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Fig. 1. We introduce a neural-mesh-based representation that can preserve sharp discontinuities (linear and curved) provided as input, at arbitrary resolution
for a variety of two-dimensional signals. (a) Rendering comparison to InstantNGP and ReLU fields at 100× zoom, showing how we maintain sharp structures
while previous methods blur the image. (b-e) Example uses of our method for fitting solutions to walk-on-spheres-based diffusion curves, partial differential
equations, and physics-informed neural networks. In all cases, discontinuities are specified by curves. See Section 6 for more comparisons to prior works.

Neural image representations offer the possibility of high fidelity, com-

pact storage, and resolution-independent accuracy, providing an attractive

alternative to traditional pixel- and grid-based representations. However,

coordinate neural networks fail to capture discontinuities present in the

image and tend to blur across them; we aim to address this challenge. In

many cases, such as rendered images, vector graphics, diffusion curves, or

solutions to partial differential equations, the locations of the discontinuities

are known. We take those locations as input, represented as linear, quadratic,

or cubic Bézier curves, and construct a feature field that is discontinuous

across these locations and smooth everywhere else. Finally, we use a shallow

multi-layer perceptron to decode the features into the signal value. To con-

struct the feature field, we develop a new data structure based on a curved

triangular mesh, with features stored on the vertices and on a subset of the

edges that are marked as discontinuous. We show that our method can be

used to compress a 100, 0002-pixel rendered image into a 25MB file; can be
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used as a new diffusion-curve solver by combining with Monte-Carlo-based

methods or directly supervised by the diffusion-curve energy; or can be used

for compressing 2D physics simulation data.
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1 INTRODUCTION
Images are traditionally represented either as pixels (raster images)

or simple geometric curves (vector graphics). Recent advances in

neural fields [Xie et al. 2022] hint at the possibility of representing

images using coordinate neural networks [Song et al. 2016; Chen

et al. 2021; Müller et al. 2022] to preserve rich details in a resolution-

independent fashion. Unfortunately, directly representing an image

using a coordinate neural network fails to model discontinuities, be-

cause these representations are continuous by construction, which

leads to blurring over edges (see Figs. 1 and 2).
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(a) Ground truth (b) Ours (c) InstantNGP (d) ReLU fields

Fig. 2. Existing grid and neural architectures (c, d) continuously map input
features to output colors. They cannot represent discontinuities (a) and blur
across them (top row); our feature field preserves sharp boundaries (b) by
changing discontinuously across them. Bottom row: 1D cross-section of
the red channel at the marked horizontal scanline shows continuous color
variation in (c,d) across edges and discontinuous variation for ours (b).

In many situations, such as path-traced renders, vector graphics,

diffusion curves [Orzan et al. 2008], or partial differential equations,

the 2D locations of discontinuities are known a priori. We take

these discontinuity locations, represented as lines or quadratic/cubic

Bézier curves as common in vector graphics, and produce a hybrid

neural-mesh-based data structure that lets us model 2D signals

containing both discontinuities and rich, smooth color variations.

To design a resolution-independent representation that is only

discontinuous at the curve locations, and otherwise smooth almost

everywhere, we extend the classical feature-based textures [Rama-

narayanan et al. 2004; Sen 2004; Tumblin and Choudhury 2004;

Tarini and Cignoni 2005; Parilov and Zorin 2008; Pavić and Kobbelt

2010]. Instead of using a regular grid to store and interpolate fea-

tures, we propose a new data structure based on a curved triangular

mesh [Hu et al. 2019]. We store neural feature vectors at the mesh

vertices, and mark a subset of the mesh edges as discontinuous. We

devise an interpolation scheme to reconstruct a feature field that is

discontinuous only on the marked edges (Fig. 4 and Section 4). The

interpolated features are fed to a multi-layer perceptron to obtain

the desired output signal. Our core contribution is making the neu-

ral features discontinuous across input discontinuity curves, and

as such, our method can be paired with different neural-network

architectures and loss functions.

We demonstrate our approach on many tasks and compare it

to existing representations (Fig. 1, Section 6). We show that with

the same size as existing neural representations [Müller et al. 2022;

Karnewar et al. 2022], our method produces significantly more ac-

curate results (sometimes > 10dB) when zooming in the signal. We

apply our method for: (1) compressing a 100, 000
2
-pixel Monte Carlo

path-traced raster image from 33GB to 25MB; (2) rendering diffu-

sion curves using a novel combination of neural representation and

Monte Carlo walk on spheres [Muller 1956; Sawhney and Crane

2020] that reduces the sampling variance by an order of magni-

tude; (3) training physics-informed neural networks [Raissi et al.

2019] with results 9dB more accurate than alternatives; and (4) com-

pressing finite-element/difference solutions for Helmholtz and wave

equations by a factor of 20–50×.
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Fig. 3. (a) ReLU fields cannot represent jump discontinuities if one side is
not zero (since it relies on the ReLU clamping). (b, c) it can represent a single
binary edge in the cell reasonably well. (d) but the approximation quality
deteriorates when there are more edges in the cell.

2 RELATED WORK
Mesh/curves representation for images. Early rendering work rep-

resents global illumination as a triangle mesh in image space with

each edge marking the discontinuity locations [Pighin et al. 1997].

To add detail to the interior of the vector graphics, a variety of hybrid

data structures with both pixels and edges have been proposed [Sal-

isbury et al. 1996; Sen et al. 2003; Sen 2004; Ramanarayanan et al.

2004; Tumblin and Choudhury 2004; Tarini and Cignoni 2005; Par-

ilov and Zorin 2008; Pavić and Kobbelt 2010; Reshetov and Luebke

2016], with work extending similar ideas to volume rendering [Agus

et al. 2010]. All these works assume that the “smooth” part of the sig-

nal is represented by a grid, and the discontinuities are represented

by lines or curves, and apply an edge-preserving reconstruction to

interpolate. Assumptions have to be made about the topology of the

curve network for the edge-preserving reconstruction to work. We

revisit this class of techniques with neural representations, leading

to significantly different design decisions. Crucially, apart from the

use of neural networks, we store the feature vectors on the vertices

of a curved triangular mesh, instead of a grid.

