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Nonlinearity-induced asymmetric transport (AT) can be utilized for on-chip implementation of
nonreciprocal devices that do not require odd-vector biasing. This scheme, however, is subject to a
fundamental bound dictating that the maximum transmittance-asymmetry is inversely proportional
to the asymmetry intensity range (AIR) over which AT occurs. Contrary to the conventional wisdom,
we show that the implementation of losses can lead to an increase of the AIR without deteriorating
the AT. We develop a general theory that provides a new upper bound for AT in nonlinear complex
systems and highlights the importance of their structural complexity and of losses. Our predictions
are confirmed numerically and experimentally using a microwave complex network of coaxial cables.

Introduction— Asymmetric/nonreciprocal devices such
as isolators and circulators are routinely used in com-
munications, radar and LiDAR technologies, and inte-
grated photonic circuits at microwave and optical fre-
quencies [1]. Their operational principle relies on the
violation of reciprocity, which is typically achieved (in
linear structures) by using an odd-vector bias (e.g. an
external magnetic field) [2, 3] or by violating the time-
invariance via a spatiotemporal modulation of the propa-
gating medium [4-15]. Utilizing nonlinearities as a means
to achieve asymmetric transport (AT) is a promising al-
ternative approach [16-41]. In this framework, an upper
bound for the maximum transmittance asymmetry has
been achieved based on time-reversal symmetry consid-
erations [34]. These studies analyze AT in simple non-
linear systems [34-37] without paying attention to the
geometrical complexity of the underlying structures, nor
to the presence of losses that violates time-reversal sym-
metry. The challenge now is to develop a general theory
of nonlinearity-induced AT in typical complex wave set-
tings that lack geometric or time-reversal symmetries.

Here, we develop a general theory of AT from complex
wave scattering systems without any geometric symme-
tries, where nonlinearities coexist with losses. We con-
firm our predictions by utilizing an experimental plat-
form of wave transport in complex systems, i.e., complex
networks of coaxial cables (graphs) [42-63], see Fig. 1a.
Specifically, we have derived a general expression for the
upper bound of the transmittance asymmetry occurring
in nonlinear wave media in terms of losses and other
structure-specific characteristics of the underlying linear
system. The necessary conditions to exceed the transmis-
sion asymmetry bound given by the corresponding loss-
less analogues [34-37] are identified. Furthermore, our
analysis highlights an intimate relation between the AT
properties of a nonlinear wave system and the structural
asymmetry factor (SAF) that is determined by the geo-
metric complexity of the underlying linear structure. We
find that SAF dictates the asymmetric intensity range

(AIR) defined as the ratio of input powers injected from
opposite directions which leads to the same transmit-
tance (see Fig. 1b). We demonstrate experimentally that
the presence of losses does not degrade the transmission
asymmetry at all — instead, it enhances the AIR.

Ezxperimental Implementation — A nonlinear microwave
graph consists of coaxial cables (bonds) coupled together
vian =1,---, N Tee-junctions (vertices). For the tetra-
hedron graph shown in Fig. 1a, N = 4. We have chosen
the length of the bonds not to be commensurable — thus
avoiding spectral degeneracies. Additionally, we made
sure that our choice of bond lengths allows us to mea-
sure a sufficient number of resonances in the frequency
range where the nonlinearity is activated. The local non-
linearity is always incorporated at the N-th vertex. It
is implemented by substituting the Tee-junction with a
cylindrical resonator which is inductively coupled to a
metallic ring that is short-circuited to a diode, see inset
of Fig. la. The nonlinear resonator is designed to op-
erate at 6.1-6.5 GHz. It is coupled with the rest of the
graph via “kink” antennas (see Supplemental Material)
[64]. The system is coupled to transmission lines (TL)
attached to n = 1,2 vertices of the graph. Each trans-
mission line supports a single propagating mode and it
is connected to a port of the Vector Network Analyzer
(VNA).

Scattering Theory for Nonlinear Graphs— The theoret-
ical analysis utilizes a standard open quantum graph de-
scription [44] with the modification that the N-th vertex
is now nonlinear. We assume that the bond lengths Ip
are taken from a box distribution centered around some
mean value . The position x,,,, = x on bond B = (n, m)
is = 0(Ip) on vertex n(m). The scattering field on each
bond satisfies the Helmholtz equation
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where 1/1530‘)(1:) is the electric potential difference at po-
sition x, k = wn,/c is the wavenumber of the prop-
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FIG. 1. (a) A microwave tetrahedron graph. The coaxial

cables are connected by T or double T-junctions at each of
the vertices n = 1,2, and 3. Vertex N = 4 consists of three
kink antennas coupling to a cylindrical dielectric resonator
that is inductively coupled to a ring antenna which is short-
circuited with a nonlinear diode (see left inset). (b) Measured
transmittance T (from port 1 to port 2) and 75 (from port 2
to port 1) at a fixed frequency (v = 6.327 GHz) as a function
of the input power showing asymmetric transport. (c)-(e) The
transmittance difference AT = T, —T3 for an incident wave (of
the same amplitude and frequency) as a function of frequency
and input power. (¢) Experimental data; Simulations using
(d) a simple graph; and (e) a resonant-graph modeling.

