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Abstract

Our prior experiments show that humans and machines seem
to employ different approaches to speaker discrimination, es-
pecially in the presence of speaking style variability. The ex-
periments examined read versus conversational speech. Lis-
teners focused on speaker-specific idiosyncrasies while “telling
speakers together”, and on relative distances in a shared acous-
tic space when “telling speakers apart”. However, automatic
speaker verification (ASV) systems use the same loss func-
tion irrespective of target or non-target trials. To improve ASV
performance in the presence of style variability, insights learnt
from human perception are used to design a new training loss
function that we refer to as “Cy,CE loss”. C}:CE loss uses
both speaker-specific idiosyncrasies and relative acoustic dis-
tances between speakers to train the ASV system. When us-
ing the UCLA speaker variability database, in the x-vector and
conditioning setups, Cii:CE loss results in significant relative
improvements in EER by 1-66%, and minDCF by 1-31% and
1-56%, respectively, when compared to the x-vector baseline.
Using the SITW evaluation tasks, which involve different con-
versational speech tasks, the proposed loss combined with self-
attention conditioning results in significant relative improve-
ments in EER by 2-5% and minDCF by 6-12% over baseline.
In the SITW case, performance improvements were consistent
only with conditioning.

Index Terms: Style-robust, Speaker verification, Loss function,
Conditioning, Attention

1. Introduction

Automatic speaker verification (ASV) is an open-set problem,
i.e., test speakers are unavailable to the system during training
but available during enrollment. ASV is, hence, a metric learn-
ing problem that maps speakers to a discriminative embedding
space. Most of the work on speaker verification has focused
on training with identification objectives. One such identifica-
tion objective is cross-entropy loss [1, 2]. Identification loss
functions learn linearly separable embeddings by focusing on
maximizing inter-speaker distances. However, they do not typ-
ically minimize intra-speaker distances. Hence, the resulting
embeddings do not have adequate discriminative properties.

To address the drawbacks of identification loss in ASV sys-
tems, Angular softmax [3] loss was used. Angular softmax uses
cosine similarity as the logit input to the softmax layer. Additive
margin variants of Angular softmax such as AM-Softmax [4, 5]
and AAM-Softmax [6] use a cosine margin penalty on the tar-
get logit. These techniques although effective, have been proven
sensitive to the value of scale and margin.

As an alternative to identification objectives, metric learn-
ing objectives that focus on minimizing intra-speaker distances
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have been used. Metric learning objectives such as contrastive
loss [7] and triplet loss [8] have been used in ASV tasks with
some success [9, 10]. However, these approaches require care-
ful selection of triplet pairs i.e. anchor, positive and negative
pairs, resulting in longer training cycles. Apart from the high
computational cost, these losses do not consider the perfor-
mance measures (such as equal error rate (EER) and detection
cost function (DCF)) in training; these measures are used in the
final evaluation of the speaker verification task.

It has been shown that considering a metric related to the
final evaluation improves ASV performance further at least in
text dependent ASV systems by using aAUC [11], aDCF [12]
and Ciir [13] objectives. The Ci loss, in particular, provides
performance improvements without the need for triplet pairs
and provides computational cost similar to that of identifica-
tion objectives such as cross-entropy loss. Cyr was evaluated in
a text dependent speaker verification task [13] and its efficacy
has not been evaluated in a text independent case.

Given that everyday style variations in speech affect both
inter- and intra-speaker variabilities [14, 7], it is important to
use a loss function that maximizes inter-speaker distances and
minimizes intra-speaker distances. To addresses this issue, in
this paper, we introduce a loss function that is inspired by hu-
man speech perception.

