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We study a thin, laterally confined heated liquid layer subjected to mechanical parametric
forcing without gravity. In the absence of parametric forcing, the liquid layer exhibits
the Marangoni instability, provided the temperature difference across the layer exceeds
a threshold. This threshold varies with the perturbation wavenumber, according to a curve
with two minima, which correspond to long- and short-wave instability modes. The most
unstable mode depends on the lateral confinement of the liquid layer. In wide containers,
the long-wave mode is typically observed, and this can lead to the formation of dry
spots. We focus on this mode, as the short-wave mode is found to be unaffected by
parametric forcing. We use linear stability analysis and nonlinear computations based on
a reduced-order model to investigate how parametric forcing can prevent the formation
of dry spots. At low forcing frequencies, the liquid film can be rendered linearly stable
within a finite range of forcing amplitudes, which decreases with increasing frequency and
ultimately disappears at a cutoff frequency. Outside this range, the flow becomes unstable
to either the Marangoni instability (for small amplitudes) or the Faraday instability (for
large amplitudes). At high frequencies, beyond the cutoff frequency, linear stabilization
through parametric forcing is not possible. However, a nonlinear saturation mechanism,
occurring at forcing amplitudes below the Faraday instability threshold, can greatly reduce
the film surface deformation and therefore prevent dry spots. Although dry spots can
also be avoided at larger forcing amplitudes, this comes at the expense of generating
large-amplitude Faraday waves.
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1. Introduction

A fluid system with a free surface, when heated from below and subjected to vertical
periodic oscillations, can give rise to flow due to either thermal convective instabilities
from the imposed temperature gradients or resonant instability from the external periodic
forcing. Thermal convective instabilities are either buoyancy-driven, occurring in thick
layers, or surface tension gradient-driven, occurring in thin layers (thinner than the
capillary length) or in microgravity (Sarma 1987). In this work, we limit ourselves to
surface tension gradient-driven instability, also known as Marangoni instability, assuming
that there are no density variations, gravity is absent (Grodzka & Bannister 1972;
Kamotani, Ostrach & Pline 1995) and that there is no phase change at the interface.
The Marangoni instability is driven by a perturbation in surface temperature when

a liquid film with a free surface is heated from the liquid side. The resulting surface
tension variation, assuming that surface tension decreases with increasing temperature,
drives flow against the stabilizing effects of viscosity and thermal diffusivity (Pearson
1958; Koschmieder 1993). The threshold of the Marangoni instability, expressed via the
critical temperature difference as a function of the wavenumber, exhibits two minima in
the absence of gravity (Scriven & Sternling 1964). These minima are associated with
long-wave and short-wave instability modes. The short-wave instability mode, which is
characterized by a weak interface deformation, emerges when the container width is of the
order of the fluid depth. Conversely, the long-wave mode, which is associated with a strong
interface deformation, emerges when the depth is small compared with the container width
(Scriven & Sternling 1964; Davis 1987). In that case, the instability is subcritical, leading
to an unbounded growth of the surface deformation, and eventually, film rupture and dry
spot formation. This was demonstrated in the experiments of Vanhook et al. (1997), who
used very thin liquid layers of thickness ∼ 0.1 mm, as well as nonlinear computations
based on low-dimensional long-wave models (Oron, Davis & Bankoff 1997; Vanhook et al.
1997). Avoiding dry spot formation is important for several thin film applications where
surface defects need to be prevented, such as coating processes (Yiantsios & Higgins
2006), additive manufacturing under microgravity conditions (Lee & Farson 2016) and in
thin film microgravity heat pipes (Alexeev, Gambaryan-Roisman & Stephan 2005; Ajaev
2013), where both evaporative and Marangoni effects play a role.
It is known that external forcing can be used to stabilize a dynamical system,

as seen in the simple example of an inverted pendulum with an oscillating anchor
point (Stephenson 1908). Several works have applied this idea to different instabilities
arising in hydrodynamical systems, e.g. Rayleigh–Bénard (Gresho & Sani 1970;
Shukla & Narayanan 2002), Taylor–Couette (Murray, McFadden & & Coriell 1990),
Rayleigh–Taylor (Sterman-Cohen, Bestehorn & Oron 2017), Plateau–Rayleigh (Halpern &
Grotberg 2003; Haimovich &Oron 2010) and Kapitza (Gottlieb &Oron 2004) instabilities.
At the same time, external forcing applied to a liquid layer can lead to resonance-driven
instability, known as Faraday instability (Faraday 1831). For the configuration considered
here, i.e. a thin liquid film subject to the Marangoni instability, this poses an optimization
challenge, which we aim to resolve: to tune the external forcing such as to quench the
Marangoni instability, without triggering the Faraday instability. In particular, we aim to
identify the critical parameter range and the mechanisms through which periodic forcing
can stave off dry spot formation. We commence by placing our work in the context of past
studies on this subject, all of which have considered laterally unconfined layers.
Briskman (1996) and Skarda (2001) studied the effect of g-jitter on the Marangoni

instability by applying periodic forcing to a liquid layer with a non-deformable interface
and temperature-dependent density. These authors concluded that the critical Marangoni
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number increases with the so-called vibrational Rayleigh number, which accounts for the
acceleration induced by periodic forcing. This may be contrasted with the classical result
for Bénard instability in a steady gravitational field, where the critical Marangoni number
decreases with increasing Rayleigh number (Nield 1964). In the same paper, experiments
were performed by Briskman (1996), where high frequency vibrations were used to stave
off the formation of dry spots.
Nepomnyashchy & Simanovskii (2010, 2013) and Fayzrakhmanova & Nepomnyashchy

(2018) used long-wave models based on the lubrication approximation, i.e. where inertia
is ignored, to study the influence of mechanical oscillations on a trilayer system consisting
of two liquids superposed by a passive gas layer unstable on account of the Marangoni
effect. They found two stability bounds for the Marangoni number as a function of
the perturbation wavenumber, using linear stability analysis. The onset of Marangoni
instability was given by the first stability bound while the system reverted to its stable
state when heated beyond the second critical threshold. The region of instability between
these two critical Marangoni numbers was found to diminish with the application of
periodic forcing, i.e. the system was stabilized. Nonlinear computations based on this
model demonstrated the formation of two-dimensional and three-dimensional oscillatory
surface patterns at large forcing amplitudes.
The works of Thiele, Vega & Knobloch (2006) and Shklyaev, Alabuzhev & Khenner

(2015) are particularly relevant to our current study, notwithstanding that gravity was taken
into account in these works. In both studies, the authors employed a long-wave model
based on the lubrication approximation to investigate the linear and nonlinear effects of
Faraday forcing on the Marangoni instability. Thiele et al. (2006) showed that the neutral
stability bound of the Marangoni instability can be raised via periodic forcing when the
forcing frequency is large. The resulting region of stability, which is bounded at large
amplitudes by the Faraday instability threshold, increases in width as the forcing frequency
is increased. The study went on to consider the nonlinear dynamics of the liquid film for
parameters chosen such that the film is unstable in the absence of forcing. In that limit,
which corresponds to the pure Marangoni instability, the authors obtained steady solutions
in the shape of drops separated by dry zones, and showed that these could be forced to
revert back to a flat-film state upon applying mechanical vibrations, thereby preventing the
formation of dry spots.
Shklyaev et al. (2015) focused on lower frequencies compared with Thiele et al. (2006)

and showed that the critical Marangoni number increases with increasing vibrational
amplitude also in this range. For the forcing amplitudes investigated, the authors further
showed that the nature of the bifurcation underlying the long-wave Marangoni instability
mode remains subcritical in the presence of periodic forcing.
The current work distinguishes itself from those of Thiele et al. (2006) and Shklyaev

et al. (2015) in several important ways. First, our linear and nonlinear models account for
inertia in the momentum and energy equations, which is known to play an important role
in systems involving resonant forcing. Second, we include the effects of finite container
width, thereby restricting ourselves to experimentally allowable disturbance wavenumbers.
Third, linear stability calculations are based on the full governing equations without
invoking a long-wave approximation. As a result of these distinctions, we have made
several new observations. In particular, we find that the amplitude range of the stable
region, where periodic forcing can suppress the Marangoni instability without triggering
the Faraday instability, decreases with increasing forcing frequency, which is opposite to
the trend predicted by Thiele et al. (2006). Moreover, beyond a critical forcing frequency,
the neutral bound of the Faraday instability moves below that of the Marangoni instability,
thus making it impossible to suppress flow via a linear mechanism. Nonetheless,
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Figure 1. Schematic of the studied configuration. A liquid layer is subject to the Marangoni instability and a
mechanical oscillation in the z-direction, in the absence of gravity. The liquid is heated via a bottom wall at
fixed temperature T∗

H and cooled via the ambient (hydrodynamically passive) gas at a temperature T∗
a < T∗

H .
Arrows at the interface indicate the flow direction due to temperature-driven surface tension gradients.

we identify a nonlinear saturation mechanism in that frequency range, which prevents
the formation of dry spots. By contrast, we find that the effect of parametric forcing on
the short-wave mode of the Marangoni instability is very weak. Finally, the reduced-order
model used for our nonlinear calculations extends the state of the art by accounting for
both the Marangoni and Faraday instabilities.
The manuscript is arranged as follows. In § 2, we introduce the mathematical model

governing the fluid system considered (figure 1). In § 3, we discuss the effect of parametric
forcing on the long- and short-wave modes of the Marangoni instability, via linear stability
calculations. In § 4, we develop a reduced-order long-wave model using the weighted
residual integral boundary layer (WRIBL) technique (Ruyer-Quil & Manneville 2000)
and employ it to perform transient computations of the nonlinear evolution of the liquid
film in different stability regimes. As a result, we arrive at two mechanisms by which the
formation of Marangoni-induced dry spots can be suppressed via periodic forcing.

