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Sequential sum-of-squares programming for analysis of nonlinear
systems™
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Abstract— Numerous interesting properties in nonlinear sys-
tems analysis can be written as polynomial optimization prob-
lems with nonconvex sum-of-squares problems. To solve those
problems efficiently, we propose a sequential approach of
local linearizations leading to tractable, convex sum-of-squares
problems. Local convergence is proven under the assumption of
strong regularity and the new approach is applied to estimate
the region of attraction of a polynomial aircraft model.

I. INTRODUCTION

Polynomials that can be written as a sum of squares
are a strict subset of the nonnegative polynomials. While
determining whether a given polynomial does not assume
negative values is computationally hard, Parillo [1] showed
in his seminal paper that convex optimization over sum-
of-squares polynomials can be reduced to semidefinite pro-
gramming. His works, as well as the development of the
dual approach via moments by Lasserre [2], and the advent
of efficient algorithms for semidefinite problems laid the
foundation for numerical analysis of nonlinear systems with
polynomial dynamics that is today known as sum-of-squares
programming.

Applications of convex sum-of-squares programming in-
clude stability verification for hybrid systems [3-7], opti-
mization algorithms and optimization-based control [8—10],
control synthesis [|1-14], and many more. As these ap-
proaches often make use of Lyapunov-type functions and dis-
sipativity inequalities, many sum-of-squares constraints for
polynomial dynamics can be viewed as the natural extension
of linear matrix inequalities for linear systems [15]. However,
unlike in the linear case, most properties of nonlinear systems
such as asymptotic stability, invariance, or controllability
often are valid on a region of the system’s state-space only.
The problem of determining the region of attraction [ 6], for
example, thus consists of finding a Lyapunov candidate V'
and a region X (often a sublevel set) as well as certifying that
V' decays strictly on X. If V' and the describing function of
X are polynomial decision variables, estimating the region of
attraction is a nonconvex, nonlinear sum-of-squares problem
by the Positivstellensatz of the reals [17].

Despite nonlinear sum-of-squares problems being compu-
tationally hard, local analysis of stability and other properties
of polynomial dynamics with sum-of-squares programming
has been extensively studied [18-28]. Here, the (mostly
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bilinear) nonconvex constraints have been mitigated by bi-
sections [29], coordinate descent [30], and combinations of
both. Yet, except for quasiconvex problems, convergence
is not guaranteed (see remarks in [31]). Given that the
underlying semidefinite problems scale notoriously with the
polynomial degree, it is desirable to limit the number of
convex evaluations.

In this paper, we take inspiration from sequential convex
programming [32-36] and study a sequential approach for
nonlinear conic problems which we combine with a line
search using a merit function from Powell [37]. The nonlin-
ear problem is linearized around a solution candidate in order
to obtain an affine conic problem. For the sum-of-squares
cone, sum-of-squares toolboxes such as SPOT, SOSOPT, or
SOSTOOLS are readily available to solve the local problems
via reduction to a semidefinite program; and more recently,
direct implementations of the sum-of-squares cone have been
proposed [38, 39]. Similar to the affine case, nonlinear sum-
of-squares problems could directly be reduced to a nonlinear
semidefinite program; yet the authors are only aware of the
toolbox SUMOFSQUARES.JL [40] for that purpose, which is
limited to quadratic expressions. Moreover, the semidefinite
representation of a sum-of-squares polynomial is nonunique
(see comments in [I, Section 3.2]); yet uniqueness of the
solution is usually assumed for convergence.

We prove local convergence of the sequence of convex
problems using a result from variational analysis [41] that
builds upon the implicit function theorem for strongly regular
generalized equations by Robinson [42]. As this result is
stated for (possibly infinite dimensional) Banach spaces, our
analysis works in the general setting of nonlinear conic
programs with convex cones embedded in Banach spaces.
Since the vector space of polynomials is not complete, we
limit ourselves to optimization problems with fixed polyno-
mial degree but our sequential algorithm can be applied to
other cones as well. We further investigate the line search
based on the dual theory of affine sum-of-squares optimiza-
tion. Numerical results for practical engineering problems
demonstrate that sequential sum-of-squares programming
significantly reduces the number of convex problems to be
solved and thus the computation time compared to previous,
iterative approaches.

