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Sequential sum-of-squares programming for analysis of nonlinear

systems⋆

Torbjørn Cunis1 and Benoît Legat2

Abstract— Numerous interesting properties in nonlinear sys-
tems analysis can be written as polynomial optimization prob-
lems with nonconvex sum-of-squares problems. To solve those
problems efficiently, we propose a sequential approach of
local linearizations leading to tractable, convex sum-of-squares
problems. Local convergence is proven under the assumption of
strong regularity and the new approach is applied to estimate
the region of attraction of a polynomial aircraft model.

I. INTRODUCTION

Polynomials that can be written as a sum of squares

are a strict subset of the nonnegative polynomials. While

determining whether a given polynomial does not assume

negative values is computationally hard, Parillo [1] showed

in his seminal paper that convex optimization over sum-

of-squares polynomials can be reduced to semidefinite pro-

gramming. His works, as well as the development of the

dual approach via moments by Lasserre [2], and the advent

of efficient algorithms for semidefinite problems laid the

foundation for numerical analysis of nonlinear systems with

polynomial dynamics that is today known as sum-of-squares

programming.

Applications of convex sum-of-squares programming in-

clude stability verification for hybrid systems [3–7], opti-

mization algorithms and optimization-based control [8–10],

control synthesis [11–14], and many more. As these ap-

proaches often make use of Lyapunov-type functions and dis-

sipativity inequalities, many sum-of-squares constraints for

polynomial dynamics can be viewed as the natural extension

of linear matrix inequalities for linear systems [15]. However,

unlike in the linear case, most properties of nonlinear systems

such as asymptotic stability, invariance, or controllability

often are valid on a region of the system’s state-space only.

The problem of determining the region of attraction [16], for

example, thus consists of finding a Lyapunov candidate V
and a region X (often a sublevel set) as well as certifying that

V decays strictly on X . If V and the describing function of

X are polynomial decision variables, estimating the region of

attraction is a nonconvex, nonlinear sum-of-squares problem

by the Positivstellensatz of the reals [17].

Despite nonlinear sum-of-squares problems being compu-

tationally hard, local analysis of stability and other properties

of polynomial dynamics with sum-of-squares programming

has been extensively studied [18–28]. Here, the (mostly
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bilinear) nonconvex constraints have been mitigated by bi-

sections [29], coordinate descent [30], and combinations of

both. Yet, except for quasiconvex problems, convergence

is not guaranteed (see remarks in [31]). Given that the

underlying semidefinite problems scale notoriously with the

polynomial degree, it is desirable to limit the number of

convex evaluations.

In this paper, we take inspiration from sequential convex

programming [32–36] and study a sequential approach for

nonlinear conic problems which we combine with a line

search using a merit function from Powell [37]. The nonlin-

ear problem is linearized around a solution candidate in order

to obtain an affine conic problem. For the sum-of-squares

cone, sum-of-squares toolboxes such as SPOT, SOSOPT, or

SOSTOOLS are readily available to solve the local problems

via reduction to a semidefinite program; and more recently,

direct implementations of the sum-of-squares cone have been

proposed [38, 39]. Similar to the affine case, nonlinear sum-

of-squares problems could directly be reduced to a nonlinear

semidefinite program; yet the authors are only aware of the

toolbox SUMOFSQUARES.JL [40] for that purpose, which is

limited to quadratic expressions. Moreover, the semidefinite

representation of a sum-of-squares polynomial is nonunique

(see comments in [1, Section 3.2]); yet uniqueness of the

solution is usually assumed for convergence.

We prove local convergence of the sequence of convex

problems using a result from variational analysis [41] that

builds upon the implicit function theorem for strongly regular

generalized equations by Robinson [42]. As this result is

stated for (possibly infinite dimensional) Banach spaces, our

analysis works in the general setting of nonlinear conic

programs with convex cones embedded in Banach spaces.

Since the vector space of polynomials is not complete, we

limit ourselves to optimization problems with fixed polyno-

mial degree but our sequential algorithm can be applied to

other cones as well. We further investigate the line search

based on the dual theory of affine sum-of-squares optimiza-

tion. Numerical results for practical engineering problems

demonstrate that sequential sum-of-squares programming

significantly reduces the number of convex problems to be

solved and thus the computation time compared to previous,

iterative approaches.

