Check for
updates

Discontinuity-Aware 2D Neural Fields

YASH BELHE, University of California San Diego, USA
MICHAEL GHARBI, Adobe Research, USA
MATTHEW FISHER, Adobe Research, USA

ILIYAN GEORGIEV, Adobe Research, UK

RAVI RAMAMOORTHI, University of California San Diego, USA

TZU-MAO LI, University of California San Diego, USA

Ours (1x zoom) i Qurs|(100>9)

A

U fiells (1005)

IRSEENGP (003)

(a) Rendering

(b) Walk on spheres

(c) Helmholtz equation (d) Wave equation

(e) Physics-informed neural networks

Fig. 1. We introduce a neural-mesh-based representation that can preserve sharp discontinuities (linear and curved) provided as input, at arbitrary resolution
for a variety of two-dimensional signals. (a) Rendering comparison to InstantNGP and ReLU fields at 100x zoom, showing how we maintain sharp structures
while previous methods blur the image. (b-e) Example uses of our method for fitting solutions to walk-on-spheres-based diffusion curves, partial differential
equations, and physics-informed neural networks. In all cases, discontinuities are specified by curves. See Section 6 for more comparisons to prior works.

Neural image representations offer the possibility of high fidelity, com-
pact storage, and resolution-independent accuracy, providing an attractive
alternative to traditional pixel- and grid-based representations. However,
coordinate neural networks fail to capture discontinuities present in the
image and tend to blur across them; we aim to address this challenge. In
many cases, such as rendered images, vector graphics, diffusion curves, or
solutions to partial differential equations, the locations of the discontinuities
are known. We take those locations as input, represented as linear, quadratic,
or cubic Bézier curves, and construct a feature field that is discontinuous
across these locations and smooth everywhere else. Finally, we use a shallow
multi-layer perceptron to decode the features into the signal value. To con-
struct the feature field, we develop a new data structure based on a curved
triangular mesh, with features stored on the vertices and on a subset of the
edges that are marked as discontinuous. We show that our method can be
used to compress a 100, 000?-pixel rendered image into a 25MB file; can be

Authors’ addresses: Yash Belhe, University of California San Diego, USA, ybelhe@ucsd.
edu; Michaél Gharbi, Adobe Research, USA, mgharbi@adobe.com; Matthew Fisher,
Adobe Research, USA, matfishe@adobe.com; Iliyan Georgiev, Adobe Research, UK,
igeorgiev@adobe.com; Ravi Ramamoorthi, University of California San Diego, USA,
ravir@ucsd.edu; Tzu-Mao Li, University of California San Diego, USA, tzli@ucsd.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.
© 2023 Copyright held by the owner/author(s).

0730-0301/2023/12-ART217

https://doi.org/10.1145/3618379

used as a new diffusion-curve solver by combining with Monte-Carlo-based
methods or directly supervised by the diffusion-curve energy; or can be used
for compressing 2D physics simulation data.

CCS Concepts: + Computing methodologies — Image compression;
Image representations; Reconstruction; Neural networks; Computer
graphics.

Additional Key Words and Phrases: discontinuous, neural fields, infinite
resolution, walk on spheres, physics informed neural networks.

ACM Reference Format:

Yash Belhe, Michaél Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ra-
mamoorthi, and Tzu-Mao Li. 2023. Discontinuity-Aware 2D Neural Fields.
ACM Trans. Graph. 42, 6, Article 217 (December 2023), 11 pages. https:
//doi.org/10.1145/3618379

1 INTRODUCTION

Images are traditionally represented either as pixels (raster images)
or simple geometric curves (vector graphics). Recent advances in
neural fields [Xie et al. 2022] hint at the possibility of representing
images using coordinate neural networks [Song et al. 2016; Chen
et al. 2021; Miller et al. 2022] to preserve rich details in a resolution-
independent fashion. Unfortunately, directly representing an image
using a coordinate neural network fails to model discontinuities, be-
cause these representations are continuous by construction, which
leads to blurring over edges (see Figs. 1 and 2).

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

HTTPS://ORCID.ORG/0009-0009-7070-2845
HTTPS://ORCID.ORG/0000-0002-7622-4970
HTTPS://ORCID.ORG/0000-0002-8908-3417
HTTPS://ORCID.ORG/0000-0002-9655-2138
HTTPS://ORCID.ORG/0000-0003-3993-5789
HTTPS://ORCID.ORG/0000-0001-5443-470X
https://orcid.org/0009-0009-7070-2845
https://orcid.org/0000-0002-7622-4970
https://orcid.org/0000-0002-8908-3417
https://orcid.org/0000-0002-9655-2138
https://orcid.org/0000-0003-3993-5789
https://orcid.org/0000-0001-5443-470X
https://doi.org/10.1145/3618379
https://doi.org/10.1145/3618379
https://doi.org/10.1145/3618379
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3618379&domain=pdf&date_stamp=2023-12-05

217:2 « Yash Belhe, Michaél Gharbi, Matthew Fisher, lliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li

[

(a) Ground truth

[

(b) Ours

(c) InstantNGP

(d) ReLU fields

Fig. 2. Existing grid and neural architectures (c, d) continuously map input
features to output colors. They cannot represent discontinuities (a) and blur
across them (top row); our feature field preserves sharp boundaries (b) by
changing discontinuously across them. Bottom row: 1D cross-section of
the red channel at the marked horizontal scanline shows continuous color
variation in (c,d) across edges and discontinuous variation for ours (b).

In many situations, such as path-traced renders, vector graphics,
diffusion curves [Orzan et al. 2008], or partial differential equations,
the 2D locations of discontinuities are known a priori. We take
these discontinuity locations, represented as lines or quadratic/cubic
Bézier curves as common in vector graphics, and produce a hybrid
neural-mesh-based data structure that lets us model 2D signals
containing both discontinuities and rich, smooth color variations.

To design a resolution-independent representation that is only
discontinuous at the curve locations, and otherwise smooth almost
everywhere, we extend the classical feature-based textures [Rama-
narayanan et al. 2004; Sen 2004; Tumblin and Choudhury 2004;
Tarini and Cignoni 2005; Parilov and Zorin 2008; Pavi¢ and Kobbelt
2010]. Instead of using a regular grid to store and interpolate fea-
tures, we propose a new data structure based on a curved triangular
mesh [Hu et al. 2019]. We store neural feature vectors at the mesh
vertices, and mark a subset of the mesh edges as discontinuous. We
devise an interpolation scheme to reconstruct a feature field that is
discontinuous only on the marked edges (Fig. 4 and Section 4). The
interpolated features are fed to a multi-layer perceptron to obtain
the desired output signal. Our core contribution is making the neu-
ral features discontinuous across input discontinuity curves, and
as such, our method can be paired with different neural-network
architectures and loss functions.

We demonstrate our approach on many tasks and compare it
to existing representations (Fig. 1, Section 6). We show that with
the same size as existing neural representations [Miiller et al. 2022;
Karnewar et al. 2022], our method produces significantly more ac-
curate results (sometimes > 10dB) when zooming in the signal. We
apply our method for: (1) compressing a 100, OOOZ—pixel Monte Carlo
path-traced raster image from 33GB to 25MB; (2) rendering diffu-
sion curves using a novel combination of neural representation and
Monte Carlo walk on spheres [Muller 1956; Sawhney and Crane
2020] that reduces the sampling variance by an order of magni-
tude; (3) training physics-informed neural networks [Raissi et al.
2019] with results 9dB more accurate than alternatives; and (4) com-
pressing finite-element/difference solutions for Helmholtz and wave
equations by a factor of 20-50x.

