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Abstract Oceanic absorption of atmospheric carbon dioxide (CO,) is expected to slow down under
increasing anthropogenic emissions; however, the driving mechanisms and rates of change remain uncertain,
limiting our ability to project long-term changes in climate. Using an Earth system simulation, we show that
the uptake of anthropogenic carbon will slow in the next three centuries via reductions in surface alkalinity.
Warming and associated changes in precipitation and evaporation intensify density stratification of the upper
ocean, inhibiting the transport of alkaline water from the deep. The effect of these changes is amplified
threefold by reduced carbonate buffering, making alkalinity a dominant control on CO, uptake on multi-century
timescales. Our simulation reveals a previously unknown alkalinity-climate feedback loop, amplifying
multi-century warming under high emission trajectories.

Plain Language Summary Over the past century, humans have been burning fossil fuels and
adding extra carbon dioxide to the atmosphere. The ocean has been doing us a big favor by absorbing some of
this carbon dioxide, lowering the amount of global warming that occurs. Our study shows that the ocean will
begin to lose its ability to absorb carbon dioxide beyond the year 2100, leaving more fossil-derived carbon

in the atmosphere and leading to additional global warming. Our study describes a previously undiscovered
mechanism for the slowdown in ocean carbon absorption, where changes in rainfall and warming affect ocean
currents that, in turn, change the chemistry of the ocean surface.

1. Introduction

Oceanic uptake of anthropogenic carbon—currently responsible for absorbing 30% of carbon dioxide (CO,)
fossil fuel-based emissions (Ciais et al., 2013; Friedlingstein et al., 2020; Sabine & Tanhua, 2010; Watson
et al., 2020)—is predicted to continue to increase through the end of this century under higher atmospheric CO,
concentrations (Tjiputra et al., 2014; Wang et al., 2016). Its evolution in subsequent centuries, in contrast, remains
largely unknown (Frolicher & Joos, 2010; Koven et al., 2022; Matsumoto et al., 2010; Plattner et al., 2008;
Randerson et al., 2015; Tokarska et al., 2016). Understanding this multi-century response is essential for project-
ing future climate change, particularly the evolution of slower Earth system components, such as the cryosphere,
with significant implications for long-term sea-level rise (Archer & Brovkin, 2008; Charbit et al., 2008; Joos
et al., 2013; Lord et al., 2016).

Throughout this century, the absorption of anthropogenic carbon is expected to continue to increase via enhanced
uptake of CO, over the Southern and the North Atlantic oceans (Landschiitzer et al., 2015; Tjiputra et al., 2014;
Wang et al., 2016). This process could become less efficient as the ocean becomes more acidic, reducing the
carbonate buffering (Chikamoto & DiNezio, 2021; Doney et al., 2009; Egleston et al., 2010; Sabine et al., 2004).
In the ocean carbon system, which is fundamentally governed by changes in dissolved inorganic carbon (DIC),
alkalinity, temperature, and salinity (Lovenduski et al., 2007; Sarmiento & Gruber, 2006), the changes in uptake
under massive CO, emissions become susceptible to DIC, which increases significantly with CO, dissolution.
However, when the ocean reduces the carbonate buffer and weakens its capacity to uptake CO,, the change in DIC
becomes smaller, making ocean carbon chemistry relatively sensitive to other variables than DIC, such as alkalin-
ity and temperature (Riebesell et al., 2009). As a result, the rate at which carbon is stored as DIC may no longer
be the primary factor controlling the air-sea difference in CO, partial pressure driving CO, uptake. Other factors,
such as warming or changes in alkalinity, could become equally important drivers of CO, uptake on these longer
timescales (Chikamoto & DiNezio, 2021; Egleston et al., 2010; Matsumoto et al., 2010; Riebesell et al., 2009).
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Figure 1. Acceleration and slowdown of oceanic CO, uptake. (a) Prescribed increase in atmospheric CO, concentrations
(ppm), (b, ¢) Globally and regionally integrated sea-air CO, flux (PgC yr~!), and (d) peak slowdown trend, that is, a
slowdown in uptake in sea-air CO, flux (PgC decade™) in the North Atlantic (40°~70°N), the tropical Pacific (30°S-30°N),
and the Southern Ocean (>30°S). Atmospheric CO, concentration is prescribed from historical observations, the RCP8.5
emission scenario, and its extension through 2300 (Lindsay et al., 2014; Meinshausen et al., 2011). Negative CO,

flux corresponds to oceanic uptake. Gray and light pink lines in (b) derive from interpolated observations and ocean
biogeochemical model hindcast simulations (Friedlingstein et al., 2020). The dash lines in panel ¢ show the timing of the
peak slowdown trend, defined by the highest trend of the sea-air CO, flux for 40 consecutive years since 2000 (Figure S1 in
Supporting Information S1). The bar in panel d shows the peak slowdown trend, which is the average of the sea-air CO, flux
trend over the 40 years when the trend peaks (colored shading in panel ¢). Numbers on the x-axis in (d) are peak slowdown
years (dashed colored lines in (c)).

