This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

CrossVision: Real-time On-Camera Video
Analysis via Common Rol Load Balancing

Letian Zhang Student Member, IEEE Zhuo Lu Senior Member, IEEE
Lingi Song Senior Member, IEEE Jie Xu Senior Member, IEEE

Abstract—Smart cameras with on-device deep learning inference capabilities are enabling distributed video analytics at the data
source without sending raw video data over the often unreliable and congested wireless network. However, how to unleash the full
potential of the computing power of the camera network requires careful coordination among the distributed cameras, catering to the
uneven workload distribution and the heterogeneous computing capabilities. This paper presents CrossVision, a distributed framework
for real-time video analytics, that retains all video data on cameras while achieving low inference delay and high inference accuracy.
The key idea behind CrossVision is that there is a significant information redundancy in the video content captured by cameras with
overlapped Field-of-Views (FoVs), which can be exploited to reduce inference workload as well as improve inference accuracy between
correlated cameras. CrossVision consists of three main components to realize its function: a Region-of-Interest (Rol) Matcher that
discovers video content correlation based on a segmented FoV transformation scheme; a Workload Balancer that implements a
randomized workload balancing strategy based on a bulk-queuing analysis, taking into account the cameras’ predicted future workload
arrivals; an Accuracy Guard that ensures that the inference accuracy is not sacrificed as redundant information is discarded. We
evaluate CrossVision in a hardware-augmented simulator and on real-world cross-camera datasets, and the results show that
CrossVision is able to significantly reduce inference delay while improving the inference accuracy compared to a variety of baseline

approaches.

Index Terms—Distributed Deep Learning Systems, On-Device Al, Live Video Analytics, Workload Adaptive, Edge Computing.

1 INTRODUCTION

ROM road intersections to shopping malls and from uni-
Fversity campuses to public squares, video cameras are
ubiquitous nowadays to collect data for applications such as
traffic control and security surveillance. Thanks to the recent
breakthrough of deep learning (DL), we can now perform
sophisticated video analytics tasks on the massive amount
of data generated by these video cameras to retrieve key
information with an unprecedented accuracy. Because DL-
based video analytics is compute-intensive while traditional
video cameras have extremely limited computing capability,
video streams captured by traditional cameras have to be
transmitted to a cloud or an edge server, which has suffi-
cient computing power, to perform video analytics [1]-[5].
Although such an offloading-based approach is meaning-
ful for legacy camera systems lacking suitable computing
resources, it is not ideal as it relies heavily on the network
and significantly stresses the network [6]. Not only the video
analytics delay is highly sensitive to the network bandwidth
between the cameras and the cloud/edge servers, but also
it becomes infeasible to transfer all visual data over the
network as the number of cameras scales up.

L. Zhang is with the Department of Computer Science, Middle Tennessee

State University. Email: letian.zhang@mtsu.edu.

o] Xu is with the Department of Electrical and Computer Engineering,
University of Miami. Email: jiexu@miami.edu.

e Z. Lu is with the Department of Electrical Engineering, University of
South Florida, Tampa, FL, 33620 USA. E-mail: zhuolu@usf.edu.

e L. Song is with the Department of Computer Science, City University of

Hong Kong, Hong Kong, and also with the City University of Hong

Kong Shenzhen Research Institute, Shenzhen 518057, China. Email:

lingi.song@cityu.edu.hk.

With the network being a bottleneck for real-time video
analytics in large-scale camera networks, recent efforts have
been on pushing video analytics directly onto the video
cameras themselves [7]-[9], thereby mitigating the potential
negative network impacts. Smart cameras, equipped with
on-device DL accelerators, are increasingly being deployed
and replacing traditional video cameras [10]. These smart
cameras are not only able to perform basic video processing
tasks such as background subtraction and motion detec-
tion, but also capable of executing complicated DL-based
pipelines to detect and recognize the objects and a variety of
their attributes. Therefore, smart cameras, while generating
visual data, can also perform video analytics directly on this
raw data without moving it over the network. However,
although on-device video analytics eliminates the reliance
on the network to a large extent, it has its own drawbacks
due to the isolated data processing by individual cameras.
First, depending on the time and what areas the cameras
are covering, cameras are not equal in terms of the number
of objects of interest and hence the workload of recognizing
the captured objects and their attributes. Cameras in a hot-
spot (e.g., stadium entrance during a football game) can
receive a large amount of workload that may even exceed
their computing capability, resulting in significantly pro-
longed inference latency. Second, on-device video analytics
performance is also limited by the quality of the cameras’
individually captured data. Objects that are too far away
and/or occluded can easily lead to wrong detection results
and hence a reduced inference accuracy.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

Camera 2

Camera 1 Camera 3

CrossVision
Rol matching Rol processing

Camera 1 u.
Camera 2 |
Camera 3 E. ..

Fig. 1. A three-camera network with overlapped FoVs. CrossVision
matches the Rols of different cameras to the same objects, uses Rol
redundancy to reduce and balance the system workload (e.g., the total
workload reduces from 20 to 10), and improves the inference accuracy
by fusing results of low quality Rols (e.g., Rol 2-G and Rol 3-G).

1.1 CrossVision

In this paper, we present CrossVision, a distributed real-time
cross-camera video analytics framework that overcomes the
aforementioned drawbacks in densely deployed smart cam-
era networks. CrossVision exploits the information redun-
dancy across proximate smart cameras that have overlapped
field-of-views (FoVs) to (1) adaptively balance workload
among a network of smart cameras to reduce latency, and
(2) intelligently fuse inference results from multiple smart
cameras when necessary to improve accuracy. A salient
feature of CrossVision is that all visual data is retained at
the smart camera that captures this data; no visual data is
transferred over the network to the cloud/edge server or
other peer smart cameras. This has a significant advantage
over other collaborative video analytics approaches that
require raw data exchange among peer cameras.

As a motivating example, consider a three-camera net-
work with overlapped FoVs illustrated in Fig. 1. The cam-
eras have different numbers of objects of interests but some
objects appear in the FoVs of multiple cameras. In particular,
objects in red boxes appear in all three cameras, objects
in yellow boxes appear in both Camera 2 and Camera 3
while the object in the green box appears only in Camera
3. Since the detection of Object 1 (i.e., the red car) by
Camera 1 is enough to locate it on this road segment at this
moment, Camera 2 and Camera 3 can save their computing
resource for the inference of other objects. On the other
hand, both Camera 2 and Camera 3 do not have a clear
view of Object 2 (i.e., the women in black). Therefore, they
can share their inference results with each other and fuse
the results to improve the inference accuracy. Motivated
by the above observation, CrossVision reduces both the
total system workload and individual cameras’ workload
by assigning matched Rols to designated camera for video
analytics, meanwhile improving the inference accuracy by
fusing the results of low quality Rols.

1.2 Design Challenges and Our Contributions

CrossVision aims to minimize the inference latency and
maximize the inference throughput of the camera network
while improving the inference accuracy by harnessing the
intrinsic correlation of video data across cameras with

=) Frame-based video analytics
1080p

Rol-based video analytics

480,
DNN-based specific-task modules

Sampl.e ‘ Type? Brand? Color?
& Resize e
Sy
Rols
Background ! & pe, Gender? Behavior?
Subtraction = R

Fig. 2. Two types of video analytics pipelines.

overlapped FoVs. We highlight three design challenges of
CrossVision and our contributions:

Challenge 1: How to discover and describe the intrinsic
video content correlation across the cameras? The first
step is to identify common Rols that appear in multiple
cameras’ FoVs. Unlike existing methods [11]-[13] that utilize
deep image features from raw video frames, we develop
a segmented FoV transformation method that establishes
a pixel-to-pixel mapping between camera FoVs based on
homography estimation [14]. Rols are considered the same
object if they occupy the same pixel positions after the trans-
formation. The FoV transformation is applied to segmented
FoVs to minimize distortion. With the identified common
objects, we introduce “Virtual Camera”, a concept that links
smart cameras together via the common Rols in their FoVs.

Challenge 2: How to balance the workload across cam-
eras with heterogeneous on-device computing capacities
and unpredictable workload dynamics? An object appear-
ing in the FoVs of multiple cameras at the same moment
may need to be inferred only once to save the computing
resource and reduce the workload of cameras. Therefore,
balancing workload across cameras is the key function of
CrossVision in order to reduce the inference latency. To this
end, we analyze the approximate inference latency based
on the bulk queuing theory, and use the analysis result
to formulate a workload optimization problem and design
a randomized workload balancing algorithm while taking
into account the predicted future workload.