2. Mathematical model

Our physical system is sketched in figure 1, where all dimensioned variables are denoted
with an asterisk. We consider a Newtonian liquid layer of unperturbed height, d∗, heated
by a lower wall of fixed temperature, T∗

H , and subjected to a mechanical oscillation of
angular frequency, ω∗, and amplitude, A∗, in the z-direction in the absence of gravity. The
gas above the free surface of the liquid layer is taken to be hydrodynamically passive and
cooled by an upper wall. The gas layer is maintained at a temperature T∗

a < T∗
H , so that the

liquid is cooled via the free surface according to Newton’s law of cooling. The effect of a
hydrodynamically active air layer is discussed in Appendix B.
The density, ρ, viscosity, μ, thermal conductivity, λ, and heat capacity , Cp, of the liquid

are assumed constant, whereas its surface tension, γ , varies linearly with temperature at
the free surface as

γ = γ0 − γT(T∗ − T∗
0 ), (2.1)

where the subscript 0 refers to the unperturbed base state and γ0 denotes the surface tension
at the corresponding free surface temperature, T∗

0 |z=0. Further, we assume γT > 0.
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2.1. Nonlinear equations
The fluid motion is governed by the continuity and Navier–Stokes equations while the
temperature field of the system is governed by the energy equation, i.e.

∇∗ · v∗ = 0, (2.2)

ρ

(
∂v∗

∂t∗
+ v∗ · ∇∗v∗

)
= −∇∗p∗ + μ∇∗2v∗ − ρ(A∗ω∗2 cos(ω∗t∗))ez (2.3)

and

ρCp

(
∂T∗

∂t∗
+ v∗ · ∇∗T∗

)
= λ∇∗2T∗. (2.4)

In (2.2)–(2.4), ez is the unit vector along the z direction. Here, A∗ and ω∗ are the amplitude
and the angular frequency of the parametric forcing.
At the bottom wall, z∗ = −d∗, we impose no-slip and no-penetration conditions for

velocity and a Dirichlet condition for temperature i.e.

v∗ = 0 and T∗ = T∗
H. (2.5a,b)

At the impenetrable interface, z∗ = h∗(x∗, t∗), the jump mass balance yields

(v∗ − u∗) · n∗ = 0, (2.6)

for which the interface velocity vector, u∗, the unit normal, n∗, and unit tangent vectors,
t∗, are given by

u∗ · n∗ =
∂h∗

∂t∗(
1 +

(
∂h∗

∂x∗

)2
)1/2 , n∗ =

−∂h∗

∂x∗ ex + ez(
1 +

(
∂h∗

∂x∗

)2
)1/2 , t∗ =

ex + ∂h∗

∂x∗ ez(
1 +

(
∂h∗

∂x∗

)2
)1/2 .

(2.7a–c)

The fluid loses heat from the free surface through a purely conducting gas layer via
Newton’s law of cooling, i.e.

H(T∗ − T∗
a ) = −λ∇∗T∗ · n∗, (2.8)

where the heat transfer coefficient is defined via H = λa/d∗
a , with λa and d∗

a being the
thermal conductivity and height of the gas layer. The force balance at the interface is

n∗ · T ∗ + γn∗∇∗ · n∗ − ∇∗
s γ = 0, (2.9)

where, the stress tensor T ∗ is given by T ∗ = −p∗I + μ(∇∗v∗ + ∇∗v∗T). Here ∇∗
s is the

surface gradient operator and is given by ∇∗ − n∗(n∗ · ∇∗). We now turn our focus to
obtaining the non-dimensional governing equations.
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2.2. Non-dimensional equations
The following characteristic scales are used to obtain non-dimensionalized variables:

x = x∗

W∗ , z = z∗

d∗ , u = u∗

U
, w = ε

w∗

U
, t = t∗(

d∗

εU

) ,

ω = ω∗
(
d∗

εU

)
, p = p∗(

μU
d∗

) and T = T∗ − T∗
i0

�T∗ ,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.10)

where U = κ/d∗ is a characteristic horizontal velocity based on the time scale for thermal
diffusion, κ = λ/ρCp is the thermal diffusivity and �T∗ = T∗

H − T∗
i0 is the temperature

difference across the unperturbed fluid layer.
Observe that we render x and z dimensionless usingW∗ and d∗, respectively. This leads

to a length scale separation parameter, ε, given by ε = d∗/W∗, which will play a role
when we consider the long-wave limit of the problem in § 4. Upon non-dimensionalizing
equations (2.2)–(2.9) we get

∂u
∂x

+ ∂w
∂z

= 0, (2.11)

εRe
(

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= −ε

∂p
∂x

+ ε2
∂2u
∂x2

+ ∂2u
∂z2

, (2.12)

ε3Re
(

∂w
∂t

+ u
∂w
∂x

+ w
∂w
∂z

)
= −ε

∂p
∂z

+ ε4
∂2w
∂x2

+ ε2
∂2w
∂z2

− εA cos(ωt) (2.13)

and

ε

(
∂T
∂t

+ u
∂T
∂x

+ w
∂T
∂z

)
= ε2

∂2T
∂x2

+ ∂2T
∂z2

, (2.14)

where Re = ρUd∗/μ is the Reynolds number and A = ρA∗ω∗2d∗2/μU. The scaled
boundary conditions at the bottom wall, z = −1, are

u = 0, w = 0 and T = 1. (2.15a–c)

The non-dimensional form of the mass balance at the impenetrable interface, z = h(x, t),
along with the tangential and normal force balance conditions are

εw − εu
∂h
∂x

= ε
∂h
∂t

, (2.16)

(
∂u
∂z

+ ε2
∂w
∂x

)(
1 − ε2

(
∂h
∂x

)2
)

+ 4ε2
∂w
∂z

∂h
∂x

= −εMa
(

∂T
∂x

+ ∂T
∂z

∂h
∂x

) [
1 + ε2

(
∂h
∂x

)2
]1/2

(2.17)
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and

−εp + 2ε2
[

∂w
∂z

(
1 − ε2

(
∂h
∂x

)2
)

−
(

∂u
∂z

+ ε2
∂w
∂x

) (
∂h
∂x

)] [
1 + ε2

(
∂h
∂x

)2
]−1

= ε3
(

1
Ca

− MaT
)

∂2h
∂x2

[
1 + ε2

(
∂h
∂x

)2
]−3/2

, (2.18)

where Ca = μU/γ and Ma = γT�T∗/μU are the capillary and Marangoni numbers,
respectively. Newton’s law of cooling at the free surface becomes

Bi(T − Ta) +
(

∂T
∂z

− ε2
∂T
∂x

∂h
∂x

) [
1 + ε2

(
∂h
∂x

)2
]−1/2

= 0, (2.19)

where Ta = (T∗
a − T∗

io)/(T
∗
H − T∗

io) and where Bi = Hd∗/λ is the Biot number.
In what follows we shall consider the nonlinear (2.11)–(2.19) in different limits. In § 3,

we discuss the stability analysis for arbitrary wavenumbers by choosing d∗ to be the
common length scale for the horizontal and vertical directions. This amounts to setting
ε = 1 without any loss of generality. By contrast, in § 4, we will retain the original scaling
and consider the limit ε � 1.