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

Ground truth

A
A

(d) Two edges

ReLU fields

(a) Non-binary (b) Binary (c) Binary
Fig. 3. (a) ReLU fields cannot represent jump discontinuities if one side is
not zero (since it relies on the ReLU clamping). (b, c) it can represent a single
binary edge in the cell reasonably well. (d) but the approximation quality
deteriorates when there are more edges in the cell.

2 RELATED WORK

Mesh/curves representation for images. Early rendering work rep-
resents global illumination as a triangle mesh in image space with
each edge marking the discontinuity locations [Pighin et al. 1997].
To add detail to the interior of the vector graphics, a variety of hybrid
data structures with both pixels and edges have been proposed [Sal-
isbury et al. 1996; Sen et al. 2003; Sen 2004; Ramanarayanan et al.
2004; Tumblin and Choudhury 2004; Tarini and Cignoni 2005; Par-
ilov and Zorin 2008; Pavi¢ and Kobbelt 2010; Reshetov and Luebke
2016], with work extending similar ideas to volume rendering [Agus
etal. 2010]. All these works assume that the “smooth” part of the sig-
nal is represented by a grid, and the discontinuities are represented
by lines or curves, and apply an edge-preserving reconstruction to
interpolate. Assumptions have to be made about the topology of the
curve network for the edge-preserving reconstruction to work. We
revisit this class of techniques with neural representations, leading
to significantly different design decisions. Crucially, apart from the
use of neural networks, we store the feature vectors on the vertices
of a curved triangular mesh, instead of a grid.

Diffusion curves [Orzan et al. 2008] represent images using curves
and solve a Laplace equation using Dirichlet boundary conditions
defined on the curves. We show that our representation can be used
for both solving the Laplace equation or fitting a walk-on-spheres
solution [Muller 1956; Sawhney and Crane 2020], and achieves sig-
nificantly better results compared to existing neural representations.

Edge-based and mesh-based representations of images have been
used for smoothly reconstructing rendered images [Bala et al. 2003;
Velazquez-Armendariz et al. 2006], representing videos [Chen et al.
2011] and light-fields [Broxton et al. 2020].

Some image-vectorization works [Selinger 2003; Xie et al. 2014],
as well as early work on discontinuity meshing in radiosity [Lischin-
ski et al. 1992; Heckbert 1992] extract discontinuities from signals.
Our work currently assumes the discontinuity locations are known
a priori, and they can be obtained through these methods.

Neural fields. There is a surge of interest using neural networks
to augment representations in graphics [Xie et al. 2022]. Song et al.
[2016], to our knowledge, pioneered the idea of representing images
using coordinate neural networks. Encoding giga images [Kopf et al.

ccw
F12

CcwW
FlZ

Fo

(a) Discontinuity curves (b) Curved triangulation

" @

.\&1\”

(c) Feature assignment

Discontinuity-Aware 2D Neural Fields « 217:3

H%
3

ccw
FZI

(d) Discontinuity-aware
feature interpolation

(e) MLP feature decoding

Fig. 4. OVERVIEW. (a) Our method takes in a set of discontinuity curves, and (b) applies existing robust curved triangulation [Hu et al. 2019] to them. (c) We
then assign one or more features to every vertex. For vertices next to discontinuity curves (red lines), we assign a feature for each side of every discontinuity.
(d) Inference at a query point begins by interpolating the vertex features, respecting the discontinuities, to obtain a feature vector F. (e) The vector F is then
passed to a shallow multi-layer perceptron to decode the signal value at the query point. We train the vertex features and the multi-layer perceptron together.

2007] is a popular application for recent neural fields [Chen et al.
2021; Mehta et al. 2021; Miller et al. 2022; Martel et al. 2021].

We build our work on the recent feature fields neural representa-
tions [Chen et al. 2021; Miller et al. 2022; Martel et al. 2021]. They
store feature vectors on grid (or tetrahedron [Shen et al. 2021])
vertices, and pass the smoothly interpolated features to a shallow
neural network to produce the reconstructed signal. We store the
features on a curved triangular mesh, and interpolate them in a
discontinuity-aware manner.

Adaptive grids are often used for neural representation [Ren et al.
2013; Yu et al. 2021; Martel et al. 2021]. However, since grids are not
aligned with discontinuities, their precision will always be limited.

Our goal is highly related to that of ReLU fields [Karnewar et al.
2022]. ReLU fields directly store the smooth signals on a grid, and use
non-linear clamping on top of bilinear interpolation to reconstruct
the signal. The clamping itself does not introduce discontinuities,
but it allows reconstruction of high-frequency signals. ReLU fields
are extremely efficient and expressive. However, the clamping to
zero and one means that they cannot represent jump discontinuities
where the values on the two sides are not zero and one. Empirically,
we also find that gradient-based optimization does not allow the
network to precisely locate the discontinuities (see Fig. 3).

Physics-informed neural networks. An emerging approach to solve
partial differential equations is to fit a neural network using a loss di-
rectly coming from the differential equation [Raissi et al. 2019; Zehn-
der et al. 2021; Sitzmann et al. 2020]. We found that when there are
jump discontinuities not at the domain boundaries, naive physics-
informed neural networks cannot preserve the sharp transitions.
Our representation can be used as a basis for new physics-informed
neural networks for solving low-dimensional partial differential
equations.

Discontinuities in FEM. Our work is related to extended finite-
element (XFEM) methods [Moés et al. 1999] which extend the ap-
proximation space of finite-element methods from continuous basis
functions to discontinuous ones, significantly improving conver-
gence rates near discontinuities in the simulation domain. Similarly,
by making feature fields discontinuous, we are able to represent
details that continuous feature fields cannot capture.

3 OVERVIEW

Given a target continuous-scale signal and a set of curves that
denote its discontinuity locations as input (see Fig. 4a), our goal
is to construct a compact resolution-independent approximation
to the target, such that it can represent sharp changes across the
discontinuities while maintaining continuity everywhere else.

We want to adopt a modern neural-feature-field appoach. This
means that we need to sample points in image space, store some
feature vectors on them, and interpolate the features to feed to a
neural network. It might be tempting to sample on a regular/adaptive
grid like existing work, but this would then require us to interpolate
the grid values without smoothing over the discontinuities. We
show in supplementary document that no matter how finely one
subdivides the grids, an edge-aware interpolation on the grid can
never represent (curved) discontinuities at points with large valence.

Our key idea is to make the feature-field points aligned
with the discontinuity curves. Our representation is a hybrid
neural-mesh-based data structure in which the mesh vertices store
features and the neural network decodes the interpolated features.
We first perform a curved triangulation of the domain such that all
input discontinuity curves form a subset of the edges of our mesh
(Fig. 4b); we mark these (curved) edges as discontinuous. Next, we
place features on the triangle vertices and the marked edges (Fig. 4c).
We then perform a discontinuity-aware interpolation that ensures
a sharp transition in features across discontinuities and smooth
transition elsewhere (Fig. 4d). Finally, the interpolated features are
fed to a shallow multi-layer perceptron (MLP) to produce the signal
value (Fig. 4e).