agating wave with angular frequency w, n, is the rel-
ative index of refraction of the coaxial cable, ¢ is the
speed of light, A, is the dielectric coefficient at node
n, d,n is the Kronecker delta function, and the super-
script @ = 1, 2 indicates the lead from which the incident
wave has been injected. The losses in the coaxial ca-
bles are modeled by a complex-valued refraction index
n,, while losses at the vertices are modeled by complex
An. The scattering field 77[1;30‘) (z) is expressed in terms
of its value at the vertices 1/1530‘) (x = 0) = 5?) and

530‘)(:15 = 1)) = ¢'%). Finally, f(|¢§\';‘)|2) is the nonlinear
dielectric coefficient at vertex N. For Kerr nonlinearities,
we have f(|¢§\?)|2) = XK|¢§\?)|27 while for saturable non-
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linearities we have f(|¢§f;)|2) =zn/[l1+ xs|¢g\?)|2] with
XK, Xs and z; being complex variables.

The wavefunction at a vertex n satisfies the continu-
ity and the current conservation relations which can be
written as (see Supplemental Material)

(M + Myp +iWTW)e@ = 2w 1@ = (2)

where we have introduced the scattering vector field
Pl = ( ga), ga), . ,d)gf;))T. The two-dimensional vec-
tor I(®) has components IF(LO‘) = A, 04, and describes the
amplitude of the incident field of the channel « that has
been used to inject the wave. Finally W, , = 6, is a
2 x N matrix describing the connection between the ath
lead and the vertices n = 1,2. The N x N matrix M

M _ )\nk - Zl;‘én Anl cot kLnl;
") Ay cSC kLpm,

n=m
n#£m

incorporates information about the metric and the con-
nectivity of the graph, where A is the adjacency matrix
having elements zero (whenever two vertices are not con-
nected) and one (whenever two vertices are connected)
[44]. Finally, (MNL)nm = k‘f(|¢§$)|2)<5nm5n,1v incorpo-
rates the nonlinearity at the n = N vertex.

Using Eq. (2) we find that the field intensity at the
nonlinear vertex x, = |¢§3‘)|2 is a root of the equation
(see Supplemental Material)

3)

Xa b + [£f (x)|* = 2R (kD" f(x0)) | = 41 Aucal® , (4)

where the coefficients b = b({Mpm}, {Wan}) and ¢, =
ca({Mpm},{Wa,n}) depend on the metric and connec-
tivity of the linear graph solely, which are encoded in the
matrix elements of the matrix M (see Eq. (3)), and on
the coupling matrix W (for the precise definition refer
to the Supplemental Material Egs. (SC.18) and (SC.19),
respectively). In addition, ¢, incorporates the informa-
tion about the TL a = 1,2 which is used to inject the
incident wave. Further manipulations allow us to turn
Eq. (4) to a cubic algebraic equation for x, which can
be solved exactly using Cardano’s formula (see Supple-
mental Material). Substituting the value of x, back in
Eq. (2) allows us to evaluate the rest of the components
of the scattering vector field ®(®). Specifically, the field

amplitude ¢>£§§’ associated with the vertex ng # o is

CaCB
) R
where the constant ¢1» = ga.1 = ¢ = ¢({ My}, {Warn})
encodes information about the structure (metric and con-
nectivity) of the graph and the vertices where the TLs
are attached (see Supplemental Material).

FEvaluation of Nonlinear Transmittance — The conti-
nuity condition at the vertex n enforces that the trans-
mitted wave has the same amplitude given by Eq. (5).

O = 2iAy |qap —
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Consequently, the transmittance is T, =

real-valued f(|¢\¢|?2), it takes the simple form

[Xo = R + [1 = (8%
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where X, = R(G)—(xa) (see Supplemental Material for

(%)
a generalization to kcomplex—valued nonlinearities). Fig-
ure 1b shows the measured transmittance 77 (7T5) from
TL 1 (2) to TL 2 (1) for a fixed frequency as a function of
the input power. We find a strong nonlinear dependence
of the transmissions on the input power.