Challenge 3: How to leverage common Rols to improve
inference accuracy? The improvement in inference latency
is achieved by removing Rol redundancy via workload
balancing. However, we also proactively preserve the re-
dundancy when necessary in order to maintain a high level
of inference accuracy. For example, if the same Rol in all
FoVs has a low quality (e.g., small size), then CrossVision
will ask multiple cameras to perform inference and fuse the
results to improve the overall inference accuracy.

We build a hardware-augmented simulator to evalu-
ate CrossVision. In this simulator, real-world cross-camera
videos are processed by real hardware devices such as
Nvidia Jetson TX2 and Nvidia Jetson Xavier, and we sim-
ulate the wireless network environment to investigate the
network impact. Simulation results show that CrossVision
is able to significantly reduce inference latency and improve
throughput while achieving a high inference accuracy.

2 BACKGROUND AND RELATED WORK
2.1 BRol-based Video Analytics Pipeline

Video analytics pipelines typically adopt a cascaded ar-
chitecture consisting of many specific task modules to

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

perform various analytics. Besides identifying objects of
interests, they can also perform task-specific analytics for
each detected object of interest, e.g., determining the gen-
der/behavior of a person, or the color/brand/type of a ve-
hicle. As shown in Fig. 2, two pipelines are commonly used
in existing live video analytics systems [15]. The first type
is frame-based: raw video frames are first pre-processed
and then fed directly into a cascading group of several pre-
trained task-specific Deep Neural Network (DNN) models.
The second type is Rol-based: a light-weight background
subtraction method is used to extract the Rols from the
frame, and only these Rols are fed into the cascading DNN-
based analytics modules to obtain the results. Compared
with the frame-based pipeline that has to constantly extract
features from frames and perform inference, the Rol-based
pipeline produces Rols and performs inference on the Rols
only when Rols appear in the frame, thereby reducing the
computing usage on camera devices. For this reason, we
focus on Rol-based video analytics in this work.

2.2 Related Work

Recognizing the limited computing capability of traditional
camera devices, existing works [1]-[5], [16]-[20] frequently
resort to cloud or edge servers for performing complicated
DNN-based video analytics in camera networks. For exam-
ple, in Couper [16], video data in a multi-camera network
is sent to an edge computing cluster that deploys sliced
DNN components. ANS [17] and JALAD [18] investigate
adaptive collaborative inference between a camera device
and an edge server. VideoEdge [19] dynamically configures
the cameras and edge clusters to make tradeoff between
resource usage and inference accuracy. However, video an-
alytics in these works is performed without considering
the intrinsic physical correlation among cameras. Maxim
[20] proposes a learning-based framework to address the
configuration adaptation problem in video analytics and
employs a configuration sharing collaboration based on spa-
tial and temporal correlations among cameras. Vigil [21] and
CrossRol [22] made similar observations as our paper that
the same object may appear in multiple proximate cameras
with overlapped FoVs. Vigil uploads only the frames that
best capture the scene to the edge server for user’s query
when multiple cameras looking at the same scene capture
different views of an object of interest. CrossRol proposes
to remove the repetitive appearances of the same Rol in
multiple cameras before sending the frames to the edge
server, thereby reducing the communication and computa-
tion cost. However, there are three main different aspects
between CrossVision and all the aforementioned works.
First, all the aforementioned works require offloading a
significant amount of video data over a wireless network to
the cloud/edge server, and hence the performance is heavily
dependent on the network condition. Second, all the afore-
mentioned works do not consider the workload balance in
the video analytics, which may cause one or several cameras
to be overloaded. Third, all the aforementioned works do
not leverage the common Rols across all the cameras to
improve the overall inference accuracy.

As the cost and power consumption of on-device DL
accelerators keep decreasing, fully on-device video analytics

Camera 1 [—> Data Flow Control Flow]

Wireless

Edge Server
Network

JBackground Rols’ Info -
Subtraction | (Not Image) | System Monitor
° lnferenceJ

\-
.

Camera N (" DNN\
,;’" Rols Inference | Accuracy Guard
Rols’ Info

@ Background
L l Subtraction | (Not Image))

Fig. 3. System architecture of CrossVision. Note that all the video
analytics are processed on the smart cameras, and the job of the
edge server is mainly to control and coordinate the collaborative video
analytics among the cameras by the Rols’ information of bounding box
position (i.e., four pixel coordinates).

\

by smart cameras are becoming a reality. In this regard,
Distream [23] also aims to balance the inference workload
among distributed cameras. However, Distream ignores the
video content correlation due to the overlapped FoVs of
proximate cameras. As a result, workload balancing in
Distream is achieved by migrating raw Rol images across
cameras. Therefore, it still puts a heavy burden on the local
wireless network. In addition, Distream misses the opportu-
nity to improve the inference accuracy by fusing inference
results of the same object. Physically migrating workload
over wireless was also studied in other generic workload
balancing problems [24]-[28]. Although these works are
able to reshape the workload distribution, the total system
workload remains the same and the wireless network can
be further stressed due to the additional data transfer.

CrossVision establishes associations between the over-
lapping FoV of different cameras and matches Rol from
different camera perspectives to balance workload and im-
prove accuracy. Re-identification (RelD) algorithms [11]-
[13] are commonly used in computer vision for object track-
ing problems to identify Rols as the same object from dif-
ferent video frames. These algorithms use object detectors,
such as deep neural network models, for object detection
and extract deep image features from detected Rols. The
similarity between two detected Rols is then computed
based on their feature distance. However, in the case of
CrossVision, the Rol matching only deals with the Rol
bounding box position, i.e., four pixel coordinates, without
touching raw video frames to avoid large transmission de-
lay. Therefore, we propose an FoV transformation between
two FoVs and use the pixel positions of Rols to determine
whether they correspond to the same object.

3 CRossVISION DESIGN

In this section, we present the design of CrossVision. We
start with the coherent design for the overall architecture
and then delve into the design details of four components
— System Monitor, Rol Matcher, Workload Balancer and
Accuracy Guard. To make it clear, the key notations used
in this paper are summarized in Table 1.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

3.1 Overall Architecture

As shown in Fig. 3, CrossVision is a distributed cross-camera
video analytics framework that spans across a set of smart
cameras and an edge server. We highlight that all the video
analytics are performed on the smart cameras, and the job
of the edge server is mainly to control and coordinate the
collaborative video analytics among the cameras without
touching the actual video data.

Data Plane. Each smart camera in the system captures
video frames and performs background extraction to extract
Rols within each frame. The extracted Rols are then stored
in a local memory queue while the position information of
the Rols is transmitted to the edge server. Note that the
position information of an Rol contains only the four-pixel
coordinates of the bounding box vertices, and hence sending
it to the edge server incurs a very low transmission cost. The
edge server utilizes the received position information from
all cameras to determine the optimal processing strategy for
the Rols. Control messages are sent back to the respective
cameras, guiding them on whether to process the Rols
using their on-device inference engines or to mark them as
overlapped Rols that do not require local processing. Once
processed, the inference results are reported back to the edge
server.

Control Plane. Within the edge server, the System Mon-
itor component continuously collects the position informa-
tion of the reported Rols from the cameras. This information
is then forwarded to the Rol Matcher, which discovers cor-
relations between Rols in FoVs of different cameras, identi-
fying whether they correspond to the same object. Based
on these discovered correlations, the Workload Balancer
assigns the inference tasks of the same object (i.e., Rol) to a
specific camera for inference processing. The Workload Bal-
ancer periodically updates its workload balancing strategy
by considering the predicted arrival rates of Rols in the fu-
ture. To ensure high inference accuracy, the Accuracy Guard
verifies that the assigned camera possesses a sufficiently
high-quality Rol (e.g., with a sufficient size), so as not to
compromise accuracy. In scenarios where all cameras have
low-quality Rols of the same object, the Accuracy Guard
instructs all cameras to perform on-device inference. After
the inference results are reported back to the edge server,
the Accuracy Guard aggregates the results to generate the
final inference output.

3.2 System Monitor

System Monitor collects the Rols” information (not raw im-
ages) from each smart cameras. The clocks of smart cameras
and edge server are software synchronized and each camera
has the same frame rate f. The Rol’s information con-
sists of the camera ID, coordinates of bounding boxes and
timestamp, in the form of (cameralD, left, top, width, height,
timestamp). left and top are the pixel coordinates locating the
top left corner of the Rol bounding box, while the width
and height information characterizes the bounding box size.
timestamp represents the capture time of the corresponding
Rols. In this manner, the Rols from smart cameras with
the same indices are just image captures of the same scene
at the same time from different perspectives. The System
Monitor considers two cameras’ timestamps as the same

4

if their difference is small enough for frame alignment.
ie., < % cameralD is usually formed as the IP address,
which will be used to send the workload balancing control
message back to the smart cameras. After collecting all the
Rols’ information from same timestamp as a group, System
Monitor sends this group information to Rol Matcher to find
the correlation of Rols.