4 METHOD

Below we present a mathematical definition of our desired continu-
ity criteria (Section 4.1). Next, we describe the curved triangulation
(Section 4.2) and discontinuity-aware interpolation (Section 4.3) to
set up our features. Finally we show how our method satisfies the
continuity criteria (Section 4.4).

4.1 Continuity criteria

We illustrate our continuity criteria in Fig. 5 on a signal computed
using diffusion curves [Orzan et al. 2008] which solves a Laplace
equation with boundary conditions defined on a Bézier curve. We

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

217:4 « Yash Belhe, Michaél Gharbi, Matthew Fisher, lliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li

@ Continuous for all directions

Radial jump discontinuities
at two tangents

Radial jump discontinuity
at tangent pointing inwards

Fig. 5. CONTINUITY CRITERIA. A 2D signal with discontinuities for motivating
our approach. Points in the domain can be categorized into three classes:
(1) At points outside the curve the signal is continuous; (2) For a point on
the curve interior, walking on a small surrounding circle will see two jump
discontinuities at both tangent directions; (3) For a curve endpoint, walking
on a small circle will see one jump discontinuity. Our goal is to have a data
structure, such that when we query with continuous 2D coordinates, the
returned values would preserve these criteria (Section 4.1).

are given a two-dimensional domain Q and a set of one-dimensional
discontinuity curves I' = {yo,...yn-1}, ¥i € Q Vi. We denote the
set of endpoints of the curves as dI'. We assume that the curves do
not intersect with each other, except at their endpoints. In practice,
we rely on the curved triangulation process (Fig. 4b) to resolve
intersections and split the curves. We want to construct a function
f:Q—- RK such that

(1) if x € Q\ T, f is continuous at x;
(2) if x € T \ dT, x is directionally discontinuous for the two
tangent directions and continuous in all other directions;
(3) if x € T, x is directionally discontinuous at the tangent
direction pointing inwards to the curve(s) that end(s) at x and
continuous in all other directions.
By directionally discontinuous over a point x and direction d, we
mean that if we walk on a circle with a small radius around x, the
function would have a jump discontinuity at direction d. Below we
formally define the meaning of directional continuity.

Definition 4.1. Directional limit. The directional limit of a func-
tion f at a point x € R? along the direction d € S! is given by
h(x,d) = lim;_ g+ f(x+ td).

Definition 4.2. Directional continuity. A function f is defined
to be directionally continuous at point x and the direction d if
limgr_,q h(x,d") = h(x,d). If the limit does not exist for some pair
(x,d), we call f directionally discontinuous at (x,d).

4.2 Curved triangulation

Given a set of discontinuity lines or Bézier curves (Fig. 4a), we first
perform a curved triangulation using the input curves as constraints
to obtain a triangular mesh (Fig. 4b). We build on the recent advance
in robust curved triangulation and apply TriWild [Hu et al. 2019].
The triangulation process resamples1 the curves into a set I' =
{¥0s---Yn—1} € Q to ensure that the resulting mesh satisfies:

(1) If y; is a line, then it is an edge of a triangle;

(2) Ify; is a Bézier curve, then it is fully contained inside a triangle

with two end points being two of the triangle vertices.

1Durimg the resampling, TriWild can slightly modify the input curve depending on the

tolerance parameters. In practice we have found the difference to be imperceptible and
assume that TriWild’s resampling perserves the discontinuity curves.

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

- r

(a) Reference (b) All continuous (c) All discontinuous (d) Discontinuous

across edge (ours)

Fig. 6. NAIVE INTERPOLATION INTRODUCES ARTIFACTS. We fit a diffusion-curve
image (a) to three different triangle-mesh-based representations using walk-
on-spheres Monte Carlo samples (see Section 6.2). (b) Storing a single feature
per vertex results in a fully continuous representation which blurs the edge.
(c) Storing vertex features independently for all triangles introduces spurious
artifacts at edges between triangles (zoom in). (d) Our method places extra
features on vertices that lie on the discontinuity and smoothly interpolates
them except across discontinuities, producing the desired result.

After the triangulation process, we mark an edge to be discontin-
uous if it was part of the input discontinuity curves. The curves are
provided in the problem definition for applications such as bound-
ary conditions of partial differential equations (Sections 6.2 to 6.4),
and must be extracted for applications like rendering (Section 6.1).

4.3 Discontinuity-aware feature interpolation

Given the triangle mesh, we want to interpolate features between
vertices while respecting discontinuities (Section 4.1). To achieve
this, we first assign to each vertex a set of features (Fig. 4c), then
interpolate them without smoothing across the discontinuity curves
(Fig. 4d). For simplicity, we fist focus on the case of linear edges. Even
in this simple case, naive methods would not work: storing a single
feature per vertex and interpolating using barycentric coordinates
would smooth across the discontinuities (Fig. 6b), while storing
three features per triangle and interpolating would create spurious
discontinuities at edges not marked as discontinuous (Fig. 6c).

4.3.1 Dual features at discontinuous vertices. Our idea for the fea-
ture assignment is to store two sets of features on each pair of a
vertex and a discontinuous edge. At a vertex i, we store two features
on each side of every discontinuous edge (i, j) — a clockwise feature
F;7" and a counterclockwise feature F;';". If there are no discontinu-
ous edges associated with the vertex, then we store a single vertex
feature F;. Fig. 4c illustrates the feature assignment. All features are
multi-dimensional vectors; we use 5D vectors in all our examples.

Given the features and a query point inside a triangle with barycen-
tric coordinates by, by, we want to barycentrically interpolate:

F:(l—bl—bg)f“o+b1f“1+bgf“2. (1)
However, how do we get the features F; FCVW peew
. ik TLj
to interpolate? For example, for the gray-
edged triangle on the right, vertex i at P FW
12
the top has four possible values: how do N "
we pick between the four? o

4.3.2 Radial interpolation of discontinuous features. Inspired by the
directional continuity definition (Section 4.1), our idea is to radially
interpolate features. Given a query point in a triangle, we want
to determine the feature F; at each triangle vertex i. If vertex i is

cCCW
91
QCCW
cw ccw L. 2
Fiz . Fl,Z fre.
Ry gcw N

5 1 .

. N cwW
B 05

Oco. AR\
Fo ~ .0 e S
3

Fig. 7. DISCONTINUITY-AWARE FEATURE INTERPOLATION. For a query point in-
side a triangle, we barycentrically interpolate between the features at ver-
tices 0 (left), 1 (top), and 2 (right) to obtain a feature vector F. If a vertex is
associated with one or more discontinuity edges, its feature varies direction-
ally. The vertex then stores one feature for each side of each such edge. For
the query point, we radially interpolate the nearest two edge features, in
clockwise and counterclockwise directions respectively. Here, vertex 0 has
no associated discontinuity edges and thus stores a single, isotropic feature
Fy. Vertex 1 stores two features, F{) and F{$", for one (open) discontinuity
edge. Vertex 2 stores four features for two discontinuity edges; here we
show only the two relevant ones, F;$" and F;%'. We then linearly interpolate
using the angles 67" and 7Y between the direction from vertex to query
point and the edges to obtain the directionally-varying feature for vertex 1,
and using angles 05" and 05 for vertex 2.

not associated with any discontinuous edge, then F; = F;, which
is the case for (blue) vertex i = 0 in Fig. 7. Otherwise, we find the
two nearest discontinuous edges in clockwise and counterclockwise
directions w.r.t. the direction from vertex i to the query vertex, with
features Fy™ and F{V respectively. (For vertex 1 in Fig. 7, which has
only one (open) discontinuity edge, the features are Fi and F{5".
We then radially interpolate between them (see insets in Fig. 7):

CCW CW
0i cew_ 0;

W CcCW i W ccw
oY + 05 oY + 05

Fi =F @
where 07" and 67" are the angles between vector x—v; and the cor-
responding edges, with x being the query point and v; the position
of triangle vertex i. For vertex 1, this will simply radially interpolate
the clockwise and counter-clockwise features as desired, with a
discontinuity in only one direction along the edge from vertex 1 to
vertex 2 (corresponding the leftmost curve endpoint in Fig. 5). Ver-
tex 2 has four features, and the closest clockwise/counterclockwise
features correspond to two different edges, F;7" and Fy3 .