1.1. Comparison between Humans and Machines

Speaking style variations occur frequently in everyday situa-
tions such as having a conversation, giving instructions, talking
to a pet, etc. However, these variations have little effect on hu-
man ability to recognize a familiar voice [15]. Previously it has
been shown that familiarity has an influence on human strategy
to recognize talkers: familiar talkers are recognized by match-
ing the stimuli to stored voice templates, while unfamiliar talk-
ers are recognized through acoustic feature comparisons [16].
Humans have shown to outperform machines in a task of
discriminating unfamiliar speakers in both style-matched and -
mismatched conditions from samples of read and pet-directed
speech (characterized by exaggerated prosody) [17, 18]. In our
recent experiments [19], results suggest that humans and ma-
chines maybe employing different approaches to speaker dis-
crimination in cases of moderate style variability. Moreover,
two studies [20, 21] have shown that humans vary their per-
ceptual strategies when “telling people together” versus “telling
people apart.” On the other hand, machines apply the same ap-
proach irrespective of target or non-target trials [18]. Given that
humans and machines seem to employ different approaches to
speaker discrimination, it is possible that machines might do
better if they employed human perceptual strategies. In addi-
tion, humans might do better with machine assistance in certain
situations. Therefore, we focus on learning from human speaker
perceptual strategies in developing ASV algorithms, in particu-


http://arxiv.org/abs/2206.13684v1

lar, introducing a new training loss function.

In this work, we propose the C':CE loss function for text-
independent ASV, especially in cases of style-mismatch. This
loss function is inspired by strategies used by humans for an
unfamiliar speaker discrimination task in the presence of mod-
erate style variability (read versus conversational speech). Sec-
tion 2 presents the proposed method. The experimental setup is
described in Section 3, and the results and discussion are pre-
sented in Section 4. We conclude with Section 5.

2. Proposed Method

2.1. Human speaker perception

Our previous work [22] studied human speaker perception for
moderate style variability (read versus conversational speech).
The results showed that listeners find it easier to “tell speakers
together” using speaker-specific idiosyncrasies, while listeners
“tell speakers apart” based on relative positions within a shared
acoustic structure rather than speaker-specific features.

This work aims to incorporate this strategy in the train-
ing loss function. Thus, we need a loss function that focuses
on speaker-specific idiosyncrasies for the “target speaker” task
while using acoustic distances between speakers for the “non-
target speaker” task.

2.2. Embedding Extractors

An x-vector/PLDA system [23] is the baseline used in this pa-
per. The inputs to the embedding extractor are 30-dimensional
mel-frequency cepstral coefficients (MFCCs) using a 25 ms
frame length and a 10 ms frame shift. The MFCCs are mean
normalized over a sliding window of up to 3 secs. Extrinsic
data augmentation of noise and reverberation [23] was applied
to the training data.

Since, the x-vector system performance is degraded in the
case of style-mismatch [24], we also want to evaluate the pro-
posed method in a system that has lesser degradation due to
style-mismatch. Hence, we perform additional experiments us-
ing an entropy-based variable frame rate (VFR) conditioning
network [25, 26] developed to compensate for speaking style
effects. This method uses VFR output [27, 24, 28] as a condi-
tioning vector in the self-attention pooling layer. Five different
approaches were used for conditioning. Among those, the best
performing VFR conditioning network, concatenation with gat-
ing, is used. In this setup, the statistical pooling layer is replaced
with a self-attention layer. The self-attention layer is then con-
ditioned using an entropy-based variable frame rate vector [24].

2.3. Loss Functions

2.3.1. Cross-Entropy (CE) Loss

A widely-used loss function for training ASV systems, includ-
ing the x-vector system, is the cross-entropy loss. This function
calculates loss for a multi-class classification problem. CE loss

Table 1: UCLA SVD database statistics in terms of number of
utterances.

Style \read instructions narrative conversation pet-directed

Enroll | 200 204 625T 197 35+F
Test 199 204 625" 174 35+

* Same enroll and test utterances.

can be calculated as,
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where x; is the i training sample, y; is the ground truth
speaker label of the " training sample, i € {1,...,m}, where
m is the total number of training samples. W indicates the
weight matrix, b is the bias vector. W, and Wy, are the j™
and y'' columns of W, respectively. b, and by, are the j™ and
y'! bias values, respectively. The CE loss is calculated for a
total of N speakers.

The CE loss aims at maximizing inter-speaker distances but
it does not minimize intra-speaker distances. By maximizing
inter-speaker distances (the posterior probability of the correct
class), the extracted embeddings are linearly separable. On the
other hand, for the embeddings to include desirable discrim-
inative features, the loss should also minimize intra-speaker
distances (that is increase embedding similarity). The embed-
dings trained on CE loss—maximizing inter-speaker distances—
are equivalent to the human approach of focusing on relative
positions within a shared acoustic structure to “tell speakers
apart”. To minimize intra-speaker distances and implement
other aspects of human perception strategies, we need a loss
that focuses on speaker-specific idiosyncrasies.

