(. 1EEE

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

2359

& css

Opacity From Observers With a

Bounded

Memory

Andrew Wintenberg~, Graduate Student Member, IEEE, Stéphane Lafortune', Fellow, IEEE,
and Necmiye Ozay ', Senior Member, IEEE

Abstract—Opacity is an information-flow property cap-
turing privacy from observers that are aware of a system’s
dynamics. The potential for an observer with perfect recall
to reason about long histories of the system poses a chal-
lenge for opacity verification. In this letter, we address
this challenge by proposing a new notion of opacity over
automata, called bounded memory opacity, with respect
to an observer with a bounded memory. We show that
verifying this weaker notion of opacity has reduced com-
putational complexity compared to general opacity (co-NP
vs. PSPACE). Furthermore, we present a corresponding
verification algorithm using an encoding to the Boolean
satisfiability problem (SAT). We demonstrate this approach
on randomly generated automata as well as a Web server
load-hiding example.

Index Terms—Opacity, privacy, discrete event systems,
computational complexity.

|. INTRODUCTION

ECENTLY. we have become increasingly reliant upon

cyber-physical systems (CPS) which integrate physical
processes across cyber-networks. Many of these systems, from
the smart grid to medical devices, communicate sensitive
information which is vulnerable to cavesdropping. As leak-
ing this information can lead to serious harm to both the
system and its users, such systems are subject to strict pri-
vacy and seccurity requirements. Particularly in the areas of
CPS and discrete event systems (DES), such privacy require-
ments have been modeled using the information-flow property
of opacity. Opacity captures the inability of a passive eaves-
dropper or observer to deduce some secret behavior using their
knowledge of the system’s dynamics.

To model the diverse privacy requirements encountered
in practice, many notions of opacily have been proposed.
These notions are characterized by the type of secret behav-
iors considered and the capabilities of the observer. For

Manuscript received 17 March 2023; revised 15 May 2023; accepted
04 June 2023. Date of publication 15 June 2023; date of current ver-
sion 3 July 2023. This work was supported by the U.S. National Science
Foundation under Award CNS-1837680 and Award ECCS-2144416,
and in part by the Sponsored Research Award from Cisco Research.
Recommended by Senior Editor A. P. Aguiar. (Corresponding author:
Andrew Wintenberg.)

The authors are with the Electrical and Computer Engineering
Department, University of Michigan, Ann Arbor, Ml 48109 USA (e-mail:
awintenb @ umich.edu; stephane @ umich.edu; necmiye @ umich.edu).

Digital Object Identifier 10.1109/LCSYS.2023.3286777

example, the secrets considered in current-state opacity [1]
and initial-state opacity [2] are the current and initial state,
respectively. Likewise language-based opacity (LBO) [3]
considers behavior within a given language 1o be secret.
These notions along with many others assume that the
observer has partial observation of the system but impose
no other constraints. In particular, it is implicitly assumed
that observers have perfect recall, always deducing a secret
correctly if possible. While this approach provides strong
theoretical guarantees of privacy, it presents a number of
challenges in practice. First, an observer may have limited
computational resources to perform deduction, especially in
an embedded sctting. Second, the computational resources
required to verify these privacy guarantees may be prohibitive
as we must consider every possible way information may
leak. Indeed, the aforementioned notions of opacily over
automata are all readily transformed into one another [4],
[5]. [6]. and the common verification problem is known to
be PSPACE-complete [7]. This high complexity is observed
in the poor exponential scalability of verification algorithms in
practice.

[n this letter, we address these challenges by proposing
a new notion of opacity reflecting an additional constraint
on the observer: the amount of memory available 1o them.
We characterize opacity from the observer’s point of view,
modeling their deductions with a nondeterministic automaton
that marks observations deemed secret. In this form, we can
impose a bound & € [N on the size of this automaton, repre-
senting the memory available to the observer. Our proposed
notion of k-bounded memory opacity (A-BMO) requires that
no such automaton exists. We establish basic properties of
this notion, including that the verification problem is co-
NP-complete, reduced from the PSPACE-completeness for
LBO. In addition to these results, we develop a verifica-
tion approach using an encoding into the Boolean satisfi-
ability problem (SAT) and demonstrate it on a number of
examples.

