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CrossVision: Real-time On-Camera Video
Analysis via Common RoI Load Balancing
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Abstract—Smart cameras with on-device deep learning inference capabilities are enabling distributed video analytics at the data
source without sending raw video data over the often unreliable and congested wireless network. However, how to unleash the full
potential of the computing power of the camera network requires careful coordination among the distributed cameras, catering to the
uneven workload distribution and the heterogeneous computing capabilities. This paper presents CrossVision, a distributed framework
for real-time video analytics, that retains all video data on cameras while achieving low inference delay and high inference accuracy.
The key idea behind CrossVision is that there is a significant information redundancy in the video content captured by cameras with
overlapped Field-of-Views (FoVs), which can be exploited to reduce inference workload as well as improve inference accuracy between
correlated cameras. CrossVision consists of three main components to realize its function: a Region-of-Interest (RoI) Matcher that
discovers video content correlation based on a segmented FoV transformation scheme; a Workload Balancer that implements a
randomized workload balancing strategy based on a bulk-queuing analysis, taking into account the cameras’ predicted future workload
arrivals; an Accuracy Guard that ensures that the inference accuracy is not sacrificed as redundant information is discarded. We
evaluate CrossVision in a hardware-augmented simulator and on real-world cross-camera datasets, and the results show that
CrossVision is able to significantly reduce inference delay while improving the inference accuracy compared to a variety of baseline
approaches.

Index Terms—Distributed Deep Learning Systems, On-Device AI, Live Video Analytics, Workload Adaptive, Edge Computing.
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1 INTRODUCTION

F ROM road intersections to shopping malls and from uni-
versity campuses to public squares, video cameras are

ubiquitous nowadays to collect data for applications such as
traffic control and security surveillance. Thanks to the recent
breakthrough of deep learning (DL), we can now perform
sophisticated video analytics tasks on the massive amount
of data generated by these video cameras to retrieve key
information with an unprecedented accuracy. Because DL-
based video analytics is compute-intensive while traditional
video cameras have extremely limited computing capability,
video streams captured by traditional cameras have to be
transmitted to a cloud or an edge server, which has suffi-
cient computing power, to perform video analytics [1]–[5].
Although such an offloading-based approach is meaning-
ful for legacy camera systems lacking suitable computing
resources, it is not ideal as it relies heavily on the network
and significantly stresses the network [6]. Not only the video
analytics delay is highly sensitive to the network bandwidth
between the cameras and the cloud/edge servers, but also
it becomes infeasible to transfer all visual data over the
network as the number of cameras scales up.
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With the network being a bottleneck for real-time video
analytics in large-scale camera networks, recent efforts have
been on pushing video analytics directly onto the video
cameras themselves [7]–[9], thereby mitigating the potential
negative network impacts. Smart cameras, equipped with
on-device DL accelerators, are increasingly being deployed
and replacing traditional video cameras [10]. These smart
cameras are not only able to perform basic video processing
tasks such as background subtraction and motion detec-
tion, but also capable of executing complicated DL-based
pipelines to detect and recognize the objects and a variety of
their attributes. Therefore, smart cameras, while generating
visual data, can also perform video analytics directly on this
raw data without moving it over the network. However,
although on-device video analytics eliminates the reliance
on the network to a large extent, it has its own drawbacks
due to the isolated data processing by individual cameras.
First, depending on the time and what areas the cameras
are covering, cameras are not equal in terms of the number
of objects of interest and hence the workload of recognizing
the captured objects and their attributes. Cameras in a hot-
spot (e.g., stadium entrance during a football game) can
receive a large amount of workload that may even exceed
their computing capability, resulting in significantly pro-
longed inference latency. Second, on-device video analytics
performance is also limited by the quality of the cameras’
individually captured data. Objects that are too far away
and/or occluded can easily lead to wrong detection results
and hence a reduced inference accuracy.
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Fig. 1. A three-camera network with overlapped FoVs. CrossVision
matches the RoIs of different cameras to the same objects, uses RoI
redundancy to reduce and balance the system workload (e.g., the total
workload reduces from 20 to 10), and improves the inference accuracy
by fusing results of low quality RoIs (e.g., RoI 2-G and RoI 3-G).

1.1 CrossVision
In this paper, we present CrossVision, a distributed real-time
cross-camera video analytics framework that overcomes the
aforementioned drawbacks in densely deployed smart cam-
era networks. CrossVision exploits the information redun-
dancy across proximate smart cameras that have overlapped
field-of-views (FoVs) to (1) adaptively balance workload
among a network of smart cameras to reduce latency, and
(2) intelligently fuse inference results from multiple smart
cameras when necessary to improve accuracy. A salient
feature of CrossVision is that all visual data is retained at
the smart camera that captures this data; no visual data is
transferred over the network to the cloud/edge server or
other peer smart cameras. This has a significant advantage
over other collaborative video analytics approaches that
require raw data exchange among peer cameras.

As a motivating example, consider a three-camera net-
work with overlapped FoVs illustrated in Fig. 1. The cam-
eras have different numbers of objects of interests but some
objects appear in the FoVs of multiple cameras. In particular,
objects in red boxes appear in all three cameras, objects
in yellow boxes appear in both Camera 2 and Camera 3
while the object in the green box appears only in Camera
3. Since the detection of Object 1 (i.e., the red car) by
Camera 1 is enough to locate it on this road segment at this
moment, Camera 2 and Camera 3 can save their computing
resource for the inference of other objects. On the other
hand, both Camera 2 and Camera 3 do not have a clear
view of Object 2 (i.e., the women in black). Therefore, they
can share their inference results with each other and fuse
the results to improve the inference accuracy. Motivated
by the above observation, CrossVision reduces both the
total system workload and individual cameras’ workload
by assigning matched RoIs to designated camera for video
analytics, meanwhile improving the inference accuracy by
fusing the results of low quality RoIs.

1.2 Design Challenges and Our Contributions
CrossVision aims to minimize the inference latency and
maximize the inference throughput of the camera network
while improving the inference accuracy by harnessing the
intrinsic correlation of video data across cameras with
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Fig. 2. Two types of video analytics pipelines.

overlapped FoVs. We highlight three design challenges of
CrossVision and our contributions:

Challenge 1: How to discover and describe the intrinsic
video content correlation across the cameras? The first
step is to identify common RoIs that appear in multiple
cameras’ FoVs. Unlike existing methods [11]–[13] that utilize
deep image features from raw video frames, we develop
a segmented FoV transformation method that establishes
a pixel-to-pixel mapping between camera FoVs based on
homography estimation [14]. RoIs are considered the same
object if they occupy the same pixel positions after the trans-
formation. The FoV transformation is applied to segmented
FoVs to minimize distortion. With the identified common
objects, we introduce “Virtual Camera”, a concept that links
smart cameras together via the common RoIs in their FoVs.