Diffusion curves [Orzan et al. 2008] represent images using curves

and solve a Laplace equation using Dirichlet boundary conditions

defined on the curves. We show that our representation can be used

for both solving the Laplace equation or fitting a walk-on-spheres

solution [Muller 1956; Sawhney and Crane 2020], and achieves sig-

nificantly better results compared to existing neural representations.

Edge-based and mesh-based representations of images have been

used for smoothly reconstructing rendered images [Bala et al. 2003;

Velazquez-Armendariz et al. 2006], representing videos [Chen et al.

2011] and light-fields [Broxton et al. 2020].

Some image-vectorization works [Selinger 2003; Xie et al. 2014],

as well as early work on discontinuity meshing in radiosity [Lischin-

ski et al. 1992; Heckbert 1992] extract discontinuities from signals.

Our work currently assumes the discontinuity locations are known

a priori, and they can be obtained through these methods.

Neural fields. There is a surge of interest using neural networks
to augment representations in graphics [Xie et al. 2022]. Song et al.

[2016], to our knowledge, pioneered the idea of representing images

using coordinate neural networks. Encoding giga images [Kopf et al.

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.
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(a) Discontinuity curves (b) Curved triangulation (c) Feature assignment
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Fig. 4. Overview. (a) Our method takes in a set of discontinuity curves, and (b) applies existing robust curved triangulation [Hu et al. 2019] to them. (c) We
then assign one or more features to every vertex. For vertices next to discontinuity curves (red lines), we assign a feature for each side of every discontinuity.
(d) Inference at a query point begins by interpolating the vertex features, respecting the discontinuities, to obtain a feature vector 𝐹 . (e) The vector 𝐹 is then
passed to a shallow multi-layer perceptron to decode the signal value at the query point. We train the vertex features and the multi-layer perceptron together.

2007] is a popular application for recent neural fields [Chen et al.

2021; Mehta et al. 2021; Müller et al. 2022; Martel et al. 2021].

We build our work on the recent feature fields neural representa-
tions [Chen et al. 2021; Müller et al. 2022; Martel et al. 2021]. They

store feature vectors on grid (or tetrahedron [Shen et al. 2021])

vertices, and pass the smoothly interpolated features to a shallow

neural network to produce the reconstructed signal. We store the

features on a curved triangular mesh, and interpolate them in a

discontinuity-aware manner.

Adaptive grids are often used for neural representation [Ren et al.

2013; Yu et al. 2021; Martel et al. 2021]. However, since grids are not

aligned with discontinuities, their precision will always be limited.

Our goal is highly related to that of ReLU fields [Karnewar et al.

2022]. ReLU fields directly store the smooth signals on a grid, and use

non-linear clamping on top of bilinear interpolation to reconstruct

the signal. The clamping itself does not introduce discontinuities,
but it allows reconstruction of high-frequency signals. ReLU fields

are extremely efficient and expressive. However, the clamping to

zero and one means that they cannot represent jump discontinuities

where the values on the two sides are not zero and one. Empirically,

we also find that gradient-based optimization does not allow the

network to precisely locate the discontinuities (see Fig. 3).

Physics-informed neural networks. An emerging approach to solve

partial differential equations is to fit a neural network using a loss di-

rectly coming from the differential equation [Raissi et al. 2019; Zehn-

der et al. 2021; Sitzmann et al. 2020]. We found that when there are

jump discontinuities not at the domain boundaries, naïve physics-

informed neural networks cannot preserve the sharp transitions.

Our representation can be used as a basis for new physics-informed

neural networks for solving low-dimensional partial differential

equations.

Discontinuities in FEM. Our work is related to extended finite-

element (XFEM) methods [Moës et al. 1999] which extend the ap-

proximation space of finite-element methods from continuous basis

functions to discontinuous ones, significantly improving conver-

gence rates near discontinuities in the simulation domain. Similarly,

by making feature fields discontinuous, we are able to represent

details that continuous feature fields cannot capture.

3 OVERVIEW
Given a target continuous-scale signal and a set of curves that

denote its discontinuity locations as input (see Fig. 4a), our goal

is to construct a compact resolution-independent approximation

to the target, such that it can represent sharp changes across the

discontinuities while maintaining continuity everywhere else.

We want to adopt a modern neural-feature-field appoach. This

means that we need to sample points in image space, store some

feature vectors on them, and interpolate the features to feed to a

neural network. It might be tempting to sample on a regular/adaptive

grid like existing work, but this would then require us to interpolate

the grid values without smoothing over the discontinuities. We

show in supplementary document that no matter how finely one

subdivides the grids, an edge-aware interpolation on the grid can

never represent (curved) discontinuities at points with large valence.

Our key idea is to make the feature-field points aligned
with the discontinuity curves. Our representation is a hybrid

neural-mesh-based data structure in which the mesh vertices store

features and the neural network decodes the interpolated features.

We first perform a curved triangulation of the domain such that all

input discontinuity curves form a subset of the edges of our mesh

(Fig. 4b); we mark these (curved) edges as discontinuous. Next, we

place features on the triangle vertices and the marked edges (Fig. 4c).

We then perform a discontinuity-aware interpolation that ensures

a sharp transition in features across discontinuities and smooth

transition elsewhere (Fig. 4d). Finally, the interpolated features are

fed to a shallow multi-layer perceptron (MLP) to produce the signal

value (Fig. 4e).