Our proof generalizes [35] in two aspects. First, we
consider convex cones in arbitrary Banach spaces rather than
embedded in R™. Second, we show that the convergence still
holds if a line search is used to improve convergence speed.
Moreover, by use of variational analysis, our paper provides
a simpler proof while obtainig a tighter convergence rate.
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The remainder of the paper is organized as follows:
Section II introduces the tools from variational analysis and
Section III motivates and states the problem of nonlinear
sum-of-squares optimization. The sequential programming
approach is detailed in Section IV and local convergence is
proven in Section V. In Section VI, the sequential approach
is applied to problems from nonlinear system analysis.

Notation: N (resp., Ng) and R denote the natural
numbers excluding (resp., including) zero and the reals,
respectively. For some m € N, the set of symmetric (resp.,
positive semidefinite) matrices in R™*™ is S,, (resp., S;).

II. PRELIMINARIES

Let X, Y, and P be Banach spaces. The dual space X*
is set of linear operators [ : X — R is X* with evaluation
(-,-) : X* x X — R. Moreover, the adjunct of a linear
mapping A : X — Y is the linear mapping A* : Y* — X*
satisfying (I, A(§)) = (A*(1),€) forall £ € X and | € Y™,

A. Normals & Gradients

A convex cone is a set C' C X satisfying r1&1 +1282 € C
for all &1,& € C and ri,73 € R>(. The dual cone of C is
defined as

C*={ve X" |{v,&) >0forall £ € X}

and the dual of C* is isometric to C. Moreover, for a convex
set () C X, the normal cone mapping Nq, : X = X ™ is given
by

Nq(&) ={we X* | (w,& — &) <0 forall £ € Q}

if & € Q, and N (&) = @ otherwise.

Definition 1: The (Fréchet) derivative of a nonlinear func-
tion g : X — Y at § € X is a linear mapping Vg(&o) :
X — Y satisfying

lim 9(&o) + Vg(&0)(€ — &) — 9(§)
£—&o HgO - 5”

and g is (Fréchet) differentiable if and only if Vg(&) exists
for all & € X.

=0

B. Continuity & Regularity

Let h: X X P =Y be a function and H : X =3 Y be
a set-valued mapping. h is said to be Lipschitz continuous
with respect to £ around (&p, mo) € int dom A if and only if

Ih(e,m) — g mll _
]

lim sup
€,8' =0, E#E
T—rT0

with constant x < oo. Moreover, H is said to have a single-
valued localization h : X' — Y’ around &, € X for vy € Y
if and only if X’ C X and X’ C X are neighbourhoods of &,
and vy, respectively, h(&y) = vg, and H(E) NY’ = {h(&)}
for all £ € X'. If the inverse H! : v — {£ € X|v €
H (&)} has a single-valued localization around wvg for & that
is Lipschitz continuous around vy with constant v, then H
is called strongly regular at &, for vy with constant .
Theorem 1 (Theorem 8.8 of [41]): Take ¥ : X x P —
Y and N : X = Y; suppose ¢ is Lipschitz continuous

with respect to 7 around (&p, 7o) with constant x and 0 €
(&0, m0) + N(&); if there exists ¢p : X — Y such that
Yo(€) = (&, m) around & if m — g and o+ N is strongly
regular at & for 0 with constant ~y, then the mapping

H:m—{{eX|y&n)+N(E) >0}

has a Lipschitz continuous, single-valued localization around
o for £ with constant vx. <«

III. SUM-OF-SQUARES OPTIMIZATION

Let z = (x1,...,2,) be a tuple of free variables and
a=(ai,...,a,) € N} a multi-index; a polynomial 7 in x
up to degree d is a linear combination

T = E Cax®

llallr<d

where % = 27" --- 2" and |la|1 = Y, o;. The set Ry[z]
of polynomials in x with real coefficients ¢, € R up to
degree d forms a vector space with norm || - ||.