Challenge 2: How to balance the workload across cam-
eras with heterogeneous on-device computing capacities
and unpredictable workload dynamics? An object appear-
ing in the FoVs of multiple cameras at the same moment
may need to be inferred only once to save the computing
resource and reduce the workload of cameras. Therefore,
balancing workload across cameras is the key function of
CrossVision in order to reduce the inference latency. To this
end, we analyze the approximate inference latency based
on the bulk queuing theory, and use the analysis result
to formulate a workload optimization problem and design
a randomized workload balancing algorithm while taking
into account the predicted future workload.

Challenge 3: How to leverage common RoIs to improve
inference accuracy? The improvement in inference latency
is achieved by removing RoI redundancy via workload
balancing. However, we also proactively preserve the re-
dundancy when necessary in order to maintain a high level
of inference accuracy. For example, if the same RoI in all
FoVs has a low quality (e.g., small size), then CrossVision
will ask multiple cameras to perform inference and fuse the
results to improve the overall inference accuracy.

We build a hardware-augmented simulator to evalu-
ate CrossVision. In this simulator, real-world cross-camera
videos are processed by real hardware devices such as
Nvidia Jetson TX2 and Nvidia Jetson Xavier, and we sim-
ulate the wireless network environment to investigate the
network impact. Simulation results show that CrossVision
is able to significantly reduce inference latency and improve
throughput while achieving a high inference accuracy.

2 BACKGROUND AND RELATED WORK

2.1 RoI-based Video Analytics Pipeline
Video analytics pipelines typically adopt a cascaded ar-
chitecture consisting of many specific task modules to
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perform various analytics. Besides identifying objects of
interests, they can also perform task-specific analytics for
each detected object of interest, e.g., determining the gen-
der/behavior of a person, or the color/brand/type of a ve-
hicle. As shown in Fig. 2, two pipelines are commonly used
in existing live video analytics systems [15]. The first type
is frame-based: raw video frames are first pre-processed
and then fed directly into a cascading group of several pre-
trained task-specific Deep Neural Network (DNN) models.
The second type is RoI-based: a light-weight background
subtraction method is used to extract the RoIs from the
frame, and only these RoIs are fed into the cascading DNN-
based analytics modules to obtain the results. Compared
with the frame-based pipeline that has to constantly extract
features from frames and perform inference, the RoI-based
pipeline produces RoIs and performs inference on the RoIs
only when RoIs appear in the frame, thereby reducing the
computing usage on camera devices. For this reason, we
focus on RoI-based video analytics in this work.

2.2 Related Work

Recognizing the limited computing capability of traditional
camera devices, existing works [1]–[5], [16]–[20] frequently
resort to cloud or edge servers for performing complicated
DNN-based video analytics in camera networks. For exam-
ple, in Couper [16], video data in a multi-camera network
is sent to an edge computing cluster that deploys sliced
DNN components. ANS [17] and JALAD [18] investigate
adaptive collaborative inference between a camera device
and an edge server. VideoEdge [19] dynamically configures
the cameras and edge clusters to make tradeoff between
resource usage and inference accuracy. However, video an-
alytics in these works is performed without considering
the intrinsic physical correlation among cameras. Maxim
[20] proposes a learning-based framework to address the
configuration adaptation problem in video analytics and
employs a configuration sharing collaboration based on spa-
tial and temporal correlations among cameras. Vigil [21] and
CrossRoI [22] made similar observations as our paper that
the same object may appear in multiple proximate cameras
with overlapped FoVs. Vigil uploads only the frames that
best capture the scene to the edge server for user’s query
when multiple cameras looking at the same scene capture
different views of an object of interest. CrossRoI proposes
to remove the repetitive appearances of the same RoI in
multiple cameras before sending the frames to the edge
server, thereby reducing the communication and computa-
tion cost. However, there are three main different aspects
between CrossVision and all the aforementioned works.
First, all the aforementioned works require offloading a
significant amount of video data over a wireless network to
the cloud/edge server, and hence the performance is heavily
dependent on the network condition. Second, all the afore-
mentioned works do not consider the workload balance in
the video analytics, which may cause one or several cameras
to be overloaded. Third, all the aforementioned works do
not leverage the common RoIs across all the cameras to
improve the overall inference accuracy.

As the cost and power consumption of on-device DL
accelerators keep decreasing, fully on-device video analytics
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Fig. 3. System architecture of CrossVision. Note that all the video
analytics are processed on the smart cameras, and the job of the
edge server is mainly to control and coordinate the collaborative video
analytics among the cameras by the RoIs’ information of bounding box
position (i.e., four pixel coordinates).

by smart cameras are becoming a reality. In this regard,
Distream [23] also aims to balance the inference workload
among distributed cameras. However, Distream ignores the
video content correlation due to the overlapped FoVs of
proximate cameras. As a result, workload balancing in
Distream is achieved by migrating raw RoI images across
cameras. Therefore, it still puts a heavy burden on the local
wireless network. In addition, Distream misses the opportu-
nity to improve the inference accuracy by fusing inference
results of the same object. Physically migrating workload
over wireless was also studied in other generic workload
balancing problems [24]–[28]. Although these works are
able to reshape the workload distribution, the total system
workload remains the same and the wireless network can
be further stressed due to the additional data transfer.

CrossVision establishes associations between the over-
lapping FoV of different cameras and matches RoI from
different camera perspectives to balance workload and im-
prove accuracy. Re-identification (ReID) algorithms [11]–
[13] are commonly used in computer vision for object track-
ing problems to identify RoIs as the same object from dif-
ferent video frames. These algorithms use object detectors,
such as deep neural network models, for object detection
and extract deep image features from detected RoIs. The
similarity between two detected RoIs is then computed
based on their feature distance. However, in the case of
CrossVision, the RoI matching only deals with the RoI
bounding box position, i.e., four pixel coordinates, without
touching raw video frames to avoid large transmission de-
lay. Therefore, we propose an FoV transformation between
two FoVs and use the pixel positions of RoIs to determine
whether they correspond to the same object.

3 CROSSVISION DESIGN

In this section, we present the design of CrossVision. We
start with the coherent design for the overall architecture
and then delve into the design details of four components
– System Monitor, RoI Matcher, Workload Balancer and
Accuracy Guard. To make it clear, the key notations used
in this paper are summarized in Table 1.
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3.1 Overall Architecture
As shown in Fig. 3, CrossVision is a distributed cross-camera
video analytics framework that spans across a set of smart
cameras and an edge server. We highlight that all the video
analytics are performed on the smart cameras, and the job
of the edge server is mainly to control and coordinate the
collaborative video analytics among the cameras without
touching the actual video data.

Data Plane. Each smart camera in the system captures
video frames and performs background extraction to extract
RoIs within each frame. The extracted RoIs are then stored
in a local memory queue while the position information of
the RoIs is transmitted to the edge server. Note that the
position information of an RoI contains only the four-pixel
coordinates of the bounding box vertices, and hence sending
it to the edge server incurs a very low transmission cost. The
edge server utilizes the received position information from
all cameras to determine the optimal processing strategy for
the RoIs. Control messages are sent back to the respective
cameras, guiding them on whether to process the RoIs
using their on-device inference engines or to mark them as
overlapped RoIs that do not require local processing. Once
processed, the inference results are reported back to the edge
server.