Our proof generalizes [35] in two aspects. First, we

consider convex cones in arbitrary Banach spaces rather than

embedded in Rn. Second, we show that the convergence still

holds if a line search is used to improve convergence speed.

Moreover, by use of variational analysis, our paper provides

a simpler proof while obtainig a tighter convergence rate.
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The remainder of the paper is organized as follows:

Section II introduces the tools from variational analysis and

Section III motivates and states the problem of nonlinear

sum-of-squares optimization. The sequential programming

approach is detailed in Section IV and local convergence is

proven in Section V. In Section VI, the sequential approach

is applied to problems from nonlinear system analysis.

Notation: N (resp., N0) and R denote the natural

numbers excluding (resp., including) zero and the reals,

respectively. For some m ∈ N, the set of symmetric (resp.,

positive semidefinite) matrices in Rm×m is Sm (resp., S+m).

II. PRELIMINARIES

Let X , Y , and P be Banach spaces. The dual space X∗

is set of linear operators l : X → R is X∗ with evaluation

〈·, ·〉 : X∗ × X → R. Moreover, the adjunct of a linear

mapping A : X → Y is the linear mapping A∗ : Y ∗ → X∗

satisfying 〈l, A(ξ)〉 = 〈A∗(l), ξ〉 for all ξ ∈ X and l ∈ Y ∗.

A. Normals & Gradients

A convex cone is a set C ⊂ X satisfying r1ξ1+ r2ξ2 ∈ C
for all ξ1, ξ2 ∈ C and r1, r2 ∈ R≥0. The dual cone of C is

defined as

C∗ = {v ∈ X∗ | 〈v, ξ〉 ≥ 0 for all ξ ∈ X}

and the dual of C∗ is isometric to C. Moreover, for a convex

set Ω ⊂ X , the normal cone mapping NΩ : X ⇒ X∗ is given

by

NΩ(ξ0) = {w ∈ X∗ | 〈w, ξ − ξ0〉 ≤ 0 for all ξ ∈ Ω}

if ξ0 ∈ Ω, and NΩ(ξ0) = ∅ otherwise.

Definition 1: The (Fréchet) derivative of a nonlinear func-

tion g : X → Y at ξ0 ∈ X is a linear mapping ∇g(ξ0) :
X → Y satisfying

lim
ξ→ξ0

g(ξ0) +∇g(ξ0)(ξ − ξ0)− g(ξ)

‖ξ0 − ξ‖
= 0

and g is (Fréchet) differentiable if and only if ∇g(ξ0) exists

for all ξ0 ∈ X .

B. Continuity & Regularity

Let h : X × P → Y be a function and H : X ⇒ Y be

a set-valued mapping. h is said to be Lipschitz continuous

with respect to ξ around (ξ0, π0) ∈ int domh if and only if

lim sup
ξ,ξ′→ξ0,ξ 6=ξ′

π→π0

‖h(ξ′, π)− ψ(ξ, π)‖

‖ξ′ − ξ‖
= κ

with constant κ < ∞. Moreover, H is said to have a single-

valued localization h : X ′ → Y ′ around ξ0 ∈ X for υ0 ∈ Y
if and only if X ′ ⊂ X and X ′ ⊂ X are neighbourhoods of ξ0
and υ0, respectively, h(ξ0) = υ0, and H(ξ) ∩ Y ′ = {h(ξ)}
for all ξ ∈ X ′. If the inverse H−1 : υ 7→ {ξ ∈ X | υ ∈
H(ξ)} has a single-valued localization around υ0 for ξ0 that

is Lipschitz continuous around υ0 with constant γ, then H
is called strongly regular at ξ0 for υ0 with constant γ.

