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Abstract. Chemotherapy drug administration is a complex problem that often requires 
expensive clinical trials to evaluate potential regimens; one way to alleviate this burden 
and better inform future trials is to build reliable models for drug administration. This 
paper presents a mixed-integer program for combination chemotherapy (utilization of 
multiple drugs) optimization that incorporates various important operational constraints 
and, besides dose and concentration limits, controls treatment toxicity based on its effect 
on the count of white blood cells. To address the uncertainty of tumor heterogeneity, we 
also propose chance constraints that guarantee reaching an operable tumor size with a 
high probability in a neoadjuvant setting. We present analytical results pertinent to the 
accuracy of the model in representing biological processes of chemotherapy and establish 
its potential for clinical applications through a numerical study of breast cancer.
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1. Introduction
Chemotherapy is a prominent cancer treatment modality. In contrast to local treatment methods, such as surgery 
and radiation therapy, chemotherapy is a systemic treatment that targets cancer cells throughout the body. 
Hence, it is widely used for patients in advanced stages of cancer; more than 60% of the patients diagnosed with 
stage III or IV of breast, colon, rectal, lung, testicular, urinary bladder, and uterine corpus cancers in the United 
States underwent chemotherapy in 2016 (American Cancer Society 2021b). Chemotherapy drugs utilize cytotoxic 
as well as cytostatic agents. Cytotoxic drugs kill cancer cells, which results in tumor shrinkage; cytostatic drugs 
slow down the growth of malignant cells without killing them. The focus of this paper is on cytotoxic drugs. 
Because of their toxic nature and narrow therapeutic margin, cytotoxic drugs damage healthy cells as well and 
come with several, possibly life-threatening side effects (American Cancer Society 2021c). The main objective of 
chemotherapy planning is to determine administration dosage and schedule for these drugs such that a signifi
cant tumor shrinkage is achieved or, ideally, tumors disappear, while the adverse effects on healthy organs are 
minimized (American Cancer Society 2021c). Chemotherapy treatment plans are typically evaluated by random
ized clinical trials (see, e.g., Ebata et al. 2018, Mariotti et al. 2021). Such trials are limited in variability because of 
constraints of permissible treatments and clinical and ethical considerations. Mathematical models of chemother
apy decisions can alleviate some of these burdens and aid treatment improvement and evaluation.

Mathematical models for chemotherapy planning must account for tumor evolution as well as the pharmaco
kinetics (distribution within the body) and pharmacodynamics (effect on tumor and healthy cells) of cytotoxic 
drugs. These processes take place in continuous time and are naturally described by ordinary differential equa
tions (ODEs). In this regard, chemotherapy planning has been mainly approached as an optimal control (OC) 
problem in the literature. Swan and Vincent (1977) first studied chemotherapy planning as an OC problem, fol
lowed by the seminal models proposed by Martin et al. (1990) and Martin (1992); the objective of these models is 
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to minimize the cancer cell population at the end of a treatment period subject to drug concentration limits—as a 
measure of toxicity—and intermediate tumor size or shrinkage rate. The early OC chemotherapy literature con
tains minimal details, which allows many of them to be solved analytical (these include Swan and Vincent 1977; 
Zietz and Nicolini 1979; Murray 1990, 1994; Panetta and Adam 1995; Murray 1997). Extending Martin et al. 
(1990) and Martin (1992), more complex and realistic OC models for chemotherapy optimization use approxima
tion techniques (Martin et al. 1992a,b; Pereira et al. 1995; Costa and Boldrini 1997; de Pillis et al. 2007; Nanda et al. 
2007; d’Onofrio et al. 2009; Harrold and Parker 2009; Itik et al. 2009) and heuristic algorithms (Iliadis and Barbo
losi 2000, Tan et al. 2002, Floares et al. 2003, Villasana and Ochoa 2004, Liang et al. 2006, Tse et al. 2007, Alam et al. 
2013). We refer to Shi et al. (2014) and Saville et al. (2019) for detailed surveys.

Continuous OC models capture the biological dynamics of chemotherapy processes well; however, cancer 
treatment involves important discrete components and operational constraints. For example, some cytotoxic 
drugs are available in the form of pills and are taken orally. For these drugs, an administration dose must be a 
multiple of the pill size, and any deviation from this regimen can lead to an underdose or overdose. Oral drugs 
are often prescribed to be taken with food, and metabolic processes can lead to mandated rest periods for certain 
drugs. These give a discrete nature to drug administration scheduling, which is not captured by continuous OC 
models. Modeling such operational constraints for chemotherapy planning requires integer control variables; 
introducing integer variables to OC models makes them extremely hard to solve, which poses a computational 
challenge to real-life applications (Sager 2005). In addition, the existing chemotherapy optimization models 
mainly impose treatment toxicity constraints implicitly through (fixed) limits on drug concentration. This pre
sents another challenge to the applicability of these models to combination chemotherapy, that is, utilization of 
multiple drugs, which is the common practice in the presence of drug resistance (Luqmani 2005, Hu et al. 2016). 
In fact, in the absence of an explicit toxicity measure, these models do not clarify how the adverse effects of che
motherapy could vary under different combinations of administration regimens for multiple drugs.

Tumor heterogeneity is another important consideration in cancer treatment planning (Polyak 2011, Hu et al. 
2017). Tumors are composed of different cell types with distinct characteristics; tumor heterogeneity is consid
ered one of the main factors of therapeutic resistance (Cajal et al. 2020). Recent advances in next-generation 
sequencing technologies have made characterization of the cell composition of a tumor possible; this requires 
multiple, spatially separated samples from the tumor (Gerlinger et al. 2012, Piraino et al. 2019). The vast size of a 
tumor is the main barrier to complete characterization of the tumor composition; in a tumor with 109 cells 
(approximately 25 mm in diameter), the probability of sampling a genome that is present in 105 cells is close to 
zero. Besides, invasive biopsies can lead to needle tract seeding, that is, implantation of cancerous cells in healthy 
regions, which may lead to cancer metastasis; a higher risk of seeding is incurred as the number of sampling 
passes increases (Tyagi and Dey 2014). In the absence of comprehensive samples, tumor heterogeneity remains 
uncertain for treatment planning (Abécassis et al. 2019). The only existing chemotherapy optimization models 
that consider this uncertainty include (Coldman and Goldie 1983, Day 1986, Coldman and Murray 2000). These 
models suffer from the same shortcomings as existing deterministic approaches. Moreover, they seek to maxi
mize the probability of cure over the course of a treatment, which challenges their clinical relevance even more 
than the deterministic models. Finally, a similar problem to dose and schedule optimization in chemotherapy 
planning concerns finding an optimal sequence of therapies utilizing multiple drugs when each drug has a pre
determined (fixed) regimen; we refer to He et al. (2016) and the references therein for more information on this 
line of research.

To fill the aforementioned gaps between the existing models of chemotherapy optimization and medical prac
tice, we present a mixed-integer linear programming (MILP) model for combination chemotherapy planning, 
which seeks to find the optimal administration dose and schedule for cytotoxic drugs by minimizing the cancer 
cell population at the end of a treatment. We use discretization and linearization to recast ODEs representing the 
biological and pharmacological processes into an MILP framework; the flexibility of this framework allows for 
modeling complex operational constraints of chemotherapy. In particular, we incorporate discrete administration 
dose and schedule as well as clinically mandated rest periods in our model. We use the white blood cell count as 
an explicit measure of treatment toxicity. More specifically, we consider the effect of cytotoxic drugs on the count 
of two major white blood cell types, neutrophil and lymphocyte, which account for more than 80% of the total 
white blood cells. To address the uncertainty of tumor heterogeneity, we propose chance constraints and present 
a neoadjuvant (prior to a primary surgery) chemotherapy optimization model for treatment planning. We pro
vide analytical results concerning the accuracy of the model in representing biological processes of chemother
apy. We use the clinical literature and published data for patients with breast cancer to calibrate our model 
parameters and perform sensitivity analysis to identify the most influential factors in a treatment outcome.
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The structure of this paper is as follows: Section 2 presents chemotherapy modeling preliminaries, including 
tumor and white blood cell population dynamics, pharmacokinetics and pharmacodynamics of cytotoxic drugs, 
and operational constraints. Section 3 presents our deterministic and stochastic MILP models for combination 
chemotherapy planning along with our analytical results. Section 4 includes the model calibration details, and 
Section 5 describes our computational experiments. Section 6 concludes the paper. The proofs and some technical 
details are provided in the e-companion of the paper.

2. Modeling Preliminaries
Throughout this paper, we consider a treatment period [0, T] ⊂ R and a set of available cytotoxic drugs D. For
each drug d ∈ D, the (continuous) functions Ud(t) and Cd(t) represent the administration dose and drug concen
tration, respectively, at time t ∈ [0, T]. We denote the set of cancer cell types by Q, and for each cell type q ∈ Q, we
use Nq(t) to represent the corresponding cell count as a function of time. We also introduce the variable functions
Pq(t) � ln(Nq(t)), ∀q ∈ Q. Each cancer cell type is resistant to a (possibly empty) subset of drugs; drug resistance
can be present even before chemotherapy starts (Swierniak et al. 2009). Finally, the white blood cell count at time
t ∈ [0, T] is denoted by Nw(t); we distinguish between neutrophils and lymphocytes when we present the opera
tional constraints of our models.

2.1. Cell Population Dynamics
Tumors proliferate by cell division and exhibit exponential growth in early stages, but the growth rate gradually 
decreases as malignant cells compete for limited nutritional resources. This resembles an S-curve growth, which 
is most commonly modeled by a Gompertzian function (e.g., Laird et al. 1965, Norton 1988, Harrold and Parker 
2009, Frances et al. 2011, Tjørve and Tjørve 2017). The ODE representation of this function is

Ṅq(t) � ΛNq(t) ln
P

r∈QNr, ∞
P

r∈QNr(t)

 !

, Nq(0) � Nq, 0, (1) 

where Nq, 0 is the initial population of a cancer cell type q ∈ Q, Nr, ∞ denotes the steady-state (asymptotic) popula
tion limit for each cell type r ∈ Q, and Λ is a shape parameter that dictates the rate at which the population transi
tions from the initial state to the steady-state limit.

The population dynamics of white blood cells are different. White blood cells are perpetually produced 
(mainly in bone marrow and the thymus gland) and circulate in the blood; they have a life span of a few days. 
Iliadis and Barbolosi (2000) model the white blood cell dynamics as follows:

Ṅw(t) � υw � νw Nw(t), Nw(0) � Nw, 0, (2) 

where υw and νw are the white blood cells’ production and turnover rates, respectively, and Nw, 0 denotes their 
(constant) level in the body under normal conditions. It is easy to verify that Nw(t) � Nw, 0 is a solution to Equa
tion (2) given υw � νwNw, 0.