3.3 Rol Matcher

The goal of Rol Matcher is to determine whether Rols in
the overlapped FoVs of different cameras are indeed the
same object. This would be easy if the coordinates of the
Rols could be calculated in a common world coordinate
system. For cameras with depth information, such as stereo
camera, 3D camera and RGB-D camera, it is possible to
calculate such a world coordinate system provided with
the depth information and camera calibration parameters
[29]-[31]. However, for the vast majority of ordinary 2D
cameras, Rol matching is non-trivial. Our idea is to establish
a FoV transformation between two FoVs and use the pixel
positions of Rols to determine whether they correspond
to the same object. The FoV transformation is calculated
fully offline, and we perform Rol matching online as Rols’
positions are reported by the cameras. We discuss the steps
in more details below.

(Offline) Segmented FoV Transformation. The key of
FoV transformation is to find a transformation matrix H,,,
between the overlapped FoVs of any two cameras m and n.
Let (u,,v?) denote a pixel in camera m and (u?,, v) be the
corresponding pixel in camera n, then the transformation
matrix H,,, between the two coordinate systems is as
follows,

wgnn [ugw U%» 1]T = Hpp [Ufna Uzlm 1]T

where w},, is the scale information between the pixel
coordination system and the world coordination system.
According to homography estimation [14], we can obtain
the transformation matrix H,,, by solving a least squares
problem, using four or more anchor pixel coordinates in
camera m and their corresponding pixel coordinates in
camera n. However, our experiment shows that a sin-
gle transformation matrix for the entire FoV of a camera
can cause a considerable transformation error because the
anchor points marking is not exact. To mitigate the im-
pact of estimation error during FoV transformation, we
manually segment the FoV into several sub-areas, sample
corresponding pixel points in each sub-area and calculate
a transformation matrix for each sub-area. Fig. 4 shows
that segmented FoV transformation significantly reduces the
transformation errors. We note that FoV transformation is
performed only once and in an offline manner for cameras
with static FoVs. With these transformation matrices, pixel-
to-pixel conversions can be calculated by traversing all the
pixels in one camera. We offline build a hash table for each
camera to store the map of its pixel coordinates to the
possible corresponding pixel coordinates that may appear
in other cameras.

(Online) Rol Matching. With the offline computed
transformation matrices, we can compare Rols for any two
cameras to determine if they correspond to the same object.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

[
o

o

Fig. 4. lllustration of segmented FoV transformation.

However, even for the same object, its corresponding Rols in
different cameras can take different sizes and shapes, so it is
nearly impossible to have a perfect matching between Rols.
Therefore, we consider two Rols corresponding to the same
object if the representative points (e.g., the center point, or
a point closer to the ground) of the Rols in two cameras
are close enough (i.e., within a tolerance distance) after the
coordinate transformation. However, it is still possible that
two Rols are indeed the same object but our method treats
them as different objects. Hence, there is a tradeoff in the
matching accuracy and efficiency by setting the tolerance
distance. From a practical design perspective, one would
prefer setting a small enough tolerance distance in order
to have a correct matching with high confidence so that
all objects are properly processed. Using the transformation
matrices to match Rols can still be a time-consuming process
if the number of cameras is large and Rols are many. To fur-
ther reduce the computational time complexity, instead of
actually calculating the transformation, Rol Matcher simply
queries the hash tables built in the offline segmented FoV
Transformation to determine if two Rols match.

Example: We use Rols in Fig. 1 as example. The Rol
Matcher first uses the center pixel coordinates of Rol 1-A
to query the Camera 1’s hash table to get the possible
corresponding pixel coordinates in Camera 2 and Camera
3. Based on these possible corresponding pixel coordinates,
the Rol Matcher can find that the center pixel coordinates
of Rol 2-A in Camera 2 and Rol 3-A in Camera 3 are close
enough to the queried corresponding pixel coordinates from
the Camera 1’s hash table. Thus, the Rol matcher records
that Rol 1-A in Camera 1, Rol 2-A in Camera 2 and Rol 3-A
in Camera 3 are indeed the same object.

Virtual Camera. To better describe the correlations
among the smart cameras and organize the matched Rols,
we introduce a concept called Virtual Camera. A virtual
camera is a subset of physical cameras with overlapped
FoVs, and we take the overlapped FoVs of these physical
cameras as the FoV of the virtual camera. In terms of Rols,
if Rols belonging to a set of physical cameras are success-
fully matched, then they also belong to the virtual camera
representing this set of physical cameras. The number or
the arrival rate of Rols in virtual cameras thus reflects
the correlation between physical cameras: the more Rols a
virtual camera sees, the stronger correlation the component
physical cameras have. Fig. 5 illustrates the concept of
virtual camera. As Rol Matcher performs Rol matching, it
also counts the number of Rols in every virtual camera. Note
that matched Rols are only counted once in a virtual camera.

We use N' = {1,...,N} to denote the set of physical
cameras in the network and hence the set of virtual cameras,
denoted by V), is a power set of N,ie.,,V = 2N For example,

Iy 342y 33 1423
[141,3) EE{2,3y E11,2,3} Camera 2
=

-
Caltgera 1 e
- o Camera 3
-
[

Fig. 5. lllustration of virtual camera. There are 7 virtual cameras: {1},

{21 31 {1, 2}, {1,3},{2,3},{1,2,3}.

TABLE 1
Key Notations
[Notations | Definitions
n Camera index
t Tteration index
Tmazx Maximum number of iterations

Fe Frame rate
Xn Number of Rol inference tasks at camera n
An Rol inference task arrival rate at camera n
F Batches per second processed by camera n
B, Batch size at camera n

fn Rol processing rate at camera n

D, Average Rol inference delay at camera n
D, Upper-bound of Dy,

v Virtual camera index

Predicted Rol inference task arrival rate
Ay .
at virtual camera v

s Probability that workload of virtual camera v
on is assigned to physical camera n

X Rol inference task arrival rate at camera n

m after workload balance

cameras 1, 2 and 3 can form a virtual camera v = {1, 2, 3} if
they have overlapped FoVs. These notations will be useful
when we describe the workload balancing strategy.

Example: To further illustrate the virtual camera, we
also use the Rols in Fig. 1 as an example. After pro-
cessed by the Rol Matcher, the matched Rols in visutual
camera are Rp;y = {1-E}, Ry = 0,Rzy = {3-H},
Rpioy = 0,Rpi3y = 0,Rpa3y = {{2-E,3-E}, {2-F, 3-F},
{2-G,3-G}}, Ry123y = {{1-A,2-A,3-A},{1-B, 2-B, 3-B},
{1-C,2-C,3-C},{1-D, 2-D, 3-D}}, and the number of Rols
in each virtual camera is Vi;; = 1,Visy = 0,Vi3 = 1,
Vit2y =0, Vi3 =0,Via 3y =3, V{123 =4

3.4 Workload Balancer

Now, we are ready to introduce the core component of
CrossVision — Workload Balancer. As its name suggests,
Workload Balancer balances the workload in terms of Rol
inference tasks across cameras by assigning the inference
task of matched Rols to a single smart camera. In this way,
part of workload of cameras in hotspots can be migrated
to cameras with light workload. There are a couple of key
considerations for the design of Workload Balancer:

o Heterogeneous Computing Capabilities. Smart cameras
are not all the same; their computing capabilities can
vary depending on the hardware, the platform and
the adopted DNN model. Hence, workload balanc-
ing needs to consider the cameras’ heterogeneous
computing capabilities to prevent any camera from
becoming the bottleneck.

o Future Workload Arrivals. Workload in terms of Rol in-
ference tasks varies across cameras and may change

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

over time. Workload balancing should not only look
at the current workload of the cameras but also con-
sider the possible impact of future incoming work-
load to avoid migrating workload to cameras that
may experience heavy workload very soon.

Bulk Queue-based Inference Delay Analysis. Before
we describe how to balance workload, we first perform an
inference delay analysis to understand how the inference
delay depends on the camera’s workload.

Consider a representative camera n. Let F'* be the frame
rate, and X,, be the random variable representing the num-
ber of Rol inference tasks in every frame. Note that without
workload balancing, X,, would be the same as the number
of Rols seen in the frame. Thus, the Rol inference task
arrival rate is A, = E(X,)F“. DL-based video analytics
typically processes tasks in batches, and hence the inference
engine fetches multiple Rols at a time from the Rol queue to
process. Consider that camera n can process I batches per
second with batch size being B,,. Thus, the Rol processing
rate is u, = B, Fﬁ. We are interested in characterizing
the average Rol inference delay D,,, i.e., the time duration
between when a Rol is extracted and when its inference
result is obtained. This queuing system is not a simple
M/M/1 queue, but features bulk arrivals (i.e., multiple tasks
arrive at a time) and bulk processing (i.e., multiple tasks are
processed at a time).

