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Abstract—Detection of water-injected pork is of great sig-
nificance for pork safety and food quality monitoring. In this
paper, we propose a nondestructive wireless sensing system,
termed WiPd, for rapid detection of water-injected pork using
commercial WiFi devices. We first verify the feasibility of water-
injected pork detection using WiFi channel state information
(CSI). We then design the WiPd system consisting of a sensing
module, a preprocessing module, and a detection model module.
In the sensing module, commercial WiFi devices are used to
collect different types of CSI data from normal pork and water-
injected pork. In the data preprocessing module, the CSI ratio
model is used to eliminate the environment and hardware noise,
and then the subcarrier selection and normalization methods
are carried out for feature extraction. In the detection module,
a double-layer long short-term memory (LSTM) network is
designed to detect water-injected pork with an online detection
method. Finally, we evaluate the proposed WiPd system with
extensive experiments, and the results show that WiPd can
achieve an average detection accuracy of more than 98% in line-
of-sight (LOS) scenarios.

Index Terms—Channel State Information (CSI), Water-
injected pork detection, CSI ratio, Long short-term memory
(LSTM).

I. INTRODUCTION

Pork has always represented an important part in meat
and meat products in many countries, as one of the most
favorite meat in people’s daily diets. However, its adulteration
has raised a lot of concerns [1], [2]. Adulteration generally
happens in two ways. The first is to use inferior pork as high-
quality pork, while the other is to increase the weight of pork
by means of water injection. Water injection has been widely
exploited for benefits, because there is no technical hurdle
for injecting water into pork, as well as no cost incurred for
adulteration. However, when pork is injected with water, its
freshness will be degraded, and it will become more prone to
deterioration, causing the loss of nutrients and finally reducing
or even losing its use value. In order to protect the interest of
consumers and maintain the fairness of the market, detection
of water-injected pork is of great practical importance.

The traditional moisture detection methods mainly include
the drying method [3] and the distillation method [4]. Because

of the time-consuming and complex operations, they are not
suitable for wide use in the meat market. In addition, the
methods of rapid moisture detection can also be applied to
meat, such as the nuclear magnetic resonance method [5],
the near infrared reflection method [6], the spectral imaging
method [7], and the microwave method [8], etc. These existing
methods can be used for nondestructive and rapid detection of
meat moisture. However, the expensive equipment makes it
hard to deploy them in the meat market. Therefore, a low-
cost, fast and effective detection method is in urgent demand.

Recently, the WiFi based wireless sensing technology has
received extensive attention. For example, WiFi received sig-
nal strength (RSS) has been used for some simple sensing
tasks (e.g., indoor positioning) as a kind of coarse channel
information [9]. Moreover, channel state information (CSI)
of the WiFi physical layer can also be extracted from some
commercial WiFi network interface cards (NIC), including
CSI amplitude and phase information. WiFi CSI represents
fine-grained channel information than RSS, which can better
capture the characteristics of channel (e.g., attenuation, dis-
tortion, and reflections). Consequently, WiFi CSI have been
used in many radio frequency (RF) sensing systems for smart
health [10], indoor positioning [11], environmental monitor-
ing [12], human-computer interaction (HCI) [13], and smart
farming [14]-[16].

Motivated by above RF sensing systems, in this paper, we
propose a water-injected pork detection system based on WiFi
CSI, which provides a low-cost, fast and effective detection
method. When pork is injected with water, the change of
its moisture will cause measurable changes in WiFi CSI
measurements. In this paper, we first verify the feasibility
of using CSI data for detection of water-injected pork. The
experimental results show that both the amplitude and phase of
CSI before and after water injection are sufficiently different,
and thus can be used for classification of normal and water-
injected pork.

In particular, we design a water-injected pork detection
system using WiFi CSI, termed WiPd. The WiPd system
does not require expensive special equipment and is easy for
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deployment. The WiPd system design includes three modules.
The first is the sensing module, which focuses on CSI data
collection. The second is the data preprocessing module. We
use the CSI ratio model, which not only greatly mitigates the
environment and hardware noise, but also retains the channel
characteristics. In addition, we choose the CSI subcarriers that
have lower noises, and then normalize the CSI ratio data. The
detection model is established in the third module. Although
the CSI ratio samples before and after water injection are
different, some samples could still be similar. In this paper,
we exploit a double-layer long short-term memory (LSTM)
network to achieve high detection accuracy with preprocessed
CSI ratio data. Finally, the trained model will be used for
water-injected pork detection with an online detection method.