Equations (1) and (2) provide the basis for our pharmacodynamics models.

2.2. Pharmacokinetics
A drug’s distribution within the body (pharmacokinetics) is a complex, multicompartmental, and multiphase 
process. In cancer research, however, the dose profile of a cytotoxic drug is often represented by a single com
partmental model, in which the drug concentration decays exponentially over time (Martin 1992, Jacqmin et al. 
2007, Harrold and Parker 2009, Frances et al. 2011). The process is described by the following ODE:

Ċd(t) � �ξd Cd(t) +
Ud(t)

V
, Cd(0) � 0, (3) 

where V > 0 represents the volume of the “effect compartment” that is used to convert an administered dose to 
drug concentration and ξd is a constant characterizing the elimination rate of a drug d ∈ D in the body. In our 
models, the boundary condition Cd(0) � 0 indicates there is no drug in a patient’s body before the start of 
treatment.
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The underlying assumption of Equation (3) is that the contribution of a newly administered dose of a drug to 
its concentration profile starts from the peak it generates on the concentration curve. After a single administra
tion, the drug concentration–time curve is highly right-skewed; it reaches its peak in a relatively short time, but 
it takes much longer for the drug to vanish. For the sake of simplicity, Equation (3) ignores the time it takes for a 
drug to reach its maximum concentration after administration.

2.3. Pharmacodynamics
The main paradigm of pharmacodynamics (drug effect) modeling in chemotherapy optimization is based on the 
seminal works of Skipper et al. (1964, 1967), which indicate that, given a dose of a cytotoxic drug, it kills a con
stant fraction of cancer cells. The fractional kill effect of a cytotoxic drug on cancer cells is modeled by adding a 
bilinear term composed of the product of drug concentration and cancer cell count with a constant factor to the 
cancer evolution model, that is, Equation (1). In combination chemotherapy, the effect of multiple drugs is com
monly modeled following the additivity principal (see, e.g., Martin et al. 1992a, Petrovski et al. 2004, Tse et al. 
2007, Frances et al. 2011). In an additive model, the drugs perform as if each acts in isolation, and the effects of all 
drugs are summed. The additivity assumption overlooks the possible interactions between different drugs to 
avoid interactability of the resultant models. Even though several combinations of chemotherapy drugs are 
shown to have synergistic effects (Wu et al. 2017, Tan et al. 2019, Nøhr-Nielsen et al. 2020), modeling such inter
actions accurately for every possible combination of drugs is very difficult. Our pharmacodynamics model fol
lows Frances et al. (2011), who also assume an exponential decay on drug effectiveness over time because of the 
resistance developed in cancer cells when exposed to a drug, as follows:

Ṅq(t) � ΛNq(t) ln
P

r∈QNr, ∞
P

r∈QNr(t)

 !

�
X

d∈D

ηd, q exp(�ρd, q t) Nq(t) Ed(t), Nq(0) � Nq, 0, (4) 

where ηd, q is the fractional kill effect parameter of a drug d ∈ D on a cancer cell type q ∈ Q, the parameter ρd, q 
determines how drug effectiveness decays over time, and Ed(t) denotes the effective concentration of a drug d ∈ D

as a function of time. The effective concentration Ed(t) indicates the amount that the drug concentration exceeds 
some threshold βd, eff, below which the drug is ineffective therapeutically (Iliadis and Barbolosi 2000, Tan et al. 2002, 
Harrold and Parker 2009). By this definition,

Ed(t) � max{0, Cd(t) � βd, eff}:

With the logarithmic transformation Pq(t) � ln(Nq(t)), ∀q ∈ Q, Equation (4) can be written as follows:

Ṗq(t) �Λ ln
X

r∈Q

Nr, ∞

!

� ln
X

r∈Q

Nr(t)

!!

�
X

d∈D

ηd, q exp(�ρd, q t) Ed(t), Pq(0) � ln(Nq, 0): (5) 

The only nonlinearity of Equation (5) comes from the logarithmic term in Equation (4). Linear approximations of 
nonlinear ODEs are of great practical interest and huge computational benefit (He et al. 2016). An important 
property of the Gompertzian function (1) is that the growth rate at early stages of development is dominated by 
the exponential effect of Nq(t); the logarithmic term becomes influential gradually as the population approaches 
the steady-state limit. Tumors are often diagnosed in relatively early stages, and without medical interventions, 
death happens way before the tumor reaches its natural carrying capacity (Norton 1988). This implies that the 
tumor (natural) growth model (1) can be generally approximated well by substituting its logarithmic term. In 

particular, within an appropriate range of parameters, one may approximate 
P

r∈Q
Nr,∞P

r∈Q
Nr(t)

in (1) by Nq,∞

Nq(t) for cell type

q ∈ Q, where Nq, ∞ denotes the steady-state asymptotic limit of cell type q population. Such an approximation 
leads to the following linear ODE, which we use, in lieu of Equation (5), in our model:

Ṗq(t) � Λ (ln(Nq, ∞) � Pq(t)) �
X

d∈D

ηd, q exp(�ρd, q t) Ed(t), Pq(0) � ln(Nq, 0): (6) 

We verify the quality of this approximation for our case-study analysis of breast cancer later. Finally, we note 
that one may consider different shape parameters across the cell types; however, calibrating the parameter for 
individual cell types is impractical.
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We model the fractional kill effect of cytotoxic drugs on white blood cells in a similar manner:

Ṅw(t) � υw � νw Nw(t) �
X

d∈D

ηd, w Nw(t) Cd(t � tw), t ≥ tw, (7) 

where ηd, w is the fractional kill effect parameter of a drug d ∈ D on white blood cells and tw denotes the delay in 
the response of white blood cells to cytotoxic drugs (Iliadis and Barbolosi 2000). Note that, in Equation (7), we 
make conservative assumptions that white blood cells do not develop resistance to cytotoxic drugs over time, 
and the toxic effect of a drug exists even if its concentration is below the threshold βd, eff. During the time interval 
[0, tw), the white blood cell population dynamics is governed by Equation (2).

2.4. Operational Constraints
Operational constraints enforce clinically permissible treatment plans. We consider a partition of the treatment 
period [0, T] into M days, each denoted by Dm, m ∈ DAYS � {1, : : : , M}. Because certain oral drugs are consumed 
with meals, three time points (periodic with respect to the days) are designated as meal times; this set of time 
points is denoted by MEALS.

We describe operational constraints captured by our model; some of these constraints are included in the che
motherapy optimization literature. 

1. Maximum concentration (Martin et al. 1992a, Iliadis and Barbolosi 2000, Baker et al. 2006): For a drug d ∈ D,
let βd, conc denote the maximum permissible concentration in a patient’s body; the corresponding constraint is 
Cd(t) ≤ βd, conc, ∀t ∈ [0, T]:

2. Maximum infusion rate (Hande 1998, Reigner et al. 2001, Baker et al. 2006, Ershler 2006, Palmeri et al. 2008):
Let βd, rate denote the maximum permissible infusion rate for a drug d ∈ D; the corresponding constraint is 
Ud(t) ≤ βd, rate, ∀t ∈ [0, T]:

3. Maximum daily cumulative dose (Hande 1998, Reigner et al. 2001, Baker et al. 2006, Ershler 2006, Palmeri et al.
2008): Clinical studies often seek to determine appropriate thresholds for drug administration within particular 
time periods. Daily cumulative dose constraints ensure that the administrated drugs in the model are reasonably 
close to tested protocols. Let βd, cum denote the maximum cumulative daily dose of a drug d ∈ D; the corresponding 
constraint is 

R

t∈Dm
Ud(t) dt ≤ βd, cum, ∀m ∈ DAYS:

4. Pill administration: Certain drugs are available via oral administration and, therefore, must be administered
in discrete amounts (Hande 1998, Reigner et al. 2001, Ershler 2006, Sharma et al. 2006). These drugs are often recom
mended to be taken with food. For a drug d ∈ D that is available in an orally administered pill, let αd, pill denote the 
pill’s mass and the integer decision variable Zd, pill(t) be the number of pills administered at time t; we model this 
constraint as follows: Ud(t) � αd, pill Zd, pill(t), Zd, pill(t) ∈ Z+, ∀t ∈ MEALS, and Ud(t) � 0, ∀t ∉MEALS.

5. Rest days (following treatment administration): Rest periods, in which no amount of a particular drug can be
administered, may be mandatory clinically; see, for example, Baker et al. (2006). We introduce binary decision vari
ables Zm

d, rest to indicate if a drug d ∈ D is not administered during day Dm. Given a mandated number of rest days 
αd, rest, we enforce this constraint by 

R

t∈Dm
Ud(t) dt ≤ βd, cum(1 � Zm

d, rest),
Pmin{αd, rest, M�m}

l�0 (1 � Zm+l
d, rest) ≤ 1, Zm

d, rest ∈ B, ∀m ∈ DAYS:

6. Toxicity: Drug toxicity is a major consideration in chemotherapy planning. We use the white blood cell count
as a measure of toxicity and distinguish between neutrophil and lymphocyte, two major white blood cell types, 
which are responsible for different side effects, namely, neutropenia and lymphocytopenia, with different thresh
olds. Let Nneu(t) and Nlym(t) denote the count of neutrophils and lymphocytes, respectively, at time t ∈ [0, T]; we 
assume neutrophils and lymphocytes account for the fractions θneu and θlym of the total white blood cell count. The 
neutropenia and lymphocytopenia constraints are as follows: Nneu(t) ≥ βneu, Nneu(t) � θneu Nw(t), ∀t ∈ [0, T], and 
Nlym(t) ≥ βlym, Nlym(t) � θlym Nw(t), ∀t ∈ [0, T], where βneu and βlym are the clinical thresholds for neutropenia and 
lymphocytopenia, respectively.

We denote the set of treatment solutions satisfying the operational constraints by O. As the neutropenia and 
lymphocytopenia constraints are operational, we also include the accompanying pharmacodynamics constraints, 
that is, Equations (2) and (7), within this set when we present our models.

3. Chemotherapy Optimization Models
The primary goal of chemotherapy is to reduce the number of cancer cells in the body. There are multiple ways 
to express this goal; one option is to focus on the end-of-treatment cell count. The objective of our model is to 
minimize 

P
q∈QPq(T), which is equivalent to minimizing the geometric mean of the cancer cell type populations

at the end of the treatment period, that is, (
Q

q∈QNq(T))
1= |Q | . We note that one may prioritize cell types according
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to their levels of malignancy by considering different coefficients for population variables in the objective 
function.