4 METHOD
Below we present a mathematical definition of our desired continu-

ity criteria (Section 4.1). Next, we describe the curved triangulation

(Section 4.2) and discontinuity-aware interpolation (Section 4.3) to

set up our features. Finally we show how our method satisfies the

continuity criteria (Section 4.4).

4.1 Continuity criteria
We illustrate our continuity criteria in Fig. 5 on a signal computed

using diffusion curves [Orzan et al. 2008] which solves a Laplace

equation with boundary conditions defined on a Bézier curve. We

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.
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Radial jump discontinuity
at tangent pointing inwards

Radial jump discontinuities
at two tangents

Continuous for all directions

Fig. 5. Continuity criteria. A 2D signal with discontinuities for motivating
our approach. Points in the domain can be categorized into three classes:
(1) At points outside the curve the signal is continuous; (2) For a point on
the curve interior, walking on a small surrounding circle will see two jump
discontinuities at both tangent directions; (3) For a curve endpoint, walking
on a small circle will see one jump discontinuity. Our goal is to have a data
structure, such that when we query with continuous 2D coordinates, the
returned values would preserve these criteria (Section 4.1).

are given a two-dimensional domain Ω and a set of one-dimensional

discontinuity curves Γ = {𝛾0, ...𝛾𝑛−1}, 𝛾𝑖 ⊂ Ω ∀𝑖 . We denote the

set of endpoints of the curves as 𝜕Γ. We assume that the curves do

not intersect with each other, except at their endpoints. In practice,

we rely on the curved triangulation process (Fig. 4b) to resolve

intersections and split the curves. We want to construct a function

𝑓 ∶ Ω → R𝐾 such that

(1) if x ∈ Ω ∖ Γ, 𝑓 is continuous at x;
(2) if x ∈ Γ ∖ 𝜕Γ, x is directionally discontinuous for the two

tangent directions and continuous in all other directions;

(3) if x ∈ 𝜕Γ, x is directionally discontinuous at the tangent

direction pointing inwards to the curve(s) that end(s) at x and
continuous in all other directions.

By directionally discontinuous over a point x and direction d, we
mean that if we walk on a circle with a small radius around x, the
function would have a jump discontinuity at direction d. Below we

formally define the meaning of directional continuity.

Definition 4.1. Directional limit. The directional limit of a func-

tion 𝑓 at a point x ∈ R2 along the direction d ∈ S1 is given by

ℎ(x, d) = lim𝑡→0
+ 𝑓 (x + 𝑡d).

Definition 4.2. Directional continuity. A function 𝑓 is defined

to be directionally continuous at point x and the direction d if

limd′→d ℎ(x, d′) = ℎ(x, d). If the limit does not exist for some pair

(x, d), we call 𝑓 directionally discontinuous at (x, d).

4.2 Curved triangulation
Given a set of discontinuity lines or Bézier curves (Fig. 4a), we first

perform a curved triangulation using the input curves as constraints

to obtain a triangular mesh (Fig. 4b). We build on the recent advance

in robust curved triangulation and apply TriWild [Hu et al. 2019].

The triangulation process resamples
1
the curves into a set Γ =

{𝛾0, ...𝛾𝑛−1} ⊂ Ω to ensure that the resulting mesh satisfies:

(1) If 𝛾𝑖 is a line, then it is an edge of a triangle;

(2) If𝛾𝑖 is a Bézier curve, then it is fully contained inside a triangle

with two end points being two of the triangle vertices.

1

During the resampling, TriWild can slightly modify the input curve depending on the

tolerance parameters. In practice we have found the difference to be imperceptible and

assume that TriWild’s resampling perserves the discontinuity curves.

(a) Reference (b) All continuous (c) All discontinuous (d) Discontinuous
across edge (ours)

Fig. 6. Naïve interpolation introduces artifacts. We fit a diffusion-curve
image (a) to three different triangle-mesh-based representations using walk-
on-spheresMonte Carlo samples (see Section 6.2). (b) Storing a single feature
per vertex results in a fully continuous representation which blurs the edge.
(c) Storing vertex features independently for all triangles introduces spurious
artifacts at edges between triangles (zoom in). (d) Our method places extra
features on vertices that lie on the discontinuity and smoothly interpolates
them except across discontinuities, producing the desired result.

After the triangulation process, we mark an edge to be discontin-
uous if it was part of the input discontinuity curves. The curves are

provided in the problem definition for applications such as bound-

ary conditions of partial differential equations (Sections 6.2 to 6.4),

and must be extracted for applications like rendering (Section 6.1).

4.3 Discontinuity-aware feature interpolation
Given the triangle mesh, we want to interpolate features between

vertices while respecting discontinuities (Section 4.1). To achieve

this, we first assign to each vertex a set of features (Fig. 4c), then

interpolate them without smoothing across the discontinuity curves

(Fig. 4d). For simplicity, we fist focus on the case of linear edges. Even

in this simple case, naïve methods would not work: storing a single

feature per vertex and interpolating using barycentric coordinates

would smooth across the discontinuities (Fig. 6b), while storing

three features per triangle and interpolating would create spurious

discontinuities at edges not marked as discontinuous (Fig. 6c).

4.3.1 Dual features at discontinuous vertices. Our idea for the fea-
ture assignment is to store two sets of features on each pair of a

vertex and a discontinuous edge. At a vertex 𝑖 , we store two features

on each side of every discontinuous edge (𝑖, 𝑗) – a clockwise feature
F cw

𝑖, 𝑗 and a counterclockwise feature F ccw

𝑖, 𝑗 . If there are no discontinu-

ous edges associated with the vertex, then we store a single vertex

feature F𝑖 . Fig. 4c illustrates the feature assignment. All features are

multi-dimensional vectors; we use 5D vectors in all our examples.