3. Linear stability analysis of the finite wave model

The scaled governing equations (2.11)–(2.19) are linearized around the quiescent and
purely conductive base state (subscript 0) given by

u0 = w0 = h0 = 0,
dp0
dz

= −A cos(ωt) and
dT0
dz

= −1, (3.1a–c)

by introducing Floquet expansions (Nayfeh 1981). Thus, we have

h(x, t) = h0 + h′(x, t) = h0 + eikx+σ t
N∑

n=−N

ĥn e(inω/2)t, (3.2a)

and Ψ (x, z, t) = Ψ0(z) + Ψ ′(x, z, t) = Ψ0(z) + eikx+σ t
N∑

n=−N

Ψ̂n(z) e(inω/2)t, (3.2b)

where Ψ = u, v, p and T , where primes denote infinitesimal perturbations, and where hats
denote perturbation amplitudes. Here, k ∈ R, σ ∈ C and ω ∈ R denote the wavenumber,
complex linear frequency and parametric frequency, respectively. For a fixed container
width, W, and periodic conditions, the wavenumber is limited to discrete values k =
m2π/W, withm ∈ N. The summations in (3.2) are Floquet series that ensure compatibility
with the harmonic forcing term in the z-momentum equation (2.13). Here, N sets the
number of oscillatory modes considered.
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Upon substitution of the forms given by (3.1a–c) and (3.2), the linearized equations
(dropping the subscript, n, in the (3.3)–(3.9), and (3.11)) (2.11)–(2.19), become

ikû + ∂ŵ
∂z

= 0, (3.3)

Reû
(

σ + inω
2

)
= −ikp̂ − k2û + ∂2û

∂z2
, (3.4)

Reŵ
(

σ + inω
2

)
= −∂ p̂

∂z
− k2ŵ + ∂2ŵ

∂z2
(3.5)

and

T̂
(

σ + inω
2

)
− ŵ = −k2T̂ + ∂2T̂

∂z2
. (3.6)

The linearized boundary conditions at the bottom wall, z = −1, are

û = 0, ŵ = 0 and T̂ = 0. (3.7a–c)

The linearized boundary conditions at the interface, z = 0, are

ŵ =
(

σ + inω
2

)
ĥ, (3.8)

∂ û
∂z

+ ikŵ = −ikMa(T̂ − ĥ), (3.9)

n=N∑
n=−N

e(inω/2)t

{
−p̂n + Aĥn

(
eiωt + e−iωt)

2
+ 2

∂ŵn

∂z
= −k2

1
Ca

ĥn

}
(3.10)

and

Bi(T̂ − ĥ) + ∂T̂
∂z

= 0. (3.11)

We now express Ψ̂n(z) via polynomials of order Nz and evaluate the domain equations
at the corresponding Chebyshev Gauss–Lobatto collocation points (Guo, Labrosse &
Narayanan 2013). This is done for all n ∈ [−N,N], yielding an (Nz + 1)(2N + 1) × (Nz +
1)(2N + 1) generalized eigenvalue problem of the form

Ax = σBx, (3.12)

with eigenvalue σ = σr + iσi and the eigenvector x. Here, σr is the temporal growth rate
and σi is the corresponding linear frequency shift with respect to the forcing frequency, ω.
The system (3.12) is solved numerically for σ at given values of ω, k,A andMa, using the
Eigenvalues routine in Mathematica. The neutral stability bounds, i.e. σr = 0, are obtained
by finding a set of input parameters, say, A and Ma, for assigned values of ω and k. For
example, to determine the critical Marangoni number, we fix the values of ω, k andA and
increment the Marangoni number until it reaches a critical value, where σr becomes zero.
Likewise, the threshold for the forcing amplitude, is determined by changing the forcing
amplitude until σr becomes zero for fixed values of ω, k and Ma. Numerical calculations
performed in this study show that at these critical values, one of the eigenvalues, (σr, σi) =
(0, 0), implying exchange of stability at the neutral point.
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Physical property Symbol Value

Density ρ 935 kg m−3

Viscosity μ 0.01 Pa s
Surface tension γ 0.02 N m−1

Thermal conductivity λ 0.134 W m−1 K−1

Specific heat Cp 1507 J kg−1 K−1

Film thickness d∗ 3 × 10−3 m

Table 1. Physical properties used in the calculations. Fluid properties correspond to silicone oil
(XIAMETER™ PMX-200).

The nature of the temporal response of the interface associated with a given eigenvalue,
σ , is determined by examining the perturbation amplitudes, ĥn, in the Floquet summation.
Note that the response of the interface deformation is harmonic if the odd coefficients
in the Floquet summation are zero, the even coefficients are non-zero and the coefficient
corresponding to n = ±2 has the dominant magnitude amongst all even coefficients. On
the other hand, if the coefficient corresponding to n = ±4 is dominant then the response
is twice harmonic. Likewise the response of the interface deformation is subharmonic if
the even coefficients are zero and the odd coefficients are non-zero with the coefficients
corresponding to n = ±1 having a dominating magnitude etc. If the dominant coefficient
corresponds to n = 0 then we consider the response to be principally steady. The temporal
behaviour of the interface deflections will be useful in understanding the stability diagrams
in our calculations. To distinguish the two types of temporal responses in the case of
instability (σr > 0), we will call the mode ‘monotonic’ when n = 0 is dominant and
‘oscillatory’ when n /= 0 is dominant.
In the following subsections, we present results of linear stability calculations for a set

of representative parameters, given in table 1, where the fluid properties correspond to a
definite fluid system of film thickness, d∗, and container width, W∗, based on practical
considerations. The stability results are arranged as follows. We first review the results
from the pure Marangoni problem, then those from the pure Faraday problem followed by
the combined problem. Here we shall focus on the role of the finiteness of the container
width, a feature that will be important in the interpretation of the key results in this
study. We then conclude the section by considering the problem from the perspective of
parametric forcing on an erstwhile unstable layer due to the Marangoni effect.

3.1. Pure Marangoni instability
The linear stability calculation for the pure Marangoni problem, done for the parameters
given in tables 1 and 2, is depicted in figures 2(a) and 2(b) as plots of critical Marangoni
number versus the wavenumber. The initial rise and fall in the curves are due to the
competition between the stabilizing effect of surface tension and the destabilizing effect
of surface tension gradients. This is followed by a final rise due to stabilization afforded
by viscosity and thermal diffusion. Due to the finiteness of the horizontal extent of
the container, the allowable wavenumbers, k, are given by k = 2mπ/W, where m ∈ N

and W is the dimensionless width, i.e. W∗/d∗. For example, when 1/W = 0.075, the
allowable wavenumbers are depicted by the vertical lines drawn in figure 2(a) i.e. at
k = 2π/W, 4π/W, 6π/W, etc. Clearly, the minimum critical Marangoni number, denoted
Mac, occurs at the wavenumber, k = 8π/W, i.e. corresponding to four full waves within
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Dimensionless groups Value

Re 10−2

Ca 1.15 × 10−5

Pr 100
Bi 0.1

Table 2. Values of dimensionless groups used in the calculations.
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Figure 2. Critical Ma versus k curves, marking allowable wavenumbers k = 2mπ/W with vertical lines. The
numbers between parentheses correspond to m. Here (a) 1/W = 0.075 and (b) 1/W = 0.003. The inset in
(b) is a magnification of the low wavenumber range.

the container and denoted by the star in figure 2(a). However, if 1/W = 0.003 we arrive
at figure 2(b) where now the minimum critical Marangoni number occurs at k = 2π/W,
i.e. corresponding to one full wave, and is lower than the short-wave critical Marangoni
number depicted in figure 2(b), denoted by an asterisk.

3.2. Pure Faraday instability
We now turn to the second of the two primary calculations, where the critical amplitude
of shaking, A, for the onset of Faraday instability is obtained in the absence of
Marangoni instability. The Faraday instability principally arises when the parametric
forcing frequency is commensurate with the system’s natural frequency. The natural
frequency, however, depends on Ca, Re and on the wavenumber of the disturbance, k.
It is determined by calculating Im(σ ) i.e. σi via (3.3)–(3.5) and (3.7a–c)–(3.10) modified
here by taking Ma = 0, ω = 0 and A = 0. Now, depending on the frequency range of
oscillation, the instability can give rise to different waveforms which are marked in
the figures 3(a) and 3(b). The calculation is done by setting the frequency and then
determining the minimum critical amplitude, denoted A∗

c , as we sweep through the
allowable waveforms, say, k = 2π/W, k = 4π/W, k = 6π/W, etc. The lowest of the
minimum amplitudes and the corresponding waveforms constitute the critical diagram,
figure 3, displayed in terms of dimensioned quantities to emphasize the practical
attainability of the results. This figure, drawn again for the two cases, i.e. 1/W = 0.075
and 1/W = 0.003, shows the effect of sidewall proximity. From figure 3(a) we see that
there are minimum points in the frequency range where resonance is strongest for each
interfacial mode. These minimum points in each of these frequency ranges are near,
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Figure 3. Critical forcing amplitude (A∗
c ) versus frequency ( f ∗) for the pure Faraday instability. The numbers

between parentheses correspond to m. The vertical line corresponds to f ∗ = 1 Hz. Here (a) 1/W = 0.075 and
(b) 1/W = 0.003.

but not precisely at, the natural frequency associated with the waveforms. The critical
curve is concatenated from the individual waveforms. However, this feature becomes
less discernible as the dimensionless width becomes very large. We see this behaviour
in figures 3(a) and 3(b), with figure 3(b) being drawn for a very large value of the
dimensionless width compared with figure 3(a).
Unlike the Marangoni instability, the Faraday instability is strongly dependent on the

fluid’s inertia i.e. the Reynolds number, Re. The inertial motion acts on the deflecting
interface and just as gravity acts to stabilize the long-wave Marangoni instability (Vanhook
et al. 1997) we might expect that inertial action on the fluid interface can stave off the
Marangoni instability with parametric forcing. To see if this is so we turn to the next
stability calculation which shows the effect of resonance on the Marangoni instability.

