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Simultaneous localization and mapping (SLAM) is paramount for unmanned
systems to achieve self-localization and navigation. It is challenging to perform
SLAM in large environments, due to sensor limitations, complexity of the
environment, and computational resources. We propose a novel approach for
localization and mapping of autonomous vehicles using radio fingerprints,for
example wireless fidelity or long term evolution radio features, which are widely
available in the existing infrastructure. In particular, we present two solutions to
exploit the radio fingerprints for SLAM. In the first solution—namely Radio SLAM,
the output is a radio fingerprint map generated using SLAM technique. In the
second solution—namely Radio+LiDAR SLAM, we use radio fingerprint to assist
conventional LiDAR-based SLAM to improve accuracy and speed, while generating
the occupancy map. We demonstrate the effectiveness of our system in three
different environments, namely outdoor, indoor building, and semi-indoor

environment.

imultaneous localization and mapping (SLAM)
S is essential for unmanned system to carry out

high level tasks, such as navigation and explo-
ration in unknown environments.! SLAM allows to
build a map and localize an autonomous vehicle at the
same time. With tremendous improvements in com-
puting power and availability of low-cost sensors,
SLAM is now used for many robotics applications.
One example is DARPA subterranean challenge,?
which explored innovative technologies to rapidly
map, navigate, and search in subterranean domains
using robotic systems.
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Odometry is commonly used to estimate the posi-
tion of vehicle. However, long period of localization
often suffers from accumulative error. SLAM is consid-
ered as a fundamental problem in robotics commu-
nity. The core of SLAM is to correct the drifting error
of odometry by recognizing if a place has been revis-
ited by the robot. Efficient SLAM solvers have been
introduced and their performance has been evaluated
with a variety of sensors (e.g., visual camera and
LiDAR). We are now entering an era of robust percep-
tion, which considers the long-term operation of the
vehicle in large environments.

With the growing popularity of smartphones, most
existing buildings have been deployed with wireless
fidelity (WiFi) and long term evolution (LTE) networks
for communication purposes.® Such radio network
can be exploited for localization and mapping with
low-hardware requirement and computational cost.
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FIGURE 1. Overview of the SLAM solutions based on different

sensors.

In contrast to visual camera and LiDAR, which mea-
sure the similarity of observations by scan matching
or feature matching, the radio infrastructure provides
an opportunity for SLAM in a cost-efficient way. Each
base station carries a unique ID, which tells if vehicle
is in the proximity. Particularly, fingerprinting-based
approach uses a set of radio signals to represent loca-
tion>® which is more accurate when compared to
model-based approaches.

This article provides an overview of the current
status of SLAM with emphasis on the challenges and
future research directions. An illustration of the SLAM
approaches based on different sensors is shown in
Figure 1. For Radio SLAM, the SLAM is simultaneous
localization and radio fingerprint mapping, while the
LiDAR SLAM is with the mapping of range scanning.
Each approach has its advantages as well as chal-
lenges. For example, LiDAR gives an accurate repre-
sentation of the environment, but it has issues during
loop closure in perceptually degraded environment.
Radio fingerprint uses a collection of radio signals to
represent location, which is shown to be robust again
environmental distortions when compared to visual or
LiDAR-based approaches, but obtaining a precise
position estimation is challenging, due to multipath
signal propagation.

To utilize radio features in the existing infrastruc-
ture, we present two solutions to use radio finger-
prints to perform SLAM. In the first solution—namely
Radio SLAM, while generating the trajectory, we gen-
erate a radio fingerprint map using SLAM technique,
where the produced radio map can be used for locali-
zation with the state-of-the-art fingerprinting-based
approaches.®” In the second solution—namely Radio
+LiDAR SLAM, we use radio fingerprint to assist con-
ventional LiDAR-based SLAM. While generating the
trajectory, we also generate occupancy map and show
that the mapping processing is faster than the con-
ventional approach. We conducted experiments in
three different environments to illustrate the effec-
tiveness of our approach.
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Over the past decades, indoor positioning shows a
growing popularity due to the increasing demand of
location-aware applications.> SLAM addresses the
problem of SLAM in unknown environment, which has
achieved significant achievements over the past
years. In this section, we review the popular sensors
and algorithms used for SLAM.