Theorem 1 (Theorem 8.8 of [41]): Take ψ : X × P →
Y and N : X ⇒ Y ; suppose ψ is Lipschitz continuous

with respect to π around (ξ0, π0) with constant κ and 0 ∈
ψ(ξ0, π0) + N(ξ0); if there exists ψ0 : X → Y such that

ψ0(ξ) = ψ(ξ, π) around ξ0 if π → π0 and ψ0+N is strongly

regular at ξ0 for 0 with constant γ, then the mapping

H : π 7→ {ξ ∈ X |ψ(ξ, π) +N(ξ) ∋ 0}

has a Lipschitz continuous, single-valued localization around

π0 for ξ0 with constant γκ. ◭

III. SUM-OF-SQUARES OPTIMIZATION

Let x = (x1, . . . , xn) be a tuple of free variables and

α = (α1, . . . , αn) ∈ Nn
0 a multi-index; a polynomial π in x

up to degree d is a linear combination

π =
∑

‖α‖1≤d

cαx
α

where xα = xα1

1 · · ·xαn

n and ‖α‖1 =
∑

i αi. The set Rd[x]
of polynomials in x with real coefficients cα ∈ R up to

degree d forms a vector space with norm ‖ · ‖.

Definition 2: A polynomial π ∈ Rd[x] is a sum-of-squares

polynomial (π ∈ Σd[x]) if and only if there exist m ∈ N and

π1, . . . , πm ∈ Rd[x] such that π =
∑m

i=1(πi)
2.

It is easy to see that Σd[x] forms a convex cone in Rd[x].
Moreover, its dual cone Σd[x]

∗ is isometric to the cone of

sum-of-squares polynomials [2].

To avoid confusion with the Fréchet derivative ∇ (with

respect to the space of polynomials), we are going to use

∂x : Rd[x] → Rd[x]
1×n for the differentiation operator with

respect to the free variables x.

A convex sum-of-squares optimization problem can be

reduced to a semidefinite program. This is the fundamental

result of [1, Theorem 3.3], which reads as follows; denote

by sd ∈ N0 the number of monomials up to degree d of

a polynomial in x. A polynomial π ∈ R2d[x] is sum-of-

squares if and only if there exists a matrix Q ∈ S+sd satisfying

π = ζ⊤Qζ, where ζ ∈ Rd[x]
sd is the vector of monomials

up to degree d. The solution for Q is usually not unique,

leading to the implicit (or kernel) and explicit (or image)

relaxations of an affine sum-of-squares problem.

A. Motivation

Consider a continuous-time dynamic system defined by

the differential equation

ẋ = φ(x) (1)

where x ∈ Rn denotes the state vector and φ : Rn → Rn

is a polynomial function satisfying φ(0) = 0. Many system-

theoretic properties on a domain D ⊂ Rn can be written as

polynomial dissipativity inequality of the form

∀x ∈ R
n, x ∈ D =⇒ ∂xV (x)φ(x) ≤ S(x) (2)

where V ∈ R[x] and S ∈ R[x] are called storage function

and supply rate, respectively. The set D usually depends on

V ; for example, if D is a sublevel set of V and V and S
are positive definite polynomials, then Eq. (2) is LaSalle’s

condition for asymptotic stability [43, Theorem 2].



In the sum-of-squares literature, the dissipativity condition

is rewritten using the so-called generalized S-procedure [29].

Suppose D = {x ∈ Rn | ℓV (x) ≥ 0} for some ℓV ∈ Rd[x],
then if there exists ς ∈ Σd[x] such that

(S − ∂xV φ)− ςℓV ∈ Σd′ [x] (3)

then V and S satisfy (2). However, since ℓV depends on

V , the sum-of-squares constraint (3) is nonlinear. Previous

approaches to optimize over nonlinear sum-of-squares con-

straint relied on solving for one variable at a time while

keeping the remaining variables fixed (see, e.g., [29–31]).

B. Nonlinear optimization problem

In general, a polynomial optimization problem with non-

convex sum-of-squares constraints takes the form of a non-

linear optimization

min
ξ∈X

〈f, ξ〉 s.t. g(ξ) ∈ D and ξ ∈ C (4)

where X and Y are Banach spaces, f ∈ X∗ is a linear

cost, g : X → Y is a differentiable constraint mapping, and

C ⊂ X and D ⊂ Y are convex cones. In the case of sum-

of-squares, X and Y correspond to spaces of polynomial up

to a finite degree with sum-of-squares cones C and D and

g takes polynomial values.