3.3. The effect of Faraday forcing on the long-wave Marangoni instability
We now consider the effect of parametric forcing on the Marangoni instability focusing
first on the long-wave regime. In this setting, there are two leading instability modes. The
first mode, with critical Marangoni number Mas, gives rise to predominantly monotonic
temporal growth beyond criticality and produces a steady response at criticality, i.e. the
dominant term in the Floquet expansion is n = 0. The second mode, with threshold Mao,
is predominantly oscillatory as a result of resonance. It is subharmonic in nature, i.e. the
dominant term in the Floquet expansion is n = 1.
We first focus on mode s, which connects to the classical Marangoni instability mode

in the absence of forcing (A = 0). We perform stability calculations for different forcing
amplitudes, A, at fixed frequency f ∗ = 1 Hz and 1/W = 0.003. Figure 4 represents the
results of these calculations. The solid curve corresponds to the pure Marangoni instability
(A = 0) while the dashed line corresponds to A = 0.5Ac and the dot–dashed line
corresponds to A = 0.9Ac. Observe that the critical Marangoni number, Mas, increases
with amplitude of shaking over a considerable range of wavenumbers that includes the
maximum of the Ma versus k curve. The stabilization in the low wavenumber region is
illustrated in figure 4(b), where the wavenumber k = 2π/W, corresponding to a single
wave within the container width, is demarcated by a vertical solid line. Thus, the long-wave
monotonic Marangoni instability mode can be strongly stabilized by parametric forcing.
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Figure 4. CriticalMa versus k showing the stabilizing effect of Faraday forcing for a fixed frequency of 1 Hz.
Here the amplitude of shaking is increased from A = 0 (solid curve) to A = 0.5Ac (dashed curve) and A =
0.9Ac (dot–dashed curve). The corresponding critical amplitude is A∗

c = 16.4 mm and is marked by the vertical
line in figure 3(b) (1/W = 0.003). Here S represents the stable region and U represents the unstable region.
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Figure 5. Stability diagrams depicting the emergence of a second instability mode for a fixed frequency, f ∗ =
1 Hz. Critical Marangoni numbers versus forcing amplitude, A, are shown along with the sign of the real part
of σ , R(σ ), for the long-wave regime. The symbol • represents Mas and the symbol ◦ represents Mao. Panel
(b) is the magnification of (a) in the vicinity of Ac. The dark region represents R(σ ) < 0 and the light region
representsR(σ ) > 0.

To understand what happens when A > Ac we turn to figure 5, which represents the
corresponding stability diagram. While the Mas are obtained for k = 2π/W, the most
unstable possible wavenumber for the container width chosen, the Mao are obtained for
k = 40π/W, the lowest wavenumber at which oscillatory modes first appear, as seen from
figure 3(b). The dark and light grey regions indicate stable and unstable regimes which
are identified based on the real part of σ , for the two leading eigenvalues. Observe that as
A increases, Mas (shown by the solid dots in figure 5a) increases, which is in accordance
with figure 4. The second instability mode, Mao, represented by the open circles in the
magnified view shown in figure 5(b), appears in the proximity of Ac. For A < Ac, Mao
rapidly approaches negative infinity as A is reduced. When A = Ac, Mao reaches zero
while Mas continues to increase, but at a slower rate. As a result, when A > Ac, Mao
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Figure 6. Illustration ofMa versusA depicting the sign of the real part of σ ,R(σ ) for the short-wave regime.
The symbol • represents Mas and the symbol ◦ represents Mao. The dark region representsR(σ ) < 0 and the
light region representsR(σ ) > 0.

can overtake Mas. It is clear from figures 5(a) and 5(b) that when Ma < Mao the flow is
oscillatory but ifMa > Mas the flow is monotonic. Clearly, ifMao < Mas, then the system
is stable for Mao < Ma < Mas and if Mao > Mas, then the system is always unstable.
We now turn to the task of analysing the effect of Faraday forcing on the short-wave

regime.

3.4. Effect of Faraday forcing on the short-wave Marangoni instability
To access the short-wave Marangoni instability we consider, as an example, 1/W = 0.075
and refer to figure 2(a), where the star locates the onset of short-wave instability and
corresponds to k = 8π/W. Figure 4(a), although drawn for a wider container, suggests
that the effect of forcing on the short-wave Marangoni instability is negligible. Let
us verify whether this holds for the current container width, where the short-wave
instability is dominant. As in the discussion of the long-wave case, figure 6 represents
the corresponding stability diagram. To make a consistent comparison with the long-wave
case, illustrations are shown for the same frequency, i.e. f ∗ = 1 Hz. Unlike the long-wave
case, the Mas are obtained for k = 8π/W (marked by a star in figure 2a) and the Mao are
obtained for k = 2π/W (marked by the vertical line in figure 3a), i.e. the most unstable
mode for each instability type.
Observe from figures 6(a) and 6(b) that Mas is not affected by parametric forcing,

unlike the long-wave case, while Mao displays the same behaviour as seen in figure 5.
We thus focus on the effect of parametric forcing on the long-wave instability mode in the
remainder of the manuscript.

3.5. A practical perspective: the effect of increasing forcing amplitude at fixed
Marangoni number where Ma > Mac

In § 3.3, we saw that raising the forcing amplitude, A, increases the threshold Marangoni
number, Mas, in the long-wave region. This implies that an increase in A at fixed
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Figure 7. Frequency dependence of the stability bounds for the monotonic (s) and oscillatory (o) instability
modes: 1/W = 0.003. The A∗ versus f ∗ curves at fixed Ma = 1.4Mac|m=1 (marked by circle in figure 2b).
Integers between parentheses, (m), identify the most unstable wavenumber k = 2mπ/W. The upward arrow
marks the cutoff frequency, where A∗

o becomes equal to A∗
s .

Marangoni number, Ma > Mac, can render the flow stable. In the current subsection, we
investigate whether this holds over a wide frequency range. To this end, we consider a
system with physically realizable properties given by table 1, now setting the width to
1/W = 0.003. The Marangoni number is set to Ma = 1.4Mac, where Mac corresponds
to a waveform with k = 2π/W. This number, Ma ∼ 25, can be read off the inset of
figure 4(b). It may be seen from the inset of figure 2(b) that for Ma = 25, only the
waveform corresponding to one wave, i.e.m = 1 is unstable, all other allowable waveforms
being stable.
Having assigned Ma, we now seek the stability of the flow as we increase the

dimensioned forcing amplitude, A∗, until σr = 0, while incrementing the input frequency,
f ∗. Results are displayed in figure 7, where we once again use dimensioned quantities
to emphasize the practical feasibility of the calculations. In this figure, the dashed curve
corresponds to the threshold amplitude, A∗

s , required for the stabilization of the monotonic,
long-wave Marangoni mode. On this curve, the assigned Ma equals Mas. A connection
between figures 4 and 7 can be made by considering a frequency of 1 Hz, where the critical
amplitude is approximately 15 mm according to figure 7. This corresponds toA ∼ 0.9Ac,
i.e. to the intersection of the horizontal and vertical lines in figure 4.
Returning to figure 7, the solid curve represents a second threshold, A∗

o, where the
interface deformation is predominantly subharmonic in nature and reflective of resonance.
It is here that the assignedMa = 1.4Mac equalsMao, as denoted earlier by open circles in
figure 5. The integer, m, between parentheses in figure 7 characterizes the most-unstable
wavenumber, k = m2π/W, for a given frequency.
The plot, thus obtained, demarcates three regions of instability/stability, which are

separated by the dashed and solid curves. Region I is unstable to a monotonic mode
related to the Marangoni instability, region II is fully stable and region III is unstable
to a subharmonic oscillatory mode related to Faraday instability.
It should be observed that figure 7 is similar to figure 3(b) even though nowMa /= 0. In

fact, the numerical values of the critical amplitude, A∗
o, given by the solid lines in the two
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Figure 8. TheMa/Mac versus cutoff frequency.