The main contributions of this paper are summarized below:

o We verify the feasibility of using WiFi CSI for water-

injected pork detection. To the best of our knowledge,

this is the first work to use WiFi CSI sensing for water-
injection pork detection.

We design the WiPd system, including the sensing mod-

ule for CSI data collection, the data preprocessing module

using CSI ratio model, and the detection model module
with a double-layer LSTM.

« We use commercial WiFi devices to prototype the WiPd
system. The experimental results show that the proposed
WiPd system can detect water-injected pork with an
average accuracy of over 98% in the line-of-sight (LOS)
scenario. We also validate the effectiveness of WiPd
under different system parameters and environments.

The remainder of this paper is organized as follows. The
preliminaries and feasibility are presented in Section II. We
describe the WiPd system design in Section III and evaluate
its performance in Section IV. Section V concludes this paper.

II. PRELIMINARIES AND AND FEASIBILITY
A. Water-injected Pork Detection

The rapid detection of water-injected pork is a challenging
problem. Generally in the food market, the completion time of
pork trading between merchants and consumers is quite short.
Thus, it is necessary to develop water-inject pork detection
techniques to quickly detect the adulteration.

Generally, the moisture content of normal pork is about
77%. Based on the threshold, moisture content detection meth-
ods can be used to identify water-injected pork. For example,
the drying method is a traditional moisture content detection
technique, which assess the moisture content by measuring the
change of weight before and after drying [3]. The direct drying
method has a higher accuracy in moisture content detection,
but it is destructive to the pork itself, as well as being time-
consuming and labor-consuming. Thus, this method cannot
meet the requirements of on-site, fast detection. Distillation
methods [4] steam the water, toluene, and xylene in the sample
through a water tester utilizing the physical and chemical
properties of water, and then calculate the water content in the
test sample as the volume of water. However, this method also
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destroys the pork itself. In addition, the test results may also
produce detection errors due to incomplete volatilization of
water in the sample, as well as the attachment of water on the
surface of the instrument. Therefore, the distillation methods
cannot be applied to the rapid detection of water-injected pork.

In addition to traditional methods, several more recent
techniques are developed to address the above issues as well
(e.g., destruction of samples and long detection time). For
example, near infrared reflectance spectroscopy has been used
to determine the moisture content of fresh meat [6], while
hyperspectral imaging analysis has been exploited to identify
water-injected meat samples [7]. In [5], nuclear magnetic reso-
nance data and multivariate analysis were utilized to detect the
moisture content of meat. These methods are nondestructive
and can rapidly detect meat moisture. However, the testing
equipment of these methods is expensive (e.g., a hyperspectral
instrument usually costs tens of thousands of dollars), making
them only suitable for testing in a laboratory rather than widely
deployed in the food market. Therefore, in order to protect the
interests of consumers, a low-cost, fast and effective detection
method will be highly desirable.

B. Channel State Information

Recently, more and more commercial WiFi network cards,
such as the Intel 5300 NIC, the Atheros 9380 NIC, and
the ax210 NIC provides the CSI of the physical layer. For
example, CSI data from 30 subcarriers can be read from each
antena fro each received packet with the Intel 5300 NIC. In
this paper, we use the PicoScenes platform to obtain CSI from
57 subcarriers by interpolating the original CSI data from 30
subcarriers to improve the performance of WiFi sensing [17].
More CSI subcarriers are helpful to achieve a higher accuracy,
especially for complex tasks. The cost of the commercial Intel
5300 NIC used in this paper is much lower (i.e., only about
$25) than those used in the existing methods.