2.3.2. Cy, Loss

To focus on speaker-specific idiosyncrasies without increasing
the length of the training cycles, we chose the log-likelihood-
ratio cost function (Chr) [29] as a loss function for training the
embedding extractor that we refer to as “Cj, loss”.

Ciir is an application independent measure for evaluating
soft decisions in ASV performance. There is a closed-form so-
lution for Cy;; [29] that provides the Ci;; loss function as follows:
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where 6 represents the model parameters, sg (X, y:) is the score
from the last layer of the embedding extractor for speaker y;
from input x;, ‘tar’ is a set of target speakers and ‘non’ is a set
of non-target speakers. The two terms in Equation 2 represent
the costs for Nior “target” (Ctar(6)) and Npon “non-target”
speakers (Cron (0)).

Ciir can be interpreted as a measure that is inversely related
to information. The lower the C;;, the more the average infor-
mation per trial (in bits) increases. Optimization is performed
with the objective of minimizing Cy, loss. Ci loss is calcu-
lated for each minibatch by considering the outputs of the last
linear layer as scores and using the class labels to define target
and non-target speakers. Thus, Ci;; loss minimizes intra-speaker
distances by focusing on speaker-specific idiosyncrasies. This
is similar to the human approach to “tell speakers together”.

2.3.3. Proposed method: Cl,CE loss

We propose to use the combination of cross-entropy loss and
Cir loss for training ASV systems, so that the loss function
can maximize “inter-speaker” distances and minimize “intra-



Table 2: Performance using the UCLA database (in EER and minDCF) with CE and Cy,CE loss functions. The loss functions are
used to train the x-vector system and the best performing VFR conditioning: concatenation with gating. The best performance in each
condition with a statistically significant improvement over the baseline is boldfaced. If denoted by a ‘*’ it is not a statistically significant

improvement over the baseline.

Loss | CE | CiCE

Enroll | Test |  x-vector (Baseline) |  VFR conditioning | x-vector |  VFR conditioning
| EER % minDCFo01 | EER% minDCFoo1 | EER % minDCFoo1 | EER % minDCFo .0
read 0.50 0.018 0.50 0.013* 0.50 0.023 0.50 0.018
instructions 0.49 0.054 0.49 0.037* 0.49 0.037* 0.49 0.027*
read conversation 2.86 0.254 2.29 0.232 2.29 0.240 1.71 0.197
narrative 0.80 0.162 0.80 0.115% 0.80 0.123* 0.80 0.104*
pet-directed 17.14 0.928 14.29 0.943 17.14 0.943 17.14 0.886*
read 1.47 0.154 0.98 0.120 1.47 0.137 1.47 0.108%*
instructions 0.45 0.005 0.45 0.005 0.45 0.005 0.45 0.005
instructions | conversation 2.79 0.296 2.79 0.263* 2.79 0.263* 2.24 0.238
narrative 1.23 0.110 0.77 0.102 0.92 0.090 0.77 0.072
pet-directed 18.92 0.933 13.51 0.933 16.22 0.920 16.22 0.908
read 2.03 0.246 1.52 0.178 1.52 0.188 1.52 0.173
instructions 2.97 0.267 2.48%* 0.248* 2.48%* 0.225% 2.48%* 0.213*
conversation | conversation 0.57 0.035 0.57 0.035 0.57 0.029* 0.57 0.020*
narrative 1.94 0.224 1.94 0.187 1.94 0.179 2.10 0.155
pet-directed 20.00 0.887 17.14 0.915 17.14 0.900 17.14 0.858
read 0.48 0.046 0.32% 0.032%* 0.16 0.036 0.16 0.020
narrative instructions 0.46 0.024 0.46 0.019* 0.46 0.019* 0.46 0.013*
conversation 1.46 0.132 1.10 0.121 1.10 0.127 0.73 0.096
pet-directed 18.58 0.828 13.27 0.908 13.27 0.855 14.16 0.841
read 14.29 0.886 14.29 0.829* 14.29 0.857* 14.29 0.871%*
. instructions 18.92 0.919 13.51 0.946 16.22 0.934 16.22 0.908
pet-directed | versation | 21.21 0914 18.18 0.867 | 18.18 0.842 21.21 0.774*
narrative 19.47 0.886 14.16 0.929 15.93 0.892 15.04 0.864

speaker” distances. We thus use a combined loss function and
refer to it as “C};;CE loss”,

CuCE(6) = % (Cu(0) + Low) )

Given that this loss function is inspired by human speaker
discrimination strategies in the presence of moderate style vari-
ability, i.e, between read and conversational speech, we hypoth-
esize that this loss function will provide the most improvement
in conversational speech tasks.