figures are almost indistinguishable from one another. This implies that the Marangoni
number has little influence on the onset of resonance, even though the parametric forcing
has a strong influence in quenching the Marangoni instability.
Region II exists only in a certain frequency range, until the solid and dashed curves

intersect. We designate the frequency, f ∗, at the intersection point of the three regions,
indicated by the vertical arrow in figure 7, as the cutoff frequency. Beyond this frequency,
we move from an unstable Marangoni regime (region I) directly to an unstable resonant
regime (region III) eluding any stable transition. Within the thin region between the solid
and dashed curves, both the monotonic and oscillatory instability modes grow, but the
oscillatory one is dominant. For example, at a forcing frequency of 1.56 Hz, the oscillatory
mode with m = 24 ought to be observed in an experiment. This means that to the right of
the cutoff frequency an increase in amplitude will elicit a drastic change in the modal
response from one wave to more than 21 waves. This sudden transition is interpreted from
the perspective of A∗ versus k curves, in Appendix A.
Let us now consider how the cutoff frequency changes when increasing the assigned

Marangoni number. A higher Marangoni number will enhance surface tension gradient
flows and to suppress these flows, a higher amplitude of oscillation is required at a
given frequency. Hence, the dashed line, which represents the threshold amplitude to
quenchMarangoni instability, will shift upwards, increasing region I, where theMarangoni
instability is dominant and decreasing region II, where the fluid system is stable. This will
cause a shift in the cutoff frequency as shown by the graph in figure 8.
The above observations are important as it is known that the pure Marangoni problem

in the long-wave region leads to dry spots when the Marangoni number exceeds its
critical value (Vanhook et al. 1997). To stave off such dry spots with Faraday forcing our
calculations would have us hypothesize that we may either force at low frequency leading
to a stable flat surface or force at high frequency at the risk of producing large amplitude
interfacial oscillatory waves. To check this hypothesis, we proceed to a nonlinear model
that allows us to track the interface evolution. This is an involved task but we can gain
much insight by appealing to a reduced-order model that uses separation of length scales
in the case of thin films, where ε = 1/W is much less than unity. This is done in the next
section.
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4. Nonlinear computations based on a long-wave model

At large forcing frequencies, linear suppression of the Marangoni instability via parametric
forcing, i.e. beyond the dashed curve in figure 7, comes at the price of triggering Faraday
waves. In this case, dry spot formation is prevented, which is the minimum requirement
for a coating process, but large interface deflections may still occur, thus limiting the
surface smoothness of a final coating. In the current section, we investigate whether
the nonlinear deflection of the liquid film surface can be minimized nonetheless via a
nonlinear interaction between the Marangoni instability and parametric forcing, i.e. below
the dashed curve in figure 7.

4.1. Long-wave approximation
As we are concerned with the long-wave Marangoni instability mode, we invoke the
long-wave approximation, ε � 1, where ε = d∗/W∗ denotes the ratio of normal to
transverse length scales (cf. figure 1), in order to derive a low-dimensional WRIBL model,
allowing efficient, high-fidelity nonlinear computations (Kalliadasis et al. 2011).
We start with the non-dimensional governing equations (2.11)–(2.19), which we truncate

atO(ε2). Thus, both inertia, which plays an important role in parametric instabilities enters
at O(ε), and transverse viscous and thermal diffusion, which enter at O(ε2), are accounted
for. We thus obtain the truncated continuity equation

∂u
∂x

+ ∂w
∂z

= 0, (4.1)

the momentum equations

εRe
(

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= −ε

∂p
∂x

+ ε2
∂2u
∂x2

+ ∂2u
∂z2

, (4.2)

−ε
∂p
∂z

+ ε2
∂2w
∂z2

− εA cos(ωt) = 0 (4.3)

and the energy equation

ε

(
∂T
∂t

+ u
∂T
∂x

+ w
∂T
∂z

)
= ε2

∂2T
∂x2

+ ∂2T
∂z2

, (4.4)

where we have assumed Re and A to be of at least O(ε). Further, at z = h(x, t), the
interphase coupling conditions are

ε
∂h
∂t

= −εu
∂h
∂x

+ εw, (4.5a)

∂u
∂z

(
1 − ε2

(
∂h
∂x

)2
)

+ ε2
∂w
∂x

+ 4ε2
∂w
∂z

∂h
∂x

= −εMa
(

∂T
∂x

+ ∂T
∂z

∂h
∂x

)
, (4.5b)

−εp + 2ε2
(

∂w
∂z

− ∂u
∂z

∂h
∂x

)
= ε3

Ca
∂2h
∂x2

(4.5c)

and

Bi(T − Ta)

[
1 + ε2

2

(
∂h
∂x

)2
]

+ ∂T
∂z

− ε2
∂T
∂x

∂h
∂x

= 0, (4.5d)

981 A8-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.58


Influence of parametric forcing on Marangoni instability

where we have assumed the capillary number, Ca, to be at most of O(ε), and the
Marangoni number, Ma, to be at least of O(ε). We designate the system of truncated
equations given by (4.1)–(4.5) as a 1 + ε2 model.
Next, we eliminate the pressure, p, from (4.2) via (4.3) and (4.5c). Integration of (4.3)

from z to z = h(x, t), and substitution of (4.5c) for p|h yields the pressure profile in the
liquid film, i.e.

εp|z = − ε3

Ca
∂2h
∂x2

+ εA cos(ωt)(h − z) + ε2
[(

∂w
∂z

− 2
∂u
∂z

∂h
∂x

) ∣∣∣∣h + ∂w
∂z

∣∣∣∣
z

]
, (4.6)

which is then substituted into (4.2). As a result, we obtain the so-called boundary layer
equation governing momentum transport within the liquid film in the long-wave limit,
which replaces (4.2) and (4.3)

εRe
(

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z

)
= ε3

Ca
∂3h
∂x3

− εA cos(ωt)
∂h
∂x

+ ∂2u
∂z2

+ 2ε2
∂2u
∂x2

+ ε2
∂

∂x

(
2
∂u
∂z

∂h
∂x

− ∂w
∂z

) ∣∣∣
h
. (4.7)

4.2. The WRIBL model
We reduce the dimension of the system of governing equations (4.1), (4.4), (4.5) and (4.7)
by eliminating the z-coordinate from the problem and describing the flow in terms of
the local instantaneous film surface deflection h(x, t), flow rate q(x, t) and film surface
temperature θ(x, t). This is achieved by integrating (4.4) and (4.7) in the z-direction
across the film thickness, i.e. from z = −1 to z = h(x, t), following the WRIBL approach
(Kalliadasis et al. 2011).
First, the dependent variables, u and T , are decomposed into a leading-order

contribution (highlighted by a hat) and an O(ε) correction (highlighted by a tilde), i.e.

u(x, z, t) = û(x, z, t)︸ ︷︷ ︸
O(1)

+ ũ(x, z, t)︸ ︷︷ ︸
O(ε)

, (4.8)

and

T(x, z, t) = T̂(x, z, t)︸ ︷︷ ︸
O(1)

+ T̃(x, z, t)︸ ︷︷ ︸
O(ε)

, (4.9)

and w follows from (4.1). For this decomposition to hold, û and T̂ should remain
sufficiently close to the exact solution at all times. This can be achieved by requiring û
and T̂ to satisfy the governing equations (4.1), (4.4), (4.5) and (4.7) truncated at O(1) and
by introducing appropriate gauge conditions.
In particular, û is governed by the boundary value problem

∂2û
∂z2

= K, û|z=−1 = 0, and
∂ û
∂z

∣∣∣∣
z=h(x,t)

= −εMa

(
∂T̂
∂x

+ ∂T̂
∂z

∂h
∂x

)
, (4.10a–c)

where we have further restricted Ma to be at least of O(1/ε). We have additionally
restricted Ca to be at most of O(ε3), in order to retain the inhomogeneity, K. Further,
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we impose the gauge condition, ∫ h(x,t)

−1
û dz = q(x, t), (4.11)

which requires that the base velocity profile yield the local instantaneous flow rate q(x, t).
Solving (4.10a–c) for û subject to (4.11), yields

û = −3q(z + 1 − 2(h + 1))(z + 1)
2(h + 1)3

− εMa
∂θ

∂x
(z + 1)(3(z + 1) − 2(h + 1))

4(h + 1)
, (4.12)

which implies for the velocity correction, ũ,∫ h(x,t)

−1
ũ dz = 0, ũ|z=−1 = 0 and

∂ ũ
∂z

∣∣∣∣
z=h

= −
(

ε2
∂ŵ
∂x

+ 4ε2
∂ŵ
∂z

∂h
∂x

)
. (4.13a–c)

Similarly, T̂ is governed by the boundary value problem

∂2T̂
∂z2

= 0, T̂|z=−1 = 1 and T̂|z=h(x,t) = θ, (4.14a–c)

where θ(x, t) is the temperature of the film surface. Solving (4.14a–c) for T̂ , we obtain

T̂ = (θ − 1)
h + 1

(z + 1) + 1, (4.15)

which implies for the temperature correction, T̃ ,

T̃|z=−1 = 0, T̃|z=h = 0 (4.16a)

and

∂T̃
∂z

|z=h = −h + θ

h + 1
− Biθ + ε2

[
∂h
∂x

∂θ

∂x
−

(
∂h
∂x

)2 (
Biθ + 1

2
+ θ − 1

h + 1

)]
. (4.16b)