Sensors Used for SLAM

Depending on the types of sensors, one can classify
the SLAM into LiDAR SLAM, visual SLAM, mmWave
SLAM, and WiFi SLAM. LiDAR SLAM uses LiDAR to
create structural map of an environment. Visual SLAM
utilizes camera to construct 3D model of the scene.
Visual SLAM (for example ORB-SLAM3® and Super-
point®) has undergone significant upgrades in recent
years due to the evolution of neural networks.
mmWave carries massive amounts of data at high
speed and low latency, which will soon become a fun-
damental component of 5G-and-beyond communica-
tion networks. The emerging mmWave technology
opens new opportunity for localization and SLAM in
both wireless and robotics community.'®'" Although
SLAM is used for some practical applications, several
technical challenges prevent more general-purpose
adoption. One challenge is the high computational
cost in data processing, particularly when implement-
ing SLAM on compact and low-energy embedded
microprocessors.

With the development of Internet of Things and
wireless communication,’>'® urban environments are
deployed with WiFi APs and LTE base stations, which
can be exploited for SLAM. WiFi SLAM uses wireless
signature and odometry for localization and radio
mapping in unknown environments. Ismail et al.” pro-
posed to estimate the pose of the vehicle with WiFi
fingerprint sequence. Adhivarahan and Dantu' used
WiFi to determine the coarse orientation between
LiDAR submaps during online distributed mapping.

Algorithms in SLAM

Throughout the years, many techniques and algo-
rithms have been proposed for SLAM," including filter-
ing-based solutions and graph-based solutions. The
choice of the SLAM solution depends on sensors,
computational resources, and applications. Graph-
based approaches' formulate the SLAM as maximum
likelihood estimation and has become one of the
favorable approaches. The graph-based approach con-
sists of two main modules: frontend and backend. The



frontend constructs pose graph based the sensor
measurements, while the backend performs optimiza-
tion based on the pose graph obtained from the
frontend.

When the vehicle operates in the environment for a
long time, the size of pose graph becomes unbounded,
which prevents the optimization of SLAM in real time. A
common technique is sparsification, which reduces the
number of nodes in the graph by pruning.'* The wrong
loop closures impair the quality of the backend optimi-
zation. A number of strategies have been proposed
to address this problem. Pfeifer et al.’ presented max-
mixture model for robust sensor fusion by combining
expectation—-maximization and nonlinear least square
optimization. Several researchers also proposed to
remove outliers at the frondend. For example Neira and
Tardos'® used joint compatibility test to reject spurious
constraints.

Despite tremendous improvements in SLAM, the
implementation and deployment of SLAM in practice
still face a number of challenges. In this section, we
discuss the challenges as well as potential research
trends in SLAM.

Data association with sensor fusion: The introduc-
tion of novel sensors innovates new applications in
SLAM. The choice of sensors depends on the applica-
tions and environments. It is difficult to rely on a single
sensor to achieve effective frontend sensor fusion due
to the sensor limitations. For example, LiDAR enables
the creation of occupancy map of an environment,
but LiDAR does not work well in perceptually
degraded environments (for example long corridors or
tunnels). In our approach, each radio base station has
a unique ID. This makes the data association easier,
as entering the same area can be known by the base
station ID.

Mapping in large environment: With a continuous
operation in large scale environment, the size of map
may become unbounded, which prevents the loop clo-
sure detection in real time. The design of efficient
SLAM solutions with acceptable memory and compu-
tational cost is necessary. One solution is to develop
efficient similarity searching algorithms to find poten-
tial loop closures. One example is Faiss library® from
Facebook, which allows fast similarity search of dense
vectors. Our approach uses radio signature as fea-
tures to assist the conventional LIDAR SLAM to create

a[Online]. Available: https://faiss.ai/

a map in large environment. Another solution is to
perform distributed SLAM with multiple robots.
Mangelson et al."” proposed a mechanism called pair-
wise consistency maximization to filter out spurious
loop closures between robots.

Failure recovery mechanism: Incorrect data associ-
ation ruins the optimization in SLAM. To address this
issue, researchers have proposed several techniques
in the backend to deal with outliers.”>'® These meth-
ods determine the validity of loop closure by checking
the residual error during optimization. Despite the
efforts made on the backend optimization, current
SLAM solutions are susceptible to false loop closures,
which lead to poor estimation and prevent the exclu-
sion of spurious loop closures afterward. Therefore, a
mechanism to recover from such failures is a future
research trend.

Semantic mapping: In contrast to the geometric
representation of the environment, semantic map-
ping'® provides an opportunity to understand the
scene and interact with the environment. This tech-
nique represents the scene in an unambiguous and
informative way, enabling large scale autonomy and
robust perception in highly unstructured environ-
ments. The development of semantic mapping is still
at its early phase and new tools for example deep
learning will obviously hasten the progress of seman-
tic SLAM in real applications.