4.3.3 Curved discontinuities. Extending the method above to han-
dle curved discontinuities mostly boils down to properly tracking
the discontinuity curve within a triangle and switching to different
features when the query point crosses the curve (see Fig. 8).

Since the triangulation process (Section 4.2) ensures that each
triangle contains at most one curve, we need to consider at most
two regions per triangle. For each triangle T, if it contains a curve,
we store a curve feature Fif%rve at triangle vertex i that is opposite
to the curved edge, denoted as Fg}rve in Fig. 8. For the other two
vertices, we do not store curve features unless they themselves are
the vertex that is opposite to some other curve edge. The curve
features are responsible for representing the region between the
curve and the triangle edges (middle in Fig. 8).

Discontinuity-Aware 2D Neural Fields « 217:5

ccw
FZ,l

curve curve
Fo " For For Fo

Fig. 8. CURVE-FEATURE INTERPOLATION. To achieve discontinuity-aware in-
terpolation on a curved triangle (lower triangle here), we decompose the
triangle into two regions. For simplicity, we do not show the four features
associated with vertex 1 and 2 connecting out to other vertices (Fi‘}’, Ff;.“’,
Fi‘z, Fi‘;{w for some j, k that are not 1 or 2). We store a curve feature F&“Twe
on triangle vertex 0 which is not on the discontinuous edge. Then, if the
query point is between the curve and its associated (straight) triangle edge
1,2 (middle figure), we use the curve feature for vertex 0 and radially inter-
polate features for vertices 1 and 2 as in Fig. 7 (e.g., for vertex 1, we radially
interpolate between feature F5" and some other feature Ff‘;’) If the query

is on the other side of the curve (right figure), we interpolate as in Fig. 7.

Algorithm 1. Query operation of our data structure.

- function QUERY(x, mesh)

2 T, by, by < PointInTriangle(x, mesh)

3 for each vertex v; in triangle T do

4 if IsContinuous(v;) then

5 1?“,' <~ F;

6 else « Radially interpolate two closest discontinuous edges (Fig. 7)
' cw 0" cew 07"

7 Fi < F; " gowigrew + ¥ govigeew

8 if ContainsCurve(T) and

9 NotOnCurvedEdge(T, v;) and G7(x) < 0 then

10 Fi <« Fl-(:};rve <« Use curve feature if x is between curve and

triangle edge (Fig. 8)
11 F=(1—b1—b2)f’0+b1f‘1+b21€‘2
12 return MLP(F)

Given a query point inside a triangle T, if there is no curve inside
the triangle, we proceed as in the linear-edge case (Fig. 7). Other-
wise, we check which side of the curve the query point lands on. If
it is inside the curve feature region (middle in Fig. 8) and the curve
feature is stored in vertex i, then we assign F; = Ff}rve. For the
other two vertices we use the radially-interpolated clockwise/coun-
terclockwise features. Otherwise (right in Fig. 8), we interpolate as
in the linear-edge case. To test which side of the curve the query
point is on, we employ implicitization [Sederberg 1983; Loop and
Blinn 2005]: any quadratic/cubic Bézier curve in a triangle T can
be converted into an implicit function G7(x), where the sign of Gy
determines which side x is on.

4.3.4 MLP feature decoding. We pass the query-point feature F,
interpolated per Eq. (1), to a multi-layer perceptron to obtain the
final signal f:

f(x) = MLP(F). ()
We use a shallow MLP, with structure described in Section 5. Our
complete inference pipeline is summarized in Algorithm 1.

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

217:6 + Yash Belhe, Michaél Gharbi, Matthew Fisher, lliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li

4.4 Continuity analysis

We show that our interpolation scheme satisfies the continuity
criteria in Section 4.1.

THEOREM 4.3. Given the curved triangular mesh that satisfies
the criteria in Section 4.2, with a subset of its (curved) edges T =
{Y0s ---yn—1} marked as discontinuous (with endpoints oI as triangle
vertices), the feature field reconstructed by our discontinuity-aware
interpolation (Section 4.3) satisfies the continuity criteria in Section 4.1.

Proor. We analyze the continuity at query point x in four cases:

(1) xis in the interior of a triangle: the barycentric interpolation
ensures the continuity (Condition (1)). The nearest (counter-)
clockwise feature does not change in the interior.

(2) x € I' \ 9I': Our radial interpolation would create two direc-
tional discontinuities at the two tangent directions of the
curve as x will switch to a different region. Since we store
different features at the two sides, point x satisfies Condition
(2). For curved edges, the jump discontinuities are ensured
by the switch to curve features as x crosses over the curve.

(3) x € dT': Suppose x is connected to n discontinuous edges (if
n = 1, then x is at the endpoint of an open discontinuous
edge). Consider a circle with sufficiently small radius around
x: the circle would intersect all the n edges. This leads to
directional discontinuities towards the tangent directions of
all the discontinuous edges.

(4) x is on a triangle edge that is not marked discontinuous:
since the barycentric coordinate corresponding to the vertex
opposite to the triangle edge is 0 and the radial interpolation
does not produce a discontinuity at x, the feature at x is
continuous (Condition (1)).

]

5 IMPLEMENTATION

We implement our algorithm in PyTorch [Paszke et al. 2019]. We use
the ADAM Optimizer [Kingma and Ba 2015] with a learning rate of
0.01 and § = (0.9,0.999). We train all models to convergence. This
ranges from a couple of minutes for walk on spheres (Section 6.2)
to a couple of hours for rendering (Section 6.1).

We use a shallow, two-layer perceptron with 64 neurons and
ReLU activation to decode the interpolated features. For rendering
(Section 6.1), we use 128 neurons for both layers and for physics-
informed neural networks we use the tanh activation function. Ad-
ditionally, for rendering, we concatenate the interpolated features
with a one-blob encoding of x [Miiller et al. 2018].

TriWild [Hu et al. 2019] generates curved triangulations in the
gmsh format which we compress using Draco®. We use sparse data
structures to setup pointers between the features and a global pa-
rameter bank. At run time, we populate per-triangle buffers using
these data structures for faster lookups. In the supplementary doc-
ument we provide additional details about the parameters for the
curved triangulation and the exact data structures for feature setup.