Next, we introduce (4.12) and (4.15) in (4.4) and (4.7), truncate the resulting equations
at O(ε2), multiply with the weight functions F(x, z, t) andW(x, z, t), and integrate across
the film height, 1 + h(x, t). This yields the integral momentum equation∫ h

−1
εRe

(
∂ û
∂t

+ û
∂ û
∂x

+ ŵ
∂ û
∂z

)
F dz =

∫ h

−1

∂2

∂z2
(û + ũ)F dz +

∫ h

−1
2ε2

∂2û
∂x2

F dz

−
(

εA cos(ωt)
∂h
∂x

− ε3

Ca
∂3h
∂x3

− ε2
∂

∂x

[
(2

∂ û
∂z

∂h
∂x

− ∂ŵ
∂z

)|h
]) ∫ h

−1
F dz, (4.17a)

and the integral energy equation∫ h

−1
ε

(
∂T̂
∂t

+ û
∂T̂
∂x

+ ŵ
∂T̂
∂z

)
W dz =

∫ h

−1

∂2

∂z2
(T̂ + T̃)W dz +

∫ h

−1
ε2

∂2T̂
∂x2

W dz,

(4.17b)

where the unknown corrections, ũ and T̃ , only appear in the boxed terms, expressing
wall-normal diffusion. At most other places, ũ and T̃ drop out due to truncation at O(ε2).
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Only for the convective terms have we made additional assumptions by dropping the
contributions of the corrections, even though O(εũ) = O(εT̃) = O(ε2), implying weak
(but finite) inertial and heat convection effects.
The weight functions, F and W , are chosen such as to cancel ũ and T̃ from the boxed

terms in (4.17a) and (4.17b). For F, we require

∂2F
∂z2

= 1, F|z=−1 = 0,
∂F
∂z

∣∣∣∣
z=h(x,t)

= 0, (4.18a–c)

yielding

F = 1
2 (z + 1)(−2h + z − 1), (4.19)

and forW , we require

∂2W
∂z2

= 0, W|z=−1 = 0 and
∂W
∂z

∣∣∣∣
z=h(x,t)

= C, (4.20a–c)

yielding
W = C(z + 1), (4.21)

where C is an arbitrary constant. Because the weight functions, according to (4.19)
and (4.21), correspond to the leading-order profiles û (4.12) and T̂ (4.15), the weighted
integration we have performed corresponds to a Galerkin projection.
As a result of these definitions, the boxed terms in (4.17a) and (4.17b) can be rewritten

using integration by parts∫ h

−1

∂2

∂z2
(û + ũ)F dz =

[
∂(û + ũ)

∂z
F − (û + ũ)

∂F
∂z

]h
−1

+
∫ h

−1
(û + ũ) dz, (4.22)

and ∫ h

−1

∂2

∂z2
(T̂ + T̃)W dz =

[
∂(T̂ + T̃)

∂z
W − (T̂ + T̃)

∂W
∂z

]h

−1

. (4.23)

Then, substituting (4.12), (4.13a–c), (4.15), (4.16), (4.19) and (4.21) into (4.17a) and
(4.17b), we obtain the final integral momentum and energy equations of ourWRIBLmodel

εRe
{
18q2

35
∂h
∂x

− 2�2

5
∂q
∂t

− 34�q
35

∂q
∂x

}
+ ε2ReMa

{
�2q
56

(
3
2
�
∂2θ

∂x2
+ ∂h

∂x
∂θ

∂x

)

+ �3

120

(
�

∂2θ

∂x∂t
+ 19

7
∂θ

∂x
∂q
∂x

)}
− ε3ReMa2

�4

336
∂θ

∂x

{
19
5

∂h
∂x

∂θ

∂x
+ 5

2
�
∂2θ

∂x2

}

= q + �3

3

{
εA

∂h
∂x

cos(ωt) − ε3

Ca
∂3h
∂x3

}
+ εMa

�2

2
∂θ

∂x

+ ε2

{
9�
5

(
∂h
∂x

∂q
∂x

− ∂2q
∂x2

�

)
+ 4q

5

(
3�

∂2h
∂x2

− 2
(

∂h
∂x

)2
)}

+ ε3Ma�2
{

�

10
(3

∂2θ

∂x2
∂h
∂x

+ ∂3θ

∂x3
�) + 1

15
∂2h
∂x2

∂θ

∂x
� − 4

5
∂θ

∂x

(
∂h
∂x

)2
}

, (4.24a)
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and

ε

{
1
3
�
2 ∂θ

∂t
+ 7

120
�
∂q
∂x

(θ − 1) + 9
20

�q
∂θ

∂x

}

+ ε2Ma�2

40

[
(1 − θ)

(
1
2

∂θ2

∂x2
� + ∂h

∂x
∂θ

∂x

)
− �

(
∂θ

∂x

)2
]

= 1 − θ − �(Biθ + 1)

− ε2�

{
(Biθ + 1)

2

(
∂h
∂x

)2

− 1
3

∂2θ

∂x2
� + (θ − 1)

3

(
∂2h
∂x2

+ 1
�

(
∂h
∂x

)2
)

− 1
3

∂h
∂x

∂θ

∂x

}
,

(4.24b)

where we have substituted � = 1 + h. These equations are completed by the integral
continuity equation

∂h
∂t

+ ∂q
∂x

= 0, (4.24c)

obtained by integrating (4.1) from z = −1 to z = h(x, t), and invoking the interphase
mass balance (4.5a). Thus, our final model (4.24) consists of a nonlinear system of three
evolution equations in terms of the three unknowns h(x, t), q(x, t) and θ(x, t).
Observe that (4.24a) contains a mixed derivative, ∂xtθ , at one place. The latter appears

as a result of the base velocity profile û chosen in (4.12), and, in particular, as a result of
retaining the leading-order Marangoni stress in the boundary condition (4.10a–c). We find
that this choice greatly improves the linear stability predictions of our model. Neither in
the linear stability calculations nor in the nonlinear computations (where we use a spectral
method for spatial discretization) do the mixed derivative pose any numerical challenge.

4.3. Numerical procedure
Numerically, to solve the system of nonlinear equations, (4.24), we discretize variables in
space along the horizontal direction using a Fourier spectral scheme (Hesthaven, Gottlieb
& Gottlieb 2007). This automatically satisfies periodicity in the x-direction, which is the
setting considered in the current manuscript. In all our nonlinear computations, the domain
length is set to the container width, W. Time integration is realized via the NDSolve
function in Mathematica (version 12.1). Each of our nonlinear computations is started
from an initial perturbation constructed with the eigenfunctions h′|t=0, q′|t=0, and θ ′|t=0,
defined according to (3.2), and obtained from a preliminary linear stability calculation for
A = 0 andMa > Mac. The initial deflection amplitude was set to be 5% of the fluid depth.
The grid resolution for our simulations was determined via grid independence tests by a
stepwise doubling of the number of collocation points until the change in the minimum
interface deflection, hmin(t), was less than 1 %.

4.4. Nonlinear suppression of dry spots
To validate our long-wave model (4.24), we start by reproducing the neutral stability
bounds from figure 7. For this, we linearly perturb the dependent variables h(x, t), q(x, t)
and θ(x, t) according to (3.2), and solve the resulting eigenvalue problem to obtain the
critical forcing amplitude, A, at fixed ω, Ma and ε = 0.003, using the parameters in
table 1. Results are represented in figure 9, where, as in figure 7, the dashed curve
represents the monotonic instability mode (ĥ0 	 ĥn for all n /= 0) and the solid curve
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Figure 9. Linear effect of parametric forcing on Marangoni instability, as predicted by the long-wave model
(4.24). Critical forcing amplitude A∗ versus forcing frequency f ∗. The same parameters as in figure 7: d∗ =
3 mm; ε = d∗/W∗ = 0.003; Ma = 1.4Mac|k=2π. Dashed curve, stability bound of monotonic mode (ĥ0 	 ĥn
for all n /= 0); solid curve, stability bound for oscillatory modes (ĥn 	 ĥ0 for at least one n /= 0). Numbers
(m) designate wavenumber k = 2mπ of critical spatial mode. For the chosen parameters, only m = 1 yields an
unstable Marangoni mode at A∗ = 0.