Il. PRELIMINARIES
A. Automata
In this letter. we model systems with nondeterministic finite
automata (NFA). For a detailed introduction to automata in the
context of DES, sce [8]. The set of strings over a finite set of

2475-1456 (©) 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 19,2024 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

2360

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

events X is denoted by 7, including the empty string €. For a
string 7, |7 denotes its length while for a set Q. |Q| denotes its
cardinality. A nondeterministic finite automaton (NFA) over
Y is atuple G = (Q. Z.45. go. Q) with a finite set of states
Q, transition relation § € @ x ¥ x Q, initial state gy € Q, and
a set of marked states Q,, € Q. The transition relation can be
extended inductively to the domain Q x £* x Q. The language
of G reaching states Q" is the set Lp/(G) = {re £* | 3q €
Q. (qo.1.q) € 8}. The language generated by G is the set
L(G) = Lp(G) while the language marked by G is the sel
L,(G) = Ly, (G). We say an NFA G is a deterministic finite
automaton (DFA) if |{¢" | (¢.0,q") € 8}] < | for each state ¢
and cvent 0.

Given a subset of observable events £, C X, the natural
projection P : £* — E* is defined recursively for strings
tby Pt) = e if r = €, P(to) = P(t)o for ¢ € %,, and
P(to) = P(1) for 0 € £\ Z,. We denote the preimage of this
map., called the inverse projection, by P!, The observer of G
is a DFA G, over X, with states in 2¢ such that £,,(G,p;) =
P(L,,(G)). This is also referred to as the powerset construction
or determinization. Given NFAs G = (Q. Z.46. go. Q,,) and
A = (Qa. E,.84.ga.0. Qa.m). \heir parallel composition is an
automaton A||G with states Q4 x Qg such that £,,(A||G) =
P=1(L,,(A)) N £,,(G). Given NFAs G and A, we can also
construct automata marking the complement language X%\
L,(G) and the union language £,,(G) U L, (A).

B. Complexity Theory

We now briefly review concepts from the study of com-
plexity theory needed to characterize our results, For more
information, consult a standard reference such as [9]. A
decision problem relates the inputs of an algorithm to a cor-
responding yes or no answer as output. Complexity theory
classifies these problems according to the time or space needed
to solve them in a given model of computation, such as Turing
machines. For example, the classes P and PSPACE denote
problems that can be solved by a deterministic machine in
polynomial time and space, respectively, as a function of the
input size. Likewise NP denotes problems solved by nonde-
terministic machines in polynomial time, i.e., problems for
which there exist certificates proving the correctness of yes
answers in polynomial time. Similarly, co-NP dcnotes the
complement of NP, i.e., problems for which there exist cer-
tificates proving the correctness of no answers in polynomial
time. While it is known that NP.co — NP € PSPACE, it
is unknown if this inclusion is strict. A problem in NP is
said to be NP-complete if it is as hard as any other problem
in NP, i.e.. there is a polynomial time algorithm reduc-
ing any NP problem to it. A similar definition is made for
PSPACE-completeness.

For example, the Boolean satisfiability problem (SAT),
which asks if a given Boolean formula can be satisfied, is
known to be NP-complete. Indeed a satisfying assignment is a
certificate for satisfiability. Similarly, the complement problem
asking if a formula is unsatisfiable is co-NP-complete. In addi-
tion the MAX-SAT problem of maximizing the sum of weights
assigned to satisfied clauses of the formula is NP-complete as

well. While these problems cannot be solved in polynomial
time (unless P = NP), advanced heuristics have resulted in
solvers for SAT and MAX-SAT that are sufficient to solve
many problems in practice.