Define the Lagrangian as L(ξ, l) = 〈f, ξ〉−〈l, g(ξ)〉, where

l ∈ Y ∗ is a Lagrange multiplier; the Karush-Kuhn-Tucker

(KKT) conditions for (4) at ξ0 ∈ X are

f −∇g(ξ0)
∗l − s = 0

〈s, ξ0〉 = 0, 〈l, g(ξ0)〉 = 0

ξ0 ∈ C, g(ξ0) ∈ D

where s ∈ C∗ and l ∈ D∗ are dual variables associated with

the cone constraints.

Define ϑ = (ξ, l) and T = X × Y ∗. With a small abuse

of notation, we identify g(ξ) as an element of D∗∗ using the

canonical isomorphism between D and D∗∗. Then the KKT

conditions are equivalent to (−s,−g(ξ)) belonging to the

normal cone of C×D∗ at (ξ0, l0) ∈ T . The KKT conditions

can thus be written as generalized equation

ϕ(ϑ) +N(ϑ) ∋ 0 (5)

where ϕ : T → T ∗ and N : T ⇒ T ∗ are defined as

ϕ : ϑ 7→ (f −∇g(ξ)∗l, g(ξ))

and

N : ϑ 7→ {(v, ζ) ∈ T ∗ | v ∈ NC(ξ), ζ ∈ ND∗(l)}

respectively. We denote the solutions to (5) by Θ ⊂ T .

Assumption 1: The set Θ is nonempty.

Under a suitable constraint qualification, existence of a

KKT point is necessary for an optimal solution of (4).

IV. SEQUENTIAL PROGRAMMING

We propose to approach the nonlinear problem (4) with

a sequence of local, convex problems. To that extent, let

ξk ∈ X with k ∈ N0 be the solution of the k-th iteration

and lk ∈ Y ∗ be the associated Lagrange multiplier. Pick

tolerances ǫk, ǫ
∗
k > 0 for the primal and dual solutions as

well as a small weight η > 0. Our next instance (ξk+1, lk+1)
is subject to the steps:

1) Solve the convex problem at ξk,

min
ξ∈X, ς∈Y

〈f, ξ〉 (6a)

s.t. g(ξk) +∇g(ξk)(ξ − ξk) = ς (6b)

and ξ ∈ C, ς ∈ D (6c)

and denote the optimal solution as ξ+ and the associ-

ated Lagrange multiplier as l+.

2) Solve the line search

min
r∈R

ψ(r) − ηr s.t. 0 < r ≤ 1 (7)

where ψ : r 7→ L(rξ++(1− r)ξk, l+), and denote the

optimal solution as r̂.

3) Set ξk+1 = r̂ξ++(1−r̂)ξk and lk+1 = r̂l++(1−r̂)lk.

We terminate the iteration if both ‖ξk+1 − ξk‖ ≤ ǫk and

‖lk+1 − lk‖∗ ≤ ǫ∗k, where ‖ℓ‖∗ denotes the operator norm

of ℓ : Y → R. Otherwise, we repeat the steps for k + 1.

As linear problem, (6) has a dual problem at ξk, viz.

max
l∈Y ∗, s∈X∗

〈l, γk〉 (8a)

s.t. f −∇g(ξk)∗l − s = 0 (8b)

and l ∈ D∗, s ∈ C∗ (8c)

where γk
def
= ∇g(ξk)ξk−g(ξk). In the following analysis, we

will assume that the Lagrange multiplier l+ is the optimal

solution of (8), provided it exists. If (ξ0, l0) ∈ T satisfy the

KKT conditions

f −∇g(ξk)∗l0 − s = 0

〈s, ξ0〉 = 0, 〈l0,∇g(ξk)ξ0 − γk〉 = 0

(ξ0, l0) ∈ C ×D∗, ∇g(ξk)ξ0 − γk ∈ D

for some s ∈ C∗, then ξ0 and l0 are optimal solutions for

(6) and (8), respectively, and satisfy 〈f, ξ0〉 = 〈l0, γk〉.

V. THEORETICAL ANALYSIS

We are going to prove local convergence of the sequential

algorithm using a parametrized version of the generalized

equation (5); define

ϕ̂ : (ϑ, ξk) 7→ (f −∇g(ξk)∗l, ∇g(ξk)ξ − γk)

then ϑ0 = (ξ0, l0) ∈ Θ if and only if it solves

L̂(ϑ, ξk)
def
= ϕ̂(ϑ, ξk) +N(ϑ) ∋ 0 (9)

at ξk = ξ0. In other words, the generalized equation (9) can

be understood as linearization of (5) around ξk. The set of

KKT points of (6) at ξk ∈ X is given by

H(ξk) = {ϑ ∈ T | L̂(ϑ, ξk) ∋ 0}

the solution map of (9).