Definition 2: A polynomial w € Ry[z] is a sum-of-squares
polynomial (7 € %4[z]) if and only if there exist m € N and
Ty, Tm € Ry[z] such that m = Y7 (m;)2.

It is easy to see that ¥,[x] forms a convex cone in Ry[z].
Moreover, its dual cone X [z]* is isometric to the cone of
sum-of-squares polynomials [2].

To avoid confusion with the Fréchet derivative V (with
respect to the space of polynomials), we are going to use
Oz : Ry[z] — Ry[x]*™ for the differentiation operator with
respect to the free variables x.

A convex sum-of-squares optimization problem can be
reduced to a semidefinite program. This is the fundamental
result of [I, Theorem 3.3], which reads as follows; denote
by sq € Ny the number of monomials up to degree d of
a polynomial in z. A polynomial m € Ryy[z]| is sum-of-
squares if and only if there exists a matrix @) € de satisfying
7 = (T QC, where ¢ € Ry[z]*¢ is the vector of monomials
up to degree d. The solution for () is usually not unique,
leading to the implicit (or kernel) and explicit (or image)
relaxations of an affine sum-of-squares problem.

A. Motivation

Consider a continuous-time dynamic system defined by
the differential equation

&= P(x) 1)

where x € R™ denotes the state vector and ¢ : R* — R”
is a polynomial function satisfying ¢(0) = 0. Many system-
theoretic properties on a domain D C R"™ can be written as
polynomial dissipativity inequality of the form

Ve e R", 2 € D= 0,V (x)p(x) < S(x) 2)

where V' € R[z] and S € Rz] are called storage function
and supply rate, respectively. The set D usually depends on
V; for example, if D is a sublevel set of V and V' and S
are positive definite polynomials, then Eq. (2) is LaSalle’s
condition for asymptotic stability [43, Theorem 2].



In the sum-of-squares literature, the dissipativity condition
is rewritten using the so-called generalized S-procedure [29].
Suppose D = {z € R"|ly(z) > 0} for some ¢y € Ry[x],
then if there exists ¢ € 4[] such that

(S = 0:Ve) —cly € Eala] 3)

then V and S satisfy (2). However, since ¢y depends on
V', the sum-of-squares constraint (3) is nonlinear. Previous
approaches to optimize over nonlinear sum-of-squares con-
straint relied on solving for one variable at a time while
keeping the remaining variables fixed (see, e.g., [29-31]).

B. Nonlinear optimization problem

In general, a polynomial optimization problem with non-
convex sum-of-squares constraints takes the form of a non-
linear optimization

min (f, &)

min st.gl§)e Dand € C 4)

where X and Y are Banach spaces, f € X™* is a linear
cost, g : X — Y is a differentiable constraint mapping, and
C C X and D C Y are convex cones. In the case of sum-
of-squares, X and Y correspond to spaces of polynomial up
to a finite degree with sum-of-squares cones C' and D and
g takes polynomial values.

Define the Lagrangian as L(,1) = (f,£)—(l, g(£)), where
l € Y* is a Lagrange multiplier; the Karush-Kuhn-Tucker
(KKT) conditions for (4) at £y € X are

f=Vg()l—-s=0
<87§0> = 07 <lug(§0)> =0
o€C, g(&)eD

where s € C* and | € D* are dual variables associated with
the cone constraints.

Define ¥ = (£,1) and 7 = X x Y*. With a small abuse
of notation, we identify g(£) as an element of D** using the
canonical isomorphism between D and D**. Then the KKT
conditions are equivalent to (—s,—g(£)) belonging to the
normal cone of C' x D* at (§p,lo) € T. The KKT conditions
can thus be written as generalized equation

w(9) + N(®) 30 )
where ¢ : 7 — T+ and N : T = T* are defined as
@0 (f = Vg(&)l, g())
and
N 9= {(v,¢) € T"|ve Ne(§),¢ € Np-(1)}

respectively. We denote the solutions to (5) by © C 7.
Assumption 1: The set © is nonempty.
Under a suitable constraint qualification, existence of a
KKT point is necessary for an optimal solution of (4).

