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Abstract
Today’s clouds are inefficient: their utilization of resources 
like CPUs, GPUs, memory, and storage is low. This ineffi-
ciency occurs because applications consume resources at 
variable rates and ratios, while clouds offer resources at fixed 
rates and ratios. This mismatch of offering and consumption 
styles prevents fully realizing the utility computing vision.

We advocate for fungible applications, that is, applications 
that can distribute, scale, and migrate their consumption of 
different resources independently while fitting their avail-
ability across different servers (e.g., memory at one server, 
CPU at another). Our goal is to make use of resources even if 
they are transiently available on a server for only a few mil-
liseconds. We are developing a framework called Quicksand 
for building such applications and unleashing the utility com-
puting vision. Initial results using Quicksand to implement 
a DNN training pipeline are promising: Quicksand saturates 
resources that are imbalanced across machines or rapidly 
shift in quantity.
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1 Introduction
It has been over 60 years since the proposal of “utility comput-
ing” [22]—the notion that compute resources are consumed 
on a pay-per-use model, like electricity. Even though public 
clouds claim the mantle of utility computing, its vision has 
not been fully realized yet. In fact, modern computing is not 
just one utility but multiple utilities, such as CPUs, GPUs, 
memory, and storage. Cloud providers offer these resources
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through cloud instances (VMs or containers or serverless
functions) at large granularities (e.g., GBs of memory, a full
CPU core, etc). Consequently, users can only rent resources
bundled together at fixed ratios that often fail to match an
application’s exact needs. For example, an AWS Lambda in-
stance allocates CPU proportional to the memory configured
[8], but the user might use it only as an in-memory data cache
that requires little CPU [60]. While there is a large menu
of instance configurations, none of the choices may fit the
resource usage exactly, as datacenter applications often have
varying consumption [7, 55]. In other words, there is a mis-
match between the cloud offering and the user consumption
in resource granularity, ratio, and dynamism.

This mismatch hurts both providers and users: providers
cannot multiplex applications to fully utilize the available
hardware and must deal with stranded resources, while users
must pay for resources they do not use and suffer from perfor-
mance problems when the consumption exceeds what they
expected. While one could hope cloud providers will modify
their offerings to better match user needs, doing so would
require fundamental changes to the cloud architecture [64].
The goal of this work is to liberate users from the chal-

lenging resource provisioning task and enable providers to
fully utilize resources even if they are stranded or only avail-
able for a few milliseconds. To achieve this goal, we propose
a new system called Quicksand, which asks users to build
applications slightly differently from current practice, by us-
ing abstractions that disentangle the use of resources. With
Quicksand, developers decompose their applications into
different migratable components that each specialize in con-
suming a specific type of resource. The resulting application
is fungible: it can use each resource type wherever present—
even on different machines for different resources—while
achieving good performance. Applications can adjust their
consumption of each resource according to resource needs
and availability in the moment, while the cloud places the
corresponding application components on servers with the
required resources.
For example, consider a batch image processing applica-

tion that takes a large sequence of images, pre-processes
each image on CPUs, and uses the resulting output to train
a model on GPUs. Normally, such an application would run
on a dedicated set of training machines with a fixed ratio
of CPUs, GPUs, and memory. These resources are at risk of
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Figure 1: Migration of work at millisecond granularity is possible:
the filler application migrates across machines every 10ms to har-
ness periods of idle CPU on the other machine.

being imbalanced, potentially leaving expensive GPUs idle.
With Quicksand, the application can adapt its demand to
the available resources: if training GPUs are idle or more
GPUs become available, the cloud can add additional CPUs
for pre-processing to keep them saturated.

There are many challenges in following this approach. To
be performant, communication costs must be low enough to
maintain performance compared to a traditional design. To
be efficient, the system must support the rapid migration of
application components to fill in brief resource usage gaps.
To be adaptive, the system must react quickly in response
to the change in resource consumption and availability. To
be usable, the programming abstraction must be easy to
adopt, while hiding the complexity of resource migration
and scaling behind simple APIs. An efficient implementation
must optimize the entire system stack, including the kernel,
runtime, and programming abstractions.