Using the commodity WiFi NIC with modified firmware
and device driver, CSI data, such as amplitude and phase, can
be extracted from each of the N4 CSI subcarriers. Specifically,
the collected dataset contains the number of transmitting
antennas N, the number of receiving antennas N,,, the
packet transmission frequency f, and CSI data H. CSI data H
can be represented as an Ny, X N, x N tensor, denoted by

H = (Hiji) N,y x Nyo x N - (D

In our WiPd system, CSI data from 57 subcarriers are
collected at a 5GHz with for a 20MHz WiFi channel at the
5GHz band using the Intel 5300 NIC. The kth subcarrier data
in H corresponding to a transmitting and receiving antenna
pair can be defined by

Hy, = Ape?“o, )
where Ay and /¢y are the amplitude and phase of the CSI
data from the kth subcarrier, respectively.
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C. Feasibility of the Proposed Approach

To verify the feasibility of using CSI data for water-
injected pork detection, we collect CSI data from four different
pork samples and extract the amplitude and phase data. The
moisture contents of two kinds of pork samples without water-
injection are 77% and 76.68%, respectively, and the moisture
contents of two kinds of water-injected pork samples are
80.22% and 81.28%, respectively. In the experiments, the
critical moisture content of pork is set to 77%, because the
moisture content of normal pork is <77%, and that of water-
injected pork is usually >77%.

The CSI amplitude and phase data from pork samples
with 76.68%, 76%, 80.22%, and 81.28% moisture content
are collected and presented in Figs. 1 to 6. The original CSI
amplitude data are shown in Fig. 1 to Fig. 3. Fig. 1, shows that
the CSI amplitude of the pork sample close to normal is very
similar to that of the normal pork sample. In Fig. 2 and Fig. 3,
we can see that the CSI amplitude becomes very different after
the pork is injected with water. In addition, Fig. 4 to Fig. 6
show the unwrapped CSI phase data collected from the four
pork samples. Fig. 4 shows that the CSI phase data of close to
normal pork sample is also similar to that of the normal port
sample. After the pork is injected with water, there are small
changes in CSI phase data, as shown in Fig. 5 and Fig. 6.
These results demonstrate the feasibility of using CSI data to
detect water-injected pork.

III. THE WIPD SYSTEM DESIGN

This section will introduce the WiPd system design. As
shown in Fig. 7, the system architecture includes sensing,
preprocessing, and the detection model. First, in the sensing
phase, we use the Intel 5300 NIC to extract the amplitude
and phase data from different pork samples. In the data pre-
processing stage, we exploit the CSI ratio model to eliminate
environment noise, and propose the subcarrier selection and
data normalization methods for data preprocessing. Last, the
detection model is established, where we build a double-layer
LSTM network and conduct off-line training, and then use
the new CSI data for water-injected pork detection using the
trained model.

A. CSI Data Sensing

In the CSI data sensing stage, we use the Intel 5300 NIC
to collect CSI data from 57 subcarriers with the PicoScenes
platform. For different pork samples, we set the same exper-
imental condition for data collection. Under other conditions,
only different pork samples are used. We collect CSI data for
four pork samples, and then extract the amplitude and phase
for the detection of water-injected pork.

B. CSI Data Preprocessing

In the data preprocessing stage, we first use the CSI ratio
model to eliminate environment noise and phase errors. Then
we select the most stable subcarrier and normalize the data.
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1) CSI Ratio Model: Recently, the CSI ratio model has
been shown effective for canceling CSI amplitude and phase
noises [18]. For example, the clock and carrier frequency
offsets between the WiFi transmitter and receiver will lead
to random phase offsets in different packets and introduce
amplitude noise. The basic ideas of the CSI ratio model is
to use two antennas of the WiFi receiver to remove the CSI
phase and amplitude noise because usually both antennas
experience the same levels of amplitude noises and phase
offsets. Specifically, the amplitude noise and phase offset can
be eliminated by using the ratio of the CSI data from two
antennas (i.e., the CSI ratio), given by

H, (f ) t)
H.(f,1) Ha(f.1) 3)
where Hy(f,t) is the CSI data collected from the first antenna,
Hy(f,t) is the CSI data collected from the second antenna.
The advantage of using CSI ratio is that it can effectively
eliminate the amplitude noise and phase offset introduced by
the WiFi hardware.
Next, we apply the model to obtain the channel ratio
between the two antennas, which is given by