Control Plane. Within the edge server, the System Mon-
itor component continuously collects the position informa-
tion of the reported RoIs from the cameras. This information
is then forwarded to the RoI Matcher, which discovers cor-
relations between RoIs in FoVs of different cameras, identi-
fying whether they correspond to the same object. Based
on these discovered correlations, the Workload Balancer
assigns the inference tasks of the same object (i.e., RoI) to a
specific camera for inference processing. The Workload Bal-
ancer periodically updates its workload balancing strategy
by considering the predicted arrival rates of RoIs in the fu-
ture. To ensure high inference accuracy, the Accuracy Guard
verifies that the assigned camera possesses a sufficiently
high-quality RoI (e.g., with a sufficient size), so as not to
compromise accuracy. In scenarios where all cameras have
low-quality RoIs of the same object, the Accuracy Guard
instructs all cameras to perform on-device inference. After
the inference results are reported back to the edge server,
the Accuracy Guard aggregates the results to generate the
final inference output.

3.2 System Monitor
System Monitor collects the RoIs’ information (not raw im-
ages) from each smart cameras. The clocks of smart cameras
and edge server are software synchronized and each camera
has the same frame rate f . The RoI’s information con-
sists of the camera ID, coordinates of bounding boxes and
timestamp, in the form of (cameraID, left, top, width, height,
timestamp). left and top are the pixel coordinates locating the
top left corner of the RoI bounding box, while the width
and height information characterizes the bounding box size.
timestamp represents the capture time of the corresponding
RoIs. In this manner, the RoIs from smart cameras with
the same indices are just image captures of the same scene
at the same time from different perspectives. The System
Monitor considers two cameras’ timestamps as the same

if their difference is small enough for frame alignment.
i.e., < 1

2f . cameraID is usually formed as the IP address,
which will be used to send the workload balancing control
message back to the smart cameras. After collecting all the
RoIs’ information from same timestamp as a group, System
Monitor sends this group information to RoI Matcher to find
the correlation of RoIs.

3.3 RoI Matcher

The goal of RoI Matcher is to determine whether RoIs in
the overlapped FoVs of different cameras are indeed the
same object. This would be easy if the coordinates of the
RoIs could be calculated in a common world coordinate
system. For cameras with depth information, such as stereo
camera, 3D camera and RGB-D camera, it is possible to
calculate such a world coordinate system provided with
the depth information and camera calibration parameters
[29]–[31]. However, for the vast majority of ordinary 2D
cameras, RoI matching is non-trivial. Our idea is to establish
a FoV transformation between two FoVs and use the pixel
positions of RoIs to determine whether they correspond
to the same object. The FoV transformation is calculated
fully offline, and we perform RoI matching online as RoIs’
positions are reported by the cameras. We discuss the steps
in more details below.

(Offline) Segmented FoV Transformation. The key of
FoV transformation is to find a transformation matrix Hmn

between the overlapped FoVs of any two cameras m and n.
Let (ujm, v

j
m) denote a pixel in camera m and (ujn, v

j
n) be the

corresponding pixel in camera n, then the transformation
matrix Hmn between the two coordinate systems is as
follows,

wjmn[ujn, v
j
n, 1]T = Hmn[ujm, v

j
m, 1]T

where wjmn is the scale information between the pixel
coordination system and the world coordination system.
According to homography estimation [14], we can obtain
the transformation matrix Hmn by solving a least squares
problem, using four or more anchor pixel coordinates in
camera m and their corresponding pixel coordinates in
camera n. However, our experiment shows that a sin-
gle transformation matrix for the entire FoV of a camera
can cause a considerable transformation error because the
anchor points marking is not exact. To mitigate the im-
pact of estimation error during FoV transformation, we
manually segment the FoV into several sub-areas, sample
corresponding pixel points in each sub-area and calculate
a transformation matrix for each sub-area. Fig. 4 shows
that segmented FoV transformation significantly reduces the
transformation errors. We note that FoV transformation is
performed only once and in an offline manner for cameras
with static FoVs. With these transformation matrices, pixel-
to-pixel conversions can be calculated by traversing all the
pixels in one camera. We offline build a hash table for each
camera to store the map of its pixel coordinates to the
possible corresponding pixel coordinates that may appear
in other cameras.

(Online) RoI Matching. With the offline computed
transformation matrices, we can compare RoIs for any two
cameras to determine if they correspond to the same object.
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Fig. 4. Illustration of segmented FoV transformation.

However, even for the same object, its corresponding RoIs in
different cameras can take different sizes and shapes, so it is
nearly impossible to have a perfect matching between RoIs.
Therefore, we consider two RoIs corresponding to the same
object if the representative points (e.g., the center point, or
a point closer to the ground) of the RoIs in two cameras
are close enough (i.e., within a tolerance distance) after the
coordinate transformation. However, it is still possible that
two RoIs are indeed the same object but our method treats
them as different objects. Hence, there is a tradeoff in the
matching accuracy and efficiency by setting the tolerance
distance. From a practical design perspective, one would
prefer setting a small enough tolerance distance in order
to have a correct matching with high confidence so that
all objects are properly processed. Using the transformation
matrices to match RoIs can still be a time-consuming process
if the number of cameras is large and RoIs are many. To fur-
ther reduce the computational time complexity, instead of
actually calculating the transformation, RoI Matcher simply
queries the hash tables built in the offline segmented FoV
Transformation to determine if two RoIs match.

Example: We use RoIs in Fig. 1 as example. The RoI
Matcher first uses the center pixel coordinates of RoI 1-A
to query the Camera 1’s hash table to get the possible
corresponding pixel coordinates in Camera 2 and Camera
3. Based on these possible corresponding pixel coordinates,
the RoI Matcher can find that the center pixel coordinates
of RoI 2-A in Camera 2 and RoI 3-A in Camera 3 are close
enough to the queried corresponding pixel coordinates from
the Camera 1’s hash table. Thus, the RoI matcher records
that RoI 1-A in Camera 1, RoI 2-A in Camera 2 and RoI 3-A
in Camera 3 are indeed the same object.

Virtual Camera. To better describe the correlations
among the smart cameras and organize the matched RoIs,
we introduce a concept called Virtual Camera. A virtual
camera is a subset of physical cameras with overlapped
FoVs, and we take the overlapped FoVs of these physical
cameras as the FoV of the virtual camera. In terms of RoIs,
if RoIs belonging to a set of physical cameras are success-
fully matched, then they also belong to the virtual camera
representing this set of physical cameras. The number or
the arrival rate of RoIs in virtual cameras thus reflects
the correlation between physical cameras: the more RoIs a
virtual camera sees, the stronger correlation the component
physical cameras have. Fig. 5 illustrates the concept of
virtual camera. As RoI Matcher performs RoI matching, it
also counts the number of RoIs in every virtual camera. Note
that matched RoIs are only counted once in a virtual camera.