Based on the model components described in Section 2, the combination chemotherapy optimization problem 
can be formulated as follows:

min
X

q∈Q

Pq(T) (8a) 

s:t: Ċd(t) � �ξd Cd(t) + Ud(t)=V, ∀ d ∈ D, t ∈ [0, T], (8b) 
Cd(0) � 0, ∀d ∈ D, (8c) 
Ṗq(t) � Λ (ln(Nq, ∞) � Pq(t)) �

X

d∈D

ηd, q exp(�ρd, q t) Ed(t), ∀q ∈ Q, t ∈ [0, T], (8d) 

Pq(0) � ln(Nq, 0), ∀q ∈ Q, (8e) 
Ed(t) � max{0, Cd(t) � βd, eff}, ∀d ∈ D, t ∈ [0, T], (8f) 
(U(t), C(t), Nneu(t), Nlym(t)) ∈ O, ∀ t ∈ [0, T], (8g) 

where U(t) � (U1(t), : : : , U | D | (t)) and C(t) � (C1(t), : : : , C |D | (t)) are the variable vectors representing drug adminis
tration and concentration, respectively. Nonegativity is enforced except for Pq(t), ∀q ∈ Q, which we consider a 
part of the definition of O.

Formulation (8) is an OC problem involving discrete and continuous controls and nonlinear functions, which, 
given the scale of the instances arising in practice, is extremely hard to solve exactly. We use discretization and 
linearization techniques to approximate this problem by an MILP formulation, which is significantly more tracta
ble. Harrold and Parker (2009) employ MILP to approximate an OC problem for single-drug chemotherapy opti
mization. Although their model does not consider several operational constraints, they show that this 
framework provides high-quality approximations for the pharmacokinetics and pharmacodynamics ODE mod
els, that is, Equations (8b)–(8f), using two case studies. Here, we provide analytical results concerning the 
approximation quality of such a transformation. Through a case-study analysis of breast cancer, we also provide 
computational results confirming the quality of the employed approximations and the merit of the resultant 
MILP models for clinical applications.

In the rest of this section, we first present our MILP model for combination chemotherapy optimization, 
including details of the discretization and linearization techniques we use. We extend this model to address 
uncertainty in the heterogeneity of tumors and present a model for neoadjuvant chemotherapy planning under 
this uncertainty. Finally, we present our analytical results concerning the numerical stability and approximation 
quality of the proposed models.

3.1. MILP Model
To approximate the ODEs in (8), one may use Runge–Kutta (RK) methods as approximation schemes (Butcher 
2007). We use (forward) Euler’s method, that is, the first order RK method, which has been previously used in 
chemotherapy optimization (Harrold and Parker 2009). Given a (fixed) time step h, consider the discretization of 
the planning horizon [0, T] by S + 1 points with the index set S � {0, : : : , S}, where t(0) � 0 and t(S) � T � Sh. The 
Euler’s approximation of the pharmacokinetics model, that is, Equations (8b) and (8c), is as follows:

Cd, s+1 � Cd, s � hξd Cd, s +
Ud, s
V

, ∀d ∈ D, s ∈ {0, : : : , S � 1},
Cd, 0 � 0, ∀d ∈ D:

(9) 

Note that, in Equation (8b), Ud(t) represents the flux of a drug d ∈ D, that is, dose administered per unit of time; 
setting the unit of time equal to h, Ud, s denotes the dose administered at (discrete) time t(s). In (9), Cd, s is the con
centration of a drug d ∈ D at time t(s).

The pharmacodynamics model, that is, Equations (8d) and (8e), is approximated in a similar manner:

Pq, s+1 � Pq, s + h
�
Λ (ln(Nq, ∞) � Pq, s) �

X

d∈D

ηd, q exp(�ρd, q t(s)) Ed, s

�
, ∀q ∈ Q, s ∈ {0, : : : , S � 1},

Pq, 0 � ln(Nq, 0), ∀q ∈ Q, 

where Pq, s denotes the logarithm of the population of cancer cell type q ∈ Q at time t(s).
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Conventionally, the effective concentration constraints, that is, Equation (8f), are linearized by introducing 
auxiliary binary variables ZE, d, s, ∀d ∈ D, s ∈ {0, : : : , S}, as follows:

∀d ∈ D, s ∈ {0, : : : , S} :

Ed, s ≥ 0, (10a) 

Ed, s ≥ Cd, s � βd, eff, (10b) 

Ed, s ≤ βd, conc ZE, d, s, (10c) 

Ed, s ≤ Cd, s � βd, eff + βd, conc (1 � ZE, d, s), (10d) 

ZE, d, s ∈ B, (10e) 

where Ed, s is the effective concentration of a drug d ∈ D at time t(s); recall that βd, conc denotes the maximum per
missible concentration for a drug d ∈ D, that is, an upper bound on Cd, s, ∀s ∈ {0, : : : , S}.

The discretization and linearization of operational constraints are straightforward except for the white blood 
cell population dynamics model, that is, Equation (7). We present our model for the white blood cell population 
dynamics here and provide the details of other operational constraints in the e-companion; see Online Appendix 
A.

Applying Euler’s method to Equation (7) results in the following discretization of the white blood cell popula
tion dynamics model:

Nw, s+1 � Nw, s + h υw � νw Nw, s �
X

d∈D

ηd, w Nw, s Cd, s�τ

!

, ∀s ∈ {τ, : : : , S � 1}, (11) 

where Nw, s denotes the total white blood cell count at time t(s) and τ corresponds to the time delay tw in the ODE 
model. To address the bilinearity of Equation (11), we consider two approaches: McCormick relaxation and dis
cretization. In the first approach, we replace each bilinear term Nw, s Cd, s�τ in (11) with a new variable Bd, s and 
add the corresponding McCormick envelopes (McCormick 1976, Al-Khayyal and Falk 1983) to the formulation. 
Recall that Cd, s�τ ∈ [0,βd, conc]. We also assume Nw, s ∈ [βw, Nw, 0], where βw is a lower bound on the white blood 
cell count that can be easily obtained from the clinical bounds on the neutrophil and lymphocyte counts, that is, 
βw � min βneu

θneu
, βlym
θlym

n o
and Nw, 0 denotes the initial count of white blood cells that serves as an upper bound on the 

white blood cell count during the treatment period. The white blood cell count is discrete, but the continuity 
assumption is not far from the reality given the magnitude of this quantity, that is, O(109) cells per liter. The 
McCormick relaxation of Equation (11) is as follows:

Nw, s+1 � Nw, s + h υw � νw Nw, s �
X

d∈D

ηd, w Bd, s

!

, ∀s ∈ {τ, : : : , S � 1}, (12a) 

Bd, s ≥ βw Cd, s�τ, ∀d ∈ D, s ∈ {τ, : : : , S � 1}, (12b) 

Bd, s ≥ Nw, 0 Cd, s�τ + βd, conc Nw, s � Nw, 0 βd, conc, ∀d ∈ D, s ∈ {τ, : : : , S � 1}, (12c) 

Bd, s ≤ Nw, 0 Cd, s�τ, ∀d ∈ D, s ∈ {τ, : : : , S � 1}, (12d) 

Bd, s ≤ βw Cd, s�τ + βd, conc Nw, s � βw βd, conc, ∀d ∈ D, s ∈ {τ, : : : , S � 1}: (12e) 

The drawback of the continuous McCormick relaxation is that the approximation quality of the bilinear sum is 
not controllable. Therefore, we also consider a modified form of the discretization approach proposed by Gupte 
et al. (2013); given the scale of approximated variables, we alter the constraints provided in this work. As a factor 
in the bilinear terms, the white blood cell count is approximated by discrete variables within some specified 
value ∆ of maximum error. We introduce auxiliary binary variables Zw, s, k, ∀k ∈ {0, : : : , K}, which select the 
approximations of Nw, s, and continuous variables Vd, s, k, ∀k ∈ {0, : : : , K}, which mirror the value of Cd, s�τ. 
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Following Gupte et al. (2013), the approximation of Equation (11) is as follows:

Nw, s+1 � Nw, s + h υw � νw Nw, s �
X

d∈D

ηd, w Bd, s

!

, ∀s ∈ {τ, : : : , S � 1}, (13a) 

Nw, s � βw +
XK

k�1
k ∆ Zw, s, k

!

≤
∆

2 , ∀s ∈ {τ, : : : , S � 1}, (13b) 

�Nw, s + βw +
XK

k�1
k ∆ Zw, s, k

!

≤
∆

2 , ∀s ∈ {τ, : : : , S � 1}, (13c) 

XK

k�0
Zw, s, k � 1, ∀s ∈ {τ, : : : , S � 1}, (13d) 

Bd, s �
XK

k�1
(βw + k ∆)Vd, s, k, ∀d ∈ D, s ∈ {τ, : : : , S � 1}, (13e) 

Vd, s, k ≤ βd, conc Zw, s, k, ∀d ∈ D, s ∈ {τ, : : : , S � 1}, k ∈ {1, : : : , K}, (13f) 
Vd, s, k ≤ Cd, s�τ, ∀d ∈ D, s ∈ {τ, : : : , S � 1}, k ∈ {1, : : : , K}, (13g) 
Vd, s, k ≥ Cd, s�τ + βd, conc (Zw, s, k � 1), ∀d ∈ D, s ∈ {τ, : : : , S � 1}, k ∈ {1, : : : , K}, (13h) 
Vd, s, k ≥ 0, ∀d ∈ D, s ∈ {τ, : : : , S � 1}, k ∈ {1, : : : , K}, (13i) 

Zw, s, k ∈ B, ∀s ∈ {τ, : : : , S � 1}, k ∈ {1, : : : , K}: (13j) 

In (13), the quantity βw +
PK

k�1 k ∆ Zw, s, k approximates the value of Nw, s; the variable Vd, s, k equals Cd, s�τ if and
only if Zw, s, k � 1 (0 otherwise), and Bd, s approximates the bilinear term Nw, sCd, s�τ.

Before the effect of drugs on white blood cells starts, that is, ∀s ∈ {0, : : : ,τ� 1}, we have Nw, s+1 � Nw, s+

h(υw � νw Nw, s), where Nw, 0 equals the count of white blood cells before treatment. The discretized neutropenia and 
lymphocytopenia constraints are as follows: Nneu, s ≥ βneu, Nneu, s � θneu Nw, s, ∀s ∈ {0, : : : , S}, and Nlym, s ≥ βlym, 
Nlym, s � θlym Nw, s, ∀s ∈ {0, : : : , S}.