2 Background and Motivation
Public clouds today offer resources through instances (e.g.,
VMs or serverless functions) that are statically provisioned
and bundle resources at fixed ratios. For example, an AWS
EC2 instance has fixed amounts of CPU, memory, network
bandwidth, etc; and an AWS Lambda function allocates CPU
cores in a fixed ratio to memory. This scheme couples the
allocation of different resources, creating hard problems for
both cloud providers and users: cloud providers must fit fixed-
size instances to fixed-size physical machines, while users
must accurately predict their application resource needs and
find the nearest fitting instance configuration.
Application resource needs are hard to predict because

they are complex and dynamic. An application rarely uses
exactly all the resources available on its instance: there is
often a bottleneck resource while others remain underuti-
lized [47]. Moreover, resource consumption shifts over short
periods in response to the workload. For example, a latency-
sensitive application may have spikes in CPU use due to
fluctuation in incoming requests, and many batch processing
applications havewell-known compute-heavy and I/O-heavy

phases [18]. Such dynamic behavior makes it hard for cloud
providers to effectively oversubscribe resources, as theymust
guarantee the promised resources without knowing their fu-
ture consumption. Thus, they often have to conservatively
provision resources for an estimated peak [52], resulting in
under-utilization; many datacenters report average CPU and
memory utilization below 60% [25, 58].

In order to achieve both high resource efficiency and per-
formance, applications have to be able to adaptively scale in
response to variable resource needs and availability. Unfortu-
nately, existing solutions react too slowly (tens of seconds or
minutes) [1, 6, 17, 25, 32] and fail to independently scale an
individual resource (e.g., spawning a new lambda function al-
locates both CPU andmemory). In an ideal world, by contrast,
even a few milliseconds of idleness of a single resource could
be productively exploited by other workloads that need pre-
cisely that resource. We believe that the hardware to achieve
this already exists today thanks to fast datacenter networks;
what is missing are better software techniques to enhance
the fungibility of an application, so parts of the application
can run and migrate wherever resources are available—a
problem that we tackle in this paper.

We illustrate the power of fungibility through amotivating
experiment. This experiment has two servers, each running
an instance of a high-priority application (e.g., a latency-
critical service). The high-priority application has phased
behavior: every 10ms, it goes from consuming no CPU to
consuming all the cores on the machine, and reverts to no
CPU consumption after another 10ms. The two application
instances on different machines are shifted in time: when one
instance is idle, the other is consuming all cores, and vice-
versa. We want to run another CPU-intensive application to
fill the idle CPU cycles in the two machines, but in a classic
cloud setting, this filler application could at best leverage one
machine, leaving 50% of the other machine idle. In contrast,
by making the application fungible, we can effectively har-
ness the resources on both machines: as CPU cycles become
scarce on one machine, the application quickly migrates to
the other machine where the CPU is idle.
To design fungible applications, our starting point is the

Nu system [50]. Nu introduces the concept of logical pro-
cesses, which breaks down the traditional monolithic UNIX
process into smaller, independently schedulable units called
proclets. Each proclet has a heap for storing state and threads
for performing computation. Proclets expose an object-oriented
interface and can communicate with each other through
method invocation. Since proclets are granular, Nu can quickly
react to resource pressure by rapidly migrating proclets to
machines with spare resources. Nu adopts a distributed run-
time that spans all machines to facilitate migration and avoid

197



Unleashing True Utility Computing with Quicksand HotOS ’23, June 22–24, 2023, Providence, RI, USA

cold starts. It takes only a few milliseconds to migrate a pro-
clet with 10MiB of state, orders of magnitudes faster than
migrating a VM or even a process.

Nu’s quick migration mechanism is a crucial step towards
utility computing. In our motivating experiment, we struc-
tured the filler application as proclets with small state. When
the CPU utilization spikes on the machine running the filler
application, its proclets migrate to the other machine. We
measure the speed of thismigration and the goodput achieved
by the filler application. Figure 1 shows the results: the filler
application migrates in less than 1 ms between machines to
fill in gaps in CPU utilization. This result shows that it is
possible to harness tiny periods of idle resources via rapid
migration, and that such an approach can increase both uti-
lization and performance.