3. Experimental Setup

Experiments were setup using Pytorch [30] and Kaldi [31].
Adam [32] optimization was used with a batch size of 128 and
trained for 100 epochs.

3.1. Databases
3.1.1. The UCLA Speaker Variability Database (SVD)

To systematically study performance in the presence of style
variability, the UCLA Speaker Variability Database [33, 34, 35,
36], a multi-speaker speech database including multiple speech
tasks per speaker is employed. It incorporates commonly-
occurring variations in speech from 101 female and 101 male
speakers, recorded in a sound-attenuated booth at a sampling
rate of 22kHz. The tasks include reading sentences character-
izing scripted speaking style (= 75 sec per speaker); giving
instructions as unscripted clear monologue style (= 30 sec
per speaker); narrating a recent happy, annoying, or neutral

conversation characterizing unscripted affective speech (= 30
sec each affect per speaker); having a conversation on a call
with a familiar person (speaker’s side speech only) characteriz-
ing unscripted conversational style (60—120 sec per speaker);
and talking to pets in a video representing pet-directed speech
(60-120 sec per speaker).

To cover enough phonetic variability, such that there is neg-
ligible effects from it, and style variability is predominant [37],
30 sec-long speech samples were used for evaluation, This re-
sults in a total of 1,838 30 sec segments for evaluation as
shown in Table 1. A majority of speakers had less than 1 min
of speech for pet-directed speech and affect-matched narrative
case. Hence, the style-matched cases for those styles were omit-
ted, as a style-matched case requires at least 1 min (two 30 sec
samples) of speech from the same speaker. This provides a total
of 23 style-matched and mismatched tasks for evaluation. The
UCLA SVD data were downsampled to 16 kHz, to match the
rest of the databases used.

3.1.2. The Speakers in the Wild Database (SITW)

To evaluate the performance of the proposed loss on a large-
scale database we use SITW [38] for evaluation. It includes
speakers employing multiple speaking styles such as inter-
views, presentation, talk show, social-media videos etc. This
database consists of 2,883 recordings from 117 male and 63 fe-
male speakers divided into 6,445 utterances sampled at 16 kHz.
Single-speaker utterances in the eval set are referred to as
“core”. Enrollment utterances with multiple speakers (segmen-
tation labels for the person of interest (POI) available) are re-



Table 3: Performance using the SITW evaluation (in EER and minDCF) with CE, Cy,, and C),CE loss functions. The loss functions
are used to train the x-vector system and the best performing VFR conditioning: concatenation with gating. The best performance in
each condition with a statistically significant improvement over the baseline is boldfaced.

‘ | Core-Core | Core-Multi ‘ Assist-Core ‘ Assist-Multi
Loss \ Model | EER % minDCFg o1 | EER % minDCFy o; \ EER % minDCFy o1 \ EER % minDCF o1
CE x-vector (Baseline) 3.66 0.3820 5.87 0.4629 5.47 0.4041 6.90 0.4512
VER conditioning 3.69 0.3989 5.81 0.4740 5.26 0.4027 6.54 0.4651
C X-vector 4.13 0.4153 6.46 0.4940 6.24 0.4376 7.57 0.4824
tir VER conditioning 4.29 0.4009 6.65 0.4821 6.28 0.4337 7.68 0.4776
C' CE x-vector 3.77 0.3654 5.88 0.4394 5.70 0.3833 6.74 0.4290
tir VFR conditioning 347 0.3346 5.73 0.4178 5.36 0.3738 6.73 0.4191

ferred to as “assist”, while the test utterances that do not include
segmentation labels for POI are referred to as “multi”.