I1l. OPACITY FORMULATION

In this section, we present an alternative characterization
of opacity from the viewpoint of the observer which we use
lo propose a new notion of opacity against observers with
bounded memory. We consider a system modeled by an NFA
G = (0. £.4, go. Q) generating the system’s behavior £(G),
which is divided into two classes, secrer and nonsecret. We
assume the automaton G marks the nonsecret behavior £,,(G).
In addition we assume the system’s behavior is observed
through the projection P of observable events £, € Z. Then,
opacity requires that an observer of this system cannot deduce
when a secret behavior has occurred. Importantly, we assume
the observer knows the model of the system G and thus
deduces a secret if their observations are not consistent with
nonsecret behavior. We call such observations 1 € P(L(G))
violating i.c., if P(r) € P(L,,(G)). This motivates the following
definition,

Definition 1 (Language-Based Opacity (LBO)): An NFA
G is said to be opague or simply LBO for X, if
P(L(G)) € P(L,,(G)). (1)

Many existing notions of opacity may be formulated in this
way as shown in [4], [5]. For example, current-state opacity
requires visits to so-called secret states to be hidden. Given an
automaton G = (Q, £, 4, qo. Q,,) with secret states Qs C Q,
if Q,, = @\ Qs. the current-state opacity of G is equivalent
to the opacity of G as in Definition .

An observer of the system trying to deduce if an observa-
tion r was violating considers a version of the regular language
acceptance problem, i.e., is ¢ an element of P(L,,(G))? We
will formulate a new notion of opacity capturing a restriction
on the algorithms the observer uses to solve this problem,
namely the amount of available memory states. As noted
in [10], these algorithms can be viewed as passive attacks
on the system which do not alter the system’s behavior, We
adopt this terminology, and model these attacks with an NFA
A = (04, Z,.684. G40, Qa.m) which tracks observations of the
system G and marks some which are violating. We can use
this notion of attacks to provide an alternative characterization
of opacity.

Proposition 1: The system NFA G is not LBO if and only
if there exists an attack NFA A with the following properties

1) Correcmness: The attack marks only violating observa-

tions
L, (A) NP(L,(G)) = 0. (2)
2) Nontriviality: The attack marks some
observation
L,,(A) NP(L(G)) # 9. (3)

Proof: 1f there exists a correct and nontrivial attack A, then
there exists a string t € £,,(A) contained by P(£(G)) but not

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 19,2024 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

WINTENBERG et al.: OPACITY FROM OBSERVERS WITH A BOUNDED MEMORY

2361

r"\l
/‘b\ 7N

o 1 Y = 1 s
__,/ N

Fig. 1. Asystem NFA G (top) and corresponding attack NFAs A (bottom
left) and A’ (bottom right). States gy and gy ¢ act as secret states in
G as in Example 1.

by P(L,,(G)). Hence ¢t is violating and thus G is not LBO.
Conversely if G is not LBO, then there exists such a string
that is violating. Thus the attack A marking this single string
is necessarily correct and nontrivial. |

Note that we do not require attacks to deduce all violat-
ing observations, just one. Indeed, due to nondeterminism
an attack can be correct and nontrivial even if it rejects a
violating observation on one run but accepts it on another.
Because of this, the proposed memory bound is not directly
related to the standard notion of space complexity for the reg-
ular language acceptance problem. Alternatively, the smallest
attack which deduces every violating observation can be com-
puted by applying state minimization to the complement of
the observer of G. The number of states in an attack automa-
ton A represents the number of memory states utilized by a
corresponding nondeterministic deduction algorithm. We can
then define a notion of opacity capturing a restriction on the
memory available to an observer as a bound on the number
of such states.

Definition 2: Given k € N and £, C £, we say the system
NFA G is k-bounded memory opaque (or k-BMO) if there is
no correct and nontrivial attack with & states.

A. Properties of Bounded Memory Opacity

We now observe a number of simple properties about this

notion of opacity.

Proposition 2: Consider an NFA G and bound k € N,

) If Gis (k4 1)-BMO. then G is k-BMO.

2) I G is LBO, then G is k-BMO.

3) 1If G is 2/9-BMO. then G is LBO.

Proof:

1) We can add unreachable states to an atlack without
altering its correctness or nontriviality.

2) If GisLBO, i.c., P(L(G)) = P(L,,(G)), then any correct
attack cannot be nontrivial.

3) If G is not LBO, then its observer with marked and
unmarked states swapped is a correct and nontrivial
attack with size at most 2/, []

In general, we are interested in the smallest bound & for

which a system is k-BMO or equivalently, the size of minimal
attacks. While we can always construct attacks recognizing the
smallest violating observation or attacks that are deterministic,
the following examples show that such attacks may not be
minimal.