We use N = {1, ..., N} to denote the set of physical
cameras in the network and hence the set of virtual cameras,
denoted by V , is a power set ofN , i.e., V = 2N . For example,

Camera 1

{2} {3}{1}
{1, 3} {2, 3}

{1, 2}
{1, 2, 3} Camera 2

Camera 3

Fig. 5. Illustration of virtual camera. There are 7 virtual cameras: {1},
{2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}.

TABLE 1
Key Notations

Notations Definitions
n Camera index
t Iteration index

Tmax Maximum number of iterations
Fa Frame rate
Xn Number of RoI inference tasks at camera n
λn RoI inference task arrival rate at camera n
F b
n Batches per second processed by camera n

Bn Batch size at camera n
µn RoI processing rate at camera n
Dn Average RoI inference delay at camera n
D̄n Upper-bound of Dn

v Virtual camera index

λv
Predicted RoI inference task arrival rate
at virtual camera v

sv,n
Probability that workload of virtual camera v
is assigned to physical camera n

λ̃n
RoI inference task arrival rate at camera n
after workload balance

cameras 1, 2 and 3 can form a virtual camera v = {1, 2, 3} if
they have overlapped FoVs. These notations will be useful
when we describe the workload balancing strategy.

Example: To further illustrate the virtual camera, we
also use the RoIs in Fig. 1 as an example. After pro-
cessed by the RoI Matcher, the matched RoIs in visutual
camera are R{1} = {1-E}, R{2} = ∅, R{3} = {3-H},
R{1,2} = ∅, R{1,3} = ∅, R{2,3} = {{2-E, 3-E}, {2-F, 3-F},
{2-G, 3-G}}, R{1,2,3} = {{1-A, 2-A, 3-A}, {1-B, 2-B, 3-B},
{1-C, 2-C, 3-C}, {1-D, 2-D, 3-D}}, and the number of RoIs
in each virtual camera is V{1} = 1, V{2} = 0, V{3} = 1,
V{1,2} = 0, V{1,3} = 0, V{2,3} = 3, V{1,2,3} = 4.

3.4 Workload Balancer

Now, we are ready to introduce the core component of
CrossVision – Workload Balancer. As its name suggests,
Workload Balancer balances the workload in terms of RoI
inference tasks across cameras by assigning the inference
task of matched RoIs to a single smart camera. In this way,
part of workload of cameras in hotspots can be migrated
to cameras with light workload. There are a couple of key
considerations for the design of Workload Balancer:

• Heterogeneous Computing Capabilities. Smart cameras
are not all the same; their computing capabilities can
vary depending on the hardware, the platform and
the adopted DNN model. Hence, workload balanc-
ing needs to consider the cameras’ heterogeneous
computing capabilities to prevent any camera from
becoming the bottleneck.

• Future Workload Arrivals. Workload in terms of RoI in-
ference tasks varies across cameras and may change
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over time. Workload balancing should not only look
at the current workload of the cameras but also con-
sider the possible impact of future incoming work-
load to avoid migrating workload to cameras that
may experience heavy workload very soon.

Bulk Queue-based Inference Delay Analysis. Before
we describe how to balance workload, we first perform an
inference delay analysis to understand how the inference
delay depends on the camera’s workload.

Consider a representative camera n. Let F a be the frame
rate, and Xn be the random variable representing the num-
ber of RoI inference tasks in every frame. Note that without
workload balancing, Xn would be the same as the number
of RoIs seen in the frame. Thus, the RoI inference task
arrival rate is λn = E(Xn)F a. DL-based video analytics
typically processes tasks in batches, and hence the inference
engine fetches multiple RoIs at a time from the RoI queue to
process. Consider that camera n can process F bn batches per
second with batch size being Bn. Thus, the RoI processing
rate is µn = BnF

b
n. We are interested in characterizing

the average RoI inference delay Dn, i.e., the time duration
between when a RoI is extracted and when its inference
result is obtained. This queuing system is not a simple
M/M/1 queue, but features bulk arrivals (i.e., multiple tasks
arrive at a time) and bulk processing (i.e., multiple tasks are
processed at a time).

Proposition 1. The average RoI inference delay Dn is ap-
proximated by

Dn =

[
ρnρ̂n

1− ρ̂n
+
ρn
2

E (X2
n)

E (Xn)
+
ρn
2

]
/λn +

1

µn
(1)

where ρn = λn

µn
, ρ̂n = exp(γn), γn = 2E (Xn)(ρn−1)

Var(Xn)ρn
.

Proof. The proof is given in Appendix A.

Since the RoI inference delay in Proposition 1 is quite
complicated and hard to utilize, we further derive an upper
bound on Dn, which has a much simpler form.

Proposition 2. Assuming 2E (Xn)
var(Xn) ≥ 1 > ρn, Dn can be

upper-bounded by D̄n as follows

Dn ≤ D̄n ,
1

µn − λn
+ φn (2)

where φn = 3
2µn

+ 1
2Fa .

Proof. The proof is given in Appendix B.

Remark: For a standard M/M/1 queuing system [32]
with arrival rate λn and service rate µn, its average waiting
delay in system is

D̃n =
1

µn − λn
(3)

which is essentially the first term in D̄n. Hence, the second
term φn is the new addition due to batch arrival and batch
processing, which reflects the extra impact of the computing
capability on the inference delay. Nevertheless, workload
balancing may also be performed based on the delay anal-
ysis using an M/M/1 approximation, albeit with a lower
accuracy.

Computing Randomized Workload Balancing Strategy.
To take into account the future workload arrivals, Workload
Balancer periodically (e.g., every 10 minutes) computes a
randomized workload balancing strategy using predicted
future workload. Let λv be the predicted workload (i.e. RoI
inference tasks) arrival rate for virtual camera v for the near
future. This prediction can be made based on past workload
arrival statistics, and various prediction methods, such as
time-series-based [33] and neural network-based [34], have
been developed. Since developing a new workload predic-
tion algorithm is not the focus of this paper, we assume that
λv,∀v ∈ V is given to Workload Balancer, whose job is to
distribute this workload among the physical cameras.

Let sv,n ∈ [0, 1] be the probability that workload of
virtual camera v is assigned to physical camera n. Clearly,
for every n 6∈ v, sv,n must be 0, and

∑
n:n∈v sv,n = 1 so that

all workload is processed. Then the amount of workload
that camera n will need to process is λ̃n =

∑
v:n∈V sv,nλv .

With this, we formulate an optimization problem as follows
to find the optimal randomized strategy s = {sv,n; v ∈ V,
n ∈ N} that minimizes the worst-case inference delay.

min
s

max
n

D̄n (4)

s.t. D̄n =
1

µn − λ̃n
+ φn (5)

λ̃n =
∑
v:n∈v

sv,nλv,∀n ∈ N (6)

λ̃n < µn,∀n ∈ N (7)∑
n:n∈v

sv,n = 1,∀v ∈ V (8)

sv,n ∈ [0, 1],∀n ∈ v,∀v ∈ V (9)

The above problem is a non-convex optimization prob-
lem due to the inference delay upper bound D̄n, which
is generally hard to solve. Next, we develop an efficient
algorithm to approximately solve this problem, inspired by
the Coordinate Descent method [35]. Our algorithm consists
of two stages. In the first stage, we solve a linear program to
find an initial randomized strategy that satisfies all the con-
straints. In the second stage, we use a Coordinate Descent-
inspired iterative procedure to improve the randomized
strategy.