Formulation (14) presents our MILP model for combination chemotherapy optimization as the result of 
described discretization and linearization techniques applied to (8). In this formulation, we use Ô to denote the 
set of treatment solutions satisfying the discretized operational constraints, including the constraint sets (12) or 
(13).

min
X

q∈Q

Pq, S (14a) 

s:t: Cd, s+1 � Cd, s � h ξd Cd, s + Ud, s=V, ∀ d ∈ D, s ∈ {0, : : : , S � 1}, (14b) 
Cd, 0 � 0, ∀d ∈ D, (14c) 

Pq, s+1 � Pq, s + h
�
Λ (ln(Nq, ∞) � Pq, s) �

X

d∈D

ηd, q exp(�ρd, q t(s)) Ed, s

�
,

∀q ∈ Q, s ∈ {0, : : : , S � 1},
(14d) 

Pq, 0 � ln(Nq, 0), ∀q ∈ Q, (14e) 
(10a) � (10e), ∀d ∈ D, s ∈ {0, : : : , S}, (14f) 
(U, C, Nneu, Nlym) ∈ Ô, (14g) 

where U � [Ud, s, d ∈ D, s ∈ S] and C � [Cd, s, d ∈ D, s ∈ S] are the variable matrices representing drug administra
tion and concentration, respectively, and Nneu � (Nneu, 0, : : : , Nneu, S) and Nlym � (Nlym, 0, : : : , Nlym, S) are the variable 
vectors of the neutrophil and lymphocyte count, respectively. Equations (14b) and (14c) are the discretized phar
macokinetics model (see (8b) and (8c)), Equations (14d) and (14e) are the discretized pharmacodynamics model 
for cancer cells (see (8d) and (8e)), and the constraint set (14f) is the linearized model for effective drug concentra
tion (see (8f)).

The approximation quality and computational burden of Formulation (14) depends on the choice of discretiza
tion time step h and the method of bilinearity approximation, that is, McCormick relaxation or the discretization 
technique, as well as the choice of ∆ in the latter method. We present the results of our computational experi
ments with respect to these factors in Section 5.
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Finally, we note that the MILP framework can incorporate a wide range of objective functions. As mentioned 
earlier, the end-of-treatment tumor cell count is one of the modeling choices. Along this line, one may prioritize 
the count of certain cell types by including distinct coefficients for population variables in the current objective 
function. Another choice could be to minimize the cumulative tumor population over the treatment window or 
tumor population at a certain time other than the end of treatment, which can be easily modeled by linear 
functions.

3.2. Neoadjuvant Chemotherapy Under Uncertain Tumor Heterogeneity
In advanced stages of cancer, chemotherapy is often used as a form of neoadjuvant therapy to reduce a tumor to 
an operable size prior to tumor removal surgery (Senkus et al. 2015). In this section, we extend the proposed 
MILP model (14) to address the uncertainty of tumor heterogeneity in neoadjuvant chemotherapy planning. 
Under this uncertainty, the objective is to find a drug administration regimen that reduces the tumor to a clini
cally determined operable size with a high probability, which can be expressed by the following chance con
straint:

Pr

(
X

q∈Q

Nq, S ≤ Nsurg

)

≥ 1 � ɛ, (15) 

where Nsurg denotes the clinically determined operable size for the tumor and ɛ is the probability of not meeting
the target at the end of treatment period.

Let π ∈ R |Q |
+ be a discrete random variable describing tumor heterogeneity, which can take on a value from the

finite set {π(1), : : : ,π(K)}, and denote the probability of a scenario k ∈ {1, : : : , K} by µ(k) � Pr{π � π(k)}. Given the log
arithmic transformation of the cancer cell population variables in our model, we use the following more conser
vative constraints to enforce (15):

P(k)

q, S ≤ Psurg + ln
N(k)

q, 0
P

q∈QN(k)
q, 0

0

@

1

A+ Pq, ∞(1 � Z(k)
surg), ∀q ∈ Q, k ∈ {1, : : : , K}, (16a) 

XK

k�1
µ(k) Z(k)

surg ≥ 1 � ɛ, (16b) 

Z(k)
surg ∈ B, ∀k ∈ {1, : : : , K}, (16c) 

where Psurg � ln(Nsurg), Pq, ∞ � ln(Nq, ∞), and the superscript (k) denotes the value of previously defined variables 
under a realization scenario k ∈ {1, : : : , K}. The binary variable Z(k)

surg indicates whether the target is met under a 
scenario k ∈ {1, : : : , K}. The set of Constraints (16) is more conservative than the original Constraint (15) because 
every solution that satisfies (16) also satisfies (15), but the reverse does not necessarily hold. The implication of 
this relationship is that the optimal regimen of the chance-constrained model may actually satisfy the surgery 
requirement in more scenarios than those indicated by the optimal solution, hence leading to a success probabil
ity strictly better than 1 � ɛ. To establish the relation between (15) and (16), observe that, for a scenario k with 
Z(k)

surg � 1,

X

q∈Q

N(k)

q, S �
X

q∈Q

eP(k)

q,S ≤
X

q∈Q

e
ln

Nsurg N(k)

q, 0P
q∈Q

N(k)

q, 0

!

�
X

q∈Q

Nsurg N(k)
q, 0

P
q∈QN(k)

q, 0

0

@

1

A � Nsurg

P
q∈QN(k)

q, 0
P

q∈QN(k)
q, 0

� Nsurg,

where the inequality is because of (16a); Z(k)
surg � 0 relaxes Constraint (16a) for a scenario k.

A conventional objective for such a chance-constrained optimization model is to maximize the probability of 
meeting the target, equivalently to minimize ɛ. A drawback of this objective is that, if the tumor size is not far 
from the clinical target, the model may achieve an objective value of ɛ � 0 with a solution that may not lead to 
significant tumor shrinkage. Recall that the main clinical objective of chemotherapy is to reduce the cancer cell 
population as much as possible (American Cancer Society 2021c). In this regard, we also consider a shrinkage- 
based objective similar to our deterministic model. Note that, given a fixed value for ɛ, obtaining a success proba
bility of 1 � ɛ is guaranteed through the chance constraints (16a)–(16c) regardless of the objective function. 
Section 5 presents the results of our numerical study with both shrinkage- and probability-based objectives. 
Here, we present our stochastic model with an objective that minimizes the cancer cell population at the end of 
treatment under the most likely scenario. We assume µ(1) ≥ µ(k), ∀k ∈ {1, : : : , K}; the neoadjuvant chance- 

Ajayi et al.: Combination Chemotherapy Optimization with Discrete 
Dosing INFORMS Journal on Computing, Articles in Advance, pp. 1–22,   9 



constrained MILP model is as follows:

min
X

q∈Q

P(1)

q, S (17a) 

s:t: Cd, s+1 � Cd, s � h ξd Cd, s + Ud, s=V, ∀ d ∈ D, s ∈ {0, : : : , S � 1}, (17b) 
Cd, 0 � 0, ∀d ∈ D, (17c) 

P(k)

q, s+1 � P(k)
q, s + h

�
Λ (ln(N(k)

q, ∞) � P(k)
q, s) �

X

d∈D

ηd, q exp(�ρd, q t(s)) Ed, s

�
,

∀q ∈ Q, s ∈ {0, : : : , S � 1}, k ∈ {1, : : : , K},
(17d) 

P(k)
q, 0 � ln(N(k)

q, 0), ∀q ∈ Q, k ∈ {1, : : : , K}, (17e) 

(10a) � (10e), ∀d ∈ D, s ∈ {0, : : : , S}, (17f) 

P(k)

q, S ≤ Psurg + ln
N(k)

q, 0
P

q∈QN(k)
q, 0

0

@

1

A+ Pq, ∞(1 � Z(k)
surg), ∀q ∈ Q, k ∈ {1, : : : , K}, (17g) 

XK

k�1
µ(k) Z(k)

surg ≥ 1 � ɛ, (17h) 

Z(k)
surg ∈ B, ∀k ∈ {1, : : : , K}, (17i) 

(U, C, Nneu, Nlym) ∈ Ô: (17j) 

3.3. Analytical Results
Next, we present analytical results for the proposed combination chemotherapy optimization models. A main 
result is an error bound for the Euler’s method approximation of the cell population state variables, which 
depend on the Euler’s method approximation of the drug concentration state variables presented through Theo
rem 6 and Corollary 1. All proofs are provided in the e-companion; see Online Appendix B.

Theorems 1 and 2 show that, if drug administration is continuous, the state variables for drug concentration 
and cell population are uniquely defined by the control variables governing drug administration in the base for
mulation (8). Although administration of oral drugs is inherently discontinuous, they can be approximated arbi
trarily well by continuous functions; hence, the uniqueness results hold for oral drugs as well.

Theorem 1. Suppose that, for a drug d ∈ D, the administration function Ud is continuous in time. Then, the differential 
equation

Ċd(t) � �ξd Cd(t) + Ud(t)=V, t ∈ [0, T], 

governing the drug concentration function Cd, has a unique solution.

Theorem 2. Suppose that the administration functions for all drugs, that is, Ud, ∀d ∈ D, are continuous in time. Then, for 
each cancer cell type q ∈ Q, the differential equation

Ṗq(t) � Λ(Pq, ∞ � Pq(t)) �
X

d∈D

ηd, qexp(�ρd, q t) Ed(t), t ∈ [0, T], 

governing the cell population function Pq, has a unique solution.

The next results concern the stability of Euler’s method. A numerical method is absolutely stable for a region 
of time step discretization values if the global error can be bounded by the sum of truncation errors at each step. 
Absolutely stable numerical methods produce “reasonable results” for time-step values in the region of absolute 
stability (LeVeque 2007).

Theorem 3. Let {Us}s∈Z+
be a bounded sequence, and ξ, h, V > 0. Under the stability condition h < 2

ξ, the difference equa
tion

Cs+1 � Cs � hξCs + Us=V, 

is absolutely stable for all s ∈ Z+.
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Theorem 4. Let {Fs}s∈Z+
be a bounded sequence and Λ, h > 0. Under the stability condition h < 2

Λ, the difference equation
Ps+1 � Ps + h (Λ (P∞ � Ps) � Fs), 

is absolutely stable for all s ∈ Z+.

Concerning the stochastic model (17), the following result indicates that, if a feasible solution’s effective con
centration is dominated by another feasible solution’s effective concentration, the second solution has a smaller 
end-of-treatment cancer cell population in all scenarios regardless of the objective function.

Theorem 5. Consider the stochastic model (17) with Λh ≤ 1. Let (E[1], P[1]) and (E[2], P[2]) each be components of different 
feasible solutions. Suppose E[1]

d, s ≥ E[2]

d, s for all d ∈ D, s ∈ {0, : : : , S}. Then, P[1], (k)

q, S ≤ P[2], (k)

q, S for all q ∈ Q, k ∈ {1, : : : , K}.