We use the mean squared error loss function for all applications
except rendering, for which we use the relative mean squared error

®https://google.github.io/draco/

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

Table 1. TRIANGULATION AND FEATURE-FIELD STATISTICS. We report the number
of triangles, vertices, discontinuous vertices, parameters, and inference time.
The parameter count includes those of the feature field and the multi-layer
perceptron. The inference time is measured for a 1k%-resolution image.

Scene #Triangles #Vertices #Disc.vert. #Params Time
Hairball (Fig. 1a) 983,153 492,127 405,600 6,882,584 0.026s
Flowers (Fig. 9) 1,465,050 734,008 156,999 5,639,241 0.033s
Circles (Fig. 10) 11,425 13,481 846 87,504 0.021s
Loop (Fig. 12) 51,673 29,914 811 167,779 0.015s
Helmbholtz (Fig. 14) 11,975 6,118 284 39,489 0.015s
Wave eq. (Fig. 13) 22,071 11,189 397 1,237,909 0.047s

1(F(x) = g(x))/(f(x) +0.01) |, where f is our network’s predic-
tion and g is the ground-truth signal. The gradients are not propa-
gated through the denominator.

For sampling during training, we found standard stratified sam-
pling, either according to a regular grid or the underlying triangula-
tion to be sufficient, even near edges.

6 APPLICATIONS

We showcase applications for fitting 2D signals, from rendering
to solving differential equations with discontinuities specified by
curves. We categorize them by how we produce the signals.

We compare our method mainly to two recent neural-feature-
field approaches, InstantNGP [Miller et al. 2022] and ReLU fields
[Karnewar et al. 2022]. InstantNGP excels at fitting high-resolution
images and outperforms competing methods such as ACORN [Mar-
tel et al. 2021]. ReLU fields produce significantly sharper results than
their linear counterparts and have been shown to be effective at
fitting sharp edges in binary functions. We show the scene statistics
of our method in Table 1.

6.1 Rendering

For rendering, our goal is to produce a resolution-independent rep-
resentation that maps two-dimensional screen coordinates to RGB-
color values [Pighin et al. 1997]. To obtain the location of geomet-
ric discontinuities, we project all silhouette edges and geometric-
normal discontinuity edges onto the screen and clip them against
occluding triangles. The resulting set of edges represents the loca-
tions of visibility and normal discontinuities in screen space.

For training data, we use a raster image rendered at 100k? reso-
lution with 512 samples per pixel to approximate the continuous
signal. We also tried querying the continuous signal on the fly by
retrieving RGB values for given screen coordinates, but opted for
the raster image because it achieved similar fidelity with a simpler
implementation. Rendering the raster image took 2 hours using Mit-
suba 3 [Jakob et al. 2022]. In each epoch we retrieve 10k? stratified
pixels from the raster image and use a batch size of 219,

We demonstrate our approach on two scenes with fine geometric
detail, Hairball in Fig. 1a and Rose Bush in Fig. 9. The 100k? PIZ-
compressed ground-truth EXR image in Fig. 9 is 33GB. In contrast,
our method yields total file sizes (trainable parameters + mesh)
of 25MB and 30MB for the Rose Bush and Hairball scenes respec-
tively. We adjust the InstantNGP and ReLU-fields sizes to match
our file size: hash-table size=2'? at 30MB for InstantNGP and grid

https://google.github.io/draco/

Discontinuity-Aware 2D Neural Fields « 217:7

Ground truth Ours InstantNGP ReLU fields e?ruorr Inst:r?EI:JGP ReLelﬁrgfldS

33x zoom
. b s

Fig. 9. FITTING RENDERING IMAGES. We fit our representation to a high-resolution (100k?) image, where it is able to preserve sharp contrast across discontinuities
at zoom levels of even up to 100x, with an improvement > 10dB in some regions compared to existing neural representations. InstantNGP and ReLU Fields (at

PSNR: 50.86 dB

equal total file size) provide a continuous approximation to a signal with jump discontinuities, which leads to blurring across edges and creates unpleasant
artifacts at high zoom levels that dominate the error. Some delicate textures in the continuous part of the signal (the rose petal, last row) are blurred by all
methods because the triangulation (for our method) and grid (for ReLU Fields) are not fine enough, and the hash-table size (for InstantNGP) is not large
enough to capture them.

Ground truth InstantNGP RelLU fields Our error InstantNGP error ReLU fields error

PSNR: 43.05 dB PSNR: 29.88 dB

PSNR: 38.47 dB

Fig. 10. MoNTE CARLO DIFFUSION CURVES. We propose a novel way to solve partial differential equations by fitting our neural representation to the noisy
data generated by a Monte Carlo walk-on-spheres solver [Sawhney and Crane 2020]. Here, we show results on solving a diffusion-curve image using
500 x 500 x 11 = 2.75M noisy Monte Carlo samples. The capability to preserve discontinuities allows us to both maintain sharp edges and produce smoother
results outside of the discontinuities, since our data structure requires much less network capacity to represent the edges. Our method automatically denoises
the noisy input. We analyze the denoising property in Fig. 11. The ground-truth image has been rendered at 500% resolution with 10,000 samples per pixel.

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

217:8 « Yash Belhe, Michaél Gharbi, Matthew Fisher, lliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li

* InstantNGP: 2'® ---+ ReLU fields: 500*

== InstantNGP: 2" == ReLU fields: 280>
—— InstantNGP: 2'> —— ReLU fields: 1402
—— Monte Carlo === Ours
001 Fig. 10
0.005
)
o
<
8
3
S 0.001
0.0005
0.0001

0.25M ™ 2.25M 4M 6.25M
Number of walk-on-spheres training samples

Fig. 11. Our method can denoise Monte Carlo samples generated by walk
on spheres better than other (grid-based) neural methods at all sampling
rates (for the scene in Fig. 10). We test InstantNGP with several hash-table
sizes; it tends to overfit to the noise with an increasing number of entries
in the hash table. ReLU fields is less prone to overfitting, but suffers from
error due to blurring across edges and performs worse than our method. We
measure variance against a 500%-pixel ground-truth image rendered with
10,000 samples per pixel (spp), rasterizing each representation with 256 spp.

size=15007 at 26MB for ReLU fields. Both InstantNGP and ReLU
fields smoothen discontinuities, while ours preserves sharp edges;
this is most evident in the 33x- and 100x-zoom crops in which we
show a 10dB improvement in Fig. 9. The supplementary video shows
a zoom animation on that scene.

Both InstantNGP (0.0012s) and ReLU Fields (0.0009s) have a much
faster inference time than our method (0.033s) due to highly opti-
mized and simple implementations respectively, for a 1k? image.

6.2 Walk-on-spheres diffusion curves

Monte Carlo geometry processing [Sawhney and Crane 2020] shows
great promise in solving partial differential equations in a resolution-
independent way using walk-on-spheres [Muller 1956]. However,
storing the solution in a resolution-dependent raster image throws
away a lot of the benefits that Monte Carlo brings in the first place.
We fit our representation to the walk-on-spheres samples, enabling
resolution-independent solution storage while preserving disconti-
nuities (Fig. 10). Furthermore, since our representation is smooth
outside discontinuities, our method automatically denoises the noisy
Monte Carlo samples [Lehtinen et al. 2018], accelerating the con-
vergence; see Fig. 11. To our knowledge, our method is the first to
supervise neural representations with walk-on-spheres data. This
enables a new regime for solving partial differential equations.