Stage 1: With D̄n is monotonically increasing in λ̃n.
Therefore, instead of minimizing the maximum inference
delay, we formulate a linear program to minimize the max-
imum workload assigned to the cameras as follows:

min
s

max
n

λ̃n (10)

s.t. (6), (7), (8), (9) (11)

Linear programs are easy to solve, and many commercial
software packages exist to efficiently solve this problem. Let
s0 be the optimal solution to (10). In fact, if the cameras
have homogeneous computing capabilities, namely µn =
µm,∀n,m ∈ N , then s0 is also the optimal solution to (4).
If the cameras have heterogeneous computing capabilities,
then s0 is a feasible solution to (4) because both problems
have the same set of constraints. Note that if there does not
exist a feasible solution to (10), then the overall workload is
too large for the camera network to handle and hence, the
system has to decrease the frame rate.
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Stage 2: In the case of heterogeneous computing capabil-
ities, we further use a Coordinate Descent-inspired iterative
algorithm to improve on s0, which is shown in Algorithm 1.
In every iteration t, we pick a pair of cameras i and j with
overlapped FoVs to update their workload balancing strate-
gies, i.e. sv,i, sv,j ,∀v ∈ Vi,j , where Vi,j is the set of virtual
cameras that contain both cameras i and j. Specifically, with
probability 1 − ε, we pick camera i as the one that has the
largest inference delay, i.e., i = arg maxn D̄n and randomly
pick camera j among cameras that have overlapped FoVs
with camera i. Because camera i currently has the worst
inference delay performance, we update sv,i,∀v ∈ Vi,j in
the negative gradient direction of D̄i in an effort to reduce
maxn D̄n:

stv,i ← st−1
v,i −min{η∇sv,iD̄i, s

t−1
v,i },∀v ∈ Vi,j (12)

where η > 0 is the update step size. However, only updating
the load balancing strategy of a single camera i violates the
problem constraints and hence, we also update the strategy
sv,j ,∀v ∈ Vi,j to ensure that sv,i+ sv,j stays the same for all
v ∈ Vi,j . Therefore,

stv,j ← st−1
v,j + min{η∇sv,i

D̄i, s
t−1
v,i },∀v ∈ Vi,j (13)

Although the updated sv,j may cause D̄j to increase, it is
less critical because camera j is not the bottleneck camera.

With probability ε, we randomly pick both cameras i and
j in an iteration to introduce some exploration randomness
in order to escape from local optimum solutions. The algo-
rithm keeps the best workload balancing strategies so far,
and terminates after a pre-determined maximum number of
iterations Tmax.

Algorithm 1 Stage 2 Algorithm
1: Input: λv,∀v ∈ V , µn,∀n ∈ N , and s0

2: while t < Tmax do
3: Pick i:
4: With prob. ε, i = arg maxn D̄

t−1
n

5: With prob. 1− ε, i is a random camera
6: Randomly pick j so that i and j have overlapped

FoVs
7: Update strategies for i and j:

stv,i ← st−1
v,i −min{η∇sv,i

D̄i, s
t−1
v,i },∀v ∈ Vi,j

stv,j ← st−1
v,j + min{η∇sv,i

D̄i, s
t−1
v,i },∀v ∈ Vi,j

8: Calculate λ̃j
9: if λ̃j > µj then

10: stv,i ← st−1
v,i , stv,j ← st−1

v,j

11: Calculate D̄t
n,∀n

12: if maxn D̄
t
n < D∗max then

13: s∗ ← st, D∗max ← maxn D̄
t
n

14: Return s∗

Workload Balancing Strategy Implementation. With
the computed randomized strategy s, implementing work-
load balancing is relatively straightforward. For each RoI
matched to a virtual camera v, Workload Balancer randomly
assigns the RoI to a physical camera n ∈ v with probability
sv,n, and informs the cameras the assignment outcome
via the control message. As also mentioned in the overall

architecture, only the assigned camera processes the RoI
using its on-device inference engine and later reports the
inference result to the edge server, while the other cameras
do not process their RoIs to save their on-device computing
resources.

Example: We still use the RoIs in Fig.1 as an example.
The matched RoI {2-C, 3-C} is in virtual camera v = {2, 3}.
Assume the workload balancing strategy of virtual camera
v = {2, 3} is s{2,3},2 = 0.8, s{2,3},3 = 0.2, then the match
RoI {2-C, 3-C} is assigned to be processed in physical cam-
era 2 with probability 0.8, otherwise to physical camera 3. If
matched RoI {2-C, 3-C} is assigned to the physical camera
2, camera 3 will put the RoI 3-C in the waiting list and wait
for the inference result of RoI 2-C from camera 2.

3.5 Accuracy Guard
Even for the same object, its RoIs in the FoVs of different
cameras may appear very differently due to the distance,
the camera view angles and even the light conditions. While
workload balancing saves computing resources by remov-
ing the RoI redundancies, the RoI diversity can actually be
used to improve the inference accuracy. The job of Accuracy
Guard is exploiting this diversity to maintain a high infer-
ence accuracy in CrossVision. Three specific strategies are
proposed, with the first two being proactive and the third
being remedial.

Pick Cameras with High-Quality RoIs. The RoIs for the
same object in different cameras have different qualities in
terms of the RoI size. Intuitively, larger RoIs usually result
in higher inference accuracy. If the RoI is too small in a
camera and if this camera is picked to process the RoI, then
the inference accuracy for this object will be compromised.
Therefore, when picking the camera using the randomized
workload balancing strategy, we set a minimal RoI size
to ensure that the RoI size of the picked camera is large
enough. Specifically, consider an object appearing in virtual
camera v, and the respective RoI in camera n ∈ v has size
θn. We modify the randomized strategy as follows

s̃v,n =
sv,n · 1{θn ≥ θmin}∑
j∈v sv,j · 1{θj ≥ θmin}

(14)

where 1{·} is the indicator function, θmin is the required
minimal RoI size. In this way, only cameras with high-
quality RoIs have a positive probability to be selected.

Join the Power of Cameras with Low-Quality RoIs.
It is possible that no camera has a high-quality RoI if the
object is far away from all cameras that can see it. Hence,
all cameras will have low-quality RoIs for this object. In
this case, instead of picking a single camera to perform
inference, Accuracy Guard asks all cameras to process their
own RoIs and later fuses the submitted inference results.
Again, consider an object appearing in virtual camera v,
and every camera n ∈ v does not have a high-quality RoI
of this object. Take classification problems for example, the
inference outcome of camera n on its own RoI is a vector
of classification confidences {cn,k}Kk=1, where K is the total
number of classes. A simple fusion rule of these inference
outcomes is by taking the average:

ck =
∑
n∈v

cn,k/|v|,∀k = 1, ...,K (15)
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Then the final result is the top-ranked class in the combined
confidence vector, i.e. arg maxk ck. Other fusion rules can
also be applied depending on the specific applications.