Finally, Theorem 6 provides a global error bound for Euler’s method applied to state variables that depend on 
another state variable estimated by Euler’s method.

Theorem 6. Consider the system of differential equations
ẏ(t) � f (t, y, z), y(0) � y0,
ż(t) � g(t, z), z(0) � z0, 

and the Euler’s approximation {(ys, zs)}
S
s�0 with step size h given by ys+1 � ys + h f (t(s), ys, zs) and zs+1 � zs + h g(t(s), zs), 

where t(s) denotes the value of the continuous variable t at step s. Let λz � max{ |zs � z0 | , s ∈ {0, : : : , S}}, and suppose g is 
continuous in both variables and Lipschitz continuous in its second variable, that is, there exists Lg > 0 such that, for all t ∈

[0, T] and u, v ∈ R with |u � z0 | ≤ λz, |v � z0 | ≤ λz,
|g(t, u) � g(t, v) | ≤ Lg |u � v | :

Similarly, suppose f is continuous in all variables and Lipschitz continuous (with respect to the ℓ1 norm) in its second and 
third variables with constant Lf. Furthermore, suppose y and z are twice continuously differentiable. Then, for all 
s ∈ {0, : : : , S},

|ys � y(t(s)) | ≤
h
2
αz

Lg
(eLgT � 1) +

αy

Lf

!

(eLf T � 1), 

where αz � maxτ∈[0, T] | z̈(τ) | and αy � maxτ∈[0, T] | ÿ(τ) | .

Corollary 1. Let C(t) and Pq(t), ∀q ∈ Q be the state variable functions for drug concentration and cell population, respec
tively, in an optimal solution to the (single-drug) chemotherapy optimization problem (8) without the effective concentration 
and operational constraints. Furthermore, suppose that C and Pq, ∀q ∈ Q are twice continuously differentiable, and let C̃ 
and P̃q, ∀q ∈ Q be the corresponding Euler’s approximations with time-step h. Then,

X

q∈Q

P̃q, S �
X

q∈Q

Pq(T)

�
�
�
�
�
�

�
�
�
�
�
�

≤
X

q∈Q

h
2
αC

|ξ |
(e |ξ | T � 1) +

αq

max{ |ηq | , |Λ | }

!

(emax{ |ηq | , |Λ | }T
� 1), 

where αC � maxτ∈[0, T] |C̈(τ) | and αq � maxτ∈[0, T] | P̈q(τ) | , ∀q ∈ Q.

4. Model Calibration
Though the proposed framework applies to many forms of cancer, we specify our numerical study for breast can
cer, which kills more than 40,000 American women annually (American Cancer Society 2021a). We include three 
breast cancer drugs in our study: capecitabine, docetaxel, and etoposide; they are labeled 1, 2, and 3, respectively. 
To account for heterogeneity in the cell population, we include four tumor cell types: 0 ≡ “no resistance, all drugs”, 
1 ≡ “resistance, capecitabine only”, 2 ≡ “resistance, docetaxel only”, and 3 ≡ “resistance, etoposide only”. We do 
not consider the case in which a cell type is resistant to multiple drugs because the drugs we consider have different 
mechanisms to attack tumor cells (Luqmani 2005).

The initial tumor size can vary substantially, depending on the progression of the disease, at the start of a treat
ment. Norton (1988) estimates the initial population size of untreated breast cancer patients as N0 � 4:8 • 109 cells. 
This estimate is supported by the fact that tumor detection usually does not occur before the tumor has 109 cells, 
30 generations after the first malignant cell (Asachenkov et al. 1994, Cameron 1997). We use 230 ≈ 109 cells as the 
initial cancer cell population. We estimate tumor heterogeneity, that is, Nq, 0, ∀q ∈ {0, 1, 2, 3}, through a branching 
process (e.g., Kimmel and Axelrod 2015). By simulating this process, we generate multiple scenarios concerning 
tumor heterogeneity and estimate the probability of realization for each scenario. The description of the 
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branching process and estimation of the initial cancer cell populations are provided in the e-companion; see 
Online Appendix C. We use these scenarios directly in our numerical study with the chance-constrained model 
(17); for the deterministic model (14), we use the (empirical) mean cell count for each tumor cell type in these sce
narios. We note that it may take many years for a tumor to reach a detectable size, during which random cell 
mutations—captured by the branching process—play a substantial role in determining tumor composition. 
However, such an effect is negligible during the relatively short period of chemotherapy, and a Gompertzian 
model provides a reasonably accurate representation of tumor evolution for chemotherapy optimization. Norton 
(1988) estimates the steady-state tumor size as N∞ � 3:1 • 1012 cells, which is supported by the maximum tumor 
size detected in mammograms (Cameron 1997); we set this asymptotic limit at approximately 1012 cells in our 
models and assume that the steady-state ratio of a cell type population to the collective cell population remains 
close its ratio at the time of diagnosis. Following Harrold and Parker (2009), we estimate the Gompertz shape 
parameter by Λ � 1

τ ln ln(N∞=N0)

ln(N∞=2N0)

� �
, where τ is the doubling time of the tumor, set equal to five months in their

work. For the white blood cell population dynamics, we follow Iliadis and Barbolosi (2000) and use Nw, 0 � 8 • 109 

cells per liter as the initial population and υw � 1:2 • 109 cells per liter per day and νw � 0:15 per day as the pro
duction and turnover rates, respectively. Online Table D.1 summarizes the parameters used for population 
dynamics in our numerical study; see Online Appendix D.

We use the values reported in the literature for pharmacokinetics parameters, that is, elimination rate 
ξd, ∀d ∈ D, effect compartment V, and effectiveness threshold βd, eff, ∀d ∈ D (Iliadis and Barbolosi 2000, Frances 
et al. 2011) and estimate the pharmacodynamics parameters based on published clinical data. In particular, we 
use the following administration regimens and the response rate observed in the corresponding clinical trial to 
estimate the effect of cytotoxic drugs on the cancer cell populations: 

• Capecitabine (O’Shaughnessy et al. 2001): 1,255 mg=m2 twice daily, six cycles of a two-week treatment period
followed by a one-week rest period, response rate of 30%.

• Docetaxel (Chan et al. 1999): 100 mg=m2, seven cycles of one-hour infusion every three weeks, response rate of
47%.

• Etoposide (Yuan et al. 2015): 60 mg/m2 daily, 7 cycles of a 10-day treatment period followed by a 11-day rest
period, response rate of 9%.

In clinical studies, the dose administration is commonly reported based on body surface area; we use 1.7 m2 as 
an average person’s body surface area in our study (Bonate 2011). The treatment (partial) response rate is defined 
as the percentage of the patients participating in a clinical trial who show 50% or more decrease in tumor size 
(diameter) as a result of the therapy (World Health Organization 1979). Details of pharmacodynamics parameters 
estimation are provided in the e-companion; see Online Appendix D. Given the narrow therapeutic margin of 
cytotoxic drugs, we make a conservative assumption that these drugs have the same fractional kill effect on the 
white blood cells as the cancer cells. Online Table D.2 displays the pharmacokinetics and pharmacodynamics 
parameters in our numerical study; see Online Appendix D.

We also use the simulation results of the aforementioned clinical trials to determine the operational constraints 
parameters concerning maximum drug concentration, maximum infusion rate, and maximum cumulative daily 
dose. This ensures that an (optimal) treatment solution stays within the common range of drug administration in 
practice. Capecitabine and etoposide are orally administered via pills of size 500 mg and 50 mg, respectively 
(Hande 1998, Sharma et al. 2006). Oral drugs are often taken with food, so we designate three time points within 
each day at which the oral drugs may be taken. Docetaxel use is constrained by a week-long rest period after 
each administration day. Finally, we use βneu � 2:5 • 109 and βlym � 1 • 109 cells per liter as the neutropenia and 
lymphocytopenia thresholds, respectively (Rosado et al. 2011, Mitrovic et al. 2012). Online Table D.3 in Online 
Appendix D summarizes the operational parameters used in our numerical study.

5. Computational Results
In this section, we present the results of our numerical study given the model specification and calibration details 
provided in Section 4. To solve the proposed mixed-integer linear programs, we used Gurobi 9.1.2 with default 
parameters on a machine with Intel(R) Core(TM) i7-3520M CPU @ 2.90 GHz and restricted the solution time for 
each instance to a maximum of two hours. Unless otherwise stated, we set the time step parameter h equal to one 
hour and use the constraint set (13) with ∆ � 1

20 (Nw, 0 � βw) to approximate the bilinear terms; to avoid explosion 
of the binary variables introduced in (13), we set the time step length of one day for the white blood cell count 
model. We present our results on the computational performance of the models under different discretization 
resolutions and bilinear approximation methods separately. Finally, we consider a treatment period of 21 days in 
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our numerical study, which is the common length for a chemotherapy cycle (Ershler 2006). Our computational 
results confirming the quality of Equation (6) in approximating Equation (5)—specifically, approximating the 
original Gompertz model of natural tumor growth by a linear ODE in our pharmacodynamics model—are pro
vided in the e-companion; see Online Appendix E. The source code, data, and raw results of the experiments are 
available at Ajayi et al. (2023).

Figure 1 displays the optimal drug administration and concentration over the treatment period using the 
deterministic model (14). More details are provided in the e-companion; see Online Figure F.1 in Online Appen
dix F. From the optimal solution, the highest doses occur at the beginning of the treatment period for all drugs. 
For capecitabine and etoposide that can be administered frequently, the initial high doses make drug concentra
tions reach the maximum permissible levels, and after that, the administration regimens force relatively constant 
concentrations until an induced rest period on day 17; it is important to note that this rest period is not a model
ing mandate. In fact, without an explicit rest constraint on the oral drug administration, the optimal solution 
shows a necessary rest period for these drugs to avoid the violation of toxicity (neutropenia) constraints, akin to 
mandated policies in clinical practice. Docetaxel, the intravenous drug, is administered weekly starting on the 
first day, because of the mandated rest period constraints.

The treatment effects on the cancer and white blood cell populations are illustrated in Figure 2. In this figure, 
N ≡ nonresistant, C ≡ capecitabine-resistant, D ≡ docetaxel-resistant, and E ≡ etoposide-resistant. All cancer cell 
types decrease fairly consistently (with respect to the logarithm) over time. The capecitabine- and etoposide- 
resistant cell types have similar outcomes; the docetaxel-resistant cell type shows a lower level of response to the 
treatment. Patently, the steepest descent belongs to the nonresistant cancer cell type. Regarding the white blood 
cell population, the neutropenia constraint is tight at the optimal solution, which is consistent with the clinical 
observation that neutropenia is often a toxicity of concern in chemotherapy (Pizzo 1993, Kosaka et al. 2015, Kasi 
and Grothey 2018).