Given the features and a query point inside a trianglewith barycen-

tric coordinates 𝑏1, 𝑏2, we want to barycentrically interpolate:

F = (1 − 𝑏1 − 𝑏2)F̂0 + 𝑏1F̂1 + 𝑏2F̂2 . (1)

F ccw

𝑖,𝑘 F cw

𝑖, 𝑗

F cw

𝑖,𝑘 F ccw

𝑖, 𝑗
However, how do we get the features F̂𝑖
to interpolate? For example, for the gray-

edged triangle on the right, vertex 𝑖 at

the top has four possible values: how do

we pick between the four?

4.3.2 Radial interpolation of discontinuous features. Inspired by the
directional continuity definition (Section 4.1), our idea is to radially
interpolate features. Given a query point in a triangle, we want

to determine the feature F̂𝑖 at each triangle vertex 𝑖 . If vertex 𝑖 is

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.
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F

F0

𝜃 cw
2

𝜃 ccw
2

𝜃 ccw
1

𝜃 cw
1

F cw
1,2 F ccw

1,2

F ccw
2,1

F cw
2,3

Fig. 7. Discontinuity-aware feature interpolation. For a query point in-
side a triangle, we barycentrically interpolate between the features at ver-
tices 0 (left), 1 (top), and 2 (right) to obtain a feature vector F. If a vertex is
associated with one or more discontinuity edges, its feature varies direction-
ally. The vertex then stores one feature for each side of each such edge. For
the query point, we radially interpolate the nearest two edge features, in
clockwise and counterclockwise directions respectively. Here, vertex 0 has
no associated discontinuity edges and thus stores a single, isotropic feature
F0. Vertex 1 stores two features, F cw

1,2 and F ccw
1,2 , for one (open) discontinuity

edge. Vertex 2 stores four features for two discontinuity edges; here we
show only the two relevant ones, F ccw

2,1 and F cw
2,3 . We then linearly interpolate

using the angles 𝜃 cw
1

and 𝜃 ccw
1

between the direction from vertex to query
point and the edges to obtain the directionally-varying feature for vertex 1,
and using angles 𝜃 cw

2
and 𝜃 ccw

2
for vertex 2.

not associated with any discontinuous edge, then F̂𝑖 = F𝑖 , which
is the case for (blue) vertex 𝑖 = 0 in Fig. 7. Otherwise, we find the

two nearest discontinuous edges in clockwise and counterclockwise

directions w.r.t. the direction from vertex 𝑖 to the query vertex, with

features F cw

𝑖 and F ccw

𝑖 respectively. (For vertex 1 in Fig. 7, which has

only one (open) discontinuity edge, the features are F cw

1,2 and F ccw

1,2 .)

We then radially interpolate between them (see insets in Fig. 7):

F̂𝑖 = F cw

𝑖
𝜃
ccw

𝑖

𝜃 cw𝑖 + 𝜃 ccw𝑖
+ F ccw

𝑖
𝜃
cw

𝑖

𝜃 cw𝑖 + 𝜃 ccw𝑖
, (2)

where 𝜃
cw

𝑖 and 𝜃
ccw

𝑖 are the angles between vector x−v𝑖 and the cor-
responding edges, with x being the query point and v𝑖 the position
of triangle vertex 𝑖 . For vertex 1, this will simply radially interpolate

the clockwise and counter-clockwise features as desired, with a

discontinuity in only one direction along the edge from vertex 1 to

vertex 2 (corresponding the leftmost curve endpoint in Fig. 5). Ver-

tex 2 has four features, and the closest clockwise/counterclockwise

features correspond to two different edges, F ccw

2,1 and F cw

2,3 .

4.3.3 Curved discontinuities. Extending the method above to han-

dle curved discontinuities mostly boils down to properly tracking

the discontinuity curve within a triangle and switching to different

features when the query point crosses the curve (see Fig. 8).

Since the triangulation process (Section 4.2) ensures that each

triangle contains at most one curve, we need to consider at most

two regions per triangle. For each triangle 𝑇 , if it contains a curve,

we store a curve feature F curve

𝑖,𝑇 at triangle vertex 𝑖 that is opposite

to the curved edge, denoted as F curve

0,𝑇 in Fig. 8. For the other two

vertices, we do not store curve features unless they themselves are

the vertex that is opposite to some other curve edge. The curve

features are responsible for representing the region between the

curve and the triangle edges (middle in Fig. 8).

F0 F curve
0,𝑇

F cw
1,2

F ccw
1,2

F ccw
2,1

F cw
2,1

F3

F ccw
1,2 F cw

2,1

F3

F curve
0,𝑇

F cw
1,2 F ccw

2,1

F0

Fig. 8. Curve-feature interpolation. To achieve discontinuity-aware in-
terpolation on a curved triangle (lower triangle here), we decompose the
triangle into two regions. For simplicity, we do not show the four features
associated with vertex 1 and 2 connecting out to other vertices (F cw

1, 𝑗 , F
ccw
1, 𝑗 ,

F cw
2,𝑘

, F ccw
2,𝑘

for some 𝑗, 𝑘 that are not 1 or 2). We store a curve feature F curve
0,𝑇

on triangle vertex 0 which is not on the discontinuous edge. Then, if the
query point is between the curve and its associated (straight) triangle edge
1, 2 (middle figure), we use the curve feature for vertex 0 and radially inter-
polate features for vertices 1 and 2 as in Fig. 7 (e.g., for vertex 1, we radially
interpolate between feature F ccw

1,2 and some other feature F cw
1, 𝑗 ). If the query

is on the other side of the curve (right figure), we interpolate as in Fig. 7.

Algorithm 1. Query operation of our data structure.