represents the oscillatory instability mode (ĥn 	 ĥ0 for at least one n /= 0). Agreement
with the corresponding curves in figure 7 is excellent, due to the smallness of the chosen
ε = 0.003, which warrants the long-wave approximation underlying our model.
We next perform nonlinear computations based on (4.24) for parameters lying in the

three characteristic regions of figure 9. In region I, the liquid film is always unstable to
a Marangoni mode with m = 1, i.e. k = 2π. Recall that, in this section, the wavenumber,
k, is scaled by the container width, W∗, i.e. k = k∗W∗. In region II, the film is rendered
linearly stable via parametric forcing. In region III, the film is always unstable to Faraday
waves.
Figure 10 represents the time evolution of the film thickness profile, � = 1 + h(x, t),

in the limit A∗ = 0, where only the Marangoni instability is active. The value of
the Marangoni number is Ma = 1.4Mac|k=2π = 25. Here k = 2π is the only possible
instability mode (cf. figure 2b), as a result of our choice for the container width, i.e. ε =
0.003. It is observed that the deflection of the film surface increases as time progresses,
until the liquid–gas interface at the trough reaches the lower wall. The film surface
buckles, forming two secondary troughs, which drastically slow down further draining
of liquid from the trough region. As shown by Boos & Thess (1999) and Dietze, Picardo
& Narayanan (2018), additional buckling events may follow (at higherMa), but, eventually,
the liquid film will always rupture due to spinodal dewetting (Bonn et al. 2009). Thus, it
is safe to say that the nonlinear evolution in figure 10, will lead to the formation of a dry
spot, in accordance with the experimental observations of Vanhook et al. (1997) for very
thin liquid films. Supplementary movie 1 shows the evolution towards dry spot formation
in action.
We now consider how the nonlinear evolution in figure 10 is altered by applying

additional parametric forcing with increasing forcing amplitude, A∗. For this, we consider
two forcing frequencies, i.e. f ∗ = 1 Hz, which corresponds to the natural frequency at

981 A8-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

58
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2024.58


I.B. Ignatius, B. Dinesh, G.F. Dietze and R. Narayanan

3.0

2.5

2.0

ħ

x

1.5

1.0

0.5

0 0.2 0.4 0.6 0.8 1.0

Figure 10. Nonlinear computation for parameters according to region I in figure 9: A∗ = 0;Ma = 25. Interface
profile of dry spot formation at different times t. Dashed curve, t = 0; dashed-dotted curve, t = 7; solid curve,
t = 14. See also Supplementary movie 1, available at https://doi.org/10.1017/jfm.2024.58.
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Figure 11. Nonlinear effect of parametric forcing on Marangoni instability. Numerical computations with
WRIBL model (4.24), showing transition from regions II to III in figure 9: f ∗ = 1 Hz; Ma = 1.4Mac|k=2π.
Film surface profiles at different times t: dashed curves, t = 0. (a) Linear suppression of surface deformations:
A∗ = 0.9A∗

c (region II in figure 9). Dash–dotted curve, t = 45; solid curve, t = 90. (b) Saturated Faraday
waves: A∗ = 1.1A∗

c (region III of figure 9). Dashed-dotted curve, t = 0.001; solid curve, t = 0.002. See also
Supplementary movies 2 and 3. Here A∗

c corresponds to solid curve in figure 9.

m = 20, and f ∗ = 1.56 Hz, which corresponds to the natural frequency at m = 24. We
start by discussing our computations for f ∗ = 1 Hz which are represented in figure 11.
At A∗ = 0.9A∗

c (figure 11a), parameters lie in region II of figure 9, and our nonlinear
computation indicates a full attenuation of the initial interface deflection. Thus, parametric
forcing indeed allows us to obtain a perfectly flat film surface in this parameter range.
Supplementary movie 2 shows the evolution towards flatness in action.
When the forcing amplitude is increased to A∗ = 1.1A∗

c , which lies in region III of
figure 9, Faraday waves appear. Here, the resonant action takes over and the interface
develops m = 20 waves per container width, as shown in figure 11(b). Although dry spot
formation is still prevented under these conditions, we see that large interface deflections
result from the parametric forcing. Supplementary movie 3 shows the formation of
resonant waves in action.
A different picture emerges for the higher forcing frequency, f ∗ = 1.56 Hz, as shown in

figure 12. It is known from figure 9 that linear stabilization of the liquid film cannot be
achieved under these conditions, as the solid curve for the onset of oscillatory instability
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Figure 12. Nonlinear effect of parametric forcing on Marangoni instability. Numerical computations with
WRIBL model (4.24), showing transition from regions I to III in figure 9: f ∗ = 1.56 Hz; Ma = 1.4Mac|k=2π.
Film surface profiles at different times t: dashed curves, t = 0. (a) Nonlinear attenuation of surface
deformations: A∗ = 0.9A∗

c (region I in figure 9). Dash–dotted curve, t = 2; solid curve, t = 3.5. (b) Saturated
Faraday waves: A∗ = 1.1A∗

c (region III in figure 9). Dashed–dotted curve, t = 0.001; solid curve, t = 0.002.
See also Supplementary movies 4 and 5.
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Figure 13. Change in flow structure within the liquid film. Streamlines in the laboratory reference frame
for parameters corresponding to figure 10 and figure 12(a). (a) Dry spot formation (figure 10): A∗ = 0.1A∗

c ;
Ma = 1.4Mac|k=2π; and f = 1.56 Hz. (b) Nonlinear saturation due to parametric forcing (figure 12a): A∗ =
0.9A∗

c ; Ma = 1.4Mac|k=2π; and f ∗ = 1.56 Hz. Only one half of the domain is represented in each panel, for
convenience.

lies below the dashed curve demarcating stabilization of the monotonic instability mode.
Nonetheless, figure 12(a) shows evidence of a very strong nonlinear saturation of the
interface deflection at A∗ = 0.9A∗

c , even though this point lies in region I of figure 9.
Here, the interface remains almost flat, notwithstanding that it is subject to the long-wave
Marangoni instability mode, responsible for forming dry spots in the absence of forcing.
Thus, dry spot formation can be prevented and the film can be rendered virtually flat also
at higher forcing frequencies, albeit due to a nonlinear mechanism (figure 12a), in contrast
to the linear mechanism observed at low frequencies (figure 11a).
This nonlinear saturation mechanism is associated with small standing waves or ripples

forming on the main humps of the interface deformation. These are only slightly visible in
figure 12(a), but their oscillatory motion can be distinguished clearly in the Supplementary
movie 4. These standing waves or ripples form at the main humps or crests rather than the
main troughs on account of the inertial action promoted by the height of fluid below the
large deflecting crests. We believe that these standing waves are responsible for arresting
further drainage of liquid from the deformation trough, as a result of a cellular flow pattern
that develops underneath the deformation hump. This is seen in figure 13, which displays
streamlines in the laboratory reference frame for the two cases from figures 10 and 12(a).
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Figure 14. Effect of relative forcing amplitude A′ = A∗/A∗
c on long-time nonlinear evolution of the heated

liquid film. Parameters according to figure 9: f ∗ = 1.56 Hz. Time traces of the minimum film thickness �min =
1 + hmin. (a) Nonlinear attenuation of surface deformation in region I of figure 9: A′ < 1. From bottom to top:
A′ = 0, 0.5, 0.6, 0.7, 0.8 and 0.9. (b) Saturated Faraday waves: A′ ≥ 1. From bottom to top: A′ = 1.1 and 1.

Finally, we turn to figure 12(b), which shows that the nonlinear saturation of the
surface deformation is lost, when the forcing amplitude is increased to A∗ = 1.1A∗

c , where
large-amplitude short Faraday waves form once again, as a result of oscillatory instability
(see also Supplementary movie 5).
From an application point of view, one may ask at what forcing amplitude, A∗,

does the nonlinear saturation of the interface deflection set in? We have quantified this
for the current parameters in figure 14, which represents time traces of the minimum
film thickness, �min = 1 + hmin, for different subcritical (figure 14a) and supercritical
(figure 14b) forcing amplitudes A∗, all other parameters remaining the same as in figure 12.
Based on figure 14(a), we may conclude that a significant nonlinear attenuation of the
interface deflection is achieved for A∗/A∗

c ≥ 0.7.