Example 1: Consider the DFA G depicted in Figure 1 with

M + 1 states and all events observable. The only violating
strings are 1) = "~ and 1r; = "~ 'b. The attack A depicted

Fig. 2. A nondeterministic attack A from which we construct the system
G in Example 2.

in Figure 1 is minimal, marking the string #> in composition
with G. Furthermore, it is clear that any correct attack marking
1. such as the one depicted in Figure 1, must have at least M
states, counting the occurrences of a. So the shortest violation
ol opacity may not always correspond to a minimal attack.

Example 2: Consider the nondeterministic attack A with 4
states depicted in Figure 2. We will construct a system G for
which this attack is minimal. Let G” denote the complement of
the observer of A with all unmarked states removed. As a result
L,,(G") = L(G') contains strings whose prefixes are not in
L, (A), ie.. LG YN L,,(A) = @. Let G denote the union NFA
construction for G and an automaton generating the secret
string abaadac € L£,,(A) and marking its strict prefixes. We
do not depict G here due to space constraints. By construction,
we see A is correct and nontrivial, yet applying the verification
method developed later in Section 1V, we can determine that
there is no deterministic attack with size 4. So in general there
may be no minimal attack that is deterministic.

IV. VERIFICATION AND FALSIFICATION

In this section, we discuss the problem of verifying k-BMO.
We show this problem is co-NP-complete, or equivalently, that
falsifying k-BMO by synthesizing an attack is NP-complete.
In addition we present a verification approach based upon an
encoding into SAT. Formally, we state the problem of verifying
k-BMO as follows.

Problem I: Determine il a system modeled by an NFA G
is &-BMO for a given k € ¥ and observable events I,,.

A. Verifying k-BMO Is co-NP

It is well-known that the complexity of verifying opacity
in general is PSPACE-complete [7]. By relaxing the require-
ment that an observer never deduces a secret, i.c., LBO, to the
proposed notion of k-BMO, we reduce the complexity of the
verification problem.

Theorem 1: Verilying k-BMO is co-NP,

Proof: Let G be the system NFA, £, a set of observable
events, and & € N a bound represented in unary which all
serve as input to the problem. Let n and m denote the number
of states and events of G. respectively. To show the problem
is co-NP, it suffices to show that we can check if an attack A
with size k (serving as a certificate) is correct and nontrivial in
polynomial time. Using properties of the parallel composition,
A is correct if the following equivalent conditions hold

Ly(A)NPL(G) =0 & ICQ..‘_,,” 0,

m

(AllG) =0.)

Likewise, A is nontrivial if the following equivalent conditions
hold

La(A)NPL(G) #8 & Lg,,~0AIG)#B. (5

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 19,2024 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

2362

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

The language of an NFA is nonempty if and only if its marked
states are reachable from initial ones, which can be checked
using breadth-first search in linear time in the number of edges.
So both of these conditions can be checked over A||G with
time O(|Q4l* - 107 - |Z) = O(k*n’m). |

While we show next that this problem is co-NP-complete,
the result of Theorem 1 is significant as such problems can
often be solved in practice with SAT solvers. To demon-
strate this, we develop a SAT encoding for verification in
Section IV-C whose performance is evaluated in Section V.

Remark I: While we¢ have proposed a bound on the
memory of a potential attacker, one may instead consider veri-
fying opacity over strings with a bounded length, similar to the
concept of bounded-model checking [11]. While such methods
can be very efficient using symbolic techniques [12]. it is not
immediately clear how long the strings considered must be in
order to achieve some privacy requirement. As demonstrated
in Figure 1, there may a simple attack to deduce a secret
occurred while the shortest violating string is arbitrarily long
(bounded by the number of states in the system). However, we
can note for any attack A on the system G, a minimal string
marked by the attack will only visit the states of the compo-
sition A||G at most once. Hence with k = |A| and n = |G|, if
there are no strings violating opacity with length kn — 1, the
system is k-BMO.