IV. SEQUENTIAL PROGRAMMING

We propose to approach the nonlinear problem (4) with
a sequence of local, convex problems. To that extent, let
€% € X with k € Ny be the solution of the k-th iteration
and [¥ € Y* be the associated Lagrange multiplier. Pick
tolerances €g, €, > 0 for the primal and dual solutions as
well as a small weight 7 > 0. Our next instance (£F+1, [F+1)
is subject to the steps:

1) Solve the convex problem at &,

geglfl,i?ng’ £) (6a)
st g(€") + V()€ =< (6b)
and £€C, <€D (6¢)

and denote the optimal solution as £, and the associ-
ated Lagrange multiplier as [ .
2) Solve the line search

meiﬂr%lz/J(r) —nr st.0<r<l1 )

where ¥ : 7 +— L(r&y + (1 —7)&k, 1), and denote the
optimal solution as 7.

3) Set FFl = ¢, +(1—7)EF and 1KY = 7l +(1—7)IF.
We terminate the iteration if both ||¢FT1 — ¢¥|| < ¢, and
[|[IF+1 — 1%||. < €, where ||¢||. denotes the operator norm
of ¢ :Y — R. Otherwise, we repeat the steps for k£ + 1.

As linear problem, (6) has a dual problem at 5’“, viz.

leyfgiéxﬂﬁﬁ (8a)
st. f—Vg(E")*1—s5=0 (8b)
and e D*, se(C* (8¢)

where 7, = Vg(£¥)&F — g(€F). In the following analysis, we
will assume that the Lagrange multiplier [ is the optimal
solution of (8), provided it exists. If (§y,lp) € T satisfy the
KKT conditions

f=Vg()lh-s=0
(s,&0) =0, (lo,Vg(£*)& — ) =0
(€0.l0) €C x D*, Vg —weD

for some s € C*, then & and [y are optimal solutions for
(6) and (8), respectively, and satisfy (f, &) = (lo, Vk)-

V. THEORETICAL ANALYSIS

We are going to prove local convergence of the sequential
algorithm using a parametrized version of the generalized
equation (5); define

¢ (0,6) = (f = Vg(€")*l, Vg(€")E — )
then ¥ = (€o,1p) € O if and only if it solves
L(9,6%) = ¢(9,6") + N(9) 50 ©)

at €8 = &;. In other words, the generalized equation (9) can
be understood as linearization of (5) around fk. The set of
KKT points of (6) at ¥ € X is given by

H(E") = {9 e T|L(W,&") >0}

the solution map of (9).



The following result is a special case of [44, Theo-
rem 2F.1] for solution mappings of monotone variational
inequalities and proved here for completeness.

Lemma 1: Let &% € X;if H(£F) is nonempty, then H (£)
is a convex set containing (&4,14).

Proof: Denote the set of optimal solutions to (6) and (8)
by S € X x Y*. Assume that H(¢F) is nonempty, take
(€0,10) € H(&*) and (&4,11) € S. By sufficiency of the
KKT conditions, (§o,lp) € S and (f,&) — (lo,) = 0.

Since <f7 §+> < <f7 §0> and <l+77k> > <1077k> by primal
and dual optimality,

0 > <f7§+> - <l+77k>
= (Vg(") s +5,&4) — ()
= (4, Vg(€")&s — i) + (s.64)

with s € C*. Since (I, Vg(¥)&, — i) >0 and (s,&,) >
0, the inequalities are tight and (£4,1,) € H(&F). Hence,
H(¢%) = S, a convex set. [ |

Combining Assumption | with Lemma 1, a KKT point
(€0, lo) of the nonlinear problem (4) is a candidate stationary
condition of the sequential algorithm. However, we have
yet to prove that (£4,l;) is the unique solution of the
parametrized variational inequality (9) around ;. To that
extent, we make the following, standing assumptions.

Assumption 2: For all (&,lp) € O, the mapping Ly =
L(-, &) is strongly regular at (£o, o) for O with constant +.