Hl(f, ) (f t) —12mas(f, t)Horkl(fvt)
B(f1) ~ A )e P800 Ho(£1)
Hpora (f, 1)
porkZ(fa t)

where A(f,t) is the scaling noise of CSI amplitude, Af(f,t)
is the random offset of phase in CSL, and H), ;1 and Hporpo
represent the ideal sensing channel for pork samples from the
transmitting antenna to the first and the second antenna of the
receiver, respectively. Therefore, the CSI data ratio between
the two antennas is

Hporkc1 (f,1) :Aklejé(ﬁkl — @ej(4¢kl_4¢’k2)

Hpork2 (f, t) Ak26j4¢k2 Ak2 ’
where A1 and Ao are the original amplitudes of the kth
subcarrier on the first antenna and the second antenna, re-
spectively, ¢x1 and ¢yo are the original phase data of the
kth subcarrier on the first and the second receiving antenna,
respectively. It can be seen from (5) that the core of the CSI
ratio model is to convert the ratio of CSI data collected by two
adjacent antennas into the amplitude ratio and phase difference
between a pair of adjacent antennas.

Fig. 8 and Fig. 9 present the amplitude and phase of the
CSI ratio model sampled from the four pork samples with
different moisture contents, respectively. In Fig. 8, it can be
seen that most of the noise in the amplitude data sequence has
been effectively eliminated after using the CSI ratio model, as
indicated by the much smaller range of amplitude compared to
that of the original CSI amplitude data in Fig. 1 to Fig. 3. This
is also true for the phase data shown in Fig. 9. In addition,
the CSI ratio retains the characteristics of WiFi CSI dynamics.
For example, Fig. 8 and Fig. 9 show that, compared with the
normal pork CSI ratio, the CSI ratio of amplitude and phase
of water-injected pork are obviously different, which will be
leveraged for water-injected pork detection.

®)
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2) Subcarrier Selection: Although we employ the CSI ratio
model to remove most of the noise, there could still be a small
number of anomaly samples in CSI ratio data in practice. This = @ ~
is because in a typical indoor environment, the collected CSI J - ((? 8 u
data will be generally affected by multipath propagation, thus 1 Ireprocessing v
influencing the CSI ratio data.

To address this problem, we select the CSI subcarrier data
with a smaller variance (e.g., less affected by multipath [19]).
Specifically, for M receiving packets, the variance of the kth

subcarrier, denoted by w,%, is given by . T 4
Detection model Training Data

Sensing CSI Data Collection

Testing Data

M
1 ; =
o= g7 2, (om) —H)" ® ) |y
M=

where Hj, represents the CSI ratio amplitude or phase data

in the kth subcarrier, and Hj, is the mean of the CSI ratio Double-layer LSTM Network
amplitude or phase data in the kth subcarrier. Then, we rank

the subcarriers according to w} in the ascending order, and
select the half of the subcarrier data with smaller variances as

orr

the input data of the detection model. B _OI\;]N_E ______ t _______ T
3) Normalization: To speed up the computation of the ( OnlingRLEdiction J—
model and improve the detection accuracy of the WiPd system,
Iv th li . hod he CSI . Water-Injected Pork
we apply the zero-mean normalization method to the ratio | Detection Result J
data. The normalized data Vj is calculated by
Vi = M @) Fig. 7. Architecture of the proposed WiPd system.
Wk

The normalized data will be used as input features to the
following deep learning model.

C. Detection Model stages: off-line training and on-line detection. The detection
After data preprocessing, a double-layer LSTM network  model consists of a double-layer LSTM network and a Soft-
model is used to detect water-injected pork. It includes two ~ max classifier as follows.
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1) Double-layer LSTM: Compared with the recurrent neu-
ral network (RNN), LSTM can overcome the gradient vanish Softmax
problem. LSTM also has a stronger nonlinear learning ability el
to extract features from complex high-dimensional data [20]. I
In our model, the LSTM network uses the preprocessed CSI — D —)
ratio data for water-injected pork detection, in which the ,I, —
hidden LSTM unit can map the input CSI ratio data into
output labels (i.e., normal pork or water-injected pork). As : —la
shown in Fig. 10, a double-layer LSTM network structure is ® Z—L‘/
.« . . . . L
used for water-injected pork detection for improved learning Cey) — ) f
ability. We use the LSTM network to achieve the mapping N o ?
. . (9 2
from normalized CSI ratio data v = (v, v, ..., v7) to output S e R LST™M
label y at different time intervals from ¢ = 1 to 7', which is hyy . —