1: function Query(𝑥 ,𝑚𝑒𝑠ℎ)

2: 𝑇 , 𝑏1, 𝑏2 ← PointInTriangle(𝑥 ,𝑚𝑒𝑠ℎ)

3: for each vertex v𝑖 in triangle 𝑇 do
4: if IsContinuous(v𝑖 ) then
5: F̂𝑖 ← F𝑖
6: else Æ Radially interpolate two closest discontinuous edges (Fig. 7)

7: F̂𝑖 ← F cw

𝑖
𝜃
ccw

𝑖

𝜃 cw
𝑖
+𝜃 ccw

𝑖

+ F ccw

𝑖
𝜃
cw

𝑖

𝜃 cw
𝑖
+𝜃 ccw

𝑖

8: if ContainsCurve(𝑇 ) and
9: NotOnCurvedEdge(𝑇 , v𝑖 ) and 𝐺𝑇 (x) < 0 then
10: F̂𝑖 ← F curve

𝑖,𝑇 ← Use curve feature if 𝑥 is between curve and

triangle edge (Fig. 8)

11: F = (1 − 𝑏1 − 𝑏2)F̂0 + 𝑏1F̂1 + 𝑏2F̂2
12: return MLP(F)

Given a query point inside a triangle𝑇 , if there is no curve inside

the triangle, we proceed as in the linear-edge case (Fig. 7). Other-

wise, we check which side of the curve the query point lands on. If

it is inside the curve feature region (middle in Fig. 8) and the curve

feature is stored in vertex 𝑖 , then we assign F̂𝑖 = F curve

𝑖,𝑇 . For the

other two vertices we use the radially-interpolated clockwise/coun-

terclockwise features. Otherwise (right in Fig. 8), we interpolate as

in the linear-edge case. To test which side of the curve the query

point is on, we employ implicitization [Sederberg 1983; Loop and

Blinn 2005]: any quadratic/cubic Bézier curve in a triangle 𝑇 can

be converted into an implicit function𝐺𝑇 (x), where the sign of𝐺𝑇
determines which side x is on.

4.3.4 MLP feature decoding. We pass the query-point feature F,
interpolated per Eq. (1), to a multi-layer perceptron to obtain the

final signal 𝑓 :

𝑓 (x) =MLP(F). (3)

We use a shallow MLP, with structure described in Section 5. Our

complete inference pipeline is summarized in Algorithm 1.
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4.4 Continuity analysis
We show that our interpolation scheme satisfies the continuity

criteria in Section 4.1.

Theorem 4.3. Given the curved triangular mesh that satisfies
the criteria in Section 4.2, with a subset of its (curved) edges Γ =
{𝛾0, ...𝛾𝑛−1} marked as discontinuous (with endpoints 𝜕Γ as triangle
vertices), the feature field reconstructed by our discontinuity-aware
interpolation (Section 4.3) satisfies the continuity criteria in Section 4.1.

Proof. We analyze the continuity at query point x in four cases:

(1) x is in the interior of a triangle: the barycentric interpolation

ensures the continuity (Condition (1)). The nearest (counter-)

clockwise feature does not change in the interior.

(2) x ∈ Γ ∖ 𝜕Γ: Our radial interpolation would create two direc-

tional discontinuities at the two tangent directions of the

curve as x will switch to a different region. Since we store

different features at the two sides, point x satisfies Condition

(2). For curved edges, the jump discontinuities are ensured

by the switch to curve features as x crosses over the curve.

(3) x ∈ 𝜕Γ: Suppose x is connected to 𝑛 discontinuous edges (if

𝑛 = 1, then x is at the endpoint of an open discontinuous

edge). Consider a circle with sufficiently small radius around

x: the circle would intersect all the 𝑛 edges. This leads to

directional discontinuities towards the tangent directions of

all the discontinuous edges.

(4) x is on a triangle edge that is not marked discontinuous:

since the barycentric coordinate corresponding to the vertex

opposite to the triangle edge is 0 and the radial interpolation

does not produce a discontinuity at x, the feature at x is

continuous (Condition (1)).

□

5 IMPLEMENTATION
We implement our algorithm in PyTorch [Paszke et al. 2019]. We use

the ADAM Optimizer [Kingma and Ba 2015] with a learning rate of

0.01 and 𝛽 = (0.9, 0.999). We train all models to convergence. This

ranges from a couple of minutes for walk on spheres (Section 6.2)

to a couple of hours for rendering (Section 6.1).

We use a shallow, two-layer perceptron with 64 neurons and

ReLU activation to decode the interpolated features. For rendering

(Section 6.1), we use 128 neurons for both layers and for physics-

informed neural networks we use the tanh activation function. Ad-

ditionally, for rendering, we concatenate the interpolated features

with a one-blob encoding of x [Müller et al. 2018].

TriWild [Hu et al. 2019] generates curved triangulations in the

gmsh format which we compress using Draco
2
. We use sparse data

structures to setup pointers between the features and a global pa-

rameter bank. At run time, we populate per-triangle buffers using

these data structures for faster lookups. In the supplementary doc-

ument we provide additional details about the parameters for the

curved triangulation and the exact data structures for feature setup.

We use the mean squared error loss function for all applications

except rendering, for which we use the relative mean squared error

2

https://google.github.io/draco/

Table 1. Triangulation and feature-field statistics. We report the number
of triangles, vertices, discontinuous vertices, parameters, and inference time.
The parameter count includes those of the feature field and the multi-layer
perceptron. The inference time is measured for a 1𝑘2-resolution image.

Scene #Triangles #Vertices #Disc. vert. #Params Time

Hairball (Fig. 1a) 983,153 492,127 405,600 6,882,584 0.026s

Flowers (Fig. 9) 1,465,050 734,008 156,999 5,639,241 0.033s

Circles (Fig. 10) 11,425 13,481 846 87,504 0.021s

Loop (Fig. 12) 51,673 29,914 811 167,779 0.015s

Helmholtz (Fig. 14) 11,975 6,118 284 39,489 0.015s

Wave eq. (Fig. 13) 22,071 11,189 397 1,237,909 0.047s

∏︁(𝑓 (x) − 𝑔(x))⇑(𝑓 (x) + 0.01)∏︁2, where 𝑓 is our network’s predic-

tion and 𝑔 is the ground-truth signal. The gradients are not propa-

gated through the denominator.