Proposition 1. The average Rol inference delay D,, is ap-
proximated by

PnPn pn E (XQ) Pn 1
D, = - - e+ — | A+ — 1
where p,, = %/ Pn = exp(Tn), Tn = QE\(/ii7€))((,f))ﬂk:1)
Proof. The proof is given in Appendix A. O

Since the Rol inference delay in Proposition 1 is quite
complicated and hard to utilize, we further derive an upper
bound on D,,, which has a much simpler form.

Proposition 2. Assuming iEr((‘);")) > 1> pn, D, can be
upper-bounded by D,, as follows
_ 1
DnSDné7+¢n (2)
Hn —)\n
where ¢,, = i + 2}”.
Proof. The proof is given in Appendix B. O

Remark: For a standard M/M/1 queuing system [32]
with arrival rate A, and service rate p,,, its average waiting
delay in system is

~ 1

Dn, R ®)
which is essentially the first term in D,,. Hence, the second
term ¢,, is the new addition due to batch arrival and batch
processing, which reflects the extra impact of the computing
capability on the inference delay. Nevertheless, workload
balancing may also be performed based on the delay anal-
ysis using an M/M/1 approximation, albeit with a lower
accuracy.

6

Computing Randomized Workload Balancing Strategy.
To take into account the future workload arrivals, Workload
Balancer periodically (e.g., every 10 minutes) computes a
randomized workload balancing strategy using predicted
future workload. Let), be the predicted workload (i.e. Rol
inference tasks) arrival rate for virtual camera v for the near
future. This prediction can be made based on past workload
arrival statistics, and various prediction methods, such as
time-series-based [33] and neural network-based [34], have
been developed. Since developing a new workload predic-
tion algorithm is not the focus of this paper, we assume that
Ay, Vv € V is given to Workload Balancer, whose job is to
distribute this workload among the physical cameras.

Let sy, € [0,1] be the probability that workload of
virtual camera v is assigned to physical camera n. Clearly,
for every n € v, s, mustbe 0,and }_ .. -, Su,n = 1 s0 that
all workload is processed. Then the amount of workload
that camera n will need to process is \,, = Z’u:nev Su,n Ay
With this, we formulate an optimization problem as follows
to find the optimal randomized strategy s = {s, ;v € V,
n € N} that minimizes the worst-case inference delay.

min max Dn 4)
_ 1
Hn —)\n
A= Sumr,Vn €N 6)
vinev
A < fin,Vn € N (7)
Y sym=LWeV ®)
n:nev
Syn €10,1],Vn € v,Yv €V)

The above problem is a non-convex optimization prob-
lem due to the inference delay upper bound D,,, which
is generally hard to solve. Next, we develop an efficient
algorithm to approximately solve this problem, inspired by
the Coordinate Descent method [35]. Our algorithm consists
of two stages. In the first stage, we solve a linear program to
find an initial randomized strategy that satisfies all the con-
straints. In the second stage, we use a Coordinate Descent-
inspired iterative procedure to improve the randomized
strategy. _

Stage 1: With D,, is monotonically increasing in \,.
Therefore, instead of minimizing the maximum inference
delay, we formulate a linear program to minimize the max-
imum workload assigned to the cameras as follows:

msin InTELiXS\n (10
s.t. (6),(7),(8),09) (11)

Linear programs are easy to solve, and many commercial
software packages exist to efficiently solve this problem. Let
8o be the optimal solution to (10). In fact, if the cameras
have homogeneous computing capabilities, namely p,, =
tm,¥n,m € N, then s is also the optimal solution to (4).
If the cameras have heterogeneous computing capabilities,
then sq is a feasible solution to (4) because both problems
have the same set of constraints. Note that if there does not
exist a feasible solution to (10), then the overall workload is
too large for the camera network to handle and hence, the
system has to decrease the frame rate.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

Stage 2: In the case of heterogeneous computing capabil-
ities, we further use a Coordinate Descent-inspired iterative
algorithm to improve on sy, which is shown in Algorithm 1.
In every iteration ¢, we pick a pair of cameras i and j with
overlapped FoVs to update their workload balancing strate-
gies, i.e. 5y4,5y,5, Vv € V; ;, where V; ; is the set of virtual
cameras that contain both cameras i and j. Specifically, with
probability 1 — ¢, we pick camera 7 as the one that has the
largest inference delay, i.e., i = argmax,, D,, and randomly
pick camera j among cameras that have overlapped FoVs
with camera i. Because camera % currently has the worst
inference delay performance, we update s, ;,Vv € V;; in
the negative gradient direction of D, in an effort to reduce
max,, D,

-1

5T

— min{nV N Y eV (12)

SZ,Z'(_SZ Sv,i 17 v,1
where 17 > 0 is the update step size. However, only updating
the load balancing strategy of a single camera 7 violates the
problem constraints and hence, we also update the strategy
84,5, Vv € V; ; to ensure that s, ; + s, ; stays the same for all
v € V; ;. Therefore,

st 1} Yov € Vi g

! 4+ min{nV (13)

Sv,i 77 v,1

Although the updated sy,j may cause D; to increase, it is
less critical because camera j is not the bottleneck camera.

With probability €, we randomly pick both cameras i and
J in an iteration to introduce some exploration randomness
in order to escape from local optimum solutions. The algo-
rithm keeps the best workload balancing strategies so far,
and terminates after a pre-determined maximum number of
iterations 1},42-

Algorithm 1 Stage 2 Algorithm

1: Input: \,, Vv € V, i, Vn € N, and sq
2: while t < Ty,.x do
3: Pick i:
With prob. ¢, i = arg max,, D%,
With prob. 1 — ¢, i is a random camera
Randomly pick j so that ¢ and j have overlapped
FoVs

ARSI

7: Update strategies for 7 and j
<—st 1—mm{77 susDiy Sh Sy i VeV
sf} Ly min{nV, .D;, w’ },Vv €V
8: Calculate 5\]-
9 if A\j > py then
10: t st st st
. v,g 0 v,J v,J

11: CalculateﬁDt vn
122 if max, Dt < Df,, then
13: s* + &', D . <+ max, D!

14: Return s*

Workload Balancing Strategy Implementation. With
the computed randomized strategy s, implementing work-
load balancing is relatively straightforward. For each Rol
matched to a virtual camera v, Workload Balancer randomly
assigns the Rol to a physical camera n € v with probability
Sy, and informs the cameras the assignment outcome
via the control message. As also mentioned in the overall

7

architecture, only the assigned camera processes the Rol
using its on-device inference engine and later reports the
inference result to the edge server, while the other cameras
do not process their Rols to save their on-device computing
resources.

Example: We still use the Rols in Fig.1 as an example.
The matched Rol {2-C, 3-C} is in virtual camera v = {2, 3}.
Assume the workload balancing strategy of virtual camera
v = {2,3} is s{2.332 = 0.8,572,31,3 = 0.2, then the match
Rol {2-C, 3-C} is assigned to be processed in physical cam-
era 2 with probability 0.8, otherwise to physical camera 3. If
matched Rol {2-C, 3-C} is assigned to the physical camera
2, camera 3 will put the Rol 3-C in the waiting list and wait
for the inference result of Rol 2-C from camera 2.

3.5 Accuracy Guard

Even for the same object, its Rols in the FoVs of different
cameras may appear very differently due to the distance,
the camera view angles and even the light conditions. While
workload balancing saves computing resources by remov-
ing the Rol redundancies, the Rol diversity can actually be
used to improve the inference accuracy. The job of Accuracy
Guard is exploiting this diversity to maintain a high infer-
ence accuracy in CrossVision. Three specific strategies are
proposed, with the first two being proactive and the third
being remedial.

Pick Cameras with High-Quality Rols. The Rols for the
same object in different cameras have different qualities in
terms of the Rol size. Intuitively, larger Rols usually result
in higher inference accuracy. If the Rol is too small in a
camera and if this camera is picked to process the Rol, then
the inference accuracy for this object will be compromised.
Therefore, when picking the camera using the randomized
workload balancing strategy, we set a minimal Rol size
to ensure that the Rol size of the picked camera is large
enough. Specifically, consider an object appearing in virtual
camera v, and the respective Rol in camera n € v has size
0,,. We modify the randomized strategy as follows

3 _ Su,n *]-{en Z emin} (14)
o Z]Ev Sv,j ° 1{9] 2 9111111}
where 1{-} is the indicator function, 6, is the required
minimal Rol size. In this way, only cameras with high-
quality Rols have a positive probability to be selected.