By definition, strong regularity of L requires that Ly ()
has a single-valued localization around § = 0 for ¥y, which
is equivalent to a perturbed convex problem having unique
solutions for small perturbations § € T* [35].

Assumption 3: For all (§,ly) € O, the gradient Vg(&)
is Lipschitz continuous around £, and the mapping Vg(§)*1
has the Lipschitz constant « with respect to & around (&p, lp).

If ¢ is twice differentiable at £y, then Vg(¢) is Lipschitz
continuous at & and the constant x is determined by the
norm of its second derivative. We note the following impli-
cation of Assumption 3.

Lemma 2: Let 99 = (£o,1l0) € O; the mapping (4, £F)
is Lipschitz continuous with respect to ¢* around (g, &)
with constant .

Proof: By Assumption 3, the first component of
@(9, €F) satisfies

IVg(€") L= Vg€l _
l1€% — &l N

lim sup
gh M sgo,h ek
l—)l()

and a difference in the second component can be written as

9(E") + Vg(€")(€ — ) — g(6¥) — Vg(€*) (€ — €*)
= [Vg(€") — Vg(e")] (€ — &) —e(¢". ")
where ¢ 1 (¢€%,6F) > g(6%)+ V(€M) (€F —€") —g("). By
definition of the Fréchet derivative and Lipschitz continuity
of Vg(&) around &, we conclude that

k ok
lim sup e(e, &)

/7 — O
er ek gg ek er €5 — €|

and

IVg(e") — Vg(e")]

_ ¢k —
ey =0

lim sup
gk ,ex —gq £ Aer
E—&o

Combining these results we obtain

(8, &) — ¢(9,€)]|

: <k-+0
&% — &*|]

lim sup
gF,eF —go el ek
19*}190

which is the desired result. [ ]

We continue our theoretical analysis by proving that, by
strong regularity of f)(,{k) and Lipschitz continuity of
&(Y, -), the KKT conditions of (6) have a locally unique
solution at &* if ¥¥ = (¢*,1%) is sufficiently close to ©.

Proposition 1: Let ¥g = (£o,lp) € O; the solution map
H of (9) has a single-valued localization i : X — 7T around
& for Yo; and K is Lipschitz continuous around &, with
constant Y.

Proof: Define g : 9 — $(9,&); then ¢o(d) equals
$(9, €F) around vy if €F — &y by continuity and @o + N =
Ly is strongly regular with constant v by Assumption 2.
Moreover, ¢(1J, £F) is Lipschitz continuous with respect to
& around (g, &) with constant x by Lemma 2. By virtue
of Theorem 1, there exists a Lipschitz continuous, single-
valued localization /& of H around &y for ¥y with constant
vk, the desired result. |

In consequence, the convex problems (6) and (8) at £ k are
not only feasible but have unique solutions around &.

Lemma 3: Let ¥ = (£,1p) € ©; then h(&¥) = (&4,14)
around &.

Proof: By Proposition 1, there exists a single-valued lo-
calization A(¢%) of H around &y; that is, H(£F) is nonempty
and, by Lemma 1, a convex set that contains (£, ) around
€. On the other hand, H(¢F) contains the isolated point
h(&%) and thus is a singleton. Hence, h(¢F) = (&4,14)
around &. [ |

It rests to prove that the next iterate, subject to the line
search, converges towards a KKT point as well.
Proposition 2: Let (£y,1p) € ©; if ¢F.¢,, and 1, are
sufficiently close to (&g, o), then the solution of (7) satisfies
7 >n/k.
Proof: If # < 1, then ¢'(#) — n = 0. The derivative is

P (r) = (f — Vg((r) I, & — €5
where £(r) =aer 7€+ + (1 — 7)€", Since (&4,14) € H(EF),
P(0) = (f, &) — (f — Vg(€") Ly, £) — (Vg(€¥) "1y, &)
= _<v9(§k)*l+7§+ - §k> - <l+7g(§k)> - <87§k>
= (5,6 — (L) <0

where the equalities follow from (6) and (8) as well as
(f,¢+) = {(l4,7k), and the inequality follows from the
definition of the dual cone. Since Vg(£)*! is Lipschitz
continuous around (&g, lo) by Assumption 2, we have that

%' (r) =9/ (0)] < wll&s — "7



With 9/(0) < 0 and ¢/(#) =71 > 0 as well as [|& — &F|| <
g — €oll + 1€ — €% < 1. if # < 1 and &, and £* are
sufficiently close to &y, we conclude that k7 > 7. |
We combine our results into a local convergence property
of the sequential approach.
Theorem 2: Let ¥y = (&, lp) € O and suppose that yx <
1; there exists a constant « € (0,1) such that

|97 = ol < af[9™ — o]

if 9% € T is sufficiently close to ©.