For sampling during training, we found standard stratified sam-

pling, either according to a regular grid or the underlying triangula-

tion to be sufficient, even near edges.

6 APPLICATIONS
We showcase applications for fitting 2D signals, from rendering

to solving differential equations with discontinuities specified by

curves. We categorize them by how we produce the signals.

We compare our method mainly to two recent neural-feature-

field approaches, InstantNGP [Müller et al. 2022] and ReLU fields

[Karnewar et al. 2022]. InstantNGP excels at fitting high-resolution

images and outperforms competing methods such as ACORN [Mar-

tel et al. 2021]. ReLU fields produce significantly sharper results than

their linear counterparts and have been shown to be effective at

fitting sharp edges in binary functions. We show the scene statistics

of our method in Table 1.

6.1 Rendering
For rendering, our goal is to produce a resolution-independent rep-

resentation that maps two-dimensional screen coordinates to RGB-

color values [Pighin et al. 1997]. To obtain the location of geomet-

ric discontinuities, we project all silhouette edges and geometric-

normal discontinuity edges onto the screen and clip them against

occluding triangles. The resulting set of edges represents the loca-

tions of visibility and normal discontinuities in screen space.

For training data, we use a raster image rendered at 100𝑘
2
reso-

lution with 512 samples per pixel to approximate the continuous

signal. We also tried querying the continuous signal on the fly by

retrieving RGB values for given screen coordinates, but opted for

the raster image because it achieved similar fidelity with a simpler

implementation. Rendering the raster image took 2 hours using Mit-

suba 3 [Jakob et al. 2022]. In each epoch we retrieve 10𝑘
2
stratified

pixels from the raster image and use a batch size of 2
19
.

We demonstrate our approach on two scenes with fine geometric

detail, Hairball in Fig. 1a and Rose Bush in Fig. 9. The 100𝑘
2
PIZ-

compressed ground-truth EXR image in Fig. 9 is 33GB. In contrast,

our method yields total file sizes (trainable parameters + mesh)

of 25MB and 30MB for the Rose Bush and Hairball scenes respec-
tively. We adjust the InstantNGP and ReLU-fields sizes to match

our file size: hash-table size=2
19

at 30MB for InstantNGP and grid

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.
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Ground truth Ours InstantNGP ReLU fields
Our

error
InstantNGP

error
ReLU fields

error

PSNR: 48.71 dB PSNR: 39.18 dB PSNR: 35.40 dB

PSNR: 50.86 dB PSNR: 38.46 dB PSNR: 36.04 dB

PSNR: 37.07 dB PSNR: 30.25 dB PSNR: 26.17 dB

PSNR: 31.02 dB PSNR: 26.35 dB PSNR: 22.92 dB

33× zoom33× zoom

100× zoom100× zoom

33× zoom33× zoom

100× zoom100× zoom

Fig. 9. Fitting rendering images. We fit our representation to a high-resolution (100𝑘2) image, where it is able to preserve sharp contrast across discontinuities
at zoom levels of even up to 100×, with an improvement > 10dB in some regions compared to existing neural representations. InstantNGP and ReLU Fields (at
equal total file size) provide a continuous approximation to a signal with jump discontinuities, which leads to blurring across edges and creates unpleasant
artifacts at high zoom levels that dominate the error. Some delicate textures in the continuous part of the signal (the rose petal, last row) are blurred by all
methods because the triangulation (for our method) and grid (for ReLU Fields) are not fine enough, and the hash-table size (for InstantNGP) is not large
enough to capture them.

Ground truth Ours InstantNGP ReLU fields Our error InstantNGP error ReLU fields error

PSNR: 43.05 dB PSNR: 29.88 dB PSNR: 31.35 dB

PSNR: 35.01 dB PSNR: 23.21 dB PSNR: 26.41 dB

PSNR: 38.47 dB PSNR: 26.88 dB PSNR: 31.50 dB

1× zoom1× zoom

5× zoom5× zoom

10× zoom10× zoom

Fig. 10. Monte Carlo diffusion curves. We propose a novel way to solve partial differential equations by fitting our neural representation to the noisy
data generated by a Monte Carlo walk-on-spheres solver [Sawhney and Crane 2020]. Here, we show results on solving a diffusion-curve image using
500 × 500 × 11 = 2.75M noisy Monte Carlo samples. The capability to preserve discontinuities allows us to both maintain sharp edges and produce smoother
results outside of the discontinuities, since our data structure requires much less network capacity to represent the edges. Our method automatically denoises
the noisy input. We analyze the denoising property in Fig. 11. The ground-truth image has been rendered at 5002 resolution with 10,000 samples per pixel.
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0.25M 1M 2.25M 4M 6.25M
Number of walk-on-spheres training samples

0.01

0.005

0.001

0.0005

0.0001

Va
ri
an

ce

Fig. 10

InstantNGP: 218
InstantNGP: 215
InstantNGP: 212
Monte Carlo

ReLU fields: 5002
ReLU fields: 2802
ReLU fields: 1402
Ours

Fig. 11. Our method can denoise Monte Carlo samples generated by walk
on spheres better than other (grid-based) neural methods at all sampling
rates (for the scene in Fig. 10). We test InstantNGP with several hash-table
sizes; it tends to overfit to the noise with an increasing number of entries
in the hash table. ReLU fields is less prone to overfitting, but suffers from
error due to blurring across edges and performs worse than our method. We
measure variance against a 5002-pixel ground-truth image rendered with
10,000 samples per pixel (spp), rasterizing each representation with 256 spp.

size=1500
2
at 26MB for ReLU fields. Both InstantNGP and ReLU

fields smoothen discontinuities, while ours preserves sharp edges;

this is most evident in the 33×- and 100×-zoom crops in which we

show a 10dB improvement in Fig. 9. The supplementary video shows

a zoom animation on that scene.