5. Summary

The interaction of parametric forcing and Marangoni instability is viewed from two
perspectives. In the first perspective, we use linear stability analysis to conclude that
parametric forcing will stabilize long-wave Marangoni instability but has little effect on
short-wave Marangoni-driven waveforms. It is seen that a layer unstable to Marangoni
flows may be completely stabilized by parametric forcing at low frequencies but becomes
unstable to resonant waves at high amplitudes of forcing. However, at higher parametric
frequencies, the fluid system directly transitions from an unstable Marangoni regime to an
unstable resonant regime, thus circumventing the transition to a stable state.
In a second perspective, validation of the results of linear stability was done using

a reduced-order nonlinear model that tracked the interface evolution in the presence
of parametric forcing over a range of frequencies. In addition to recovering the results
forecast by linear stability, this model shows that, at frequencies beyond a critical value,
the resonant forcing subverts the subcritical nature of the long-wave nonlinear Marangoni
instability, constraining the interface to a low-amplitude saturated form. This nonlinear
saturation mechanism is due to the formation of vortices underneath the choppy Faraday
waves excited by the parametric forcing. The vortices arising from these Faraday waves
disrupt the thermocapillary flow that drains liquid from the global trough to the global
hump. In some ways, this is similar to the suppression of dry spots by the short-wave
Marangoni instability mode (Vanhook et al. 1997).
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As it is known from experiments that long-wave Marangoni instability will lead to dry
spots, we conclude that a major outcome of this study is that the evolution of the interface
can be suppressed at both low and high frequencies, preventing dry-out.
Our observations were made for the case where gravity is absent. We conclude by

assessing the effect of finite gravity. A finite gravitational acceleration, g, acts on the large
interface deflections and thereby stabilizes the long-waveMarangoni instability. Therefore,
incrementing the value of g for the calculation in figure 4(a) would shift the threshold of
the long-wave Marangoni instability mode upwards, eventually leading it to surpass the
minimum threshold of the short-wave mode (itself insensitive to gravity). It is below this
limit, that the formation of dry spots is possible; and, in this regime, we find that the
long-wave Marangoni instability mode remains highly sensitive to parametric forcing.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.58.
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Appendix A. Supplement to figure 7: role of the wavenumber

In this appendix, we discuss the origin and implications of the cutoff frequency, f ∗ ∼
1.2 Hz, observed in figure 7, where the stability bounds of the monotonic and oscillatory
instability modes intersect. To do this, the spatial confinement imposed by the finiteness of
the container width, W, needs to be considered. We then represent the stability bounds in
terms of A∗ versus k curves for the parameters used in figure 7. These curves, depicted in
figure 15, are drawn for two values of the forcing frequency, f ∗, i.e. f ∗ = 1 Hz (diamonds)
and f ∗ = 1.56 Hz (circles), which are situated on either side of the cutoff frequency.
Dashed curves correspond to the monotonic and solid curves to the oscillatory instability
modes. Figure 15(a) shows both bounds in the same diagram, while a magnified view
of the monotonic instability bound, which is confined to a narrow wavenumber range, is
provided in figure 15(b). Note that the flow is unstable, when A∗ = 0, to all wavenumbers
less than kc denoted on figure 15(b) by an upward arrow. Likewise the system is quiescent
for all allowable wavenumbers greater than kc.
As a result of the fixed container width, 1/W = 0.003, there is only one allowable

unstable wavenumber, k = 2 mπ/W, for the monotonic mode at the considered Ma =
1.4Mac|k=2π/W . This waveform, given by m = 1, is marked by a vertical line in
figure 15(b). At the corresponding wave number, the monotonic Marangoni instability
mode can be suppressed by increasing the forcing amplitude, A∗, e.g. beyond the filled
diamond in figure 15(b) for a forcing frequency of f ∗ = 1 Hz. Observe that this value
of A∗, denoted A∗

s is less than A∗
o, the lowest amplitude for the allowable wavenumbers

on the oscillatory curve. Upon increasing the frequency to f ∗ = 1.56 Hz, the oscillatory
curves shift substantially, while the monotonic curves shift only slightly. This shift in the
oscillatory curves with frequency is characteristic of resonant instabilities (cf. Kumar
& Tuckerman 1994; Batson, Zoueshtiagh & Narayanan 2013). The critical amplitude,
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Figure 15. Effect of forcing frequency on the most unstable allowable waveforms and associated critical
forcing amplitude for the monotonic (s) and oscillatory (o) instability modes. Critical A∗ versus k curves for two
frequencies from figure 7:Ma = 1.4Mac|k=2π/W ; 1/W = 0.003. Diamonds, f ∗ = 1 Hz; circles, f ∗ = 1.56 Hz.
Dotted vertical lines mark most-unstable allowable waveforms, identified by m = Wk/2π (given between
parentheses). Panel (b) is a magnified view of the long-wave range in panel (a).

A∗
o, diminishes with increasing forcing frequency (from open diamond to open circle in

figure 15a), and does so at a greater rate than the stability bound of the monotonic mode
(figure 15b). Consequently, the oscillatory instability bound eventually moves below the
monotonic stability bound, implying the existence of a cutoff frequency, as observed in
figure 7.
To see the effect of lateral confinement of the container, we observe that the allowable

wavenumbers along the monotonic curve shift to the left with increase in container width.
Likewise, the allowable wavenumbers in the oscillatory curve shift towards the minimum
with increase in container width. This implies that there is a critical width for which
A∗
s = A∗

o for a fixed parametric frequency, f ∗. Below this width, unstable Marangoni flow
can be completely stabilized. Above this width, the Marangoni instability transitions to
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resonant waves with an increase in forcing amplitude. Consequently, at fixed supercritical
Ma, stabilization cannot be achieved in the unconfined case, no matter how large the
forcing amplitude. A finite container width is thus a prerequisite for the existence of the
dashed curve in figure 7.
In summary, there are two prerequisites for the occurrence of a cutoff frequency. First,

the coexistence of monotonic and oscillatory instability modes, and, second, a finite lateral
confinement. We point out that these prerequisites can be satisfied also by other interfacial
instability problems. For example, critical A∗ versus k curves similar to figure 15 are seen
in parametric stabilization of Rayleigh–Taylor instability (Sterman-Cohen et al. 2017).
Therefore, one might expect to obtain a regime diagram similar to figure 7 also in that
case.

Appendix B. Effect of an active upper air layer

The stability calculations reported in the main body of this manuscript rely on assuming
a hydrodynamically passive and purely conducting upper fluid layer. In this appendix, we
assess the validity of this assumption by checking how an active upper gas layer, such as
air, affects the stability bounds represented in figure 7. That figure contains several of our
key findings related to the effect of parametric forcing on the Marangoni instability.
The additional stability calculations are performed based on the full governing equations

in the liquid film and upper air layer, following Smith (1966) and Kumar & Tuckerman
(1994). The standard properties of air (subscript a) at ambient pressure and temperature
are used. Further, the air-to-liquid depth ratio is set to d∗

a/d
∗ = 2, which follows from the

value of Bi = Hd∗/λ = 0.1 used throughout the study, assuming H = λa/d∗
a . The results

of the calculations are presented in figure 16, where all other parameters correspond to
figure 7. The differences between figures 16 and 7 are extremely small, less than 1%, which
warrants the assumption of a hydrodynamically passive and purely conducting upper gas
layer.
The weak effect of the upper air layer on our key observations results from the low

density and viscosity of air. As a result of this, the upper layer cannot meaningfully affect
the inertia-driven Faraday instability and the inertia-driven stabilization of the long-wave
Marangoni instability, which dictate the thresholds represented in figures 7 and 16.

Appendix C. Validity of the long-wave approximation underlying the WRIBL model

Figures 12 and 13(b) show evidence of shorter choppy waves and associated vortices
within the liquid film. The question may arise as to whether the long-wave approximation
underlying our WRIBL model is still valid for these regimes. The horizontal length scale
of the said structures is dictated by the wavelength, Λ∗, of the most-amplified Faraday
mode, which is quantified via the number between parentheses in figure 9, i.e. the number
of waves, m = W∗/Λ∗, within the container width W∗. Thus, we evaluate the maximal
length scale ratio, εmax = d∗/Λ∗ = εm, based on the wavelength of the Faraday waves in
figure 12, where m = 24. This yields εmax ∼ 0.1, which is generally small enough for an
O(ε2) long-wave WRIBL model, such as ours, to yield accurate predictions.
We demonstrate this for our specific configuration by comparing the linear stability

predictions obtained with our WRIBL model with predictions based on the full governing
equations. First, we compare the stability bounds in figure 9, which are obtained from
our WRIBL model, with those in figure 7, which are obtained from the full governing
equations. The stability bounds are in good agreement and only differ by less than 1%.
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Figure 16. Neutral stability bounds according to figure 7 for the case of an active upper air layer, as obtained
from calculations based on the full governing equations in the liquid and air, following Smith (1966). Air
parameters: d∗

a/d
∗ = 2; ρa = 1 kg m−3;μa = 1.6 × 10−5 Pa s; λa = 0.026 Wm−1 K−1;Cpa = 1 J kg−1 K−1.

The air-to-liquid depth ratio, d∗
a/d

∗ = 2, follows from the value of Bi = Hd∗/λ = (λad∗)/(λd∗
a) = 0.1 used in

figure 7. All other parameters according to figure 7: Ma = 1.4Mac|k=2π/W ; 1/W = 0.003.
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Figure 17. Validation of the WRIBL model versus linear stability calculations based on the full governing
equations. Growth rate dispersion curves for the parameters in figure 12(b): f ∗ = 1.56 Hz;Ma = 1.4Mac|m=1,
where m = 1 corresponds to the first allowable wavenumber. Solid curve, full governing equations; dot–dashed
curve, WRIBL model.

Second, we compare the growth rate curves (figure 17) obtained with the two approaches
for the parameters in figure 12(b). We again observe very good agreement over the
entire relevant range of the wavenumber, k, including and far beyond the most-amplified
wavenumber, which prevails in our nonlinear calculations (figure 12b).
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