Transmittance Asymmetry — Equation (6) indicate
that two waves, with the same amplitude A; = A and
wavenumber k, that are injected from different ports
a = 1,2 can lead to T7 # T, provided that X; # Xs.
The latter occurs when the roots x, of Eq. (4) that de-
scribe the field intensities at the nonlinear vertex, differ
for a = 1,2 due to the dependence of ¢, on the incident
TL « (see rhs of Eq. (4)). This non-reciprocal response
does not require any form of external bias: the excitation
field itself acts as a bias and triggers the system into a
“high-transmission” or “low-transmission” state depend-
ing on the incident TL. In Fig. 1¢ we show the measured
transmission difference AT = T, — T} as a function of
the input power and frequency v. These measurements
compare nicely with the results from the graph model-
ing Egs. (2,3), see Fig. 1d. More refined modeling that
takes into consideration the resonant nature of the non-
linear vertex provides an even better description of the
asymmetric transport, see Fig. le. We will refer to it as
resonant-graph modeling (see Supplemental Material).

Further analysis of Eq. (4) allows us to identify the
amplitude range for which asymmetric transport occurs.
Specifically, from the right-hand-side of this equation we
conclude that the scattering field intensity x,, at the non-
linear vertex is the same for a left (« = 1) and a right
(o = 2) incident waves as long as they satisfy the rela-
tion |Ayc1|® = |Aace|®. The latter equality shows that
the field intensity x, at the nonlinear vertex (and there-
fore the nonlinear electric potential) for injected waves
from port 2 is equal to the one from port 1, if the input

2
power from port 1 is SAF = ’2—‘;" times larger than that

from port 2. This condition leads to the same transmis-
sion coefficients for waves injected from different ports.
The ratio of these input powers that lead2 to th2e same
transmission defines the AIR = max{ ‘ ﬁ—; ; ﬁ—f } (see
Fig. 1b). Within the AIR, the graph largely breaks
Lorentz reciprocity, since the transmission levels in op-
posite directions are different for the same input power
and frequency. It follows that AIR = SAF.

Bounds for Transmission Asymmetry— The maximum
transmittance can be used as an upper bound for the

transmission asymmetry since 7" > 0 in all cases and,
therefore, ATmax = Tmax — Tmin < Tmax-

From Eq. (6) we derive an upper bound for the trans-
mittance by maximizing T, with respect to X,. For real-
valued nonlinearities we have

Tina = 2lql? (|A| V1A +4[1— (a)

+ AP +20-s@)]) M

qff%?%)
nonlinearities see Supplemental Material). Equation (7),
together with Eq. (SD.10) of the Supplemental Material,
are the main results of this paper. They provide guid-
ance on the dependence of AT on the parameter A which
encodes the structural characteristics of the graph.

The special case of lossless graph is retrieved from the
above expression for F(A) = 1 (see Supplemental Mate-
rial). In this case, Eq. (7) simplifies to

where A =

(for a more general case of complex

.. - 4-SAF . 8)
(SAF + 1)

This expression is nicely confirmed from our numerical
data for a lossless graph with Kerr (open blue circles)
and saturable nonlinearities (not shown) in Fig. 2a. A
further investigation reveals that there is an interlinked
relation between the maximum transmittance achieved
for a specific incident power and the SAF (or equiva-
lently of the AIR [34, 36, 37]). This is reflected in the
three examples shown in the inset of Fig. 2a, where we re-
port the transmittances 717,75 associated with the same
incident wave being injected from channels a = 1 and
a = 2, respectively, versus the incident power. We find
that an increase in the AIR (=SAF) is associated with a
decrease in the maximum transmittance and vice-versa
as expected by Eq. (8).

Necessary conditions for the wviolation of an wupper
bound for asymmetric transport— Equation (8) has been
previously derived as the upper bound of nonlinear AT.
Its derivation assumed nonlinear Fano resonators with
time-reversal symmetry (i.e. no losses) and has utilized
the coupled-mode theory (CMT) framework [34, 36, 65].
Here, however, we have derived Eq. (8) for a generic
nonlinear wave system, where SAF explicitly refers to
specific bulk asymmetries pertaining to the topology and
metrics of the graph. Given the technological importance
of AT, it is natural to investigate and establish (neces-
sary) conditions which enforce the violation of Eq. (8)
and allow for an enhanced AIR (for a fixed Trax) or en-
hanced transmission asymmetry bound (for a fixed AIR)
given by Eq. (7).

As discussed above, Eq. (8) does not hold when losses
are introduced in the system. However, the lossy ele-
ments need to be strategically placed either on the bonds
of the graph or at vertices not connected to the two TLs
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FIG. 2. Transmittance versus structural asymmetry factor (SAF) or asymmetric intensity range (AIR). (a) Lossless graph.