Both InstantNGP (0.0012s) and ReLU Fields (0.0009s) have a much

faster inference time than our method (0.033s) due to highly opti-

mized and simple implementations respectively, for a 1𝑘
2
image.

6.2 Walk-on-spheres diffusion curves
Monte Carlo geometry processing [Sawhney and Crane 2020] shows

great promise in solving partial differential equations in a resolution-

independent way using walk-on-spheres [Muller 1956]. However,

storing the solution in a resolution-dependent raster image throws

away a lot of the benefits that Monte Carlo brings in the first place.

We fit our representation to the walk-on-spheres samples, enabling

resolution-independent solution storage while preserving disconti-

nuities (Fig. 10). Furthermore, since our representation is smooth

outside discontinuities, our method automatically denoises the noisy
Monte Carlo samples [Lehtinen et al. 2018], accelerating the con-

vergence; see Fig. 11. To our knowledge, our method is the first to

supervise neural representations with walk-on-spheres data. This

enables a new regime for solving partial differential equations.

Specifically, we apply our method to learn a diffusion-curve im-

age [Orzan et al. 2008] which is the solution to the Laplace equation

with two-sided Dirichlet boundary conditions defined on a set of

Bézier curves. Our training data is obtained from our GPU-based

implementation of the walk-on-spheres algorithm.

In Fig. 10, we fit our method to Monte Carlo samples generated at

a resolution of 500
2
with 11 samples per pixel. Our method achieves

much higher quality (> 10dB) than other neural representations

at equal file size since they overfit to noise and smoothen discon-

tinuities. Our method cleanly denoises the Monte Carlo samples

Walk-on-spheres
reference

Ours

Multi-layer perceptron

TanH fields

SIREN

PSNR: 12.09 dB

PSNR: 17.49 dB

PSNR: 18.57 dB

PSNR: 26.90 dB

Fig. 12. “Physics-informed” diffusion curves. Our method can be used
for directly solving partial differential equations without any training data.
Here, we show results on solving a diffusion-curve image, and compare to
an architecture similar to ReLU fields but using tanh activation due to ReLU
having zero second derivatives everywhere. We also compare to a standard
multi-layer perceptron. TanH fields and SIREN smooth over discontinuities,
while the multi-layer perceptron completely failed to reconstruct the signal,
despite our extensive attempts to tune the hyperparameters.

(reducing variance by 19.21×) while preserving discontinuities over

a wide range of sample counts for the noisy input; see Fig. 11.

It is also possible to render diffusion curves by solving a linear

system. However, the linear solve needs to globally discretize the

entire canvas, even when zooming into a small region. This can

potentially cause problems at extremely high resolutions.

6.3 Physics-informed neural networks
Like physics-informed neural networks [Raissi et al. 2019], our

method can directly solve partial differential equations without any
training data, by sampling points in the space and using a loss

function directly from the differential equation. We demonstrate

solutions to diffusion curves using this setup.

We minimize the Dirichlet energy ℒ
d
= 1

2 ∫Ω ⋃︀⋃︀∇𝑓 ⋃︀⋃︀
2
, which is

the weak form of the Laplace equation, where 𝑓 is the output of

the neural network. To enforce the boundary constraints, we add

an extra loss term ℒ
b
= ∫Γ ⋃︀⋃︀𝑓 − 𝑏⋃︀⋃︀

2
, where 𝑏 is the given Dirichlet

boundary condition. To minimize the Dirichlet energy everywhere

in Ω, we stratify our samples in the triangles. For the two-sided

boundary conditions, we sample two points offset by a distance of

0.001 on either side of the curve in the normal direction. The final

loss is ℒ
d
+ 0.00001ℒ

b
.

To compare against ReLU fields, which have zero second deriv-

ative everywhere, we replace the ReLU activation with TanH. We

do not compare against InstantNGP as its implementation does not

support second derivatives. We also compare to a SIREN [Sitzmann

et al. 2020] network which has 5 layers with 256 neurons each. Fi-

nally, we compare to a standard 4-layer MLP, with 512 neurons per

layer and TanH activation, which is similar to architectures often

used in the physics-informed neural networks literature.
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Ground truth Ours InstantNGP
InstantNGP
(5x file size) Ground truth Ours InstantNGP

InstantNGP
(5x file size)

Time t=0.35 Time t=0.65

PSNR: 37.13 dB PSNR: 39.49 dBPSNR: 40.24 dBt=0.35, 1x zoom

t=0.35, 10x zoom

t=0.65, 1x zoom

t=0.65, 10x zoomPSNR: 26.37 dB PSNR: 28.81 dBPSNR: 29.85 dB

PSNR: 42.10 dB PSNR: 43.93 dBPSNR: 50.47 dB

PSNR: 38.51 dB PSNR: 41.09 dBPSNR: 47.05 dB

Fig. 13. Fitting to finite-difference solution of wave equation. Our method can compress video sequences such as the high-resolution solution to the wave
equation without signal leakage across blockers. The domain has a large linear discontinuity (see 𝑡 = 0.35, second row for zoom in) and a set of smaller slits
that diffracts the wave (see t=0.65, zoom-in on second row). Our method preserves sharp contrast across the small slit, whereas InstantNGP with equal file
size, or even 5× larger, cannot represent it.

Fig. 12 shows the result. Our method is the only one able to

compute a solution that looks close to the ground truth. The two-

sided boundary condition we imposed leads to discontinuities at

the curves. TanH fields fail to preserve the discontinuities. The MLP

completely fails to converge, despite us having tried a very broad

set of hyperparameters. It is well known in the literature that the

training of physics-informed neural networks can often be trapped

in a local minimum [Krishnapriyan et al. 2021]. It is possible that

our explicit representation of discontinuities helps with the training;

we leave further investigations as future work.