The following result is a special case of [44, Theo-

rem 2F.1] for solution mappings of monotone variational

inequalities and proved here for completeness.

Lemma 1: Let ξk ∈ X ; if H(ξk) is nonempty, then H(ξk)
is a convex set containing (ξ+, l+).

Proof: Denote the set of optimal solutions to (6) and (8)

by S ⊂ X × Y ∗. Assume that H(ξk) is nonempty, take

(ξ0, l0) ∈ H(ξk) and (ξ+, l+) ∈ S. By sufficiency of the

KKT conditions, (ξ0, l0) ∈ S and 〈f, ξ0〉 − 〈l0, γk〉 = 0.

Since 〈f, ξ+〉 ≤ 〈f, ξ0〉 and 〈l+, γk〉 ≥ 〈l0, γk〉 by primal

and dual optimality,

0 ≥ 〈f, ξ+〉 − 〈l+, γk〉

= 〈∇g(ξk)∗l+ + s, ξ+〉 − 〈l+, γk〉

= 〈l+,∇g(ξk)ξ+ − γk〉+ 〈s, ξ+〉

with s ∈ C∗. Since 〈l+,∇g(ξk)ξ+ − γk〉 ≥ 0 and 〈s, ξ+〉 ≥
0, the inequalities are tight and (ξ+, l+) ∈ H(ξk). Hence,

H(ξk) = S, a convex set.

Combining Assumption 1 with Lemma 1, a KKT point

(ξ0, l0) of the nonlinear problem (4) is a candidate stationary

condition of the sequential algorithm. However, we have

yet to prove that (ξ+, l+) is the unique solution of the

parametrized variational inequality (9) around ξ0. To that

extent, we make the following, standing assumptions.

Assumption 2: For all (ξ0, l0) ∈ Θ, the mapping L0 =
L̂(·, ξ0) is strongly regular at (ξ0, l0) for 0 with constant γ.

By definition, strong regularity of L0 requires that L−1
0 (δ)

has a single-valued localization around δ = 0 for ϑ0, which

is equivalent to a perturbed convex problem having unique

solutions for small perturbations δ ∈ T ∗ [35].

Assumption 3: For all (ξ0, l0) ∈ Θ, the gradient ∇g(ξ)
is Lipschitz continuous around ξ0 and the mapping ∇g(ξ)∗l
has the Lipschitz constant κ with respect to ξ around (ξ0, l0).

If g is twice differentiable at ξ0, then ∇g(ξ) is Lipschitz

continuous at ξ0 and the constant κ is determined by the

norm of its second derivative. We note the following impli-

cation of Assumption 3.

Lemma 2: Let ϑ0 = (ξ0, l0) ∈ Θ; the mapping ϕ̂(ϑ, ξk)
is Lipschitz continuous with respect to ξk around (ϑ0, ξ0)
with constant κ.

Proof: By Assumption 3, the first component of

ϕ̂(ϑ, ξk) satisfies

lim sup
ξk,ξk

′

→ξ0,ξ
k 6=ξk

′

l→l0

‖∇g(ξk
′

)∗l −∇g(ξk)∗l‖

‖ξk′ − ξk‖
≤ κ

and a difference in the second component can be written as

g(ξk) +∇g(ξk)(ξ − ξk)− g(ξk
′

)−∇g(ξk
′

)(ξ − ξk
′

)

=
[

∇g(ξk
′

)−∇g(ξk)
]

(ξ − ξk)− e(ξk, ξk
′

)

where e : (ξk, ξk
′

) 7→ g(ξk
′

)+∇g(ξk
′

)(ξk−ξk
′

)−g(ξk). By

definition of the Fréchet derivative and Lipschitz continuity

of ∇g(ξ) around ξ0, we conclude that

lim sup
ξk,ξk

′→ξ0,ξk 6=ξk
′

e(ξk, ξk
′

)

‖ξk′ − ξk‖
= 0

and

lim sup
ξk,ξk

′

→ξ0,ξ
k 6=ξk

′

ξ→ξ0

‖∇g(ξk
′

)−∇g(ξk)‖

‖ξk′ − ξk‖
(ξ − ξk) = 0.