The insets show the transmittances versus input intensity from each of the two leads (red and blue lines) for three different SAF
graph configurations. (b) Lossy graph with losses on node no = 3. The light blue circles indicate maximum transmittance for
a graph configuration with increasing loss (along the direction of the red arrow) on node 3. The insets correspond to different
losses for a fixed graph configuration. (c) Measurements (purple triangles) and simulations (green circles) for an ensemble of
graphs with bond-losses and a lossy saturable nonlinearity. The ensemble has been generated by interchanging the bonds of
the graph. The insets show measurements corresponding to the same SAF but different maximum transmission values. The
black solid and dashed lines in (a-c) are theoretical predictions while the colored circles are simulations occurring at various
wavelengths and graph configurations. The data acquisition has been performed for three different graph configurations and
for a frequency range v € [6.1 GHz, 6.5 GHz|] with a resolution of év = 0.4 MHz.

or the nonlinear vertex, i.e. npss # 1,2, N (see Supple-
mental Material). In the opposite case of losses located
at the nonlinear vertex, a simple renormalization of the
nonlinearity (so that it incorporates the lossy term) re-
sults in an upper bound given by Eq. (8). Similarly, when
the losses are implemented on a vertex connected to the
TLs, a new bound is found which is a stricter version of
Eq. (8) (see Supplemental Material).

We find that the interference between (at least) two
nearby resonance modes can result in a violation of
Eq. (8) as in the case of AT due to the presence of a mag-
netic field [66] (see Supplemental Material). Finally, from
Eq. (7) we speculate that if S(A) < 1, the lossy graph
configurations might violate the lossless bound given by
Eq. (8). Detailed numerical analysis has confirmed that
the above inequality is a necessary but not sufficient con-
dition for violating the lossless limit (see Supplemental
Material).

A numerical example where the violation of Eq. (8)
occurs for a tetrahedron graph with losses at the vertex
ng = 3, is shown in Fig. 2b. Such targeted arrangement
of loss is effectively equivalent to a new graph configura-
tion where a third (fictitious) channel is attached to the
node ng, thus changing the topology of the graph and
indirectly affecting the coupling between this vertex and
the other vertices. While Eq. (8) is violated for interme-
diate values of loss, it is still respected in the two limiting
cases of zero and very large losses at the ng-vertex. The
second limit is understood as an impedance-mismatch
phenomenon: due to the large imaginary “electric po-
tential”, the ng-vertex is decoupled from the rest of the
graph, which now acts as a lossless system with N — 1

vertices and thus again satisfies the bound of Eq. (8).
In Fig. 2b we demonstrate the trajectory of the maxi-
mum transmittance versus AIR as the losses at the vertex
no = 3 of a tetrahedron graph increase. The numerical
data (light blue cycles) for Tiax nicely match the theo-
retical results (dashed black line) of Eq. (7), indicating
that the deterioration of Ti,.x for increasing losses oc-
curs at a slower rate than the enhancement of AIR. At
some loss-strength, the AIR reaches its maximum value.
Further increase of loss results in a decrease (increase) of
AIR (Timax) towards its “impedance-mismatch” limit.

In Fig. 2¢ we report our measurements (purple trian-
gles) for the graph of Fig. 1, with uniformly distributed
losses at the bonds of the graph. A violation of Eq. (8) is
evident and it is qualitatively supported by our simula-
tions (green cycles) using a resonant-graph modeling for
the same bond configurations. The difference between
the simulations and the experiment is primarily due to
dispersion in the real and imaginary part of the refrac-
tion index and other loss-sources, such as the T-junctions,
which have not been taken into account. The insets in
Fig. 2c¢ report the experimental transmittances 77,75 for
two cases with the same SAF- the upper one exceeds the
bound, while the lower case corresponds to a configura-
tion that respects the bound (see black arrows).

All the above conclusions have been further confirmed
by a nonlinear random matrix theory (NLRMT) which
can model typical nonlinear chaotic cavities (see Supple-
mental Material). An example of the violation of Eq. (8)
for overlapping resonances is shown in Fig. 3.

Conclusions — Using a generic nonlinear complex wave
system, we have established experimentally and theoreti-
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Sec. J.

cally, an exact expression for the upper bound of transmit-
tance asymmetry in the presence of losses. We have iden-
tified necessary conditions for enhanced asymmetry in-
tensity range (for a fixed Tinax) or enhanced transmission
asymmetry bound (for a fixed AIR). It will be interest-
ing to extend these studies toward a universal statistical
description of transmission asymmetries using NLRMT.
Another interesting direction would be the derivation of
the bounds Egs. (7,8) in the case of microwave graphs
using semiclassical tools. This will allow us to unveil
the influence of non-universal features (e.g. wave-scars),
which are present in any typical dynamical system, to
the nonlinearity-induced AT.
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