Specifically, we apply our method to learn a diffusion-curve im-
age [Orzan et al. 2008] which is the solution to the Laplace equation
with two-sided Dirichlet boundary conditions defined on a set of
Bézier curves. Our training data is obtained from our GPU-based
implementation of the walk-on-spheres algorithm.

In Fig. 10, we fit our method to Monte Carlo samples generated at
a resolution of 5007 with 11 samples per pixel. Our method achieves
much higher quality (> 10dB) than other neural representations
at equal file size since they overfit to noise and smoothen discon-
tinuities. Our method cleanly denoises the Monte Carlo samples

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

Multi-layer perceptron

PSNR: 12.09 dB

Fig. 12. “PHYSICS-INFORMED” DIFFUSION CURVES. Our method can be used
for directly solving partial differential equations without any training data.
Here, we show results on solving a diffusion-curve image, and compare to
an architecture similar to ReLU fields but using tanh activation due to ReLU
having zero second derivatives everywhere. We also compare to a standard
multi-layer perceptron. TanH fields and SIREN smooth over discontinuities,
while the multi-layer perceptron completely failed to reconstruct the signal,
despite our extensive attempts to tune the hyperparameters.

(reducing variance by 19.21x) while preserving discontinuities over
a wide range of sample counts for the noisy input; see Fig. 11.

It is also possible to render diffusion curves by solving a linear
system. However, the linear solve needs to globally discretize the
entire canvas, even when zooming into a small region. This can
potentially cause problems at extremely high resolutions.

6.3 Physics-informed neural networks

Like physics-informed neural networks [Raissi et al. 2019], our
method can directly solve partial differential equations without any
training data, by sampling points in the space and using a loss
function directly from the differential equation. We demonstrate
solutions to diffusion curves using this setup.

We minimize the Dirichlet energy L4 = % JolIVf |I?, which is
the weak form of the Laplace equation, where f is the output of
the neural network. To enforce the boundary constraints, we add
an extra loss term Ly, = [||f - b 2 where b is the given Dirichlet
boundary condition. To minimize the Dirichlet energy everywhere
in Q, we stratify our samples in the triangles. For the two-sided
boundary conditions, we sample two points offset by a distance of
0.001 on either side of the curve in the normal direction. The final
loss is L4 + 0.00001 Ly,.

To compare against ReLU fields, which have zero second deriv-
ative everywhere, we replace the ReLU activation with TanH. We
do not compare against InstantNGP as its implementation does not
support second derivatives. We also compare to a SIREN [Sitzmann
et al. 2020] network which has 5 layers with 256 neurons each. Fi-
nally, we compare to a standard 4-layer MLP, with 512 neurons per
layer and TanH activation, which is similar to architectures often
used in the physics-informed neural networks literature.

Discontinuity-Aware 2D Neural Fields « 217:9

InstantNGP
(5x file size)

InstantNGP
(5x file size)

-

PSNR: 39.49 dB

Ground truth Ours InstantNGP Ground truth Ours InstantNGP

O

t=0.35, 1x zoom PSNR: 40.24 dB PSNR: 37.13 dB .65, 1x zoom

PSNR: 47.05 dB PSNR: 38.51 dB PSNR: 41.09 dB

Time t=0.65

PSNR: 29.85 dB PSNR: 26.37 dB
Time t=0.35

PSNR: 28.81 dB

t=0.35, 10x zoom

t=0.65, 10x zoom

Fig. 13. FITTING TO FINITE-DIFFERENCE SOLUTION OF WAVE EQUATION. Our method can compress video sequences such as the high-resolution solution to the wave
equation without signal leakage across blockers. The domain has a large linear discontinuity (see ¢ = 0.35, second row for zoom in) and a set of smaller slits
that diffracts the wave (see t=0.65, zoom-in on second row). Our method preserves sharp contrast across the small slit, whereas InstantNGP with equal file

size, or even 5x Iarger, cannot represent it.

Fig. 12 shows the result. Our method is the only one able to
compute a solution that looks close to the ground truth. The two-
sided boundary condition we imposed leads to discontinuities at
the curves. TanH fields fail to preserve the discontinuities. The MLP
completely fails to converge, despite us having tried a very broad
set of hyperparameters. It is well known in the literature that the
training of physics-informed neural networks can often be trapped
in a local minimum [Krishnapriyan et al. 2021]. It is possible that
our explicit representation of discontinuities helps with the training;
we leave further investigations as future work.

6.4 Compressing finite-element/difference data

Our representation can also be used for fitting very high-resolution
solutions obtained from finite-element or finite-difference methods,
in a discontinuity preserving manner.

Discontinuities are very common in these settings, e.g., an absorb-
ing or reflecting object in the center of a room could block a sound
wave from freely propagating. Blurring across discontinuities in
this setting can completely change the meaning of the signal, such
as leaking sound past a blocker, allowing fluid to flow through a
barrier, etc. This blurring makes current neural- and grid-based ap-
proaches unsuitable in these settings. Our method can compress the
solution while also providing guarantees of not leaking the signal
past barriers provided in the input discontinuity curves.

Helmholtz equation. The Helmholtz equation is the time-indepen-
dent solution to the wave equation that is fundamental to acoustics
or wave-optics simulation in computer graphics [James 2016]. It
shows high-frequency ripples whose frequency increases with the
wavenumber k. We compute the complex-valued target signal using
the finite-element method with 590k triangles and a file size of 19MB.
The medium inside the square domain with a linear barrier is air
and the wavenumber is k = 40.

For training, we use nearest-neighbour interpolation (which pre-
serves linear discontinuities) on the ground-truth mesh. We stratify
our samples uniformly within all triangles in our triangulation and

InstantNGP

Ground truth Ours InstantNGP (4x file 5|ze)

10X zoom

““n'-

PSNR: 32.89 dB PSNR:22.94 dB PSNR: 24.34 dB

-*E'!;—

[- -
[I -e -
- -
- Yeo® - R:2252 dB [PSNR: 19.32 dB | PSNR: 20.85 dB
ST erms v,
e e T ——
o ava PSNR:28.02dB PSNR:593dB PSNR: 5.40 dB

Fig. 14. FITTING TO FINITE-ELEMENT SOLUTION OF HELMHOLTZ EQUATION. Given
data computed using a finite-element method for solving the Helmholtz
equation, our representation compresses the solution from 19MB to 740KB,
while guaranteeing no signal leakage across the linear barrier. We show
the real part of the solution; the complex part has similar characteristics.
Equal-file-size InstantNGP blurs across the barrier and leaks signal across
it. Increasing the hash-table size improves the results; however, it still blurs
across edges as one zooms in further. Interestingly, the smoothness of our
representation enables it to automatically remove the nearest-neighbor
sampling artifacts in the ground truth (see second row).

use grid-based stratified sampling for InstantNGP. Our method has
a file size of 740KB, and we adjust InstantNGP’s hash table to be
of equal size in Fig. 14. We additionally train another version of
InstantNGP with 4x the file size, which approximates edges better
at lower zoom levels. However, upon zooming in further, it shows
blurring across edges.

Wave equation. Next, we apply our method to compress the time-
varying solution to the wave equation, again defined on a square
domain with several static blockers. There are several regularly
spaced slits in the domain to emulate slit diffraction and a large
linear barrier at the bottom; see Fig. 13. The sound wave originates
at a point source. We again use nearest-neighbor interpolation to
retrieve training data from the finite-difference method.