Join the Power of Cameras with Low-Quality Rols.
It is possible that no camera has a high-quality Rol if the
object is far away from all cameras that can see it. Hence,
all cameras will have low-quality Rols for this object. In
this case, instead of picking a single camera to perform
inference, Accuracy Guard asks all cameras to process their
own Rols and later fuses the submitted inference results.
Again, consider an object appearing in virtual camera v,
and every camera n € v does not have a high-quality Rol
of this object. Take classification problems for example, the
inference outcome of camera n on its own Rol is a vector
of classification confidences {c, 1} ;, where K is the total
number of classes. A simple fusion rule of these inference
outcomes is by taking the average:

cr = ch’k/|v|,Vk =1,...,.K

nev

(15)

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

Then the final result is the top-ranked class in the combined
confidence vector, i.e. arg maxy ci. Other fusion rules can
also be applied depending on the specific applications.

Seek Help If Uncertain. The above two strategies are
proactive as they are taken before the cameras actually
perform the inference task. In the third strategy, we aim to
remedy the inference results if they are not satisfactory after
the inference job is done. Specifically, a selected camera n
can generate low-confidence inference outcome even if its
Rol has a large enough size. In the application of object clas-
sification, this could be that the confidence of the top-ranked
class is not high enough, i.e., argmaxy ¢, < ¢, where
¢t is the a confidence threshold. In this case, Accuracy
Guard will seek help from cameras that were originally not
selected to perform a second-round inference, and combine
the inference outcomes from both the first-round and the
second-round to produce the final inference result. Note
that a camera keeps the Rol in the memory for a certain
time period even if it is not initially selected to process the
Rol. Clearly, since a second-round inference incurs an extra
inference latency, there is a tradeoff by setting the confidence
threshold cy,.

4 EVALUATIONS

In this section, we build a hardware-augmented simulator
to evaluate CrossVision on three real-world cross-camera
datasets.

4.1 Dataset

EPFL dataset [36]: This dataset contains images taken by 6
static surveillance cameras with overlapped FoVs covering
an area of 22m x 22m. At the same time, every camera
takes a photo of the scene from different angles. Totally,
there are 242 frames for each camera, and we duplicate
them in our experiments. The sequence is recorded at the
EPFL university campus where there was a road with a
bus stop, parking slots for cars and a pedestrian crossing. A
total number of 1297 persons, 3553 cars and 56 buses were
manually annotated with a bounding box around them.

Al City dataset [37]: Al City Challenge 2021 traffic
video dataset published by NVIDIA consists of two types of
scenes where the traffic cameras are deployed either along
long streets or around a traffic intersection, in a northern
American city. We choose the most challenging scene of type
two to evaluate CrossVision, where 5 cameras are deployed
around a traffic crossing with complicated cross-camera
viewpoint overlapping. Totally, there are 1955 synchronized
frames for each camera in this dataset. Due to the large
distortion of the fifth camera” view, we only use the first
four cameras as the Al City dataset.

SALSA dataset [38]: SALSA is recorded in a regular
indoor space and the captured social event involves 18 par-
ticipants and includes two parts of roughly equal duration.
The first part consists of a poster presentation session, where
four research studies are presented by graduate students. In
the second part, all participants are allowed to freely interact
over food and beverages during a cocktail party. We use
the cocktail party to evaluate CrossVision which consists
of four synchronized static RGB cameras with overlapped
FoVs covering an indoor lobby area.

4.2 Hardware-Augmented Simulator

The simulator simulates several smart cameras and an edge
server in a wireless network. We implement CrossVision on
real hardware devices, and simulate the wireless network
by WiFi connection. We use WonderShaper [39] to set the
wireless transmission speed to emulate different network
conditions. The default value of network bandwidth is set
to 15 Mbps if not specified otherwise. Nvidia Jetson TX2
and Nvidia Jetson Xavier devices are used as cameras of
heterogeneous computing capabilities, and a Dell desktop is
used as the edge server. For EPFL dataset, three simulated
cameras are based on Xavier while the other three are based
on TX2. For Al City dataset, two simulated cameras are
based on Xavier while the other two are based on TX2.

We feed the images of one camera as a video stream to
one simulated camera, and hence there are totally six video
streams in EPFL dataset and four video streams in Al City
dataset. We use OpenCV on the simulated camera to read
the captured image and extract Rols. A foreground mask
is first calculated by subtracting a background model from
the current frame, and then blob detection is performed to
extract Rols. Note that this is a light-weighted Rol extraction
method which takes 5.6ms on Xavier and 7.9ms on TX2. We
discard Rols that are smaller than 0.5% of the frame size as
they are simply too small for meaningful analysis. The local
inference engine on the cameras uses MobileNetV2 [40], a
state-of-the-art object detection DNN for mobile devices,
and set the batch size to be 8 for batch processing.

4.3 Baselines and Performance Metrics

CrossVision is compared with the following baselines:

o Standalone (SA): Each camera performs inference
tasks on the extracted Rols using its own on-device
inference engine. No workload balancing is per-
formed.

o Centralized via Offloading (CO): The extracted Rol
images in every frame on all cameras are sent to the
edge server via wireless. The edge server performs
the inference tasks on all received Rols. The inference
batch size is set as 32 in this case.

e Distream: Distream is a live video analytics sys-
tem proposed in [23]. Like CrossVision, Distream
performs video analytics based on extracted Rols
and aims to utilize the computing resources of the
entire camera network. Different from CrossVision,
Distream partitions the DNN inference between the
smart cameras and the edge server, and balances
the workload across cameras by migrating the Rol
images across cameras.

e CrossRol: CrossRol [22] divides each camera’s view
into 24 spatial Rol masks. The goal of CrossRol is
to optimize the least number of Rol masks across
all cameras with constraints as any object at each
timestamp having at least one appearance region
included by the Rol masks. Then, all the CrossRol
cameras crop their videos and only stream the areas
included by the Rol masks to the edge server.

e« Myopic Workload Balancing (MWB): Within the
CrossVision framework, we also consider a workload

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

balancing strategy that utilizes only the current ex-
pected Rol waiting time of the cameras. Specifically,
when a virtual camera v receives a Rol, it assigns
the inference task to the camera n € v that currently
has the shortest expected Rol waiting time. This is
a myopic method as it does not consider the future
incoming workload.

The following performance metrics are considered:

o Frame Inference Delay. Frame inference delay is
defined as the elapsed time from when a frame
is generated to when the analytics result of this
frame is obtained (i.e., when all Rols in this frame
is processed). Note that the frame inference latency
also includes the Rol extraction time, the network
transmission time (due to data/control message ex-
change), the workload balancing time and the Rol
queuing time in addition to the DNN inference time.

o Rol Inference Throughput. Rol Inference through-
put is defined as the number of Rols processed per
second in the camera network.

e Inference Accuracy. For the considered object detec-
tion task, inference accuracy measures the percentage
of Rols that receive the correct detection result.

4.4 Evaluation Results
4.4.1 Frame Inference Delay and Rol Inference Throughput

We first show the advantage of workload balancing to
reduce the frame inference delay by comparing CrossVision
with SA on two datasets in Fig. 6. As we can see, the frame
inference delay in SA on both two datasets (Fig. 6(a), Fig.
6(c) and Fig. 6(e)) increases to a very high, essentially unus-
able, value as frames are captured over time, i.e., 3 out of 6
cameras (Cameras 2, 3, and 4) in EPFL dataset and all 4 cam-
eras in other two datasets. This is because the computing ca-
pability of these cameras can barely support their Rol infer-
ence task arrival rate. The Rols spend a significant amount
of time in the memory queue waiting to be processed,
resulting in a very high overall inference delay. On the other
hand, CrossVision exploits the overlapped FoVs between
cameras to even the workload among the cameras according
to their computing capabilities, thereby significantly reduc-
ing the frame inference latency. The highest frame inference
delay is about 60ms among both datasets and hence, real-
time video analytics is achieved. We also show the average
workload on each camera in Fig. 7 on EPFL dataset, which
further explains the above phenomenon. As can be seen,
depending on the cameras’ physical positions and view
angles, the arrival workload is different, and the cameras
have different computing capabilities. In standalone, the
average workload generated at camera 2, 3, 4 are greater
than their computing capability, which will eventually cause
the infinite workload queuing time. However, CrossVision
can significantly reduce the average workload by removing
the Rol redundancy in the overlapped FoVs. This is very dif-
ferent from existing works (e.g., Distream), which migrates
the Rol images across cameras.