Seek Help If Uncertain. The above two strategies are
proactive as they are taken before the cameras actually
perform the inference task. In the third strategy, we aim to
remedy the inference results if they are not satisfactory after
the inference job is done. Specifically, a selected camera n
can generate low-confidence inference outcome even if its
RoI has a large enough size. In the application of object clas-
sification, this could be that the confidence of the top-ranked
class is not high enough, i.e., arg maxk cn,k ≤ cth, where
cth is the a confidence threshold. In this case, Accuracy
Guard will seek help from cameras that were originally not
selected to perform a second-round inference, and combine
the inference outcomes from both the first-round and the
second-round to produce the final inference result. Note
that a camera keeps the RoI in the memory for a certain
time period even if it is not initially selected to process the
RoI. Clearly, since a second-round inference incurs an extra
inference latency, there is a tradeoff by setting the confidence
threshold cth.

4 EVALUATIONS

In this section, we build a hardware-augmented simulator
to evaluate CrossVision on three real-world cross-camera
datasets.

4.1 Dataset
EPFL dataset [36]: This dataset contains images taken by 6
static surveillance cameras with overlapped FoVs covering
an area of 22m × 22m. At the same time, every camera
takes a photo of the scene from different angles. Totally,
there are 242 frames for each camera, and we duplicate
them in our experiments. The sequence is recorded at the
EPFL university campus where there was a road with a
bus stop, parking slots for cars and a pedestrian crossing. A
total number of 1297 persons, 3553 cars and 56 buses were
manually annotated with a bounding box around them.

AI City dataset [37]: AI City Challenge 2021 traffic
video dataset published by NVIDIA consists of two types of
scenes where the traffic cameras are deployed either along
long streets or around a traffic intersection, in a northern
American city. We choose the most challenging scene of type
two to evaluate CrossVision, where 5 cameras are deployed
around a traffic crossing with complicated cross-camera
viewpoint overlapping. Totally, there are 1955 synchronized
frames for each camera in this dataset. Due to the large
distortion of the fifth camera’ view, we only use the first
four cameras as the AI City dataset.

SALSA dataset [38]: SALSA is recorded in a regular
indoor space and the captured social event involves 18 par-
ticipants and includes two parts of roughly equal duration.
The first part consists of a poster presentation session, where
four research studies are presented by graduate students. In
the second part, all participants are allowed to freely interact
over food and beverages during a cocktail party. We use
the cocktail party to evaluate CrossVision which consists
of four synchronized static RGB cameras with overlapped
FoVs covering an indoor lobby area.

4.2 Hardware-Augmented Simulator

The simulator simulates several smart cameras and an edge
server in a wireless network. We implement CrossVision on
real hardware devices, and simulate the wireless network
by WiFi connection. We use WonderShaper [39] to set the
wireless transmission speed to emulate different network
conditions. The default value of network bandwidth is set
to 15 Mbps if not specified otherwise. Nvidia Jetson TX2
and Nvidia Jetson Xavier devices are used as cameras of
heterogeneous computing capabilities, and a Dell desktop is
used as the edge server. For EPFL dataset, three simulated
cameras are based on Xavier while the other three are based
on TX2. For AI City dataset, two simulated cameras are
based on Xavier while the other two are based on TX2.

We feed the images of one camera as a video stream to
one simulated camera, and hence there are totally six video
streams in EPFL dataset and four video streams in AI City
dataset. We use OpenCV on the simulated camera to read
the captured image and extract RoIs. A foreground mask
is first calculated by subtracting a background model from
the current frame, and then blob detection is performed to
extract RoIs. Note that this is a light-weighted RoI extraction
method which takes 5.6ms on Xavier and 7.9ms on TX2. We
discard RoIs that are smaller than 0.5% of the frame size as
they are simply too small for meaningful analysis. The local
inference engine on the cameras uses MobileNetV2 [40], a
state-of-the-art object detection DNN for mobile devices,
and set the batch size to be 8 for batch processing.

4.3 Baselines and Performance Metrics

CrossVision is compared with the following baselines:

• Standalone (SA): Each camera performs inference
tasks on the extracted RoIs using its own on-device
inference engine. No workload balancing is per-
formed.

• Centralized via Offloading (CO): The extracted RoI
images in every frame on all cameras are sent to the
edge server via wireless. The edge server performs
the inference tasks on all received RoIs. The inference
batch size is set as 32 in this case.

• Distream: Distream is a live video analytics sys-
tem proposed in [23]. Like CrossVision, Distream
performs video analytics based on extracted RoIs
and aims to utilize the computing resources of the
entire camera network. Different from CrossVision,
Distream partitions the DNN inference between the
smart cameras and the edge server, and balances
the workload across cameras by migrating the RoI
images across cameras.

• CrossRoI: CrossRoI [22] divides each camera’s view
into 24 spatial RoI masks. The goal of CrossRoI is
to optimize the least number of RoI masks across
all cameras with constraints as any object at each
timestamp having at least one appearance region
included by the RoI masks. Then, all the CrossRoI
cameras crop their videos and only stream the areas
included by the RoI masks to the edge server.

• Myopic Workload Balancing (MWB): Within the
CrossVision framework, we also consider a workload
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balancing strategy that utilizes only the current ex-
pected RoI waiting time of the cameras. Specifically,
when a virtual camera v receives a RoI, it assigns
the inference task to the camera n ∈ v that currently
has the shortest expected RoI waiting time. This is
a myopic method as it does not consider the future
incoming workload.

The following performance metrics are considered:

• Frame Inference Delay. Frame inference delay is
defined as the elapsed time from when a frame
is generated to when the analytics result of this
frame is obtained (i.e., when all RoIs in this frame
is processed). Note that the frame inference latency
also includes the RoI extraction time, the network
transmission time (due to data/control message ex-
change), the workload balancing time and the RoI
queuing time in addition to the DNN inference time.

• RoI Inference Throughput. RoI Inference through-
put is defined as the number of RoIs processed per
second in the camera network.

• Inference Accuracy. For the considered object detec-
tion task, inference accuracy measures the percentage
of RoIs that receive the correct detection result.