Combining these results we obtain

lim sup
ξk,ξk

′

→ξ0,ξ
k 6=ξk

′

ϑ→ϑ0

‖ϕ̂(ϑ, ξk
′

)− ϕ̂(ϑ, ξk)‖

‖ξk′ − ξk‖
≤ κ+ 0

which is the desired result.

We continue our theoretical analysis by proving that, by

strong regularity of L̂(·, ξk) and Lipschitz continuity of

ϕ̂(ϑ0, ·), the KKT conditions of (6) have a locally unique

solution at ξk if ϑk = (ξk, lk) is sufficiently close to Θ.

Proposition 1: Let ϑ0 = (ξ0, l0) ∈ Θ; the solution map

H of (9) has a single-valued localization ~ : X → T around

ξ0 for ϑ0; and ~ is Lipschitz continuous around ξ0 with

constant γκ.

Proof: Define ϕ0 : ϑ 7→ ϕ̂(ϑ, ξ0); then ϕ0(ϑ) equals

ϕ̂(ϑ, ξk) around ϑ0 if ξk → ξ0 by continuity and ϕ0 +N =
L0 is strongly regular with constant γ by Assumption 2.

Moreover, ϕ̂(ϑ, ξk) is Lipschitz continuous with respect to

ξk around (ϑ0, ξ0) with constant κ by Lemma 2. By virtue

of Theorem 1, there exists a Lipschitz continuous, single-

valued localization ~ of H around ξ0 for ϑ0 with constant

γκ, the desired result.

In consequence, the convex problems (6) and (8) at ξk are

not only feasible but have unique solutions around ξ0.

Lemma 3: Let ϑ0 = (ξ0, l0) ∈ Θ; then ~(ξk) = (ξ+, l+)
around ξ0.

Proof: By Proposition 1, there exists a single-valued lo-

calization ~(ξk) of H around ξ0; that is, H(ξk) is nonempty

and, by Lemma 1, a convex set that contains (ξ+, l+) around

ξ0. On the other hand, H(ξk) contains the isolated point

~(ξk) and thus is a singleton. Hence, ~(ξk) = (ξ+, l+)
around ξ0.

It rests to prove that the next iterate, subject to the line

search, converges towards a KKT point as well.

Proposition 2: Let (ξ0, l0) ∈ Θ; if ξk, ξ+, and l+ are

sufficiently close to (ξ0, l0), then the solution of (7) satisfies

r̂ ≥ η/κ.

Proof: If r̂ < 1, then ψ′(r̂)− η = 0. The derivative is

ψ′(r) = 〈f −∇g(ξ(r))∗l+, ξ+ − ξk〉

where ξ(r) =def rξ+ + (1− r)ξk . Since (ξ+, l+) ∈ H(ξk),

ψ′(0) = 〈f, ξ+〉 − 〈f −∇g(ξk)∗l+, ξ
k〉 − 〈∇g(ξk)∗l+, ξ+〉

= −〈∇g(ξk)∗l+, ξ+ − ξk〉 − 〈l+, g(ξ
k)〉 − 〈s, ξk〉

= −〈s, ξk〉 − 〈l+, ς〉 ≤ 0

where the equalities follow from (6) and (8) as well as

〈f, ξ+〉 = 〈l+, γk〉, and the inequality follows from the

definition of the dual cone. Since ∇g(ξ)∗l is Lipschitz

continuous around (ξ0, l0) by Assumption 2, we have that

|ψ′(r)− ψ′(0)| ≤ κ‖ξ+ − ξk‖2r.



With ψ′(0) ≤ 0 and ψ′(r̂) = η > 0 as well as ‖ξ+ − ξk‖ ≤
‖ξ+ − ξ0‖ + ‖ξ0 − ξk‖ < 1, if r̂ < 1 and ξ+ and ξk are

sufficiently close to ξ0, we conclude that κr̂ ≥ η.

We combine our results into a local convergence property

of the sequential approach.