However, Nu’s rapid proclet migration mechanism alone
is far from enough to achieve utility computing. First, Nu
fails to unleash stranded resources as proclets still bundle
different types of resources, making it hard to effectively
combine resources from different machines. For example,
a server may have much idle CPU but little free memory,
while another server has little CPU but plenty of available
memory. In this scenario, it may be impossible to fit proclets
in either machine, even though in aggregate there are suf-
ficient idle CPUs and free memory. This problem calls for a
new abstraction that further decouples resource consumption.
Second, Nu is hard to use as it requires significant de-

veloper effort to manually decompose an application into
granular pieces. While developers are accustomed to writing
applications with high-level programming abstractions (e.g.,
data structure libraries, map-reduce frameworks, etc.), Nu
only offers a low-level proclet interface. This problem calls
for a higher-level abstraction that abstracts away the details
of application decomposition.
Finally, fast migration is possible only for fine-grained

proclets. A fine-grained proclet may evolve into a coarse-
grained one amidst changing loads and resource demands.
For example, a proclet that stores a hash table shard can
grow significantly as data gets inserted into it. Nu’s proclets
lack an ability to keep their own granularity small, thereby
making migration slow as they grow. This problem calls for
an adaptive repartitioning mechanism to preserve granularity.

3 A Path Toward Utility Computing

We now propose a potential path toward realizing the vi-
sion of utility computing by building upon Nu’s proclets.
First, we introduce resource proclets, new types of proclets
each designed to consume a specific resource (e.g., mem-
ory, compute, storage, etc.). Second, we propose higher-level
programming abstractions, such as sharded data structures
and distributed thread pools, that decompose resource usage
into resource proclets while providing familiar APIs. Finally,

we propose new adaptive mechanisms to split and merge
proclets as resource consumption varies.

3.1 Decoupling Resources

Nu adopts hybrid proclets that bundle many types of re-
sources, making it hard to independently map resource de-
mand to the resources available on different machines. To
address this issue, we propose different kinds of resource
proclets, each tailored to a specific resource. For example,
memory proclets store in-memory data, compute proclets
perform computation, storage proclets keep persistent data,
etc. The APIs of these resource proclets are specialized for
their underlying resource type. For instance, compute pro-
clets expose Run(lambda) to support computation; memory
proclets offer NewPtr<T>(args...) to allocate distributed
pointers that work across proclets for accessing in-memory
objects; and storage proclets provide ReadObject(id) and
WriteObject(id) for accessing storage objects.

Resource proclets can interact with each other by invoking
their APIs. For example, a compute proclet can consume data
from a memory proclet by dereferencing distributed pointers.
Quicksand’s runtime provides location transparency and
optimizes performance; it automatically uses cheap function
calls to handle local interactions and remote procedure calls
(RPCs) to handle remote interactions.

3.2 High-Level Programming Abstractions

Our resource proclets are low-level constructs that require
developers to manually decompose applications, which can
be challenging. To make this easier, we will also provide
higher-level programming abstractions for developers that
hide the complexity of resource proclets.

For memory, we can offer a number of sharded data struc-
tures (vector, set, map, queue, etc.) built atop a general shard-
ing library, inspired by existing work in distributed program-
ming [9]. This library partitions data into disjoint ranges
based on the sharding key, with each range stored within a
separate memory proclet. An index memory proclet main-
tains a map of sharded ranges to data proclets, allowing
users to access elements in these data structures transpar-
ently without awareness of which machines are currently
storing them. Additionally, we can provide C++-like iterators
for seamless iteration of elements across multiple shards. Iter-
ators also provide rich semantic hints, enabling effective data
prefetching to reduce the cost of accessing remote shards.
For compute, we can provide a distributed thread pool

abstraction where the underlying threads are sharded across
compute proclets. The heaps within each shard are left empty,
except for any objects temporarily allocated by threads. We
can provide a set of commonly used parallel computation
APIs (e.g., map, reduce, etc.), enabling users to easily com-
pose memory and compute proclets together. For example,

198



HotOS ’23, June 22–24, 2023, Providence, RI, USA Z. Ruan, S. Li, K. Fan, M. K. Aguikera, A. Belay, S. J. Park, M. Schwarzkopf

users can pass data structure iterators to a map API; this uses
compute proclets to execute a function over each element
stored within memory proclets.

Similarly, we can also provide high-level abstractions for
other resource proclets, abstracting away the datails of pro-
clet decomposition. For example, for storage, we can offer
a flat storage abstraction [40] that automatically spreads
fine-grained storage proclets across multiple machines to
combine their capacity and IOPS.