4.4 Evaluation Results

4.4.1 Frame Inference Delay and RoI Inference Throughput

We first show the advantage of workload balancing to
reduce the frame inference delay by comparing CrossVision
with SA on two datasets in Fig. 6. As we can see, the frame
inference delay in SA on both two datasets (Fig. 6(a), Fig.
6(c) and Fig. 6(e)) increases to a very high, essentially unus-
able, value as frames are captured over time, i.e., 3 out of 6
cameras (Cameras 2, 3, and 4) in EPFL dataset and all 4 cam-
eras in other two datasets. This is because the computing ca-
pability of these cameras can barely support their RoI infer-
ence task arrival rate. The RoIs spend a significant amount
of time in the memory queue waiting to be processed,
resulting in a very high overall inference delay. On the other
hand, CrossVision exploits the overlapped FoVs between
cameras to even the workload among the cameras according
to their computing capabilities, thereby significantly reduc-
ing the frame inference latency. The highest frame inference
delay is about 60ms among both datasets and hence, real-
time video analytics is achieved. We also show the average
workload on each camera in Fig. 7 on EPFL dataset, which
further explains the above phenomenon. As can be seen,
depending on the cameras’ physical positions and view
angles, the arrival workload is different, and the cameras
have different computing capabilities. In standalone, the
average workload generated at camera 2, 3, 4 are greater
than their computing capability, which will eventually cause
the infinite workload queuing time. However, CrossVision
can significantly reduce the average workload by removing
the RoI redundancy in the overlapped FoVs. This is very dif-
ferent from existing works (e.g., Distream), which migrates
the RoI images across cameras.

In Table. 2 and Fig. 8, we further compare CrossVision
with other baseline approaches that implement some sorts
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Fig. 6. Average frame inference delay of SA and CrossVision.
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Fig. 7. Workload comparison of SA and CrossVision (EPFL dataset).

of workload balancing. The results confirm the superior-
ity of CrossVision in terms of both frame inference delay
and RoI inference throughput. Next, we explain why the
baseline approaches are outperformed by CrossVision. CO:
Although the edge server employed by CO is computation-
ally much more powerful than any individual camera, it
also has to process much more workload due to the cen-
tralized processing architecture. More importantly, all raw
images have to be transmitted over the wireless network to
the edge server, causing a significant communication time
cost. Distream: Distream utilizes the distributed comput-
ing resources between individual cameras and edge server.
Also, it re-shapes the workload distribution by sending RoI
images from heavy-loaded cameras to light-load cameras.
However, due to the transmission of RoI images over the
wireless network, the communication time dominates the
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TABLE 2
Baseline comparison on frame inference delay.

EPFL
Frame inference delay (ms)

C0 C1 C2 C3 C4 C5
CO 387.1 331.6 559.1 878.9 365.5 542.6

Distream 123.8 127.5 121.8 128.7 112.9 116.8
CrossRoI 107.9 110.1 105.1 111.3 102.7 101.2

MWB 80.8 47.1 67.5 56.7 71.9 51.5
CrossVision 59.2 42.5 51.3 45.0 47.3 45.1

AI City
Frame inference delay (ms)

C0 C1 C2 C3
CO 962.5 424.1 527.0 624.4

Distream 206.1 163.1 175.6 199.7
CrossRoI 179.7 140.9 151.6 172.6

MWB 80.8 87.5 81.92 85.51
CrossVision 66.6 64.3 59.9 56.8

SALSA
Frame inference delay (ms)

C0 C1 C2 C3
CO 473.9 385.9 518.5 495.5

Distream 151.9 198.1 241.7 289.5
CrossRoI 132.4 171.1 208.6 250.2

MWB 86.5 77.71 72.1 69.26
CrossVision 63.4 61.1 54.8 51.9
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inference delay, especially when the network condition is
poor. In addition, Distream ignores the redundancies in RoIs
and processes all RoIs even if they may represent the same
object. CrossRoI: Although CrossRoI harnesses the videos
content association and redundancy across cameras’ views
to reduce the communication and computation costs, the
network transmission latency of all the RoI masked images
dominates the processing time. MWB: MWB adopts the
CrossVision framework except that it myopically balances
the workload using the current RoI expected waiting time.
This strategy would be optimal if future workload could be
freely dispatched to any camera in the network. However,
if a camera is assigned with much workload now simply
because of its currently short RoI expected waiting time,
we may encounter an undesirable situation if the future
workload is exclusive to this camera.

In Fig. 9, we further show the percentage of workload
processed v.s. time for CrossVision and Distream. It is clear
that CrossVision processes workload at a much faster rate
than Distream. As mentioned above, this is mainly due
to the fact that CrossVision removes many repetitive RoIs
while Distream blindly processes all RoIs.

4.4.2 Inference Accuracy

Table 3 presents a comparative analysis of the accuracy
achieved by SA, CrossRoI, CrossVision, and CrossVision

TABLE 3
Inference accuracy of SA, CrossRoI, CrossVision and CrossVision

without accuracy guard (w/o AG).

EPFL
Inference Accuracy (%)

C0 C1 C2 C3 C4 C5
SA 67.7 62.1 94.6 73.3 71.7 92.3

CrossRoI 68.9 59.0 91.6 77.4 71.2 91.9
w/o AG 66.8 57.9 93.4 74.1 74.7 93.3

CrossVision 73.2 68.8 95.3 77.9 79.2 95.2
AI City
Inference Accuracy (%)

C0 C1 C2 C3
SA 94.6 93.3 91.7 92.7

CrossRoI 92.7 92.5 91.3 91.5
w/o AG 93.4 91.1 90.7 93.3

CrossVision 95.3 96.9 96.2 95.2
SALSA
Inference Accuracy (%)

C0 C1 C2 C3
SA 85.4 82.8 81.1 88.0

CrossRoI 85.2 88.9 79.5 91.3
w/o AG 87.3 90.1 79.3 88.9

CrossVision 95.7 97.7 94.3 96.5
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Fig. 10. Frame inference delay
of CrossVision and CrossVision
without accuracy guard.
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Fig. 11. Impact of workload pre-
diction on the performance of
CrossVision.

without Accuracy Guard. Because cameras have different
viewing angles at and different distances from the object, the
inference accuracy also varies across cameras for the same
object. By performing workload balancing alone, the infer-
ence accuracy can be improved if the assigned camera has
a high-quality RoI but can also be degraded if the assigned
camera has a low-quality RoI. Overall, the average inference
accuracy of CrossVision without Accuracy Guard is slightly
lower than that of SA, with some individual cameras’
inference accuracy being higher and others’ being lower.
With Accuracy Guard, CrossVision significantly improves
the inference accuracy compared to SA, with an average im-
provement of 7.66% and up to 18.00% for individual cam-
eras. Table 3 also reveals the inference accuracy achieved by
CrossRoI and CrossVision. While CrossRoI employs similar
RoI redundancy measures to enhance inference delay, it fails
to leverage the opportunity to improve inference accuracy
by fusing results from the same object. CrossVision, on
the other hand, can achieve up to 18.62% improvement
in inference accuracy compared to CrossRoI. Of course, the
improved accuracy comes with additional overhead due to
the increased overall workload and extra delay to remedy
the inference result. In Fig. 10, we show the frame inference
delay of CrossVision with and without Accuracy Guard.
As we can see, the added delay is very small and hence,
CrossVision with Accuracy Guard is able to achieve real-
time video analytics at a high inference accuracy.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore.  Restrictions apply. 