formulated by

it = 0(WigVt + Wimhe—1 + b;), ®)
fr = o(wfgvr + wemhe—1 + by), &)
0t = 0(WozVt + Womhi—1 + bo), (10)
g¢ = tanh(wep v + Wemhie—1 + be), Y
= [t ©cr—1 + 1 O gt (12)
ht = o+ © tanh(cy), (13)

where w is the weight matrix; the b term is the bias vector;
tanh(-) is the hyperbolic tangent function, o(-) is the sigmoid
function; i, f, o, g, and c are the input gate, the forget gate,
the output gate, the candidate value, and the unit activation,
respectively; h represents the cell outputs for an activation
vector; ® is the element-wise product of vectors.

2) Softmax Classifier: In the double-layer LSTM network,
its final output is fed into a fully connected layer, where
we use a Softmax function to detect water-injected pork.
Specifically, the output of the Softmax function is defined by
p = [p1, P2, ..., pN], where N is the number of output neurons
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Fig. 10. Double-layer LSTM network structure.

in the Softmax function, which is defined as

ek;{‘w,‘

SN , (14)
n=1 ’

, =1,

pi =

where w,, is the weight vector of the fully connected layer,
k; is the output vector of the final cell’s hidden node in the
second layer, and (-)7 is the transpose operator.

In the training stage, we define F'(w) as the loss function
over weight w. Meanwhile, we use cross entropy to measure
the difference between output data and true labeled data.
Regularization is utilized to reduce the solution space and
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avoid over-fitting. The optimal w is achieved by

N
argmax F(w) = — > yilog(ps) + 5llwl3,  (19)
« i=1

where y; is the true label for the ith pork sample, and 7 is
the hyperparameter for regularization. The back propagation
through time (BPTT) algorithm is used for training the LSTM
network, and the Adam optimizer is also used to improve the
optimization efficiency.

D. Online Detection

In the online stage, we preprocess the M new CSI ratio data
collected for the new pork sample, and then use the trained
double-layer LSTM network model for online detection. For
N different pork samples, the output O of the final Softmax
classifier is given by

011 012 OlM
021 022 02M

= . ) s (16)
ON1 ON2 ONM

where O;; represents the output probability for the ith pork
sample sampled from the jth WiFi packet. To reduce the
variance of the output, we calculate the average of the M
output data of each pork sample, and use O; to represent the
average of the data vector [O;1, O;a, ..., O;ps] in the ith row.
Therefore, the average vector is given by O=[04, O, ..., On].
Finally, the water-injected pork test result R is predicted by

R= 17

argmax O;.
ie{1,2,... N}

IV. IMPLEMENTATION, EXPERIMENTS AND DISCUSSIONS

In this section, the implementation of WiPd system is
introduced in detail. We then evaluate the performance of
WiPd through extensive experiments.

A. Sample Preparation

In our experiment, four pieces of fresh pork from the market
were used. We first treated their connective tissues on the
surface. Then according to the uniform size (= 30cm X 8cm
x 3cm) and weight (=~ 1kg) standards, four pork samples were
obtained. Two blocks were not injected with any water, while
the other two blocks were injected with water according to
10% and 20% of their weight, respectively. Water was injected
at 10 different locations in the port sample, while the spacing
between two water injection points was about 3cm (so that the
water injection points can be evenly distributed in the sample),
and water was injected at a depth of about 1.5cm. After water
injection, the sample was rested at room temperature for 30min
to make the injected water evenly distributed inside the port.
Finally, the sample was weighed. Fig. 11 shows the water
injection action. Table I shows the changes of pork sample
before and after water injection. The original moisture content
and final moisture content in the Table I, i.e., the ground
truth, were measured from the four pork samples using a high-
temperature dryer (i.e., the SN-DHS-16 moisture dryer shown
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Fig. 11. The water injection scenario.