Proof: Let 9% = (¢* 1¥); by Proposition 1, there exists
a single-valued localization / of the solution mapping H
around &, for ¥ satisfying

1R(€R) — R(E)|| < yrlie" — €|

for any &%, ¢¥ € X in a neighbourhood of &. Then ¥y =
h(&) as well as ¥4 = (£4,14) = h(£¥) by Lemma 3 and

19941 = doll = 10+ — Do) + (1 = #)(0" ~ o)]
Pyil|€F = &l + (1 = ) [[9" — o
< (1 =7+ yw)[[9% — o

as [|€F —&o|| < ||9F—Vo]|. Since # > w > 0 by Proposition 2,
setting & = 1 —w(1 — vk) € [yK, 1) is the desired result. W

Our assumptions in the proof of Theorem 2 are similar to
the assumptions in [35], which proved local convergence of
sequential convex programming in the Euclidean space and
without a line search. However, if we omit the line search
(r = 1) the rate of convergence we obtain in the proof,
namely o = vk, is better than this previous result.

(10)

IN

VI. NUMERICAL EXAMPLES

The region of attraction of a nonlinear dynamic system
Z = ¢(x) is defined as the set of initial conditions for
which the system trajectories converge to an equilibrium
point, here the origin. Estimating the region of attraction
is a classical problem in nonlinear systems analysis and a
recurrent application of sum-of-squares methods, provided
that the dynamics are represented by polynomial equations of
motion. One aims to find a polynomial Lyapunov candidate
function v € Ry[x] that decays along trajectories starting in
a sublevel set of v, that is, there exists ¢ > 0 such that

(x) = Oyv(x)p(z) <0 (11)

for all z # 0 satisfying v(z) < . If (11) is satisfied, then
{z € R"|v(z) <.} is an invariant subset of the region of
attraction [43, Theorem 2].

TABLE I
COMPUTATION DETAILS OF SEQUENTIAL SUM-OF-SQUARES
PROGRAMMING FOR REGION-OF-ATTRACTION ESTIMATION.

| Dynamics do di  dp [ Final value Iterations Time |
Short-period 2 0 2 —1.515 8 2.77s
4 2 4 —1.772 9 3.70s
Longitudinal 2 0 4 —0.354 20 9.28s
4 2 4 —2.788 16 25.24s

I Terminated early due to numerical issues of MOSEK; the nonlinear sum-
of-squares constraint was satisfied with a tolerance of 1.52 x 1072.

In order to lower bound the volume of the region of attrac-
tion estimate, a polynomial shape p € R[z] is introduced. For
any ¢ > 0, the nonlinear sum-of-squares problem is given as

min —b

vERy, [z],bER

G1€Rg, [z],52€R 4, [7]
S2(v—1t) — Oy — 0 € T[]
silp—b)—v+4+1€ Xglx
1) alel )
v—0 € g, ]
$1 € X, [x], s2 € By, (]

where o is small, positive-definite polynomial; we choose
0=10"5%"", z7. Eq. (12) has been considered for region
of attraction estimation [20, 23, 31, 45, 46] as well as, with
minor modifications, for reachability [| 1], control synthesis
[11, 20], or robust stability [22, 26]. In these works, the bilin-
earities are split into an iteration of convex and quasiconvex
subproblems via coordinate descent.