3.3 Adaptive Proclet Splitting and Merging

It is crucial to keep resource proclets fine-grained so that
Quicksand can quickly migrate them to respond to changes
in resource demand or availability. Granular proclets also
reduce the complexity for the scheduler to binpack proclets
onto machines [39]. To ensure fine granularity, Quicksand
has a splitting mechanism for each resource proclet type.
For memory proclets that store data structure shards,

Quicksand enforces a maximum size based on a target mi-
gration latency. If a shard becomes oversized, Quicksand
splits it into two shards by invoking a data-structure-specific
split function. This technique can also be applied to storage
proclets to keep the desired granularity.

A compute proclet, used for parallel computation, can also
be oversized when it has more tasks than its CPU resource
supports. In this case, Quicksand can split it by dividing its
task queue. Splitting occurs only if there are enough CPU
resources in the cluster for the new proclet, thus avoiding
the creation of an excessive number of compute proclets.

Resource proclets can also become undersized. For exam-
ple, after removing many key-value pairs from a sharded
hash table, memory proclets can have many more hash table
buckets than KV pairs, resulting in low memory efficiency.
Quicksand can respond by invoking a data-structure-specific
merge function to combine the adjacent shards into a single
memory proclet. Undersized compute proclets can also occur,
such as in a data pipeline where producer proclets gener-
ate data faster than it can be absorbed by an external sink.
Quicksand can react by merging producer compute proclets
to match the production rate with the consumption rate.
Splitting/merging resource proclets may briefly disrupt

application performance as it blocks new proclet method in-
vocations until it completes. However, Quicksand minimizes
the performance impact by ensuring resource proclets are
granular so that splits and merges are always fast.

4 Case Study: DNN Training
We illustrate the benefits of Quicksand through a case study
in DNN image training, a commonly used cloud workload.
Here, a sequence of images must be pre-processed by CPU
servers (decompression, data cleaning, augmentation, etc.)
before being fed into GPU servers for training a DNN model.

Running these jobs efficiently in today’s cloud is challeng-
ing [21, 37, 38, 53]. Users struggle to provision CPU and GPU
resources without starving one of them. On the one hand,
GPUs are the most expensive resource, so in theory users
would benefit from adding CPU servers for preprocessing
in order to keep GPU servers saturated. On the other hand,
provisioning too many CPU servers wastes CPU cycles and
increases cost. The optimal amount of resources varies over
time as GPU availability changes [5] and training parallelism
varies [43].

Second, datacenter providers face difficulties in binpacking
jobs into available physical servers in which resource imbal-
ance is common [36]. To illustrate the challenges, consider a
scenario of preprocessing a large number of in-memory im-
ages with two machines. Suppose one machine has abundant
CPU cores but limited memory, and the other has abundant
memory but limited CPU cores. It is difficult for existing
systems to effectively combine the resources from both ma-
chines, forcing them to either run out of memory or under-
utilize CPUs.

Quicksand provides efficient abstractions to address these
issues. To saturate the resources of both machines in the
preprocessing stage, we store input images into a sharded
vector, therefore decomposing data into granular memory
proclets that can be independently scheduled to utilize idle
memory across the machines. Similarly, to perform the pre-
processing computation, we create a compute proclet that
can split on demand to harness free CPU cores across ma-
chines. Compute proclets load images from memory proclets
using the vector iterator interface, enabling Quicksand to
effectively prefetch data to improve locality.
To balance CPU and GPU resources, we apply a sharded

queue to connect the CPU-based preprocessing stage (i.e., the
producer of the queue) with the GPU-based training stage
(i.e., the consumer). The queue can absorb bursts in producer
output by storing it in memory proclets that can split and
migrate. Quicksand splits or merges preprocessing compute
proclets to match the data consumption rate of GPU training,
ensuring GPU saturation without wasting CPU resources.

Using an early prototype of Quicksand, we built a simple
DNN training pipeline and obtained promising results. The
pipeline has an OpenCV-based image preprocessing stage
atop Quicksand. For the training stage, we emulated GPUs
by adding a delay to consume data from the queue, as we
have not yet implemented GPU proclets.

