones (where the developer makes application modifications
to log all added references to pseudoprincipals).

9 Conclusion

Edna enables developers to provide data disguising and re-
vealing transformations that give users control over their
data in web applications. These transformations help users
protect inactive accounts, selectively dissociate personal data
from public profiles, and remove a web service’s access to
their data without permanently losing their accounts.

We used Edna to add seven disguising transformations to
three web applications, and found that the effort required was
reasonable, that Edna’s disguising and revealing operations
are fast enough to be practical, and that they impose little
overhead on normal application operation.

Edna is open-source at https://github.com/tslilyai/edna.
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