However, little is known about the relative importance of these processes and how they interact with a changing
climate despite recent advances simulating these processes and the global ocean carbon cycle using numerical
models. Here we explore this question using a simulation of future changes in the global climate and carbon
cycle performed with the Community Earth System Model (CESM1). This model simulates a carbon cycle in the
atmosphere, ocean, and terrestrial biosphere, along with the increasing oceanic carbon uptake in agreement with
historical trends (Figure 1b).

2. Experimental Design and Methods

CESM1, an Earth system model that includes a mathematical representation of the atmosphere, ocean, and
terrestrial biosphere, can simulate how rising atmospheric CO, affects ocean carbon uptake through changes in
atmospheric and ocean dynamics (Long et al., 2013). Here, we analyzed a simulation of the CESM run under
a “business-as-usual” emission scenario (Moore et al., 2018; Randerson et al., 2015). The emission scenario is
the RCP8.5 high emission scenario for the 21st century, followed by a smooth transition to stabilized concen-
tration after 2250 achieved via linear adjustment of emissions after 2150 (Meinshausen et al., 2011). Under this
worst-case scenario, atmospheric CO, concentrations increase to 1962 ppm by the year 2250, remaining stable
at that level until the year 2300 (Figure 1a). This simulation, therefore, allows the study of the influence of the
response of the ocean carbon cycle to a significant and sustained increase in atmospheric CO, over the course of
many centuries. We analyzed changes in ocean uptake in the significant regions of the Southern Ocean (>30°S),
the tropical Pacific (30°S-30°N), and the North Atlantic Ocean (40°~70°N). For each region, we decom-
posed the changes in sea-air CO, flux into the contributions from changes in gas exchange (i.e., wind speed),
sea-ice extent, temperature-dependent solubility, and the sea-air difference in partial pressure of CO, (ApCO,)
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(Wanninkhof, 2014; Wanninkhof et al., 2013). In addition, to fully understand the drivers of simulated changes
in oceanic carbon uptake, we quantified the influence of changes in sea surface temperature, salinity, DIC, and
alkalinity on ApCO,, the main driver of long-term changes in sea-air CO, flux.

3. Results

The simulation predicts that oceanic uptake of carbon will peak toward the year 2080 and decline in subsequent
centuries, stabilizing at about half the peak magnitude by the year 2300 (Figure 1b). This decline occurs despite
atmospheric CO, concentrations continuing to increase at similar rates for at least a century after the peak in CO,
uptake (Figure 1a). The slowdown in CO, uptake occurs in all main regions where the ocean is currently absorb-
ing anthropogenic carbon: the Southern Ocean, the tropical Pacific Ocean, and the North Atlantic (Figure 1c and
Figure S1 in Supporting Information S1). The most significant slowdown occurs in the Southern Ocean, where
the CO, uptake decreases by 58% from the peak by the year 2300. The tropical Pacific will shift from historical
outgassing to peak absorption in the year 2100, with no flux by 2300, meaning zero area-averaged sea-air CO,
flux. The North Atlantic is projected to exhibit negligible uptake by the mid-22nd century, no longer the domi-
nant region absorbing anthropogenic carbon as it currently is (Takahashi et al., 2009). Together, the changes over
the three areas account for over 80% of the global ocean uptake reduction in subsequent centuries. The changes in
sea-air CO, flux associated with these variations in uptake are controlled primarily by changes in ApCO, glob-
ally and in each of these sensitive regions (Figure S2 in Supporting Information S1). Other factors influencing
air-sea gas exchange, such as temperature, wind speed, or sea-ice coverage, play a secondary role (Text S1 and
Figure S2 in Supporting Information S1).