B. Verifying k-BMO Is co-NP-Complete

To show that verifying k-BMO is co-NP-complete, we
adapt the proof of PSPACE-completeness for verifying
LBO [7]. This proof constructs a reduction from the uni-
versality problem which asks il an NFA G marks every
string, ie., £° € £,(G)? Without loss of generality, we
may assume that £(G) = £* and all events are observable
in which case, G is LBO if and only if it is not univer-
sal. This completes the reduction to the universality problem
which is known to be PSPACE-complete [13]. To show
the NP-completeness of our problem, we consider a vari-
ant of the universality problem over bounded strings. The
bounded nonuniversality problem asks for an NFA G and
bound n € I, does G not mark all strings of length at most n,
ie. T Z £,,(G)? We now present a reduction from falsify-
ing k-BMO to the bounded nonuniversality problem which is
known to be NP-complete [14].

Theorem 2: Veritying k-BMO is co-NP-complete.

Proof: Consider an NFA G” and bound n € N represented in
unary which serve as inputs to the problem. Let G =, denote an
automaton with n 4 | states generating all strings with length
at most n and marking none of them. Let G be the union
automaton of G' and G-, restricted to strings of length n
so L(G) = =" and £,,(G) = L(G') N Z=". By construc-
tion, G is nonuniversal with bound n if and only if there
exists a string t € L(G) but ¢ € L£,,(G), i.e., tis violating.
As we can construct an attack with n + 1 states that only
marks ¢, we see G is nonuniversal with bound n if and only
it G is k-BMO for k = n + 1. As G may be constructed in
polynomial time, this procedure describes a reduction from
the bounded nonuniversality problem to falsifying bounded
memory opacity. u

C. Verification Using SAT

In order to verify k-BMO effectively, we can express it
as a Boolean satisfiability problem. That is we can encode
an attack A with propositional variables and develop con-
straints modeling correctness and nontriviality. Formally given
the fixed system NFA G, we consider an attack A with states
Oy = 10,..., k—1}. Without loss of generality, we assume
the initial state is O and that the attack has a single marked
state given by A—1. We introduce the variables 14(ga, o, q_f.‘)
meaning the corresponding transition is present in A, ie.,
(ga. o, q‘f.lJ € 8,4. From equations (4)-(5), correctness and non-
triviality of A correspond to language emptiness/nonemptiness
in the composition A||G. In order 10 encode this composition,
we encode the observability of an event ¢ € ¥ with a formula
O(o). Then the presence of a transition in the composition
from (ga.q) to (¢}.q") over event o where (g, 0,q') € § is
given by the formula 1(g4. q. 0. ¢). ¢") defined by

(—0@) A (qa =4q))) Vv (0(6) A Talga.0.q})). (6)

To encode language emptiness, we recall that the language
marked by an automaton is empty if and only if its marked
states are not reachable from the initial state in the underlying
graph. We can represent reachability in the composition with
the variables R(ga.q). whose truth indicates that (g4, q) €
Qa x Q is reachable from the initial state (ga.0. go). To encode
reachability in SAT, we use constraints similar to [15] based
upon acyclicity over auxiliary variables 7. These constraints
require the initial state to be reachable, i.c., R(ga.0.qo). and
for all other states (g4. g) that

V

aeE qacy
(q.o.4' 18

V

FEX acsly
(q.o.q')Ed

R(q_f.l. q) — R(ga) ~ t(ga.q. o, q:,.. qg) (1)

R(qy.q) — R(ga) A t(ga.q.0.q5.4) (8)

A T(Ga.q. 4. q)

Acyclic(T). (9)

Constraint (7) ensures R is true for reachable states while con-
straints (8)-(9Y) ensure R is true only for reachable states. Here,
the constraint Acyclic(T) denotes a formula that is satisfied
when the graph over nodes Q4 x Q with edges encoded by T
is acyclic. We can think of this graph as a spanning tree of the
reachable sct rooted at the initial state. Critically, this formula-
tion for reachability results in a total number of constraints that
is lincar in the number of transitions in the composed automa-
ton (viewing acyclicity as a single constraint which is natively
supported by solvers like [15]). From equations (4)-(5), we see
the encoded attack is correct and nontrivial if the following
constraint is satisfied

00, = \ “Rk=1.9) n \/ Rk—1.).

g0y qe MO _

where k—1 is the marked state of A. Then there exists an attack
A encoded by these variables that is correct and nontrivial, i.c.,
G is not k-BMO, if and only the constraints (6)-(10) are satisfi-
able. Furthermore, the total number of constraints is O(k2n?m)
where n = |Q| and m = |Z|. This formulation of verification

(10)

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 19,2024 at 19:08:54 UTC from IEEE Xplore, Restrictions apply.