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

217:10 « Yash Belhe, Michaél Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li

Our feature field has thus far been 2D. To extend it temporally, we
replicate the same curved triangulation for different time instances,
for each initializing the vertex features independently. To resolve
a query, we linearly interpolate the features obtained through our
discontinuity-aware interpolation from the two closest time in-
stances. Since the blockers are static, we do not smooth over any
discontinuities by interpolating over time.

We find that our representation can correctly prevent sound from
leaking across barriers by maintaining sharp discontinuities. It also
maintains high fidelity while compressing the original signal from
303MB down to 6MB. We show significant improvement in the
quality over equal and 5x file-size InstantNGP. The supplemental
video shows an animation of the waves, also a zoomed-in version.

7 LIMITATIONS AND FUTURE WORK

Performance. Due to our use of an irregular mesh and a proof-of-
concept implementation, our inference times are slower than the
highly efficient and optimized modern feature fields. We expect that
integrating our triangle-mesh data structure into a GPU rasterizer
would significantly speed up both training and inference. Even with
these improvements, feature fields stored on regular grids can still
have faster inference times due to the regularity and locality.

Discontinuity locations. Our method assumes prior knowledge of
the discontinuity locations. Closely integrating image-vectorization
[Reddy et al. 2021] or discontinuity meshing with our representation,
and updating edge locations using differentiable rendering [Li et al.
2020; Bangaru et al. 2021] could be an exciting avenue.

Level of detail. Our representation does not properly handle multi-
scale data, since we do not model different scales; see Fig. 15. Future
work involves investigating multi-resolution mesh structures [Hoppe
1996] for neural fields.

8 CONCLUSION

We present a hybrid neural-mesh representation for 2D signals with
discontinuities. Unlike most existing neural fields which are by
construction continuous, our representation can handle signals that
contain both discontinuities and smooth (color) variations, allowing
extreme levels of zooming. Our method opens up a wide variety of
applications, including a new image representation for rendering,
storing and solving diffusion-curve images, a new way to combine
walk-on-spheres Monte Carlo partial-differential-equation solvers
with neural representations, and high-fidelity compression of 2D
physics-simulation data.

ACKNOWLEDGEMENTS

This work was partially completed during the first author’s intern-
ship at Adobe. It was supported in part by NSF grants 2105806 and
2238839, gifts from Adobe, the Ronald L. Graham Chair, and the UC
San Diego Center for Visual Computing. We thank Wesley Chang,
Sharv Laad and Mohammad Sina Nabizadeh for discussions and
Sharon Lin for help with illustrations during this project.

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

Reference |”
prltEeeeiiensan |H ‘

PSNR: 43.57 dB

PSNR: 37.57 dB

PSNR: 29.51 dB

PSNR: 20.34 dB PSNR: 30.68 dB

N

PSNR: 28.56 dB PSNR: 9.37 dB

InstantNGP ReLU fields

PSNR: 11.42 dB

AN

Reference Ours

PSNR: 9.00 dB

Fig. 15. An increasing-frequency signal given by sin((100 + f)x?), with
f = {50,150,1250} in the three horizontal segments (top), and three 1D
horizontal slices which are each 2% of the total width. Our method uses
11,274 triangles, and the 1D horizontal slice intersects about 150 edges. It
handles discontinuities and low-to-medium frequency signal variation well
(red and yellow). However, both our method and RelLU fields store features
at a single scale, so they struggle to capture the high-frequency variation
(blue). On the other hand, InstantNGP store features at multiple scales, so
it can better resolve higher frequencies (blue). However, their hash collisions
lead to spurious high-frequency variations in low-frequency regions (red).

REFERENCES

Marco Agus, Enrico Gobbetti, José Antonio Iglesias Guitian, and Fabio Marton. 2010.
Split-Voxel: A Simple Discontinuity-Preserving Voxel Representation for Volume
Rendering.. In International Symposium on Volume Graphics. 21-28.

Kavita Bala, Bruce Walter, and Donald P Greenberg. 2003. Combining edges and points
for interactive high-quality rendering. ACM Trans. Graph. (Proc. SSIGGRAPH) 22, 3
(2003), 631-640.

Sai Bangaru, Jesse Michel, Kevin Mu, Gilbert Bernstein, Tzu-Mao Li, and Jonathan
Ragan-Kelley. 2021. Systematically Differentiating Parametric Discontinuities. ACM
Trans. Graph. (Proc. SGGRAPH) 40, 107 (2021), 107:1-107:17.

Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew
Duvall, Jason Dourgarian, Jay Busch, Matt Whalen, and Paul Debevec. 2020. Im-
mersive Light Field Video with a Layered Mesh Representation. ACM Trans. Graph.
(Proc. SIGGRAPH) 39, 4, Article 86 (2020), 15 pages.

Jiawen Chen, Sylvain Paris, Jue Wang, Wojciech Matusik, Michael Cohen, and Fredo
Durand. 2011. The video mesh: A data structure for image-based three-dimensional
video editing. In International Conference on Computational Photography. 1-8.

Yinbo Chen, Sifei Liu, and Xiaolong Wang. 2021. Learning continuous image represen-
tation with local implicit image function. In Computer Vision and Pattern Recognition.
8628-8638.

Paul Heckbert. 1992. Discontinuity meshing for radiosity. In Eurographics Workshop on
Rendering. 203-226.

Hugues Hoppe. 1996. Progressive meshes. In SIGGRAPH. 99-108.

Yixin Hu, Teseo Schneider, Xifeng Gao, Qingnan Zhou, Alec Jacobson, Denis Zorin,
and Daniele Panozzo. 2019. TriWild: Robust Triangulation with Curve Constraints.
ACM Trans. Graph. (Proc. SIGGRAPH) 38, 4, Article 52 (2019), 15 pages.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, Merlin Nimier-David, Delio Vicini,
Tizian Zeltner, Baptiste Nicolet, Miguel Crespo, Vincent Leroy, and Ziyi Zhang. 2022.
Mitsuba 3 renderer. https://mitsuba-renderer.org.

Doug L. James. 2016. Physically Based Sound for Computer Animation and Virtual
Environments. In SSIGGRAPH Courses. Article 22, 8 pages.

Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy Mitra. 2022. ReLU fields:
The little non-linearity that could. In SSGGRAPH Conference Proceedings. 1-9.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

Johannes Kopf, Matt Uyttendaele, Oliver Deussen, and Michael F. Cohen. 2007. Cap-
turing and Viewing Gigapixel Images. ACM Trans. Graph. (Proc. SGGRAPH) 26, 3
(2007), 93.

Aditi Krishnapriyan, Amir Gholami, Shandian Zhe, Robert Kirby, and Michael W
Mabhoney. 2021. Characterizing possible failure modes in physics-informed neural

networks. Advances in Neural Information Processing Systems 34 (2021), 26548-26560.

Jaakko Lehtinen, Jacob Munkberg, Jon Hasselgren, Samuli Laine, Tero Karras, Miika
Aittala, and Timo Aila. 2018. Noise2Noise: Learning Image Restoration without
Clean Data. In International Conference on Machine Learning.

Tzu-Mao Li, Michal Lukag¢, Gharbi Michaél, and Jonathan Ragan-Kelley. 2020. Differen-
tiable Vector Graphics Rasterization for Editing and Learning. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1-193:15.