An optimal regimen for a certain combination of drugs, that is, an optimal solution to MILP (14), depends on 
tumor properties, drug characteristics, and operational constraints. However, based on our case-study results, 
we conjecture that the current uniform standard-of-care regimens are not optimal in most cases. In the optimal 
regimen of our case study, all three drugs have higher administration doses in the early days than the rest of the 
treatment period, which aims at reaching the maximum permissible (effective) concentration as soon as possible. 
After that, drug administration tries to keep the concentration as close as possible to this level without violating 
the operational constraints. This pattern is well-justified to obtain the minimum tumor size at the end of the treat
ment because the kill effect of the drugs is highly determined by their concentrations; see Equation (14d). This 
pattern is also observed for capecitabine and etoposide (oral drugs) after the induced rest period on day 17; see 
Figure 1 and Online Figure F.1. This implies that having a rest period and then administrating a high dose (to 
make up for the consequent concentration drop) leads to a better objective value than keeping a continuous regu
lar dose. We note that the feasibility of this pattern depends on the drugs’ characteristics as well as the 

Figure 1. (Color online) Optimal Drug Administration and the Corresponding Concentration Given by the Deterministic Model 
(14) 

Notes. (a) Administration. (b) Concentration.
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operational constraints. This can be observed by comparing the optimal regimens for capecitabine and etoposide 
in our case study. The maximum permissible daily doses for capecitabine and etoposide are equivalent to eight 
and two pills, respectively. Hence, the administration of capecitabine is more flexible than etoposide, and conse
quently, its optimal administration pattern is more distinguishable from a uniform pattern. This observation 
motivates conducting clinical trials with nonuniform regimens; any changes to standard of care must be evalu
ated and confirmed by clinical trials.

Standard regimens, including duration and frequency of rest periods, vary across individual chemotherapy 
drugs. For example, the drugs we consider in our case study analysis have the following individual rest periods 
with no standardized guidelines for their combination: (1) capecitabine: one-week rest period after two weeks of 
daily administration (O’Shaughnessy et al. 2001), (2) docetaxel: three-week rest period after a one-hour infusion 
(Chan et al. 1999), and (3) etoposide: 11-day rest period after 10 days of (daily) administration (Yuan et al. 2015). 
The ability of the proposed model to identify the necessity and optimality of a rest period to avoid toxicity (simi
lar to clinical practice) paves the way to investigate optimal configuration of rest periods in combination chemo
therapy and establishing standardized rest-period guidelines for an entire combination chemotherapy treatment 
period.

Regularity of drug administration is a logistic consideration for oral drugs as they are usually taken without 
direct medical supervision (Urquhart and De Klerk 1998). In this regard, we have considered converting the opti
mal solution presented in Figure 1 to a regulated administration plan. Figure 3 shows the result along with the 
corresponding tumor-shrinkage outcome; the difference in the cancer cell population between the optimal and 
regulated plans translates to less than 1 mm change in the tumor diameter. Note that, in construction of the regu
lated administration, we keep the induced rest period on day 17 because ignoring this period leads to a violation 
of the neutropenia constraint. We acknowledge that regularity of the administration regimen for oral drugs can 
be enforced by additional constraints; however, such patterns must be devised carefully as they can be too 
restrictive on the outcome. Finally, we point out that, given the pill sizes and maximum dose and concentration 
constraints for the oral drugs that we consider, the difference between the optimal and regulated plans mainly 
concerns the administration of capecitabine, which is weaker than etoposide based on the fractional kill effect 
parameter values.

In the next phase of our experiments, we investigated the impact of different discretization resolutions on the 
computational performance of (14) by varying the time step parameter h from four hours (240 minutes) to 
15 minutes. Table 1 summarizes the results. The (optimality) gaps are solver-generated and concern the differ
ence between the mixed-integer solutions and their linear program–relaxation bounds at the time of algorithm 
termination; the gap of 0.01% is the solver’s default value within which it considers an incumbent solution opti
mal. Given the initial objective value of 

P3
q�0 Pq, 0 � 74:34 at the start of the treatment, there is little evidence that

Figure 2. (Color online) Effect of the Optimal Drug Administration on Tumor and White Blood Cell Populations Given by the 
Deterministic Model (14) 

Notes. (a) Cancer cell population (logarithmic scale). (b) White blood cell population.
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the discretization resolution (within the tested range) substantially impacts the optimal objective value, in accor
dance with our stability results; all tested time step values satisfy the stability conditions of Theorems 3 and 4. 
However, it does impact the model’s solvability because, as h decreases, the number of variables and constraints 
increase. The gap for the model with h � 15 minutes was 0.09%, the highest among the tested values.

We also examine the impact of different approximation methods for bilinear terms, that is, Constraints (12) 
and (13); for the latter, we considered two different discretization intervals for the white blood cell count, that is, 
∆ � 1

20 (Nw, 0 � βw) and ∆ � 1
40 (Nw, 0 � βw). Recall that Nw, 0 and βw denote upper and lower bounds on the white 

blood cell count, respectively. The results are presented in Table 2, in which “Continuous” refers to the McCor
mick relaxation method, that is, the constraint set (12), and “Discrete” to the (modified) method of Gupte et al. 
(2013), that is, the constraint set (13). As expected, the McCormick relaxation method leads to a lower optimal 
objective value because of its flexibility. This method, however, does not provide a means to control the approxi
mation quality of the bilinear terms. The solvability of the model decreases as more integer variables are intro
duced through refining the discretization interval in the method of Gupte et al. (2013).

Next, we present the results of our numerical study with the chance-constrained optimization model (17). We 
simulated a branching process to generate a set of scenarios describing the heterogeneity of the tumor. Details of 
the branching process and scenario generation are provided in Online Appendix C. Table 3 displays the (loga
rithm of) cancer cell populations and realization probability for each scenario. Based on the branching process, 

Figure 3. (Color online) Regulated Drugs Administration (and Concentration) Based on the Optimal Solution of the Determinis
tic Model (14) and the Corresponding Tumor-Shrinkage Outcome Compared with That of the Optimal Solution 

Notes. (a) Capecitabine administration and concentration. (b) Docetaxel administration and concentration. (c) Etoposide administration and 
concentration. (d) Cancer cell population (logarithmic scale).
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there is a single dominant scenario (scenario 1) with the associated probability of more than 0.77 in which the 
nonresistant cell type has the largest cell count. The probability of a scenario in which a drug-resistant cell type 
has the largest cell count is less than 0.02. Although the size of the drug-resistant part of a tumor is expected to 
be smaller than the nonresistant part, it can become dominant without treatment.

The initial cancer cell population in all scenarios is 109 cells, which translates to a tumor with a diameter of 
about 25 mm (Del Monte 2009). Whereas the operable size of a tumor must be determined clinically based on the 
tumor location and patient’s health conditions, the diameter of 20 mm is commonly considered the border of 
stage II and stage III breast cancer (Senkus et al. 2015). Thus, in our study, we assume Nsurg � 0:4 • 109 cells, 
which translates to a diameter of less than 20 mm. We also set ɛ � 0:05, indicating that the desired probability of 
reaching an operable tumor size at the end of treatment period is at least 0.95. Using the discrete approximation 
of the bilinear terms with ∆ � 1

20 (Nw, 0 � βw) and setting the time step h equal to one hour, the neoadjuvant 
chance-constrained optimization model (17) contained 27,205 variables (1,102 integer, 976 binary) and 35,804 con
straints; the solver found an optimal solution in about 17 minutes with the optimal objective value of 67.99. 
Figure 4 illustrates the treatment effect on cancer cell populations under scenarios 1–4; these are the scenarios 
with the realization probability of at least 0.05. More details on the output of the chanced-constrained model (17) 
as well as its counterpart with a probability-based objective, that is, minimize ɛ subject to (17b)–(17j), are pro
vided in the e-companion; see Online Appendix F. As stated earlier and illustrated in Online Figures F.4 and F.5, 
the probability-based objective leads to inferior tumor shrinkage compared with Formulation (17).

5.1. Sensitivity Analysis
The proposed optimization models involve several parameters that need to be estimated based on clinical data 
and a patient’s biological characteristics. In this section, we present the results of our analysis to determine the 
sensitivity of an optimal solution and objective value of the combination chemotherapy optimization problem 
(14) to these parameters.

Figure 5 illustrates the results of the sensitivity analysis with respect to the pharmacokinetics and pharmaco
dynamics parameters. We use clinical data to estimate the fractional kill effect parameter of each drug for the 
nonresistant cell type, that is, ηd, 0, and set ηd, q � 0:25ηd, 0, ∀q ∈ {1, 2, 3}, to account for drug-resistance in our 
numerical study; see Online Appendix D for more information. We also assume that temporal resistance is con
stant across the cancer cell types, that is, ρd, q � ρd, 0, ∀q ∈ {1, 2, 3}. Thus, for these parameters, we focus on ηd, 0 
and ρd, 0. For each drug, we varied the corresponding parameters in 10% increments as the other parameters of 
the model remained constant and measured the corresponding impact on the optimal objective value. To provide 
a convenient comparison, in Figure 5, the horizontal axes demonstrate (changed) parameter values as a fraction 
of the original value; the vertical axes display the optimal objective value, that is, 

P
q∈QP∗

q, S.
In general, the optimal objective value of the combination chemotherapy optimization problem (14) is more 

sensitive to the fractional kill effect of a drug on cancer cells than any other pharmacokinetics or pharmacody
namics parameter. Based on Figure 5(b), docetaxel, the intravenous drug, is the most influential on the optimal 
objective value among the considered drugs; the oral drugs, capecitabine and etoposide, are less impactful and 
show very similar patterns. Apart from the fractional kill effect on cancer cells, the objective is most sensitive to 
the drug elimination rate. Recall that, for a drug d, the elimination rate ξd determines how fast the drug concen
tration in the body declines. Figure 5(a) suggests docetaxel has the most influential elimination rate on the 

Table 1. Solver Statistics for Different Time Step Values (h)

h, min Objective value Run time, s Cons Vars IVars BVars Gap, %

240 68.09 1,163 8,547 3,759 714 588 <0.01
120 68.12 7,200 11,571 5,523 840 714 0.02
60 68.13 2,029 17,619 9,051 1,092 966 <0.01
30 68.21 7,200 29,715 16,107 1,596 1,470 0.02
15 68.24 7,200 53,907 30,219 2,604 2,478 0.09

Table 2. Solver Statistics for Different Bilinearity Approximation Methods

Method ∆ Objective value Run-time, s Cons Vars IVars BVars Gap, %

Continuous – 68.01 387 12,579 7,350 651 525 <0.01
Discrete 1/20 68.13 2,029 17,619 9,051 1,092 966 <0.01
Discrete 1/40 68.14 7,200 22,659 10,731 1,512 1,386 0.13
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objective value as well. It is important to note that docetaxel has a mandated one-week rest period; hence, the 
model has very little flexibility for administration of this drug. In other words, as opposed to oral drugs that can 
be administrated frequently to keep their concentrations constantly high during the treatment period, the doce
taxel concentration is much lower than its maximum level for most of the treatment period. Because of this oper
ational constraint, changes to the elimination rate of this drug directly influence its concentration profile and 
lead to relatively high impacts on the optimal objective value. As shown in Figure 5, (c) and (d), the model shows 

Table 3. Simulated Scenarios Generated by a Branching Process

Scenario Nonresist. (0) Capec.-resist. (1) Docet.-resist. (2) Etopo.-resist. (3) Prob.