WINTENBERG et al.. OPACITY FROM OBSERVERS WITH A BOUNDED MEMORY

2363

as a constraint satisfaction problem has many advantages. In
particular, it is easy to incorporate extensions or additional
constraints on the attacks as demonstrated in the following
section,

V. EXPERIMENTS AND EXAMPLES

In this section, we investigate the performance of the
proposed SAT encoding for verifying A-BMO. We first demon-
strate its superior scalability in comparison to a standard
approach for verifying LBO on randomly generated automata.
We then present an example showing how the SAT encoding
can be easily extended to solve more general problems. This
example system models server load-balancing with quantita-
tive constraints on observations available to an attacker.

A. Comparing Opacity Verification Methods

We compare an implementation! of the proposed SAT
p p prop

encoding for verifying &-BMO with a standard method for ver-
ifying LBO based upon constructing the observer (the NFA G
is LBO if all states in its observer are marked). In particular
we encode the constraints for verifying k-BMO developed in
Section IV-C into the solver GraphSAT [15] which natively
supports the acyclicity constraint (9). We evaluate the runtime
ol both implementations on randomly generated automata. For
a given number of states n and a fixed number of events
m = 10, transitions are included in the automata independently
with a fixed probability. The probability is sclected such that
the expected number of transitions is 2nm where the exponen-
tial blowup of the observer construction is encountered [16].
We do this to demonstrate for a fixed bound & that the proposed
method performs well in the worst-case scenario for verifying
LBO.

The resulting runtimes for verification were averaged over
30 instances” for each size n ranging from 5 to 17. As the
absolute runtimes are sensitive to details of each implementa-
tion, we depict the verification runtimes as a percentage of the
time to verify LBO in Figure 3. We observe that for a fixed
k. this ratio for verifying k&-BMO decreases steadily indical-
ing that the proposed method, while exponential itself, scales
exponentially slower with automata size than the observer con-
struction for LBO. While there are more efficient approaches
to verify LBO such as modular [17] or antichain-based meth-
ods [18], it is likely similar trends will exist in comparison to
verifying k-BMO due to the different complexity classes.

B. Server Load Hiding

Many cyber-physical systems operate, in part, over the pub-
lic Internet, using remote servers to offer critical services.
Sccurity for these critical services is often based on loca-
tion hiding, e.g.. hiding the true address of a server behind
a network of proxies [19]. While this can provide protection

Umplementation available at

tools/bounded-opacity

>The SAT solver failed to terminate on 11 out of the 1170 of instances
within a five minute timeout which are not included in our analysis. We note
that the unpredictability of the runtime of SAT solvers presents a limitation
to our approach in practice.

hups://gitlab.eecs.umich.edu/M-DES-

LBO
£ ~== 5-BMO
e — 10-BMO
Bt -=-= 20-BMO

1000% § S~

1% 4

Runtime (% of LBO runtime)
2

0.1% 4

[] 10 12 11 16
Number of automaton states

Fig. 3 The runtimes to verify different notions of opacity as a
percentage of the runtime to verify LBO.

Proxy Network

load; // : |

/ +~ unload;; !

. | | Load Balancer .
req,,, /157 r\ _ load,; . :
] : unload,,, !
I

Fig. 4. The architecture of the load-balancing system.

against distributed denial of service (DDoS) attacks. resource-
ful attackers can learn the structure of simple, static networks
to bypass these measures [20], [21]. When the server location
cannot be hidden, it may be desirable to instead hide which
servers are under a heavy load as such servers are attractive
targets for DDoS attacks.