We have applied sequential sum-of-squares programming
to estimate the region of attraction of the short-period
(two states) and longitudinal (four states) dynamics of an
airplane.” The equations of motion ¢ are cubic polynomials
in the two-state case and quintic polynomials in the four-
state case; we fix ¢+ = 1; and solve for quadratic and
quartic Lyapunov functions in both cases. The degrees of
the decision variables s; and sy as well as number of
iterations, computation time, and final value of the objective
are detailed in Tab. I. The initial guess for v has been
the quadratic Lyapunov function of the linearized dynamics;
b = 1; and the variables s; and s, have been initialized
to homogeneous polynomials given in the appendix. The
computations have been terminated once the change in the
primal variables was below a absolute tolerance ¢, = 1076
and the change of the dual variables was below a relative
tolerance €} = 1075||1¥|...

TABLE II
COMPUTATION DETAILS OF THE ITERATIVE APPROACH OF [ ] FOR
REGION-OF-ATTRACTION ESTIMATION.
[ Dynamics do di  dp [ Final value Iterations Time |
Short-period 2 0 2 —1.514 20 10.94s
4 2 4 —1.760 40 48.06s
Longitudinal 2 0 4 —0.353 22 113.21s
4 2 4 —2.749 66 465.50s

For comparison, running the iterative approach of [31]
took considerably longer without reaching the same final
values (Tab. II); the differences are particularly noticeable
for quartic Lyapunov functions. The computationally most
expensive part of both algorithms are the semidefinite re-
laxations of the convex sum-of-squares subproblems. In
the sequential approach, the semi-definite problem is larger
(both with respect to the number of matrix variables N
and the number of constraints M) since all polynomial
decision variables are solved for at the same time; yet in the

2See [31] and its appendix for details.



iterative approaches, numerous convex problems are solved
in each iteration. We compare the per-iteration effort for
both approaches to solve the region of attraction estimation
problems. Based on the assumption that the computational
cost for a semidefinite problem is roughly of order N3M
[47], Fig. 1 details how the order of the computational cost in
each iteration grows with the number of states and degree of
polynomials for the region of attraction estimation. Overall,
the cost of in each iteration of the sequential approach is
about ten times lower than the cost of the iterative approach.

1015 [ |
§ 1012 ; ;
[ [ -
S
s - -
T o100 ) .
© - —e— sequential ||

108 I —m— iterative | |

L I I T T ]
n=2 n=2 n=4 n=4

do = 2 do =4 do =2 do =4

Fig. 1. Comparison of computational cost in each iteration of the sequential
sum-of-squares and the iterative approach of [31].

VII. CONCLUSIONS

This paper studies the solution of nonlinear convex pro-
grams by a sequential algorithm with the addition of a line
search. Theorem 2 shows that the algorithm still converges
with the line search. As expected, it does not improve
the local rate of convergence o. However, we observe in
numerical experiments an improvement in the both radius
and rate of global convergence and leave proofs of these
behaviors as future work.

While the paper analyses the sequential algorithms on
arbitrary (possibly infinite dimensional) Banach spaces, we
only apply it to the finite-degree sum-of-squares cone of
polynomials with finite degree. In [39], the authors shows
how to leverage special properties of the sum-of-squares
cone for solving the nonconvex Burer-Monteiro formulation.
We are currently investigating whether such refined analysis
could allow the sequential algorithm to exploit the structure
of the sum-of-squares cone as well.

APPENDIX

For the computations detailed in Tab. I, the following
initializations of the multipliers s; and s were used:

n:2, d0:27 81:1, 82:.%'%"_!@%
n=2 dy=4 =22 + a2 =23 + a3
=2, do=4, s51=2]+2T3 S2=2]+2;
_ _ _ N L2
n=4, dop=2, s1=1, SZ—Zizlxi
_ _ " 2 _ no_92\2
n=4, do=4, s1=>, 27, s2= (> ,_4;)

where n is the number of states and dy the degree of the
Lyapunov function.

All numerical examples were performed on a 2.8 GHz
quad-core Intel Core i7 processor with 16 GB of memory.

We use SOSOPT for the convex sum-of-squares problem and
MOSEK for semidefinite programming. Source code is avail-
able at https://github.com/tcunis/bisosprob.
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