1 20.53 17.89 17.89 17.89 0.7705
2 20.44 17.85 17.83 18.69 0.0619
3 20.44 18.70 17.86 17.86 0.0603
4 20.44 17.84 18.74 17.82 0.0579
5 20.22 19.50 17.74 17.72 0.0109
6 20.23 17.71 19.49 17.71 0.0109
7 20.25 17.72 17.67 19.46 0.0103
8 19.80 17.35 17.45 20.09 0.0064
9 19.81 17.20 20.10 17.28 0.0059
10 19.80 20.11 17.18 17.39 0.0050

Figure 4. (Color online) Treatment Effect on Tumor Cell Populations Under Scenarios 1–4 Given by the Neoadjuvant Chance- 
Constrained Model (17) 
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much less sensitivity to the parameters representing fractional kill effect on white blood cells and temporal resis
tance, that is, ηd, w and ρd, 0. The low impact of ηd, w comparative to ηd, 0 is justified by the fact that the model has a 
tumor shrinkage–based objective.

Another important observation regarding the impact of operational constraints on the optimal objective value 
of Model (14) concerns the elimination rate of etoposide; see Figure 5(a). The increasing patterns observed from 
0.7 to 0.9 (as fractions of the original value) and from 1.0 to 1.2 are justified by the fact that higher elimination 
rates lead to lower drug concentrations and smaller effects on tumor cells. However, a better objective value is 
obtained when the elimination rate changes from 0.9 to 1.0. This is because the optimal administration regimen 
for etoposide changes in this interval. In fact, a higher elimination rate allows the model to administer etoposide 
more frequently without violation of the maximum permissible concentration given the discrete administration 
times. A similar phenomenon underlies the change of slope observed in this figure for capecitabine. Finally, we 
note that the value of the elimination rate parameter of a drug is physically restricted to ξ � 1:0 day�1; hence, the 
etoposide curve in Figure 5(a) terminates at ξ � 1:2 × 0:8 � 0:96 day�1.

Aside from the pharmacokinetics and pharmacodynamics parameters, we evaluated the impact of changes to 
operational parameters governing the combination chemotherapy optimization model (14). In particular, we 
investigated changes to the maximum permissible dose (and concentration) for each drug and the neutropenia 
threshold. Recall that the maximum permissible doses (and concentrations) used in our numerical study are 

Figure 5. (Color online) Sensitivity Analysis Results for the Deterministic Model (14) with Respect to Pharmacokinetics and 
Pharmacodynamics Parameters 

Notes. (a) Elimination rate. (b) Kill effect on cancer cells. (c) Kill effect on white blood cells. (d) Temporal resistance.
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based on common administration regimens in clinical trials. For capecitabine, the clinical administration dose 
translates to eight pills per day, restricted to at most four pills per meal; we denote this regimen by 8/4 hereafter. 
We considered increasing these limits to 10/5 and decreasing them to 6/3. Based on the new values, we calcu
lated the maximum permissible doses and drug concentration through simulation of the corresponding clinical 
trial. Similarly, for etoposide, we considered changing the current administration regimen of 2/1 to 3/2 and 1/1. 
In the presentation of the result to follow, with a slight abuse of the term “dose,” we demonstrate these changes 
as 25% increase and decrease to the maximum permissible dose. For the intravenous drug, docetaxel, we directly 
applied the 25% increase and decrease to the current maximum permissible daily dose and infusion rate; similar 
to oral drugs, we obtain the corresponding maximum permissible concentration from simulation of the corre
sponding clinical trial with the new administration values. Figure 6(a) illustrates the results. According to this 
figure, the maximum permissible dose (and concentration) constraints are the most restrictive for etoposide, and 
their relative relaxation can significantly impact the treatment outcome. Note that the new optimal solutions sat
isfy the neutropenia constraint; under higher administration doses, the count of neutrophils never falls below the 
neutropenia threshold, but it reaches this level much earlier and stays there for the rest of the treatment period. 
Such an increased dose may lead to side effects other than neutropenia, which are not captured by our model.

Normal white blood cell counts vary across patients; different individuals may have different white blood cell 
thresholds for the associated side effects. In our sensitivity analysis, we changed the neutropenia threshold in 
10% increments and measured its impact on the optimal objective value; the results are illustrated in Figure 6(b). 
Given the tightness of the neutropenia constraint, as mentioned before, deterioration of the optimal objective 
value because of the increase of neutropenia threshold is well-justified. This figure also shows that decreasing 
the neutropenia threshold below 90% of the current level will not affect the optimal objective value given the spe
cified values for other parameters in our model. This observation demonstrates that, below this level, other oper
ational constraints, that is, maximum permissible doses and concentrations, are the driving factors.

Sensitivity analysis with respect to the chance parameter ɛ in the stochastic model (17) is also of great interest. 
Such results, however, are highly dependent on tumor composition scenarios and their probabilities. For exam
ple, given three scenarios with the probabilities of 0.40, 0.35, and 0.25, the closest meaningful choice of ɛ to ɛ � 0 
would be ɛ � 0:25. Therefore, such an effort must be equally focused on the branching process to generate rigor
ous and reliable results, which is beyond the scope of this paper. The choice of ɛ � 0:05 in our numerical study 
follows the common engineering practice (95% confidence). For clinical applications, this threshold must be 
determined on a case-by-case basis, considering the patients’ conditions and clinicians’ judgment.

6. Conclusion
This paper presents a mixed-integer linear programming model for combination chemotherapy optimization, 
which seeks to find an optimal administration dose and schedule for cytotoxic drugs by minimizing the cancer 
cell population at the end of a treatment period. As opposed to previous works that often ignore operational 

Figure 6. (Color online) Sensitivity Analysis Results for the Deterministic Model (14) with Respect to Operational Parameters 

Notes. (a) Maximum permissible dose (and concentration). (b) Neutropenia threshold.
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considerations or low white blood cell counts as a toxic effect, we incorporate these constraints. We also extend 
this model to account for the uncertainty of tumor heterogeneity and present a chanced-constrained model for 
neoadjuvant chemotherapy. We use the literature and published clinical data to calibrate our model parameters 
for a case of breast cancer and present the results of our numerical study. We perform sensitivity analyses to 
identify the most influential parameters on the model outcomes. Our models provide a framework for the explo
ration of new, individualized dose guidelines.

The computational framework proposed in this paper is not limited to chemotherapy and cytotoxic drugs; it 
can be extended to other drug-based treatments that necessitate making discrete decisions in continuously evolv
ing environments. For example, our methodology may be applicable to designing colistin-based antibiotic treat
ment against Gram-negative bacteria, which can develop colistin resistance within its colony (Yang et al. 2017). 
However, it is important to note that biological systems are extremely complex, and every computational model 
representing these systems has its own limitations, which need to be considered for clinical applications. 
Whereas the proposed model carefully considers the representational validity of its pharmacokinetics and phar
macodynamics components as well as the operational constraints of chemotherapy, the quality of its outcomes 
highly relies on the accuracy of the model parameters; small errors in estimating these parameters may lead to 
significantly different clinical outcomes. In addition, our model only considers the effect of chemotherapy on the 
immune system and the count of white blood cells as the measure of treatment toxicity, whereas chemotherapy 
may come with several different side effects. For example, chemotherapy may highly increase the risk of acute 
kidney injury (Li et al. 2017); clinical applications must consider all major side effects of chemotherapy.

An immediate research direction to extend this work would be to investigate the optimal configuration of rest 
periods over an entire combination chemotherapy treatment period. Some other potential directions stemming 
from this work include improving estimates of model (pharmacokinetics and pharmacodynamics) parameters, 
considering other drugs or types of cancer in the numerical study, and factoring additional toxicities. We also 
encourage future researchers to extend this work by incorporating the risk of metastatic disease into the chemo
therapy optimization problem. Another line of research could focus on multidrug resistance and its effect on the 
risk of treatment failure. Performing sensitivity analysis with respect to the chance parameter ɛ, with equal focus 
on the branching process, is another direction to extend this work.
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Cajal S, Sesé M, Capdevila C, Aasen T, De Mattos-Arruda L, Diaz-Cano SJ, Hernández-Losa J, Castellvı́ J (2020) Clinical implications of intra

tumor heterogeneity: Challenges and opportunities. J. Molecular Medicine 98(2):161–177.
Cameron D (1997) Mathematical modelling of the response of breast cancer to drug therapy. J. Theoretical Medicine 1(2):137–151.
Chan S, Friedrichs K, Noel D, Pintér T, Van Belle S, Vorobiof D, Duarte R, et al. (1999) Prospective randomized trial of docetaxel vs. doxorubi

cin in patients with metastatic breast cancer. J. Clinical Oncology 17(8):2341–2354.
Coldman A, Goldie J (1983) A model for the resistance of tumor cells to cancer chemotherapeutic agents. Math. Biosciences 65(2):291–307.
Coldman A, Murray J (2000) Optimal control for a stochastic model of cancer chemotherapy. Math. Biosciences 168(2):187–200.

20 
Ajayi et al.: Combination Chemotherapy Optimization with Discrete Dosing 

INFORMS Journal on Computing, Articles in Advance, pp. 1–22,   

https://dx.doi.org/10.1287/ijoc.2022.0207.cd
https://dx.doi.org/10.1287/ijoc.2022.0207.cd
https://github.com/INFORMSJoC/2022.0207
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html
https://www.cancer.org/research/cancer-facts-statistics/all-cancer-facts-figures/cancer-facts-figures-2021.html
https://www.cancer.org/research/cancer-facts-statistics/survivor-facts-figures.html
https://www.cancer.org/research/cancer-facts-statistics/survivor-facts-figures.html
https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy.html
https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy.html


Costa M, Boldrini J (1997) Chemotherapeutic treatments: A study of the interplay among drug resistance, toxicity and recuperation from side 
effects. Bull. Math. Biol. 59(2):205–232.