Figure 2 demonstrates that Quicksand can efficiently com-
bine resources from different machines, even when they are
heavily imbalanced. In this experiment, we fixed the total
amount of CPU and memory resources and divided them be-
tween two machines with different configurations (memory-
unbalanced, CPU-unbalanced, and both-unbalanced). We
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Machine 1 Machine 2 Time [s]

Baseline 46 cores
13 GiB RAM N/A 26.1

CPU-unbalanced 6 cores
6.5 GiB RAM

40 cores
6.5 GiB RAM 26.4

Mem-unbalanced 23 cores
1 GiB RAM

23 cores
12 GiB RAM 26.6

Both-unbalanced 6 cores
12 GiB RAM

40 cores
1 GiB RAM 26.5

Figure 2: Quicksand efficiently combines resources from different
machines. With the same amount of total resources, a Quicksand-
based DNN training preprocessing pipeline can always achieve
similar performance to a single machine when its resources are
split across two machines, despite severe imbalance.

ran the preprocessing stage on Quicksand with these con-
figurations and compared its performance with the ideal
baseline configuration of a single machine with the same
total resources (which avoids the overhead of utilizing re-
mote resources). Our evaluation results show that Quicksand
schedules compute and memory proclets to the appropriate
machines regardless of the setup, achieving both high re-
source utilization and near-optimal performance. For exam-
ple, in the scenario where both CPU and memory are unbal-
anced, Quicksand correctly schedules most of the memory
proclets to the memory-heavy node and most of the com-
pute proclets to the CPU-heavy node. Thanks to Quicksand’s
data prefetcher, preprocessing images from remote memory
proclets is as fast as preprocessing local images.
Figure 3 shows that Quicksand can dynamically adapt to

varying GPU resources by rapidly scaling the number of
preprocessing compute proclets, ensuring GPU saturation at
all times. In this experiment, we vary the number of available
GPUs between four and eight every 200 milliseconds. We see
that Quicksand’s mechanisms can adjust the amount of CPU
resources quickly, taking 10–15ms to split or merge compute
proclets after learning of a change in GPU resources.

5 Discussion and Research Directions
How to design the scheduling policy? There are several
challenges to developing effective scheduling policies for
Quicksand. First, idle resources must be detected quickly so
they can be filled with available resource proclets. Queueing
delay could be one such signal to detect idle cores [12], but
more techniques are needed for memory, storage, etc. Sec-
ond, the scheduler has to find a balance between reaction
time and quality. On the one hand, the scheduler has to react
quickly in response to sudden changes in resource usage. On
the other hand, the scheduler has to make high-quality deci-
sions; this inevitably prolongs the reaction time, especially
since the fine granularity of resource proclets leads to a large
amount of scheduling units. A promising direction is to op-
erate scheduling at two levels: fast local decisions to absorb

Figure 3: Quicksand dynamically adapts to changing GPU resources
by rapidly scaling the number of compute proclets, reaching new
equilibriums in 10-15 ms.
usage spikes and slow global decisions that reflect long-term
shifts in usage, as observed from runtime traces, compiler
hints, and ML models. This could balance the need for fast
reaction with the need for optimal long-term placements.
How can we maintain locality?When compute inten-

sity is low, communication costs between resource proclets
on different machines might outweigh the utilization ben-
efits of allocating different resource types independently.
It may be possible to further optimize communication so
that short remote method invocations are efficient. However,
another strategy could be to place resource proclets that
frequently communicate with one another on the same ma-
chine, provided available resources permit it. This is feasible
as the runtime can easily capture the affinity information and
report it to the scheduler for making colocation decisions.
Finally, the I/O path could be used to further reduce the bur-
den of communication by offloading some computation into
smart NICs or smart SSDs, which can operate closer to the
data they are processing [35, 49].
What other resources can we decouple?We focused

on compute, memory, and GPU proclets, but we believe re-
source proclets could be used to decouple other resources,
such as storage, accelerators, or the network. Resources may
have sub-resources that are consumed separately and can be
decomposed too: for example, storage has capacity and IOPS;
compute has cycles and last-level cache usage. Some sub-
resources may be inherently tied together (e.g., storage IOPS
and bandwidth), which may preclude decoupling. These sit-
uations may not allow full utilization of all sub-resources.
We could consider different storage classes as different re-
sources, each with its own proclet type: fast flash disks are
increasingly used as slow cheap memory, while slower flash
or hard disks are used to keep persistent data.
Each type of resource proclet needs its own placement

policies and fast migration mechanisms—developing these
will pose interesting technical challenges (e.g., how to mi-
grate resource proclets across GPUs rapidly).
How can the hardware help? Faster networks could