In Table. 2 and Fig. 8, we further compare CrossVision
with other baseline approaches that implement some sorts

Delay (ms)

iy
" o

}

I

]

1§

|

Delay (ms)

——C0 C2 —#—C4

—8—C1 —4$—-C3 C5

—6-C0 4 C2 —*—C4 20
—=—C1 —4-C3+ C5

200 400 600 800 1000 1200
Frame

(a) SA on EPFL dataset

200 400 600 800 1000 1200
Frame

(b) CrossVision on EPFL dataset

Delay (ms)

N ——Co0 c2 20 ——C0 c2
10°8 ——C1 —4$—C3 —-C1 ——C3
0
500 1000 1500 500 1000 1500
Frame Frame

(c) SA on Al City dataset (d) CrossVision on AI City dataset

60 W@ﬁﬁ:ﬁﬁzﬁzﬁ
€
’(;,\ [%2)
2 W
£ = 40
3)
8 8
—e—C0 —4—C2 20 —©-C0 —~-C2
102 5-C1 —6-C3 —&—C1 —4$—-C3
0
0 200 400 600 800 0 200 400 600
Frame Frame

(e) SA on SALSA dataset (f) CrossVision on SALSA dataset

Fig. 6. Average frame inference delay of SA and CrossVision.

e g 600
kel - Total average workload
S 800 =4
Q Total average workload S
5]
o 600 I
n
- =év:agzr\‘:vorkloa;‘it 2 400 I Avarage workload
d‘_’ 400 ey 2 [Computing capability
g g
g o 200
~ 200 x
s S
s 2

0

0
co «Ct

Co C1 C2 C3 C4 C5 C2 C3 C4 C5
Camera Camera
(a) SA (b) CrossVision

Fi

g. 7. Workload comparison of SA and CrossVision (EPFL dataset).

of workload balancing. The results confirm the superior-
ity of CrossVision in terms of both frame inference delay
and Rol inference throughput. Next, we explain why the
baseline approaches are outperformed by CrossVision. CO:
Although the edge server employed by CO is computation-
ally much more powerful than any individual camera, it
also has to process much more workload due to the cen-
tralized processing architecture. More importantly, all raw
images have to be transmitted over the wireless network to
the edge server, causing a significant communication time
cost. Distream: Distream utilizes the distributed comput-
ing resources between individual cameras and edge server.
Also, it re-shapes the workload distribution by sending Rol
images from heavy-loaded cameras to light-load cameras.
However, due to the transmission of Rol images over the
wireless network, the communication time dominates the

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

TABLE 2
Baseline comparison on frame inference delay.
EPFL
Frame inference delay (ms)
C0 CI C2 C3 C4 C5
CcO 3871 3316 5591 8789 3655 542.6
Distream 123.8 1275 121.8 128.7 1129 116.8
CrossRol 1079 1101 1051 111.3 102.7 101.2
MWB 80.8 47.1 67.5 56.7 71.9 51.5
CrossVision | 59.2 42.5 51.3 45.0 47.3 45.1
Al City
Frame inference delay (ms)
C0 CI C2 C3
CcO 962.5 4241 527.0 624.4
Distream 206.1 163.1 175.6 199.7
CrossRol 179.7 1409 151.6 172.6
MWB 80.8 87.5 81.92 85.51
CrossVision | 66.6 64.3 59.9 56.8
SALSA
Frame inference delay (ms)
C0 C1 C2 C3
CcO 473.9 385.9 518.5 495.5
Distream 151.9 198.1 241.7 289.5
CrossRol 1324 171.1 208.6 250.2
MWB 86.5 77.71 721 69.26
CrossVision | 63.4 61.1 54.8 51.9
, 100% 3
; 1200 g 0% ,’,
%1000 ES 60% ,,"’
£ 800 ES 4% ey
’2
xS o W’
o O@\@ 0@%& &] 9 0/00 ; ’
° Time (ms) 104

10

TABLE 3
Inference accuracy of SA, CrossRol, CrossVision and CrossVision
without accuracy guard (w/o AG).

EPFL
Inference Accuracy (%)
COo C1 C2 C3 Cc4 C5
SA 67.7 621 946 733 717 923
CrossRol 689 59.0 916 774 712 919
w/o AG 668 579 934 741 747 933
CrossVision | 732 688 953 779 792 952
Al City
Inference Accuracy (%)
Co CI 2 C3
SA 94.6 93.3 91.7 92.7
CrossRol 92.7 92.5 91.3 91.5
w/o AG 93.4 91.1 90.7 93.3
CrossVision | 95.3 96.9 96.2 95.2
SALSA
Inference Accuracy (%)
COo C1 C2 C3
SA 85.4 82.8 81.1 88.0
CrossRol 85.2 88.9 79.5 91.3
w/o AG 87.3 90.1 79.3 88.9
CrossVision | 95.7 97.7 94.3 96.5
Il Delay
80
_ > 80% @
3 g £
S ® g
2 < 75% w0 3
CO Ci C2 C3 C4 C5 % 0% 20% 0% d0%

Camera

Fig. 10. Frame inference delay
of CrossVision and CrossVision

Prediction Error

Fig. 11. Impact of workload pre-
diction on the performance of

Fig. 8. Baselines comparison on

Fig. 9. Accumulated workload

Rol inference throughput. processing rate of CrossVision

and Distream (EPFL dataset).

inference delay, especially when the network condition is
poor. In addition, Distream ignores the redundancies in Rols
and processes all Rols even if they may represent the same
object. CrossRol: Although CrossRol harnesses the videos
content association and redundancy across cameras” views
to reduce the communication and computation costs, the
network transmission latency of all the Rol masked images
dominates the processing time. MWB: MWB adopts the
CrossVision framework except that it myopically balances
the workload using the current Rol expected waiting time.
This strategy would be optimal if future workload could be
freely dispatched to any camera in the network. However,
if a camera is assigned with much workload now simply
because of its currently short Rol expected waiting time,
we may encounter an undesirable situation if the future
workload is exclusive to this camera.

In Fig. 9, we further show the percentage of workload
processed v.s. time for CrossVision and Distream. It is clear
that CrossVision processes workload at a much faster rate
than Distream. As mentioned above, this is mainly due
to the fact that CrossVision removes many repetitive Rols
while Distream blindly processes all Rols.

4.4.2

Table 3 presents a comparative analysis of the accuracy
achieved by SA, CrossRol, CrossVision, and CrossVision

Inference Accuracy

without accuracy guard. CrossVision.

without Accuracy Guard. Because cameras have different
viewing angles at and different distances from the object, the
inference accuracy also varies across cameras for the same
object. By performing workload balancing alone, the infer-
ence accuracy can be improved if the assigned camera has
a high-quality Rol but can also be degraded if the assigned
camera has a low-quality Rol. Overall, the average inference
accuracy of CrossVision without Accuracy Guard is slightly
lower than that of SA, with some individual cameras’
inference accuracy being higher and others’ being lower.
With Accuracy Guard, CrossVision significantly improves
the inference accuracy compared to SA, with an average im-
provement of 7.66% and up to 18.00% for individual cam-
eras. Table 3 also reveals the inference accuracy achieved by
CrossRol and CrossVision. While CrossRol employs similar
Rol redundancy measures to enhance inference delay, it fails
to leverage the opportunity to improve inference accuracy
by fusing results from the same object. CrossVision, on
the other hand, can achieve up to 18.62% improvement
in inference accuracy compared to CrossRol. Of course, the
improved accuracy comes with additional overhead due to
the increased overall workload and extra delay to remedy
the inference result. In Fig. 10, we show the frame inference
delay of CrossVision with and without Accuracy Guard.
As we can see, the added delay is very small and hence,
CrossVision with Accuracy Guard is able to achieve real-
time video analytics at a high inference accuracy.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

1000 ;| =1 CO/Low I CrossVision/Low —
COMigh BB CrossVision/High CrossVision
—6—CO0
500 I [45
1 I 2
@ E
E 100 %‘ 40
> K]
[
3 a8
) 35
30

NI IS TSI IR AN N
Co Cl C2 C3 C4 G5 NGRS SR
Camera Network Speed (Mbps)

(@ (b)

Fig. 12. Impact of network on CO and CrossVision.

4.4.3

As aforementioned in Section 3.4, Workload Balancer peri-
odically computes a randomized workload balancing strat-
egy using predicted future workload. In this section, we set
the workload prediction error from 10% to 40% and evaluate
the impact of workload prediction on the performance of
CrossVision. As we can see in Fig. 11, the average frame
inference delay increases with the prediction error, because
a larger prediction error causes the Workload Balancer to
fail to find the optimal balancing strategies. However, the
workload prediction has little impact on the inference accu-
racy since the Accuracy Guard exploits the Rol diversity to
maintain a high inference accuracy.