Theorem 2: Let ϑ0 = (ξ0, l0) ∈ Θ and suppose that γκ <
1; there exists a constant α ∈ (0, 1) such that

‖ϑk+1 − ϑ0‖ ≤ α‖ϑk − ϑ0‖ (10)

if ϑk ∈ T is sufficiently close to Θ.

Proof: Let ϑk = (ξk, lk); by Proposition 1, there exists

a single-valued localization ~ of the solution mapping H
around ξ0 for ϑ0 satisfying

‖~(ξk)− ~(ξk
′

)‖ ≤ γκ‖ξk − ξk
′

‖

for any ξk, ξk
′

∈ X in a neighbourhood of ξ0. Then ϑ0 =
~(ξ0) as well as ϑ+ = (ξ+, l+) = ~(ξk) by Lemma 3 and

‖ϑk+1 − ϑ0‖ = ‖r̂(ϑ+ − ϑ0) + (1− r̂)(ϑk − ϑ0)‖

≤ r̂γκ‖ξk − ξ0‖+ (1− r̂)‖ϑk − ϑ0‖

≤ (1− r̂ + r̂γκ)‖ϑk − ϑ0‖

as ‖ξk−ξ0‖ ≤ ‖ϑk−ϑ0‖. Since r̂ ≥ ω > 0 by Proposition 2,

setting α = 1−ω(1− γκ) ∈ [γκ, 1) is the desired result.

Our assumptions in the proof of Theorem 2 are similar to

the assumptions in [35], which proved local convergence of

sequential convex programming in the Euclidean space and

without a line search. However, if we omit the line search

(r̂ ≡ 1) the rate of convergence we obtain in the proof,

namely α = γκ, is better than this previous result.

VI. NUMERICAL EXAMPLES

The region of attraction of a nonlinear dynamic system

ẋ = φ(x) is defined as the set of initial conditions for

which the system trajectories converge to an equilibrium

point, here the origin. Estimating the region of attraction

is a classical problem in nonlinear systems analysis and a

recurrent application of sum-of-squares methods, provided

that the dynamics are represented by polynomial equations of

motion. One aims to find a polynomial Lyapunov candidate

function v ∈ Rd[x] that decays along trajectories starting in

a sublevel set of v, that is, there exists ι > 0 such that

v̇(x) = ∂xv(x)φ(x) < 0 (11)

for all x 6= 0 satisfying v(x) ≤ ι. If (11) is satisfied, then

{x ∈ Rn | v(x) ≤ ι} is an invariant subset of the region of

attraction [43, Theorem 2].

TABLE I

COMPUTATION DETAILS OF SEQUENTIAL SUM-OF-SQUARES

PROGRAMMING FOR REGION-OF-ATTRACTION ESTIMATION.

Dynamics d0 d1 d2 Final value Iterations Time

Short-period 2 0 2 −1.515 8 2.77 s

4 2 4 −1.772 9 3.70 s

Longitudinal 2 0 4 −0.354 20 9.28 s

4 2 4 −2.788 161
25.24 s

1Terminated early due to numerical issues of MOSEK; the nonlinear sum-
of-squares constraint was satisfied with a tolerance of 1.52× 10

−5.

In order to lower bound the volume of the region of attrac-

tion estimate, a polynomial shape p ∈ R[x] is introduced. For

any ι > 0, the nonlinear sum-of-squares problem is given as

min
v∈Rd0

[x],b∈R

ς1∈Rd1
[x],ς2∈Rd2

[x]

−b

s.t.



















s2(v − ι)− ∂xv φ− ̺ ∈ Σd′ [x]

s1(p− b)− v + ι ∈ Σd′ [x]

v − ̺ ∈ Σd0
[x]

s1 ∈ Σd1
[x], s2 ∈ Σd2

[x]

(12)

where ̺ is small, positive-definite polynomial; we choose

̺ = 10−6
∑n

i=1 x
2
i . Eq. (12) has been considered for region

of attraction estimation [20, 23, 31, 45, 46] as well as, with

minor modifications, for reachability [11], control synthesis

[11, 20], or robust stability [22, 26]. In these works, the bilin-

earities are split into an iteration of convex and quasiconvex

subproblems via coordinate descent.