3.1.3. VoxCeleb Database

ASV systems were trained on the Voxceleb2 DEV set [39].
It consists of speech from YouTube videos of 3,682 male and
2,313 female speakers and includes 1,092,009 utterances with a
sampling rate of 16 kHz. The main disadvantage of using Vox-
Celeb2 for testing is that it comprises interview-style speech
only and does not include different styles for each speaker.
Hence, we believe that this database does not provide a good
representation of the test case scenario targeted in this work.

4. Results and Discussion
4.1. UCLA SVD Evaluation

The loss functions used in our experiments are cross-entropy
loss (CE), CY; loss, and Cy;CE loss. These loss functions are
used to train the x-vector system and the best performing VFR
conditioning: concatenation with gating. Table 2 compares the
performance (in EER % and minDCF) of the CE and C),CE
loss functions for the UCLA database. The Cj; loss function
by itself does not provide an improvement over the widely-used
CE loss function in both the x-vector and VFR conditioning
architectures. Therefore, we do not report those results in Ta-
ble 2. Statistical significance was verified using McNemar’s
test [40]. Unless mentioned explicitly, all performance differ-
ences reported in this section are significant with p < 0.05.

In the x-vector setup, C';CE loss provides statistically sig-
nificant improvements over CE loss in 11/23 tasks and is the
same as CE loss in 12/23 tasks. The minDCF is significantly
better with Cy;;CE loss in 7/23 tasks and worse in 4/23 tasks
when compared to CE loss. In the VFR conditioning setup,
Ci:CE loss provides statistically significant improvements in
4/23 tasks, especially in tasks involving conversational style,
compared to VFR conditioning with CE loss. Since in the VFR
conditioning setup style variability is addressed, the improve-
ment with Cy;CE loss is not consistent. The CE loss performs
significantly better in 8/23 tasks. The performance in terms of
minDCF values show that the Cy;;CE loss provides significant
improvements over CE loss in 12/23 tasks, and the same perfor-
mance in 11/23 tasks. The most relative improvement is seen
with tasks that include conversational or narrative style speech
in enrollment and/or test conditions.

Overall, VFR conditioning trained with Cy;;CE loss pro-
vides significant improvements over the x-vector baseline (with

CE loss) in 7/23 tasks in EER, and 12/23 tasks in minDCF.
When compared to their CE counterparts, we again notice that
the conditions where the Ci;;CE loss provides improvements are
the ones that include conversation style speech and narrative
style speech (closest to the conversation style).

4.2. SITW Evaluation

Table 3 presents the performance on the SITW evaluation set
using different loss functions. The loss functions used are cross-
entropy loss (CE), Ci loss, and Cii;CE loss. These loss func-
tions are used to train the x-vector system and the best perform-
ing VFR conditioning: concatenation with gating.

The results show that the best performing system in terms
of minDCF values is the one with combination loss in the VFR
conditioning setup. However, EER values of the Ci;;CE loss in
the VFR conditioning setup are slightly worse than the CE loss
counterpart for assist-core and assist-multi evaluations. Over-
all, the proposed loss function with the VFR conditioning setup
results in the best performance on the SITW evaluation. Since
SITW involves mainly conversational speech, this result agrees
with our hypothesis that the new loss function improves ASV
system performance for conversational styles.

Overall results show that the combined Ci;;CE loss im-
proves ASV performance for the two configurations when com-
pared to CE and Cl;; loss functions individually. Thus, implying
that the Cy; and CE loss functions are complementary.

5. Conclusion

In order to improve ASV performance in the presence of style
variability, this work introduces a new loss function (CyCE)
that is inspired by human speech perception. Ci;CE loss fo-
cuses on both speaker-specific idiosyncrasies to “tell speakers
together” and on relative acoustic distances between the speak-
ers to “tell speakers apart”. This combined loss maximizes
inter-speaker distances while minimizing intra-speaker dis-
tances resulting in performance improvements over the widely
used CE loss function and also the Cy, loss function, showing
their complementarity. To the best of our knowledge, this is the
first work to propose a training loss function for ASV that is
inspired by human perception. In future, this work will be ex-
tended to study perception strategies between other styles and
use those to improve ASV approaches. Further studies on the
effects on short-duration scenario [41, 42] and other embedding
extractors [43, 44] would provide better understanding of the
proposed loss function.
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