Day R (1986) Treatment sequencing, asymmetry, and uncertainty: Protocol strategies for combination chemotherapy. Cancer Res. 
46(8):3876–3885.

de Pillis L, Gu W, Fister K, Head T, Maples K, Murugan A, Neal T, Yoshida K (2007) Chemotherapy for tumors: An analysis of the dynamics 
and a study of quadratic and linear optimal controls. Math. Biosciences 209(1):292–315.

Del Monte U (2009) Does the cell number 109 still really fit one gram of tumor tissue? Cell Cycle 8(3):505–506.
d’Onofrio A, Ledzewicz U, Maurer H, Schättler H (2009) On optimal delivery of combination therapy for tumors. Math. Biosciences 

222(1):13–26.
Ebata T, Hirano S, Konishi M, Uesaka K, Tsuchiya Y, Ohtsuka M, Kaneoka Y, et al. (2018) Randomized clinical trial of adjuvant gemcitabine 

chemotherapy vs. observation in resected bile duct cancer. J. British Surgery 105(3):192–202.
Ershler WB (2006) Capecitabine monotherapy: Safe and effective treatment for metastatic breast cancer. Oncologist 11(4):325–335.
Floares A, Floares C, Cucu M, Lazar L (2003) Adaptive neural networks control of drug dosage regimens in cancer chemotherapy. Proc. Inter

nat. Joint Conf. Neural Networks, vol. 1 (IEEE, Piscataway, NJ), 154–159.
Frances N, Claret L, Bruno R, Iliadis A (2011) Tumor growth modeling from clinical trials reveals synergistic anticancer effect of the capecita

bine and docetaxel combination in metastatic breast cancer. Cancer Chemotherapy Pharmacology 68(6):1413–1419.
Gerlinger M, Rowan A, Horswell S, Larkin J, Endesfelder D, Gronroos E, Martinez P, et al. (2012) Intratumor heterogeneity and branched evo

lution revealed by multiregion sequencing. New England J. Medicine 366(10):883–892.
Gupte A, Ahmed S, Cheon M, Dey S (2013) Solving mixed integer bilinear problems using MILP formulations. SIAM J. Optim. 23(2):721–744.
Hande K (1998) Etoposide: Four decades of development of a topoisomerase II inhibitor. Eur. J. Cancer 34(10):1514–1521.
Harrold J, Parker R (2009) Clinically relevant cancer chemotherapy dose scheduling via mixed-integer optimization. Comput. Chemical Engrg. 

33(12):2042–2054.
He Q, Zhu J, Dingli D, Foo J, Leder KZ (2016) Optimized treatment schedules for chronic myeloid leukemia. PLOS Comput. Biol. 12(10):e1005129.
Hu Q, Sun W, Wang C, Gu Z (2016) Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv. Drug Delivery Rev. 

98:19–34.
Hu Z, Sun R, Curtis C (2017) A population genetics perspective on the determinants of intratumor heterogeneity. Biochimica Biophysica Acta 

(BBA)-Rev. Cancer 1867(2):109–126.
Iliadis A, Barbolosi D (2000) Optimizing drug regimens in cancer chemotherapy by an efficacy-toxicity mathematical model. Comput. Biomedi

cal Res. 33(3):211–226.
Itik M, Salamci M, Banks S (2009) Optimal control of drug therapy in cancer treatment. Nonlinear Anal. Theory Methods Appl. 71(12):e1473–e1486.
Jacqmin P, Snoeck E, Van Schaick E, Gieschke R, Pillai P, Steimer JL, Girard P (2007) Modelling response time profiles in the absence of drug 

concentrations: Definition and performance evaluation of the K–PD model. J. Pharmacokinetics Pharmacodynamics 34(1):57–85.
Kasi P, Grothey A (2018) Chemotherapy-induced neutropenia as a prognostic and predictive marker of outcomes in solid-tumor patients. 

Drugs 78(7):737–745.
Kimmel M, Axelrod D (2015) Branching Processes in Biology, 2nd ed. (Springer, New York).
Kosaka Y, Rai Y, Masuda N, Takano T, Saeki T, Nakamura S, Shimazaki R, Ito Y, Tokuda Y, Tamura K (2015) Phase III placebo-controlled, 

double-blind, randomized trial of pegfilgrastim to reduce the risk of febrile neutropenia in breast cancer patients receiving 
docetaxel/dyclophosphamide chemotherapy. Supportive Care Cancer 23(4):1137–1145.

Laird A, Tyler SA, Barton A (1965) Dynamics of normal growth. Growth 29(3):233–248.
LeVeque R (2007) Finite Difference Methods for Ordinary and Partial Differential Equations (Society for Industrial and Applied Mathematics, 

Philadelphia).
Li S, Liu J, Virnig B, Collins A (2017) Association between adjuvant chemotherapy and risk of acute kidney injury in elderly women diag

nosed with early-stage breast cancer. Breast Cancer Res. Treatment 161(3):515–524.
Liang Y, Leung K, Mok T (2006) A novel evolutionary drug scheduling model in cancer chemotherapy. IEEE Trans. Inform. Tech. Biomedicine 

10(2):237–245.
Luqmani Y (2005) Mechanisms of drug resistance in cancer chemotherapy. Medical Principles Practice 14(suppl. 1):35–48.
Mariotti V, Han H, Ismail-Khan R, Tang SC, Dillon P, Montero AJ, Poklepovic A, et al. (2021) Effect of taxane chemotherapy with or without 

indoximod in metastatic breast cancer: A randomized clinical trial. JAMA Oncology 7(1):61–69.
Martin R (1992) Optimal control drug scheduling of cancer chemotherapy. Automatica J. IFAC 28(6):1113–1123.
Martin R, Fisher M, Minchin R, Teo K (1990) A mathematical model of cancer chemotherapy with an optimal selection of parameters. Math. 

Biosciences 99(2):205–230.
Martin R, Fisher M, Minchin R, Teo K (1992a) Low-intensity combination chemotherapy maximizes host survival time for tumors containing 

drug-resistant cells. Math. Biosciences 110(2):221–252.
Martin R, Fisher M, Minchin R, Teo K (1992b) Optimal control of tumor size used to maximize survival time when cells are resistant to che

motherapy. Math. Biosciences 110(2):201–219.
McCormick G (1976) Computability of global solutions to factorable nonconvex programs: Part I—Convex underestimating problems. Math. 

Programming 10(1):147–175.
Mitrovic Z, Perry A, Suzumiya J, Armitage JO, Au WY, Coiffier B, Holte H, et al. (2012) The prognostic significance of lymphopenia in periph

eral T-cell and natural killer/T-cell lymphomas: A study of 826 cases from the International Peripheral T-cell Lymphoma Project. Amer. J. 
Hematology 87(8):790–794.

Murray J (1990) Some optimal control problems in cancer chemotherapy with a toxicity limit. Math. Biosciences 100(1):49–67.
Murray J (1994) Optimal drug regimens in cancer chemotherapy for single drugs that block progression through the cell cycle. Math. Bios

ciences 123(2):183–213.
Murray J (1997) The optimal scheduling of two drugs with simple resistance for a problem in cancer chemotherapy. Math. Medicine Biol. 

14(4):283–303.
Nanda S, Moore H, Lenhart S (2007) Optimal control of treatment in a mathematical model of chronic myelogenous leukemia. Math. Bios

ciences 210(1):143–156.

Ajayi et al.: Combination Chemotherapy Optimization with Discrete 
Dosing INFORMS Journal on Computing, Articles in Advance, pp. 1–22,   21 



Nøhr-Nielsen A, Bagger SO, Brünner N, Stenvang J, Lund TM (2020) Pharmacodynamic modelling reveals synergistic interaction between 
docetaxel and SCO-101 in a docetaxel-resistant triple negative breast cancer cell line. Eur. J. Pharmaceutical Sci. 148:105315.

Norton L (1988) A Gompertzian model of human breast cancer growth. Cancer Res. 48(24, pt. 1):7067–7071.
O’Shaughnessy J, Blum J, Moiseyenko V, Jones SE, Miles D, Bell D, Rosso R, Mauriac L, Osterwalder B, Burger HU, Laws S (2001) Random

ized, open-label, phase II trial of oral capecitabine (XelodaVR ) vs. a reference arm of intravenous CMF as first-line therapy for 
advanced/metastatic breast cancer. Ann. Oncolology 12(9):1247–1254.

Palmeri L, Vaglica M, Palmeri S (2008) Weekly docetaxel in the treatment of metastatic breast cancer. Therapeutics Clinical Risk Management 
4(5):1047–1059.

Panetta J, Adam J (1995) A mathematical model of cycle-specific chemotherapy. Math. Comput. Model. 22(2):67–82.
Pereira F, Pedreira C, De Sousa J (1995) A new optimization based approach to experimental combination chemotherapy. Frontiers Medical 

Biol. Engrg. 64(4):257–268.
Petrovski A, Sudha B, McCall J (2004) Optimising cancer chemotherapy using particle swarm optimisation and genetic algorithms. Yao X, 

Burke E, Lozano J, et al., eds. Parallel Problem Solving from Nature—PPSN VIII (Springer, Berlin/Heidelberg), 633–641.
Piraino S, Thomas V, O’Donovan P, Furney S (2019) Mutations: Driver vs. passenger. Boffetta P, Hainaut P, eds. Encyclopedia of Cancer, 3rd 

ed. (Academic Press, Oxford, UK), 551–562.
Pizzo P (1993) Management of fever in patients with cancer and treatment-induced neutropenia. New England J. Medicine 328:1323–1332.
Polyak K (2011) Heterogeneity in breast cancer. J. Clinical Investigation 121(10):3786–3788.
Reigner B, Blesch K, Weidekamm E (2001) Clinical pharmacokinetics of capecitabine. Clinical Pharmacokinetics 40(2):85–104.
Rosado M, Diamanti A, Cascioli S, Ceccarelli S, Caporuscio S, D’Amelio R, Carsetti R, Lagana B (2011) Hyper-IgM, neutropenia, mild infec

tions and low response to polyclonal stimulation: Hyper-IgM syndrome or common variable immunodeficiency? Internat. J. Immunopa
thology Pharmacology 24(4):983–991.

Sager S (2005) Numerical Methods for Mixed-Integer Optimal Control Problems (Der Andere Verlag, Lübeck, Germany).
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