We consider the problem of verifying that these loads are
hidden in the simplified load-balancing system depicted in
Figure 4 in which users send requests to the balancer which
then assigns these requests to servers. We model the load
balancer with a DFA G, that arbitrarily assigns requests to
available servers. The overall system G is given by the par-
allel composition of the load balancer Gy with ny users and
ng servers with a capacity C € N modeled by the DFAs Gy ;
and Gy ; depicted in Figure 5

G =Guall- -Gy lIGsall -+ lIGs.ngllGr. — (11)

We will extend the SAT constraints developed in Scetion [V-C
to encode opacity against attackers that can compromise user
devices with a k-bounded memory. Formally, if the attacker
has compromised user i, the events req;, and res; become
observable. We can incorporate this choice of observability
for event o by viewing O(o) from constraint (6) as a decision
variable. The attacker then aims to solve a kind of optimal
sensor placement problem. choosing users i to observe with
uniform cost ¢; = 1. By incorporating the constraints for

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 19,2024 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

IEEE CONTROL SYSTEMS LETTERS, VOL. 7, 2023

2364
. (o "|
I____,a — f\,______.-\ _/,.
~ unload; wunload; —
Fig. 5. The automata Gy ; (top) modeling user / and GSJ- (bottom)

modeling server j.

TABLE |
VERIFICATION RESULTS FOR THE SERVER LOAD-HIDING SYSTEM
ny | ng | € [|Q] | k [Time(s) | #Clauses | Opaque | Cost
5 1 5 | 248 | 4 20.3 3.5x10° No 5
5 1 6 | 248 | 5 29.4 6.9x10% | Yes n/a
4 2 2 [419 | 3 223 3.9x10° Yes n/a
4 2 [214194 55.5 9.7x10° No 3]

k-BMO in the MAX-SAT framework, we can model these
costs with soft clauses —(O(req;) v O(res;)) with weight
ci. We require that the attacker cannot deduce that a spe-
cific server is heavily loaded, i.c., at secret state C. To model
this, we let @, ; denote states of G where server j does
not pass through state C. Then, we can encode opacity with
respect to all of the server secrets by replacing the con-
straint ¢g, from (10) in the SAT encoding with the constraint
¢ = N2 90,

By solving the resulting instance of MAX-SAT, we can
determine the minimum cost of an attack with size & (if one
exists) as the total weight of the solution clauses. This corre-
sponds to the number of users that must be compromised to
deduce when a server is heavily loaded. We report the results
for solving this problem over a variety of parameters in Table 1.
As we would expect. there must be sulficiently many users for
an attack to exist, i.e. ny = Cns. Interestingly, the size of an
attack may be smaller than the number of users that it mon-
itors. Similar to Example 1, the minimum cost attack in the
first system utilizes the events of all 5 users but itself has only
4 states.

V1. CONCLUSION

In this letter, we have presented a new notion of opacity
expressing privacy from an observer with a bounded memory.
We derived a number of its basic properties, including the co-
NP-completeness of its verification problem. We demonstrated
the applicability of this notion on a number of experiments
utilizing a SAT encoding for verification. There are several
directions for future work utilizing this notion of opacity.
Beyond verification, it may desirable to design supervisors (o
enforce A-BMO. In particular, it may be possible to use the
SAT constraints we have developed with a quantified Boolean
formula solver to perform bounded synthesis of supervisors as
in [10]. Furthermore, while we have considered non-stochastic
system models in this letter, stochastic models may be more
appropriate in many settings. For example, we may wish
to relax our notion of opacity to prevent an observer from
deducing a secret with high probability as in [22].

ACKNOWLEDGMENT
The authors gratefully acknowledge helpful discussions with
Jiti Balun on complexity theory. They would also like to
acknowledge Ashish Kundu and Jayanth Srinivasa of Cisco
Research in motivating the server load-hiding problem.

REFERENCES

[1] A. Saboori and C. N. Hadjicostis, “Notions of security and opacity
in discrete event systems,” in Proc, 46ih IEEE Conf. Decis. Control,
Dec. 2007, pp. 5056-5061.

[2] A. Saboori and C. N. Hadjicostis, “Verification of initial-state opacity
in security applications of discrete event systems,.” Inf. Sci., vol. 246,
pp. 115-132, Oct. 2013,

[3] F. Lin, "Opacity of discrete event systems and its applications,”
Automatica, vol, 47, no. 3, pp. 496-503, Mar. 2011.

[4] Y.-C. Wu and S. Lafortune, “Comparative analysis of related notions

of opacity in centralized and coordinated architectures.” Discrete Event

Dyn. Syst., vol. 23, no. 3, pp. 307-339, Sep. 2013.