We have applied sequential sum-of-squares programming

to estimate the region of attraction of the short-period

(two states) and longitudinal (four states) dynamics of an

airplane.2 The equations of motion φ are cubic polynomials

in the two-state case and quintic polynomials in the four-

state case; we fix ι ≡ 1; and solve for quadratic and

quartic Lyapunov functions in both cases. The degrees of

the decision variables s1 and s2 as well as number of

iterations, computation time, and final value of the objective

are detailed in Tab. I. The initial guess for v has been

the quadratic Lyapunov function of the linearized dynamics;

b = 1; and the variables s1 and s2 have been initialized

to homogeneous polynomials given in the appendix. The

computations have been terminated once the change in the

primal variables was below a absolute tolerance ǫk ≡ 10−6

and the change of the dual variables was below a relative

tolerance ǫ∗k = 10−6‖lk‖∗.

TABLE II

COMPUTATION DETAILS OF THE ITERATIVE APPROACH OF [31] FOR

REGION-OF-ATTRACTION ESTIMATION.

Dynamics d0 d1 d2 Final value Iterations Time

Short-period 2 0 2 −1.514 20 10.94 s

4 2 4 −1.760 40 48.06 s

Longitudinal 2 0 4 −0.353 22 113.21 s

4 2 4 −2.749 66 465.50 s

For comparison, running the iterative approach of [31]

took considerably longer without reaching the same final

values (Tab. II); the differences are particularly noticeable

for quartic Lyapunov functions. The computationally most

expensive part of both algorithms are the semidefinite re-

laxations of the convex sum-of-squares subproblems. In

the sequential approach, the semi-definite problem is larger

(both with respect to the number of matrix variables N
and the number of constraints M ) since all polynomial

decision variables are solved for at the same time; yet in the

2See [31] and its appendix for details.



iterative approaches, numerous convex problems are solved

in each iteration. We compare the per-iteration effort for

both approaches to solve the region of attraction estimation

problems. Based on the assumption that the computational

cost for a semidefinite problem is roughly of order N3M
[47], Fig. 1 details how the order of the computational cost in

each iteration grows with the number of states and degree of

polynomials for the region of attraction estimation. Overall,

the cost of in each iteration of the sequential approach is

about ten times lower than the cost of the iterative approach.

n = 2
d0 = 2

n = 2
d0 = 4

n = 4
d0 = 2

n = 4
d0 = 4

106

109
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o
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Fig. 1. Comparison of computational cost in each iteration of the sequential
sum-of-squares and the iterative approach of [31].

VII. CONCLUSIONS

This paper studies the solution of nonlinear convex pro-

grams by a sequential algorithm with the addition of a line

search. Theorem 2 shows that the algorithm still converges

with the line search. As expected, it does not improve

the local rate of convergence α. However, we observe in

numerical experiments an improvement in the both radius

and rate of global convergence and leave proofs of these

behaviors as future work.

While the paper analyses the sequential algorithms on

arbitrary (possibly infinite dimensional) Banach spaces, we

only apply it to the finite-degree sum-of-squares cone of

polynomials with finite degree. In [39], the authors shows

how to leverage special properties of the sum-of-squares

cone for solving the nonconvex Burer-Monteiro formulation.

We are currently investigating whether such refined analysis

could allow the sequential algorithm to exploit the structure

of the sum-of-squares cone as well.

APPENDIX

For the computations detailed in Tab. I, the following

initializations of the multipliers s1 and s2 were used:

n = 2, d0 = 2, s1 = 1, s2 = x2
1 + x2

2

n = 2, d0 = 4, s1 = x2
1 + x2

2, s2 = x2
1 + x2

2

n = 4, d0 = 2, s1 = 1, s2 =
∑n

i=1 x
2
i

n = 4, d0 = 4, s1 =
∑n

i=1 x
2
i , s2 = (

∑n

i=1 x
2
i )

2

where n is the number of states and d0 the degree of the

Lyapunov function.

All numerical examples were performed on a 2.8GHz
quad-core Intel Core i7 processor with 16GB of memory.

We use SOSOPT for the convex sum-of-squares problem and

MOSEK for semidefinite programming. Source code is avail-

able at https://github.com/tcunis/bisosprob.
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