In our experimental setup, atmospheric pCO, (pCO,*™) is prescribed to increase continuously and stabilize
approaching the year 2300; therefore, the simulated surface ocean partial pressure of CO, (pCO,°") is the main
controlling factor of the temporal evolution of ApCO,. Indeed, the slowdown of ocean uptake begins around
2080 when the rate of increase in pCO,°*" is faster than the rate of increase of pCO,*™, regardless of the contin-
ued increase in pCO,*™. Furthermore, the decline in ApCO, in the 22nd century is driven by an acceleration in
the rate of increase of pCO,°", which is faster than the increase rate for pCO,*™. This pCO,*" increase reduces
ApCO,, leading to a slowdown in uptake. The pCO,°" trend is dominated by changes in DIC and alkalinity
(Figure 2). In the Southern Ocean, DIC is not yet in equilibrium and contributes to the reduction in pCO,°"
(Figure 2b). Instead, alkalinity and temperature increase pCO,°®", slowing the uptake of CO,. All changes in the
tropical Pacific Ocean, that is, DIC, alkalinity, and temperature, contribute to the pCO,°" increase that slows
the uptake (Figure 2c). In contrast, the pCO,°" trend in the North Atlantic Ocean is explained by the increase
in DIC (Figure 2d). The global ocean reflects a combination of regional responses (Figure 2a), highlighting the
relative importance of non-DIC as well as DIC factors on the pCO,°*" trend. In addition, the impacts of DIC and
alkalinity on the pCO,°" trend will increase after this century. Once anthropogenic CO, accumulation reduces
the carbonate buffer of the ocean, the ocean's capacity to absorb CO, from the atmosphere will diminish (Doney
et al., 2009; Egleston et al., 2010). This condition will increase the sensitivity of pCO,*" to DIC and alkalinity,
amplifying the DIC and alkalinity effects on the uptake up to three times in 2300 (Figures 2e and 2f, Figures S3
and S4 in Supporting Information S1). That is, the efficiency of the ocean for carbon uptake will be more affected
by the variability of ocean surface DIC and alkalinity over the next two centuries.

Anthropogenic warming will stratify the upper ocean, altering the exchange of DIC and alkalinity between the
deep ocean and the surface. We find that the Southern Ocean will become more thermally stratified, preventing
the upwelling of high alkaline waters and reducing surface alkalinity (Figure 3 and Figure S5 in Supporting
Information S1). In the future, ocean pCO, will become more sensitive to changes in DIC and alkalinity due to
reduced carbonate buffer (Figure 3). This amplifies the influence of the reductions in surface alkalinity, which
will be just a small fraction (less than 3%) of the current conditions but will have an outsized influence on surface
pCO, due to reduced carbonate buffering. Together, these effects contribute to the slowdown of carbon uptake
in key regions of the world ocean. In the tropical Pacific, decreased upwelling due to thermal stratification and
weakened trade winds results in less transport of high alkalinity waters to the surface, accelerating the increase
in surface pCO, and reducing CO, uptake. In the North Atlantic Ocean, ocean surface freshening with less
evaporation and the collapse of the Atlantic meridional overturning circulation (Figures S5 and S6 in Support-
ing Information S1) play a significant role in reducing the downward transport of carbon into the deep ocean
(DeVries et al., 2017; Fontela et al., 2016) and accumulating anthropogenic CO, in the surface (Figure 3a). This
excess surface carbon pool will end the current significant uptake of CO, in this region after 2100. This positive
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Figure 2. Drivers of oceanic CO, slowdown. (a—d) The atmospheric pCO, trend (gray), ocean surface pCO, trend (blue),
and the contributions of changes in temperature (red), dissolved inorganic carbon (DIC) (orange), and alkalinity (green)

to the oceanic pCO, trend (ppm yr~"), and (e and ) the sensitivity of ocean pCO, to DIC and alkalinity. The sum of the
contributions of temperature, salinity (not shown but very small), DIC, and alkalinity equals the ocean pCO, trends (details
in Figure S3 in Supporting Information S1). Positive trends in ocean surface pCO, correspond to the trend toward decreasing
oceanic uptake of CO,. The DIC and ALK contributions show only the pCO, trends to the undiluted effect (physical and
biological processes), excluding the diluted effects (Text S2 in Supporting Information S1). The analysis period is the
maximum positive trend in sea-air CO, flux: 21002140 in the North Atlantic, 22002240 in the equatorial Pacific, and
2240-2280 in the Southern Ocean.

trend of DIC turns to a negative trend over time. This is because reduced CO, dissolution due to buffer reduction
slows the increase rate of the surface ocean DIC, and the stratified ocean reduces the upwelling of DIC-rich water
to the surface. The negative DIC trend will again promote ocean carbon uptake (Figure S3 in Supporting Infor-
mation S1). Instead, the negative trend of alkalinity due to reducing the exchange of alkaline deep water with the
surface and ocean warming will increase the surface ocean CO,, slowing the carbon uptake in this region (Figure
3d and Figure S3d in Supporting Information S1).
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Figure 3. Spatiotemporal dissolved inorganic carbon (DIC) and alkalinity patterns. Simulated hydrographic sections of
trends in (a, b) DIC and (c, d) alkalinity during 2100-2140 and 2240-2280. The depth sections are zonal averages. DIC and
alkalinity are normalized by salinity (the standard salinity is 35 psu).