A. Wintenberg, M. Blischke, S. Lafortune, and N. Ozay. “A gen-

eral language-based framework for specifying and verifying notions

of opacity,” Discrete Event Dyn. Syst., vol. 32, no. 2, pp. 253-289,

Jun. 2022

J. Balun and T. Masopust, “Comparing the notions of opacity for

discrete-event systems,” Discrete Event Dyn. Syst., vol. 31, no. 4,

pp. 553-582, Dec. 2021.

[7] F. Cassez. J. Dubreil, and H. Marchand. “Synthesis of opaque systems
with static and dynamic masks,” Formal Methods Syst. Design, vol. 40,
no. 1. pp. 88-115, Feb. 2012.

[8] C. G. Cassandras and S. Lafortune, Introduction 1o Discrete Event
Systems, 3rd ed. New York, NY, USA: Springer, 2021.

[9] M. R. Garey and D. S. Johnson, Computers and Intractabilitv: A Guide

to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman

& Co., 1979.

L. Lin, Y. Zhu, and R. Su, “Towards bounded synthesis of resilient

supervisors,” in Proc. [EEE 58th CDC, 2019, pp. 7659-7664.

E. Clarke, A. Biere, R. Raimi, and Y. Zhu, “Bounded model checking

using satisfiability solving.” Formal Methods Syst. Design, vol. 19, no. 1.

pp- 7-34. Jul. 2001.

[12] A. Megski. W. Penczek, M. Szreter, B. Woina-Szczesniak, and

A. Zbrzezny, "BDD-versus SAT-based bounded model checking for the

existential fragment of lincar temporal logic with knowledge: Algorithms

and their performance.” Auton. Agents Multi-Agent Svst., vol. 28, no. 4,

pp. 358-604, Jul. 2014.

L. J. Stockmeyer and A. R. Meyer, “Word problems requiring exponen-

tial time(preliminary report).” in Proc. 5th Annu. ACM Symp. Theory

Compur., New York, NY, USA, Apr. 1973, pp. 1-9.

S. Cho and D. T. Huynh, “The parallel complexity of finite-state

automata problems,” Inf. Compur., vol. 97, no. 1, pp. 1-22, Mar. 1992,

[15] B. Pandey and J. Rintanen, “Planning for partial observability by SAT
and graph constraints,” in Proc. Int. Conf. Awtom. Plan. Schedul., vol. 28,
Jun. 2018, pp. 190-198.

[16] G. van Noord, “Treatment of epsilon moves in subset construction,”

Comput. Linguist., vol. 26, no. 1, pp. 61-76, Mar. 2000,

[17] B. Lennartson, M. Noori-Hosseini, and C. N, Hadjicostis, “State-labeled

safety analysis of modular observers for opacity verification,” [EEE

Control Syst. Lett., vol. 6, pp. 2936-2941, 2022,

L. Doyen and J.-F. Raskin, “Antichain algorithms for finite automata,”

in Tools and Algorithms for the Construction and Analvsis of Systems.

Berlin, Germany: Springer. 2010, pp. 2-22.

A. D. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure over-

lay services,” ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 4,

pp. 61-72, Oct. 2002,

V. Kambhampati, C. Papadopolous, and D. Massey, “Epiphany: A loca-

tion hiding architecture for protecting critical services from DDoS

attacks,” in Proc. [EEEAFIP Int. Conf. Depend. Svsi. Netw. (DSN),

Jun. 2012, pp. 1-12.

[21] J. Wang and A. A, Chien, “Understanding when location-hiding
using overlay networks is feasible,” Compur. Nemv.. vol. 50, no. 6,
pp. 763-780. Apr. 2006.

[22] A. Saboori and C. N. Hadjicostis, “Current-state opacity formulations

in probabilistic finite automata.” FEEE Trans. Autom. Control, vol. 59,
no. |, pp. 120-133, Jan. 2014.

[5

[6

[10]

(1]

[13]

[14]

(18]

[19]

[20]

Authorized licensed use limited to: University of Michigan Library. Downloaded on February 19,2024 at 19:08:54 UTC from IEEE Xplore. Restrictions apply.