Dani Lischinski, Filippo Tampieri, and Donald P Greenberg. 1992. A discontinuity
meshing algorithm for accurate radiosity. IEEE Comput. Graph. Appl. 12, 4 (1992),
10-1109.

Charles Loop and Jim Blinn. 2005. Resolution independent curve rendering using
programmable graphics hardware. ACM Trans. Graph. (Proc. SSGGRAPH) 24, 3
(2005), 1000-1009.

Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R. Chan, Marco Monteiro, and
Gordon Wetzstein. 2021. ACORN: Adaptive Coordinate Networks for Neural Scene
Representation. ACM Trans. Graph. (Proc. SSIGGRAPH) 40, 4, Article 58 (2021).

Ishit Mehta, Michaél Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and
Manmohan Chandraker. 2021. Modulated periodic activations for generalizable
local functional representations. In International Conference on Computer Vision.
14214-14223.

Nicolas Moés, John Dolbow, and Ted Belytschko. 1999. A finite element method for
crack growth without remeshing. International journal for numerical methods in
engineering 46, 1 (1999), 131-150.

Mervin E Muller. 1956. Some continuous Monte Carlo methods for the Dirichlet problem.
The Annals of Mathematical Statistics (1956), 569-589.

Thomas Miiller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant
Neural Graphics Primitives with a Multiresolution Hash Encoding. ACM Trans.
Graph. (Proc. SSGGRAPH) 41, 4, Article 102 (2022).

Thomas Miiller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novak.
2018. Neural Importance Sampling. arXiv:1808.03856 (2018).

Alexandrina Orzan, Adrien Bousseau, Holger Winneméller, Pascal Barla, Joélle Thollot,
and David Salesin. 2008. Diffusion Curves: A Vector Representation for Smooth-
shaded Images. ACM Trans. Graph. (Proc. SSGGRAPH) 27, 3 (2008), 92:1-92:8.

Evgueni Parilov and Denis Zorin. 2008. Real-time rendering of textures with feature
curves. ACM Trans. Graph. 27, 1 (2008), 1-15.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems. 8024-8035.

Darko Pavi¢ and Leif Kobbelt. 2010. Two-Colored Pixels. 29, 2 (2010), 743-752.

Frederic H Pighin, Dani Lischinski, and David Salesin. 1997. Progressive Previewing of
Ray-Traced Images Using Image Plane Disconinuity Meshing. Rendering Techniques
(Proc. EGWR) 97 (1997), 115-125.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed
neural networks: A deep learning framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations. J. Comput. Phys. 378 (2019),
686-707.

Ganesh Ramanarayanan, Kavita Bala, and Bruce Walter. 2004. Feature-Based Textures.
In Eurographics Workshop on Rendering.

Pradyumna Reddy, Michael Gharbi, Michal Lukac, and Niloy J Mitra. 2021. Im2Vec:
Synthesizing vector graphics without vector supervision. In Computer Vision and
Pattern Recognition. 7342-7351.

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.
2013. Global illumination with radiance regression functions. ACM Trans. Graph.
(Proc. SIGGRAPH) 32, 4 (2013), 130.

Alexander Reshetov and David Luebke. 2016. Infinite resolution textures. In High
Performance Graphics. 139-150.

Mike Salisbury, Corin Anderson, Dani Lischinski, and David H Salesin. 1996. Scale-
dependent reproduction of pen-and-ink illustrations. In SIGGRAPH. 461-468.

Rohan Sawhney and Keenan Crane. 2020. Monte Carlo geometry processing: A grid-
free approach to PDE-based methods on volumetric domains. ACM Trans. Graph.
(Proc. SIGGRAPH) 39, 4 (2020).

Thomas Warren Sederberg. 1983. Implicit and parametric curves and surfaces for com-
puter aided geometric design. Ph. D. Dissertation. Purdue University.

Peter Selinger. 2003. Potrace: a polygon-based tracing algorithm. http://potrace.
sourceforge.net/potrace.pdf

Pradeep Sen. 2004. Silhouette maps for improved texture magnification. In Graphics
Hardware. 65-73.

Pradeep Sen, Mike Cammarano, and Pat Hanrahan. 2003. Shadow Silhouette Maps.
ACM Trans. Graph. (Proc. SSGGRAPH) 22, 3 (2003), 521-526.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. 2021. Deep
marching tetrahedra: a hybrid representation for high-resolution 3D shape synthesis.
Advances in Neural Information Processing Systems 34, 6087-6101.

Discontinuity-Aware 2D Neural Fields « 217:11

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon
Wetzstein. 2020. Implicit neural representations with periodic activation functions.
In Advances in Neural Information Processing Systems, Vol. 33. 7462-7473.

Ying Song, Jiaping Wang, Li-Yi Wei, and Wencheng Wang. 2016. Vector Regression
Functions for Texture Compression. ACM Trans. Graph. 35, 1, Article 5 (2016).

Marco Tarini and Paolo Cignoni. 2005. Pinchmaps: textures with customizable discon-
tinuities. Comput. Graph. Forum (Proc. Eurographics) (2005).

Jack Tumblin and Prasun Choudhury. 2004. Bixels: Picture Samples with Sharp Embed-
ded Boundaries. Rendering Techniques (Proc. EGWR) (2004).

Edgar Velazquez-Armendariz, Eugene Lee, Kavita Bala, and Bruce Walter. 2006. Imple-
menting the render cache and the edge-and-point image on graphics hardware. In
Graphics Interface. 211-217.

Guofu Xie, Xin Sun, Xin Tong, and Derek Nowrouzezahrai. 2014. Hierarchical Diffusion
Curves for Accurate Automatic Image Vectorization. ACM Trans. Graph. (Proc.
SIGGRAPH Asia) 33, 6 (2014), 230:1-230:11.

Yiheng Xie, Towaki Takikawa, Shunsuke Saito, Or Litany, Shiqin Yan, Numair Khan, Fed-
erico Tombari, James Tompkin, Vincent Sitzmann, and Srinath Sridhar. 2022. Neural
fields in visual computing and beyond. Comput. Graph. Forum (Proc. Eurographics
STAR) 41, 2 (2022), 641-676.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021.
PlenOctrees for real-time rendering of neural radiance fields. In International Con-
ference on Computer Vision. 5752-5761.

Jonas Zehnder, Yue Li, Stelian Coros, and Bernhard Thomaszewski. 2021. NTopo: Mesh-
free Topology Optimization using Implicit Neural Representations. In Advances in
Neural Information Processing Systems, Vol. 34. 10368-10381.

ACM Trans. Graph., Vol. 42, No. 6, Article 217. Publication date: December 2023.

http://potrace.sourceforge.net/potrace.pdf
http://potrace.sourceforge.net/potrace.pdf

	Abstract
	1 Introduction
	2 Related work
	3 Overview
	4 Method
	4.1 Continuity criteria
	4.2 Curved triangulation
	4.3 Discontinuity-aware feature interpolation
	4.4 Continuity analysis

	5 Implementation
	6 Applications
	6.1 Rendering
	6.2 Walk-on-spheres diffusion curves
	6.3 Physics-informed neural networks
	6.4 Compressing finite-element/difference data

	7 Limitations and Future Work
	8 Conclusion
	References