Impact of Workload Prediction

4.4.4

We now investigate the impact of the network transmis-
sion rate on the video analytics system. Fig. 12(a) reports
the frame inference delay for CO and CrossVision in two
representative network environments, namely a low rate
at 10Mbps and a high rate at 100Mbps, which cover the
typical bandwidth range in video surveillance systems on
the market. As expected, the offloading-based approach
CO is very sensitive to the transmission rate and gains
a considerable improvement when the transmission rate
increases. On the other hand, CrossVision is less sensitive to
the network rate change as only a small amount of control
information needs to be exchanged. Note that, even in the
high rate case, CrossVision outperforms CO because CO
has to process all Rols by a single server while CrossVision
only processes a subset of Rols by removing the repetitive
ones and utilizing the computing resources of all cameras.
Fig. 12(b) separately shows the frame inference delay of
Camera 3 for CO and CrossVision under network speed
range from 100Mbps to 500Mbps. The results further prove
that CrossVision is less sensitive to the network rate change.
Note that CO outperforms CrossVision after 450Mbps, as the
transmission delay of extracted Rol images is low enough
for the powerful edge server to reap its advantages.

Impact of Network

4.4.5

The design of Accuracy Guard involves two system hyper-
parameters: 1) 6,,;, minimal required Rol size; 2) c;, confi-
dence threshold. We evaluate the impacts of these system
hyper-parameters on the performance of CrossVision in
Fig. 13. We can see that increasing 0,,;, and ¢, leads to
a higher inference accuracy, since CrossVision relies more
on Accuracy Guard to improve the inference accuracy. On

Impact of 0,,,;, and c;p,

85%

[JAccuracy
Il Delay

80

°
>~

Accuracy
Delay (ms)

75

°
B

70% 46

1% 2% 3% 4%
min

(a) Minimal required Rol size

Fig. 13. Impact of hyper-parameters

of CrossVision.

85%

Accuracy
Delay

80

Accuracy
R
Delay (ms)

\,
o
R*

70%

1 2 3 4
Number of Segmented FoVs

Fig. 14. Impact of segmented
FoV transformation on the perfor-
mance of CrossVision.

11

85% 50
[_JAccuracy

Il Delay

80

°
>~

Accuracy
S
©
Delay (ms)

75

°
>~

70%
0.6 0.7 0.8 0.9

(b) Confidence threshold

Omin and c;, on the performance

85%

[_JAccuracy
Il Delay

@
=]
B

Accuracy
(2]
o
Delay (ms)

75

°
>

70%

3 4 5 6
Number of Cameras

Fig. 15. Impact of number of
overlapping cameras on the per-
formance of CrossVision.

the other hand, the higher reliance causes larger delay due
to the increased overall workloads.

4.4.6

The FoV transformation is calculated to find a transfor-
mation matrix between any two cameras. Rather than em-
ploying a single transformation matrix for the entire FoV
of a camera, which may cause significant transformation
errors due to imprecise anchor point marking, we manually
segment the FoV into multiple sub-areas. We then sample
corresponding pixel points in each sub-area and compute
a transformation matrix for each sub-area. The impact of
manual segmentation on the performance of CrossVision
is depicted in Fig. 14. The result shows that increasing the
number of segmented FoVs leads to higher inference accu-
racy and lower inference delay. This is because increased
segmentation of FoVs reduces transformation errors, result-
ing in greater accuracy of Rol matching. Enhanced accuracy
of Rol matching enables the system to better identify and
associate objects seen by multiple cameras, which in turn
allows for more cameras to be utilized in eliminating Rol
redundancy and reducing inference delay. This increased
camera coverage also provides more diverse perspectives
of the object, which can improve inference accuracy by
utilizing the diversity of Rols from different camera angles.

Impact of Segmented FoV Transformation

4.4.7 Impact of Number of Overlapping Cameras

To illustrate the impact of the number of overlapping cam-
eras, we selected various camera subsets from the EPFL
dataset. As depicted in Fig. 15, the inference delay reduces
as the number of cameras increases, while the inference ac-
curacy improves with an increase in the number of cameras.
This is due to the fact that more cameras with overlapping
FoV can reduce the average workload by eliminating Rol

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

12
co c1 c2 c3 ca c5
70 Upper Bound }
sl TIT307 - 60 Upper Bound - 60 - 60 Upper Bound - 60 Upper Bound - 60
g 60 W‘e‘e’e’e g F-=-=--- g - g £
<50 S40EEEEEE —yg <40 = 40J <40
3 3 g 3 3 3
8 40 8 20 820' 8 20 8 20 8 20
% or 0 0 0 0
200 600 1000 200 600 1000 200 600 1000 200 600 1000 200 600 1000 200 600 1000
Frame Frame Frame Frame Frame Frame
Fig. 16. Upper bound after workload balance.
TABLE 4 improved by utilizing the Rol diversity. Our design is both
Component-wise analysis of CrossVision. theoretically sound and practically effective. A limitation of
i the current framework is that the consideration of only static
o FrCalme méezrenceéelay (as) s cameras. When cameras are moving (both heading and
CrossVision.L. | 809 1 488 | 667 | 529 | 667 | 53.9 location), matching Rols and balancing workload among the
CrossVision | 592 | 425 | 513 | 450 | 473 | 451 cameras are expected to be much more challenging. This
Improvement | 27% | 13% | 23% | 15% | 29% | 16% will be explored in our future work.

redundancy. Additionally, an increase in the number of per-
spective views of the object provides greater opportunities
to improve inference accuracy through Rol diversity.

4.4.8 Component-wise Analysis

CrossVision performs cross-camera workload balancing
considering the cameras’ heterogeneous computing capa-
bilities. Since the Rol inference delay in Proposition 1 is
quite complicated and hard to utilize, the workload balance
problem is to minimize the worst-case inference delay of
upper bound on Rol inference delay. To solve the problem,
CrossVision first calculates a feasible strategy assuming

REFERENCES

(1]

(2]

(3]

G. Ananthanarayanan, P. Bahl, P. Bodik, K. Chintalapudi, M. Phili-
pose, L. Ravindranath, and S. Sinha, “Real-time video analytics:
The Kkiller app for edge computing,” computer, vol. 50, no. 10, pp.
58-67, 2017.

H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approx-
imation and delay-tolerance,” in 14th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 17), 2017,
pp. 377-392.

X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A
mobile deep learning framework for edge video analytics,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions. 1EEE, 2018, pp. 1421-1429.