Fig. 13.

The experimental scenario.

in Fig. 12), after collecting the CSI data and inference their
states with WiPd.

B. WiPd Implementation

The hardware of our system consists of two Lenovo
ThinkPad X201 notebook computers equipped with Intel 5300
NIC, where one computer using one antenna is the transmit-
ter and the other using two antennas is the receiver. Both
computers run the Ubuntu Linux 14.04 operating system, and
MATLAB 2021b is used for data processing.

In order to test the effectiveness of our WiPd system, we
conducted experiments in the LOS scenario. As shown in
Fig. 13, different pork samples were placed in the middle of
the LOS path to collect CSI data. In addition, we collected
CSI data from 10,000 WiFi packets for each pork sample at
a sampling rate of 1,000 packets/s, 40,000 CSI samples in
total for the four port samples. Then, 7,000 CSI samples of
each pork sample are randomly selected, and a total of 28,000
CSI samples are used to train the double-layer LSTM network
model. The remaining CSI samples are used for testing.

C. Performance Evaluation

Fig. 14 shows the accuracy of water-injected pork detection
in the LOS scenario using CSI ratio of amplitude data. We
can see that the accuracy rates of all the four samples are
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TABLE I
CHANGES OF PORK SAMPLE INDEXES BEFORE AND AFTER WATER INJECTION

Sample ‘ Original moisture content (£0.5%)  Original weight  Injection rate ~ Weight after injection  Final moisture content (£0.5%)
1 76.68% 1.06kg 0% 1.06kg 76.68%
2 77% 1.04kg 0% 1.04kg 77%
3 77.46% 1kg 10% 1.08kg 80.22%
4 77.32% 1kg 20% 1.19kg 81.28%
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more than 97%, and the accuracy rates of the two water-
injected pork samples are 98.4% and 97.9%, respectively.
Moreover, the average detection accuracy is about 98.4%.
Fig. 15 shows the accuracy of water-injected pork detection
in the LOS scenario using CSI ratio of phase data. Similarly,
we find that the accuracy rate of the four samples are all more
than 98%, and the accuracy rates of the two water-injected
pork sampels are 98.5% and 99.1%, respectively. The average
detection accuracy is 98.7%. Therefore, the proposed WiPd
system can be used for water-injection pork detection in the
LoS scenario. Also, the CSI ratio of phase data has a better
performance than the CSI ratio of amplitude data, because the
calibrated phase is more robust in indoor environments.

D. Impact of System Parameters

To validate the impact of system parameters, we analyze
and discuss different factors in the WiPd design, including dif-
ferent distances between transmitting and receiving antennas,
different proportions of data packet training, different antenna
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testing data.

types, different antenna pairs, different frequency bands, and
different indoor environments. We also examine the system
robustness in this section.

1) Different Distances between Transmitting and Receiving
Antennas: Different distances between the transmitting and
receiving antennas will have different multipath effects. Fig. 16
shows the average detection accuracy under different distances
between transceiver antennas in the LoS scenario. It can be
seen from the results in Fig. 16 that as the distance is in-
creased, the average detection accuracy using the CSI ratio of
amplitude data decreases from 98.4% to 96.4%. Using the CSI
ratio of phase data, the average detection accuracy decreases
from 98.7% to 95.8%. Although the increased distance will
affect the performance of the system, but WiPd can always
maintain a high accuracy of more than 90%.

2) Different Amount of Training Data: We use different
proportions of training data and testing data to evaluate the
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performance of the WiPd system. Fig. 17 shows the average
detection accuracy for different proportions of training data
and testing data in the LOS scenario. We can see that the
average accuracy of the system is increased with the increase
of the amount of training data, especially in the range from
50% to 70%. When we train with portions of more than
70%, 80%, and 90% of the CSI ratio of amplitude data, the
system almost achieves the same average detection accuracy.
Similarly, when we train with portions of more than 70%,
80%, and 90% of the CSI ratio phase data, the system also
achieves similar average detection accuracy. Therefore, in the
WiPd system, we use 70% of data for training the double-layer
LSTM model.