The responses identified here are part of a previously unknown positive alkalinity-climate feedback loop

that could leave more anthropogenic CO, in the atmosphere and amplify long-term anthropogenic warming

(Figure 4). Ocean warming and increased sea surface freshwater strengthen the thermal and salinity stratifica-

tion of the upper ocean. This response increases surface DIC as long as anthropogenic carbon continues to be

injected, promoting ocean acidification and reducing carbon uptake (Terhaar et al., 2021). Furthermore, ocean

stratification decreases the upwelling of deep alkaline and DIC-rich waters to the surface, reducing the surface

alkalinity and DIC. Compared to the 21st century, when changes in surface DIC are driven by CO, dissolution,

these changes will be controlled by ocean dynamics. Unlike DIC lowering by stratification, which decreases
pCO,*", decreasing alkalinity accelerates the rate of increase of pCO,°" relative to pCO,*™, reducing the uptake
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Figure 4. The alkalinity-climate feedback. This schematic illustration shows how changes in upper-ocean density
stratification and the ocean carbon cycle respond to increased atmospheric CO, and feedback on one another to produce an
amplified response on multi-century timescales. A vertical red arrow indicates an increase in that variable, while a vertical

dark blue arrow indicates a decrease.
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of CO, (Figure S3 in Supporting Information S1). This implies that uptake rates, which are currently controlled
by changes in DIC, will be also influenced by changes in alkalinity after this century. The uptake response will be
further amplified in the following centuries when the ocean reduces carbonate buffering associated with anthro-
pogenic CO, dissolution. As CO, uptake becomes less effective, it accelerates the increase of pCO,*™, further
amplifying the warming, thus closing the feedback loop. This positive feedback loop could play a dominant role
in reducing the uptake of CO, alongside weakening the Atlantic meridional overturning circulation (Holliday
et al., 2020; Randerson et al., 2015; Terhaar et al., 2021) and the Walker Circulation (DiNezio et al., 2009; Terada
et al., 2020).

4. Conclusions

Ocean acidification and reductions in surface alkalinity slow oceanic carbon uptake as the ocean accumulates
anthropogenic CO, and reduces the carbonate buffer. On multi-century timescales, alkalinity dynamics could
become the primary driver of oceanic CO, uptake if high CO, emissions continue. Projections of ocean carbon
uptake for this century are dominated by increases in DIC (Arora et al., 2013; Friedlingstein, 2015; Omta
et al., 2011) that lag behind increases in pCO,*™. Therefore, uncertainties converge in numerical models (Roy
et al., 2011; Wang et al., 2016). In contrast, longer-term changes, particularly under high emissions, might be
more uncertain due to the multiple processes involved in the changes in CO, uptake, ocean circulation, precipi-
tation, evaporation, and carbon chemistry, including the positive feedback presented here. The response of these
processes to multi-century climate change is likely model-dependent. Furthermore, a freshwater flux from melt-
ing ice on Antarctica or Greenland (Perner et al., 2019) not included in our simulation may facilitate upper-ocean
salinity stratification, reducing surface ocean alkalinity and slowing carbon uptake on long timescales. Other
processes not included in our simulation could play a substantial role on these timescales. Alkalinity could
increase, driven by the dissolution of calcified organisms due to ocean acidification (Fabry et al., 2008; Orr
et al., 2005). Seafloor calcium carbonate neutralization, which acts on 1000 years timescales (Archer et al., 1997,
Chikamoto et al., 2008), could also increase the alkalinity (Chikamoto et al., 2009; Paquay & Zeebe, 2013), as
could enhance weathering under a wetter and warmer climate (Lord et al., 2016; Renforth & Henderson, 2017,
Weyhenmeyer et al., 2019). The high sensitivity of oceanic carbon uptake to alkalinity on multi-century times-
cales sheds light on the effect of artificial alkalinity addition for carbon sequestration (Middelburg et al., 2020;
Renforth & Henderson, 2017). The positive feedback presented here could delay the influence of these processes,
extending the period required for the long-term stabilization of atmospheric CO,.

Data Availability Statement

The analysis data of the CESM1 simulation in this study were uploaded to https://zenodo.org/record/74250894.
Y5ZGH-zMIq0 (https://doi.org/10.5281/zenodo.7425089). The observational data of sea-air CO, flux in
Figure la were downloaded from https://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide/pages/air_sea_
flux_2010.html.
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