that all cameras have the same computing capabilities (i.e, [4] S. Yi, Z. Hao, Q. Zhang, Q. Zhang, W. Shi, and Q. Li, “Lavea:
stage 1 in section 3.4). Next, CrossVision uses a Coordinate Latency-aware video analytics on edge computing platform,” in
. Proceedings of the Second ACM/IEEE Symposium on Edge Computing,
Descent-inspired iterative algorithm to improve the above 2017, pp. 1-13.
strategy by incorporating the heterogeneous computing ca- [5] S. Jain, X. Zhang, Y. Zhou, G. Ananthanarayanan, J. Jiang, Y. Shu,
pabilities (i.e, stage 2 in section 3.4). In this experiment, P. Bahl, and J. Gonzalez, “Spatula: Efficient cross-camera video an-
we first show how the proposed upper bound helps the alytics on large camera networks,” in 2020 IEEE/ACM Symposium
; . . on Edge Computing (SEC). 1EEE, 2020, pp. 110-124.
Workload Balancer to find the optimal balancing strat- [6] S.Yao,]. Li, D. Liu, T. Wang, S. Liu, H. Shao, and T. Abdelza-
egy in Fig. 16. As we can see, by optimizing the worst- her, “Deep compressive offloading: Speeding up neural network
case inference delay of upper bound, CrossVision can bal- inference by trading edge computation for network latency,” in
ance the workloads across cameras. Then, we inspect the g;‘;gg;f;”%zgf gg ggﬂgg"fmﬂw on Embedded Networked Sensor
contributions of these two components by implementing 7] 1. N. I—iuynhl, Y. Lee, and R. K. Balan, “Deepmon: Mobile gpu-
CrossVision-L, which only uses the stage 1 strategy. Table 4 based deep learning framework for continuous vision applica-
shows the comparison results on the frame inference delay. }[\1/?1278'2 ;“ I; ”’“’"ngls, UJ; the 15”; g‘””?‘“l I’;g"{;“t"’”’glz ngfer"”ce on
S . . oviie sSystems, Appiications, an eroices, , Pp- —J9.
As can be seen, CrossVision improves th.e.frame m.fere.nce [8] B.Fang, X. Zeng, and M. Zhang, “Nestdnn: Resource-aware multi-
delay by 13% — 29% compared to CrossVision-L. This high- tenant on-device deep learning for continuous mobile vision,” in
lights the importance of stage 2 optimization in CrossVision Proceedings of the 24th Annual International Conference on Mobile
and the necessity of considering cameras’ heterogeneous Computing and Networking, 2018, pp. 115-127. - .
. o [9]1]. He, G. Baig, and L. Qiu, “Real-time deep video analytics on
computing capabilities. mobile devices,” in Proceedings of the Twenty-second International
Symposium on Theory, Algorithmic Foundations, and Protocol Design
for Mobile Networks and Mobile Computing, 2021, pp. 81-90.
5 CONCLUSIONS [10] P. Natarajan, P. K. Atrey, and M. Kankanhalli, “Multi-camera
Moving DL functionalities to edge devices, such as smart coordination and control in surveillance systems: A survey,” ACM
. . : Transactions on Multimedia Computing, Communications, and Appli-
cameras in this paper, has been a recent trend in both the cations (TOMM), vol. 11, no. 4, pp. 1-30, 2015.
academia and the industry. CrossVision developed in this [11] Z. He, Y. Lei, S. Bai, and W. Wu, “Multi-camera vehicle tracking
paper complements this trend by enabling collaborative DL~ \{/\vntl;(phowelrzfgigwsualzf;;t;{;s and spatial-temporal cue.” in CVPR
based video analytics in a cross-camera system, which not [12] P. (fisGO.p i’i 7. Yl;r}? Y L_l M. Lu. P. Xu. Y. Gu. B. Bai. Y. Zhang
only reduces the inference latency but also imprOVeS the and D. Chuxing, “Spatio-temporal consistency and hierarchical
inference accuracy. This is achieved by recognizing and effi- Elvatih}j?g for multi-target multi-camera vehicle tracking.” in CVPR
; i : : : orkshops, 2019, pp. 222-230.
Clenﬂy exp101t1ng the phys1cal correlation among proximate [13] E. Ristani and C. Tomasi, “Features for multi-target multi-camera

cameras with overlapped FoVs: inference latency is reduced
by removing the Rol redundancy while inference accuracy is

tracking and re-identification,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, 2018, pp. 6036—-6046.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3301391

E. Dubrofsky, “Homography estimation,” Diplomovi price. Vancou-
ver: Univerzita Britské Kolumbie, vol. 5, 2009.

J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 253-266.

K.-J. Hsu, K. Bhardwaj, and A. Gavrilovska, “Couper: Dnn model
slicing for visual analytics containers at the edge,” in Proceedings
of the 4th ACM/IEEE Symposium on Edge Computing, 2019, pp. 179-
194.

L. Zhang, L. Chen, and J. Xu, “Autodidactic neurosurgeon: Col-
laborative deep inference for mobile edge intelligence via online
learning,” in Proceedings of the Web Conference 2021, 2021, pp. 3111-
3123.

H. Li, C. Hu, J. Jiang, Z. Wang, Y. Wen, and W. Zhu, “Jalad:
Joint accuracy-and latency-aware deep structure decoupling for
edge-cloud execution,” in 2018 IEEE 24th international conference
on parallel and distributed systems (ICPADS). 1EEE, 2018, pp. 671-
678.

C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). 1EEE, 2018, pp. 115-131.

R. Zhang, Y. Zhou, F. Wang, and Z. Wang, “Maxim: Drl-based
cross-camera streaming configuration for real-time video analyt-
ics,” in 2022 IEEE International Conference on Multimedia and Expo
(ICME). 1IEEE, 2022, pp. 01-06.

T. Zhang, A. Chowdhery, P. Bahl, K. Jamieson, and S. Banerjee,
“The design and implementation of a wireless video surveillance
system,” in Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking, 2015, pp. 426—438.

H. Guo, S. Yao, Z. Yang, Q. Zhou, and K. Nahrstedt, “Crossroi:
cross-camera region of interest optimization for efficient real time
video analytics at scale,” in Proceedings of the 12th ACM Multimedia
Systems Conference, 2021, pp. 186-199.

X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live
video analytics with workload-adaptive distributed edge intelli-
gence,” in Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, 2020, pp. 409-421.

L. Chen, S. Zhou, and J. Xu, “Computation peer offloading
for energy-constrained mobile edge computing in small-cell net-
works,” IEEE/ACM Transactions on Networking, vol. 26, no. 4, pp.
1619-1632, 2018.

M. A. Islam, S. Ren, G. Quan, M. Z. Shakir, and A. V. Vasilakos,
“Water-constrained geographic load balancing in data centers,”
IEEE Transactions on Cloud Computing, vol. 5, no. 2, pp. 208-220,
2015.

H. Xu, C. Feng, and B. Li, “Temperature aware workload manage-
mentin geo-distributed data centers,” IEEE Transactions on Parallel
and Distributed Systems, vol. 26, no. 6, pp. 1743-1753, 2014.

J. Luo, L. Rao, and X. Liu, “Spatio-temporal load balancing for
energy cost optimization in distributed internet data centers,”
IEEE Transactions on Cloud Computing, vol. 3, no. 3, pp. 387-397,
2015.

Z.Liu, M. Lin, A. Wierman, S. H. Low, and L. L. Andrew, “Green-
ing geographical load balancing,” ACM SIGMETRICS Performance
Evaluation Review, vol. 39, no. 1, pp. 193-204, 2011.

Q. Liu, T. Han, B. Kim ef al., “Livemap: Real-time dynamic map
in automotive edge computing,” in IEEE INFOCOM 2021-1EEE
Conference on Computer Communications, 2021.

M. Ding, Z. Wang, J. Sun, J. Shi, and P. Luo, “Camnet: Coarse-
to-fine retrieval for camera re-localization,” in Proceedings of the
IEEE/CVF International Conference on Computer Vision, 2019, pp.
2871-2880.

H.-N. Hu, Q.-Z. Cai, D. Wang,]J. Lin, M. Sun, P. Krahenbuhl,
T. Darrell, and F. Yu, “Joint monocular 3d vehicle detection and
tracking,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2019, pp. 5390-5399.

S. Zheng and A. F. Seila, “Some well-behaved estimators for the
m/m/1 queue,” Operations Research Letters, vol. 26, no. 5, pp. 231-
235, 2000.

A. Khan, X. Yan, S. Tao, and N. Anerousis, “Workload charac-
terization and prediction in the cloud: A multiple time series
approach,” in 2012 IEEE Network Operations and Management Sym-
posium. 1EEE, 2012, pp. 1287-1294.

M. Rapp, A. Pathania, T. Mitra, and J. Henkel, “Neural network-

[35]

[36]

[37]

(38]

[39]

[40]

[41]
[42]

[43]

[44]

13

based performance prediction for task migration on s-nuca many-
cores,” IEEE Transactions on Computers, 2020.

S. J. Wright, “Coordinate descent algorithms,” Mathematical Pro-
gramming, vol. 151, no. 1, pp. 3-34, 2015.

G. Roig, X. Boix, H. B. Shitrit, and P. Fua, “Conditional random
fields for multi-camera object detection,” in 2011 International
Conference on Computer Vision. IEEE, 2011, pp. 563-570.

M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C. Chang,
X. Yang, Y. Yao, L. Zheng, P. Chakraborty, C. E. Lopez, A. Sharma,
Q. Feng, V. Ablavsky, and S. Sclaroff, “The 5th ai city challenge,”
in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2021.

X. Alameda-Pineda, J. Staiano, R. Subramanian, L. Batrinca,
E. Ricci, B. Lepri, O. Lanz, and N. Sebe, “Salsa: A novel dataset for
multimodal group behavior analysis,” IEEE transactions on pattern
analysis and machine intelligence, vol. 38, no. 8, pp. 1707-1720, 2015.
V. Mulhollon. (2004) Wondershaper. [Online]. Available:
https://github.com/magnific0/wondershaper.

M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2018, pp. 4510-4520.

E. Parzen, Stochastic processes. SIAM, 1999.

E. Gelenbe, “On approximate computer system models,” Journal
of the ACM (JACM), vol. 22, no. 2, pp. 261-269, 1975.

S. Chiamsiri, Diffusion Approximations for bulk queues and Inventory
control models. University of Missouri-Columbia, 1979.

J. D. Little and S. C. Graves, “Little’s law,” in Building intuition.
Springer, 2008, pp. 81-100.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on February 19,2024 at 16:36:56 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