speed up resource procletmigration. Having aDIMM-attached
NIC [3] and copying data directly to CPU cache lines or
registers [27] might further boost performance. Offloading
transport [24], RPC [33], and serialization [46] to hardware
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could reduce communication costs, allowing for proclets
with lower compute intensity to run more efficiently on
different machines. Finally, new coherent memory disaggre-
gation technologies like CXL [15] offer new design oppor-
tunities for our runtime to achieve better performance. For
example, with the capability of accessing remote memory
transparently, we can speed up resource proclet migration by
postponing the copying of data. Another example is optimiz-
ing remote proclet communication by avoiding serialization
and directly passing data pointers.
How can the OS and runtime help? Our memory pro-

clet migration currently hits kernel bottlenecks on page pin-
ning and memory mapping—optimizing these could further
speed up migration. Another opportunity lies in tighter co-
ordination with the memory allocator, allowing Quicksand
to skip freed memory during migration. Migration policies
will benefit from hints from the OS and user libraries about
what accelerators (GPU, TPU, DPU, FPGA) operate on what
memory regions. More efficient runtimes could speed up re-
source proclet creation, execution, and migration. Achieving
efficient fault and security isolation among granular resource
proclets requires us to rethink the right OS abstraction; exist-
ing abstractions, such as process or VM, are too heavyweight.

How can compilers and profilers help? Compilers and
profilers could help developers decompose their code into
resource proclets, by providing semi-automated guidance
based on static and dynamic analyses. With a more con-
strained programming model, compilers can also help vali-
date the fine granularity of resource proclet decomposition.
Profilers will also help identify non-performant resource pro-
clets, while runtime analyses will guide migration policy.

6 Related Work

Improving Datacenter Utilization. Resource disaggrega-
tion is a trending approach to improve datacenter utilization.
Existing work has demonstrated the feasibility of disaggre-
gating memory [4, 23, 45, 51, 61], storage [29–31, 34], and
accelerators [10, 13, 57, 59]. Quicksand has a complementary
approach: rather than disaggregating resources, it makes
applications fungible. Another line of work improves utiliza-
tion by harvesting idle server resources; this includes CPUs
[63], memory [19], and storage [48]. However, resource har-
vesting is limited to best-effort restartable applications, as
the harvested resources can be forcibly reclaimed anytime
under resource pressure.

Resource Decoupling. Existing work such as Monotasks
[41, 42] also decouples a job into pieces that each dominantly
consumes a single type of resource, similar to Quicksand’s re-
source proclets. However, their main design goal is to achieve
a better performance visibility rather than a better resource
efficiency through disaggregation.

Live Migration. Existing work live-migrate jobs across
machines to balance load [14] and optimize cost [54] over a
long time horizon. They conductmigration at coarse granularity—
such as VM [14, 26, 28], container [44, 56], and process [11]—
which takes more than hundreds of milliseconds. Slow mi-
gration impacts the service level agreement of applications
and makes it practical only in latency-insensitive scenarios.
Quicksand builds atop Nu [50], a recent system that supports
fine-grained migration at the proclet level. Nu enables sub-
millisecond migration with little performance disruption,
thereby enabling Quicksand to fill in small gaps in resource
utilization.
Training and Data Analytics Pipelines. Existing ML

training pipelines [2, 20, 62] and data analytics pipelines [21,
53] also decouple state from compute. Compared to Quick-
sand, they are less general and flexible: each of them targets
a specific application scenario and a specific machine re-
source distribution. With decoupling, these pipelines also
support independent auto-scaling at each layer to balance
performance; for example, Cachew (an ML training pipeline)
[21] is able to automatically scale the data preprocessing
stage to keep training GPUs/TPUs saturated. Compared to
Quicksand, they target a much longer timescale; for exam-
ple, Cachew takes minutes to reach an equilibrium whereas
Quicksand takes only tens of milliseconds (§4).

7 Conclusion
Utility computing is in reality multiple utilities that are bun-
dled together by cloud providers at large granularities in an
imperfect offering. As applications consume these resources
at variable rates and ratios, resources are often underuti-
lized, either because applications allocate them but do not
consume them (resource overprovisioning) or because the
cloud cannot offer the resources in a usable form (resource
stranding). We are trying to address this problem with Quick-
sand, by making applications fungible so that they can be
distributed, scaled, and migrated to fit the availability of indi-
vidual resource for even a fewmilliseconds, despite changing
resource demands by applications and resource availability
in the cloud. Early experience with a DNN training pipeline
shows that this approach is promising.
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