3) Different Antenna Types: Different antenna types have
an impact on the system performance. For example, omnidirec-
tional antennas are usually more susceptible to the multipath
effect and incur a larger environmental interference, while
directional antennas focused towards the LOS path will have
a smaller environmental interference. The results of using two
different types antenna are presented in Fig. 18. It can be
seen from Fig. 18 that the average detection accuracy rates
of WiPd using the CSI ratio of amplitude data and the CSI
ratio of phase data under directional antenna are both higher
than that of the omnidirectional antenna, although the cost for
two different types of antenna are almost the same. Therefore,
we choose to use directional antenna in our WiPd system for

250

90 - —
S
;‘ S0l [ Amplitude of CSI Raito| ]
5 [_]Phase of CSI Raito
g
&
2 700 —
o
>
<
60 - —
50 ! ,
24G 5G
Frequency
Fig. 20. Average detection accuracy in different frequency bands.
100 T T
80 q
S
S [ Amplitude of CSI Raito
2 60 Phase of CSI Raito |
3
Q
<
o
%ﬂ 40 q
o
>
<
20 q
0 L |
"Clean" environment Complex environment
Different Indoor Environment
Fig. 21.  Average detection accuracy in different indoor environments.

better performance.

4) Different Antenna Pairs: The Intel 5300 network card
used in the WiPd system is equipped with three antenna
interfaces. As shown in Fig. 19, we show the detection
impact of different pairs of antennas. It can be seen that the
combination of antenna 1 and antenna 2 is better than the other
two combinations, because different antenna pairs experience
different multipath noise and environmental noise, resulting
in different stability. In the WiPd system, we choose a better
antenna combination for water injected pork detection.

5) Different Frequency Bands: We next study the impact
of different frequency bands on the WiPd system. Fig. 20
shows the detection accuracy of water injected pork in the
two frequency bands, i.e., 2.4GHz and 5GHz, supported by
the Intel 5300 NIC. It can be seen that the CSI data over
different frequency bands are both effective. Under the two
frequency bands, the average detection accuracy of WiPd is
always more than 98%.

6) Different Indoor Environments: We evaluate the robust-
ness of the system by collecting data in different indoor
environments. Before our experiment, we collect data in a
relatively “clean” environment, and next in a complex indoor
environment. The complex environment has tables and other
furniture in the surroundings to simulate our daily family
kitchen environment. Fig. 21 shows the average test results
for the two different environments. It can be seen that the
performance of the system decreases in the complex home
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TABLE 11
PROPERTIES OF SEVEN FRESH PORK SAMPLES

Samples | 1 2 3

4 5 6 7

Weight (kg) 1 1.5 2 1 1.5 1 2
Water Injection | no no no no yes yes yes
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Fig. 22. Average detection accuracy for different fresh pork samples.

environment, because the impact of multipath is more serious
in the complex environment. However, the detection accuracy
of the system can still be maintained at about 90%, which is
acceptable in practice.

7) System Robustness: Finally, we validate the robustness
of the system. We use seven pieces of fresh pork without any
treatment from the market, which are different in shape, size,
and weight. Three of them are chosen for water injection.
Then we directly collect the CSI data from the seven fresh
pork samples. Finally, the trained model is used to detect
water injected pork with the new CSI data. Table II shows
the properties of the seven samples. As shown in Fig. 22, the
detection results are acceptable. Even if we do not deal these
properties of pork samples, the average detection accuracy of
the system is almost more than 80%, which fully validates the
robustness of the WiPd system.

V. CONCLUSIONS

In this paper, we introduced the WiPd system, a low-cost,
non-contact water-injected pork detection system based on
WiFi CSI. First, we validated the feasibility of water-injected
pork detection through the CSI data collected using com-
mercial WiFi devices. Then we developed the WiPd system
design. The system included three parts: CSI data collection,
data preprocessing, and detection model with a double-layer
LSTM network. We carried out water-injected pork detection
experiments, and the results verified the effectiveness of WiPd
in different system parameters and test settings.
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