11

C0 C1 C2 C3 C4 C5

Camera

D
e
la

y
 (

m
s
)

0

50

100

500

1000 CO/Low

CO/High

CrossVision/Low

CrossVision/High

(a)

10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

Network Speed (Mbps)

30

35

40

45

50

D
e
la

y
 (

m
s
)

CrossVision

CO

(b)

Fig. 12. Impact of network on CO and CrossVision.

4.4.3 Impact of Workload Prediction

As aforementioned in Section 3.4, Workload Balancer peri-
odically computes a randomized workload balancing strat-
egy using predicted future workload. In this section, we set
the workload prediction error from 10% to 40% and evaluate
the impact of workload prediction on the performance of
CrossVision. As we can see in Fig. 11, the average frame
inference delay increases with the prediction error, because
a larger prediction error causes the Workload Balancer to
fail to find the optimal balancing strategies. However, the
workload prediction has little impact on the inference accu-
racy since the Accuracy Guard exploits the RoI diversity to
maintain a high inference accuracy.

4.4.4 Impact of Network

We now investigate the impact of the network transmis-
sion rate on the video analytics system. Fig. 12(a) reports
the frame inference delay for CO and CrossVision in two
representative network environments, namely a low rate
at 10Mbps and a high rate at 100Mbps, which cover the
typical bandwidth range in video surveillance systems on
the market. As expected, the offloading-based approach
CO is very sensitive to the transmission rate and gains
a considerable improvement when the transmission rate
increases. On the other hand, CrossVision is less sensitive to
the network rate change as only a small amount of control
information needs to be exchanged. Note that, even in the
high rate case, CrossVision outperforms CO because CO
has to process all RoIs by a single server while CrossVision
only processes a subset of RoIs by removing the repetitive
ones and utilizing the computing resources of all cameras.
Fig. 12(b) separately shows the frame inference delay of
Camera 3 for CO and CrossVision under network speed
range from 100Mbps to 500Mbps. The results further prove
that CrossVision is less sensitive to the network rate change.
Note that CO outperforms CrossVision after 450Mbps, as the
transmission delay of extracted RoI images is low enough
for the powerful edge server to reap its advantages.

4.4.5 Impact of θmin and cth
The design of Accuracy Guard involves two system hyper-
parameters: 1) θmin minimal required RoI size; 2) cth confi-
dence threshold. We evaluate the impacts of these system
hyper-parameters on the performance of CrossVision in
Fig. 13. We can see that increasing θmin and cth leads to
a higher inference accuracy, since CrossVision relies more
on Accuracy Guard to improve the inference accuracy. On
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Fig. 13. Impact of hyper-parameters θmin and cth on the performance
of CrossVision.
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Fig. 14. Impact of segmented
FoV transformation on the perfor-
mance of CrossVision.
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Fig. 15. Impact of number of
overlapping cameras on the per-
formance of CrossVision.

the other hand, the higher reliance causes larger delay due
to the increased overall workloads.

4.4.6 Impact of Segmented FoV Transformation

The FoV transformation is calculated to find a transfor-
mation matrix between any two cameras. Rather than em-
ploying a single transformation matrix for the entire FoV
of a camera, which may cause significant transformation
errors due to imprecise anchor point marking, we manually
segment the FoV into multiple sub-areas. We then sample
corresponding pixel points in each sub-area and compute
a transformation matrix for each sub-area. The impact of
manual segmentation on the performance of CrossVision
is depicted in Fig. 14. The result shows that increasing the
number of segmented FoVs leads to higher inference accu-
racy and lower inference delay. This is because increased
segmentation of FoVs reduces transformation errors, result-
ing in greater accuracy of RoI matching. Enhanced accuracy
of RoI matching enables the system to better identify and
associate objects seen by multiple cameras, which in turn
allows for more cameras to be utilized in eliminating RoI
redundancy and reducing inference delay. This increased
camera coverage also provides more diverse perspectives
of the object, which can improve inference accuracy by
utilizing the diversity of RoIs from different camera angles.

4.4.7 Impact of Number of Overlapping Cameras

To illustrate the impact of the number of overlapping cam-
eras, we selected various camera subsets from the EPFL
dataset. As depicted in Fig. 15, the inference delay reduces
as the number of cameras increases, while the inference ac-
curacy improves with an increase in the number of cameras.
This is due to the fact that more cameras with overlapping
FoV can reduce the average workload by eliminating RoI
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Fig. 16. Upper bound after workload balance.

TABLE 4
Component-wise analysis of CrossVision.

Frame inference delay (ms)
C0 C1 C2 C3 C4 C5

CrossVision-L 80.9 48.8 66.7 52.9 66.7 53.9
CrossVision 59.2 42.5 51.3 45.0 47.3 45.1

Improvement 27% 13% 23% 15% 29% 16%

redundancy. Additionally, an increase in the number of per-
spective views of the object provides greater opportunities
to improve inference accuracy through RoI diversity.

4.4.8 Component-wise Analysis
CrossVision performs cross-camera workload balancing
considering the cameras’ heterogeneous computing capa-
bilities. Since the RoI inference delay in Proposition 1 is
quite complicated and hard to utilize, the workload balance
problem is to minimize the worst-case inference delay of
upper bound on RoI inference delay. To solve the problem,
CrossVision first calculates a feasible strategy assuming
that all cameras have the same computing capabilities (i.e,
stage 1 in section 3.4). Next, CrossVision uses a Coordinate
Descent-inspired iterative algorithm to improve the above
strategy by incorporating the heterogeneous computing ca-
pabilities (i.e, stage 2 in section 3.4). In this experiment,
we first show how the proposed upper bound helps the
Workload Balancer to find the optimal balancing strat-
egy in Fig. 16. As we can see, by optimizing the worst-
case inference delay of upper bound, CrossVision can bal-
ance the workloads across cameras. Then, we inspect the
contributions of these two components by implementing
CrossVision-L, which only uses the stage 1 strategy. Table 4
shows the comparison results on the frame inference delay.
As can be seen, CrossVision improves the frame inference
delay by 13%− 29% compared to CrossVision-L. This high-
lights the importance of stage 2 optimization in CrossVision
and the necessity of considering cameras’ heterogeneous
computing capabilities.

5 CONCLUSIONS

Moving DL functionalities to edge devices, such as smart
cameras in this paper, has been a recent trend in both the
academia and the industry. CrossVision developed in this
paper complements this trend by enabling collaborative DL-
based video analytics in a cross-camera system, which not
only reduces the inference latency but also improves the
inference accuracy. This is achieved by recognizing and effi-
ciently exploiting the physical correlation among proximate
cameras with overlapped FoVs: inference latency is reduced
by removing the RoI redundancy while inference accuracy is

improved by utilizing the RoI diversity. Our design is both
theoretically sound and practically effective. A limitation of
the current framework is that the consideration of only static
cameras. When cameras are moving (both heading and
location), matching RoIs and balancing workload among the
cameras are expected to be much more challenging. This
will be explored in our future work.
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