6.4 Compressing finite-element/difference data
Our representation can also be used for fitting very high-resolution

solutions obtained from finite-element or finite-difference methods,

in a discontinuity preserving manner.

Discontinuities are very common in these settings, e.g., an absorb-

ing or reflecting object in the center of a room could block a sound

wave from freely propagating. Blurring across discontinuities in

this setting can completely change the meaning of the signal, such

as leaking sound past a blocker, allowing fluid to flow through a

barrier, etc. This blurring makes current neural- and grid-based ap-

proaches unsuitable in these settings. Our method can compress the

solution while also providing guarantees of not leaking the signal

past barriers provided in the input discontinuity curves.

Helmholtz equation. The Helmholtz equation is the time-indepen-

dent solution to the wave equation that is fundamental to acoustics

or wave-optics simulation in computer graphics [James 2016]. It

shows high-frequency ripples whose frequency increases with the

wavenumber 𝑘 . We compute the complex-valued target signal using

the finite-element method with 590𝑘 triangles and a file size of 19MB.

The medium inside the square domain with a linear barrier is air

and the wavenumber is 𝑘 = 40.
For training, we use nearest-neighbour interpolation (which pre-

serves linear discontinuities) on the ground-truth mesh. We stratify

our samples uniformly within all triangles in our triangulation and

Ground truth Ours InstantNGP
InstantNGP
(4x file size)

PSNR: 32.89 dB PSNR: 22.94 dB PSNR: 24.34 dB

PSNR: 22.52 dB PSNR: 19.32 dB PSNR: 20.85 dB

PSNR: 28.02 dB PSNR: 5.93 dB PSNR: 5.40 dB

10× zoom

100×

1000×

Fig. 14. Fitting to finite-element solution of Helmholtz equation. Given
data computed using a finite-element method for solving the Helmholtz
equation, our representation compresses the solution from 19MB to 740KB,
while guaranteeing no signal leakage across the linear barrier. We show
the real part of the solution; the complex part has similar characteristics.
Equal-file-size InstantNGP blurs across the barrier and leaks signal across
it. Increasing the hash-table size improves the results; however, it still blurs
across edges as one zooms in further. Interestingly, the smoothness of our
representation enables it to automatically remove the nearest-neighbor
sampling artifacts in the ground truth (see second row).

use grid-based stratified sampling for InstantNGP. Our method has

a file size of 740KB, and we adjust InstantNGP’s hash table to be

of equal size in Fig. 14. We additionally train another version of

InstantNGP with 4× the file size, which approximates edges better

at lower zoom levels. However, upon zooming in further, it shows

blurring across edges.

Wave equation. Next, we apply our method to compress the time-

varying solution to the wave equation, again defined on a square

domain with several static blockers. There are several regularly

spaced slits in the domain to emulate slit diffraction and a large

linear barrier at the bottom; see Fig. 13. The sound wave originates

at a point source. We again use nearest-neighbor interpolation to

retrieve training data from the finite-difference method.
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Our feature field has thus far been 2D. To extend it temporally, we

replicate the same curved triangulation for different time instances,

for each initializing the vertex features independently. To resolve

a query, we linearly interpolate the features obtained through our

discontinuity-aware interpolation from the two closest time in-

stances. Since the blockers are static, we do not smooth over any

discontinuities by interpolating over time.

We find that our representation can correctly prevent sound from

leaking across barriers by maintaining sharp discontinuities. It also

maintains high fidelity while compressing the original signal from

303MB down to 6MB. We show significant improvement in the

quality over equal and 5× file-size InstantNGP. The supplemental

video shows an animation of the waves, also a zoomed-in version.

7 LIMITATIONS AND FUTURE WORK
Performance. Due to our use of an irregular mesh and a proof-of-

concept implementation, our inference times are slower than the

highly efficient and optimized modern feature fields. We expect that

integrating our triangle-mesh data structure into a GPU rasterizer

would significantly speed up both training and inference. Even with

these improvements, feature fields stored on regular grids can still

have faster inference times due to the regularity and locality.

Discontinuity locations. Our method assumes prior knowledge of

the discontinuity locations. Closely integrating image-vectorization

[Reddy et al. 2021] or discontinuitymeshingwith our representation,

and updating edge locations using differentiable rendering [Li et al.

2020; Bangaru et al. 2021] could be an exciting avenue.

Level of detail. Our representation does not properly handle multi-

scale data, since we do not model different scales; see Fig. 15. Future

work involves investigatingmulti-resolutionmesh structures [Hoppe

1996] for neural fields.

8 CONCLUSION
We present a hybrid neural-mesh representation for 2D signals with

discontinuities. Unlike most existing neural fields which are by

construction continuous, our representation can handle signals that

contain both discontinuities and smooth (color) variations, allowing

extreme levels of zooming. Our method opens up a wide variety of

applications, including a new image representation for rendering,

storing and solving diffusion-curve images, a new way to combine

walk-on-spheres Monte Carlo partial-differential-equation solvers

with neural representations, and high-fidelity compression of 2D

physics-simulation data.
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Fig. 15. An increasing-frequency signal given by sin((100 + 𝑓 )𝑥2), with
𝑓 = {50, 150, 1250} in the three horizontal segments (top), and three 1D
horizontal slices which are each 2% of the total width. Our method uses
11,274 triangles, and the 1D horizontal slice intersects about 150 edges. It
handles discontinuities and low-to-medium frequency signal variation well
(red and yellow). However, both our method and ReLU fields store features
at a single scale, so they struggle to capture the high-frequency variation
(blue). On the other hand, InstantNGP store features at multiple scales, so
it can better resolve higher frequencies (blue). However, their hash collisions
lead to spurious high-frequency variations in low-frequency regions (red).
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