Radio signals are commonly used for localization in
many commercial and industrial applications.® We pro-
pose to use radio fingerprints as alternative to the
conventional range-based or visual-based SLAM. We
present two solutions to use radio fingerprints for
SLAM. In the first solution—Radio SLAM, we use radio
fingerprint to estimate the trajectory of a robot and
generate a radio map of the environment. In the sec-
ond solution—Radio+LiDAR SLAM, we incorporate
LiDAR by scan matching to produce a more accurate
trajectory and generate an occupancy map of the
environment. An overview of the proposed approach
is shown in Figure 2. The similarity check and SLAM
are working in parallel in the proposed approach. The
similarity check is used to determinate if two locations
are in the same place (i.e., loop closures). Meanwhile,
the SLAM takes the loop closures as inputs to opti-
mize the trajectory. Our approach provides an efficient
way to perform SLAM in large scale environment,
while the conventional LiDAR-based SLAM falls short
due to the lack of robust data association algorithms.
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FIGURE 2. Overview of Radio SLAM and Radio+LiDAR SLAM.

Overview of Graph-Based SLAM
Graph-based approach formulates the SLAM as maxi-
mum likelihood estimation. We denote the pose of robot
as x = {z,y,0}, where z and y are the 2D location and 6
is the heading of the robot. The sensors carried by the
robot are used to infer the constraints. Graph optimiza-
tion aims to find the best configuration of nodes to mini-
mize the following equation given constraints C:

arg min Z (ij*iij(xiaxj))Tzij_l

x (x; x;)€C
x (zij — 2ij(x;,%;)) M

where, the subscript 7 and j are used to denote the
time reported from the sensor. We use z;; to represent
the constraint and its associated weight is denoted as
covariance matrix 2;;. The constraint can be either
successive odometry or loop closure inferred from
nonsequential observations. Two types of loop clo-
sures are involved in optimization, namely radio-based
loop closures and LiDAR-based loop closures. The for-
mer is represented as the distance, which is deter-
mined by the fingerprint similarity, as shown in the
“Radio SLAM based on Fingerprint Similarity” section.
The latter is denoted as the rigid body transformation
by LiDAR scan matching. We consider a pair < 4,5 >
as WiFi loop closure if the similarity score is over a
threshold. We treat a pair < 4,5 > as LiDAR loop clo-
sure if the scan matching satisfies a predefined condi-
tion. Those loop closures (i.e., WiFi loop closures and
LiDAR loop closures) and odometry are used as con-
straints to optimize the trajectory of the robot through
pose graph optimization, as shown in (1).

Fingerprint Similarity

Given a received signal strength (RSS) from a base sta-
tion, it is straightforward to know if an area has been
visited by the robot, since each reported RSS is associ-
ated with a unique ID. Estimating the precise transfor-
mation between two fingerprints turns out to be tricky,
since radio signal neither reports distance nor bearing
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information. In our approach, the closeness of two
locations is determined by the fingerprint similarity. We
train a model to represent the distance and variance of
radio-based loop closures given the similarity of two
location fingerprints, which will be detailed in the
“Radio SLAM based on Fingerprint Similarity” section.

We represent a fingerprint at pose x; as a pair F; =
(f;,x;). f; consists of RSS from L access points (APs)
or base stations: f; = {f.1,..., fir}. Let L; and L;
denote the number of detections in f; and f;, respec-
tively. L;; = |f; N f;| represents the common APs or
base stations in f; and f;. We use a cosine similarity
metric to measure the similarity cos(F;,F;) between
two fingerprints F; and F;

Lij o1 pl
S

)= I 2 L, 5
Vb ury S G

Sij = COS(FL'7 F]'

2

Radio SLAM Based on Fingerprint
Similarity

Parameterization of the constraint is required to opti-
mize the pose graph. For odometry-based constraint,
the parameter is obtained from the motion model. We
need to derive a model to represent the distance and
uncertainty given two fingerprints. Our solution is to
train such model by passing over odometry and radio
recordings. Although odometry error accumulates over
long period, it is sufficiently small for a short distance
traveled. Therefore, we compute the degree of similar-
ity for close fingerprint pairs, which are annotated with
the distance determined by the odometry. As a result,
we obtain a set of K training samples: {s;,di} |,
where s is the fingerprint similarity and d;. is the physi-
cal distance of the fingerprint pair. We then train a
model, which features the mean distance u(d|s) and
variance var(d|s) given a similarity value s by binning

g 1 2
M) = ol 2,
var(d|s) = Z (di — pu(d]s))? (3)

c(b(s,7)) &5

where, b(s,r) denotes the samples that sit in the inter-
val r around a similarity value s. ¢(-) counts the num-
ber of samples. Equation (3) gives the covariance
matrix for radio-based loop closure for (1). To optimize
the trajectory with (1), we need to find the constraints
for nonconsecutive poses. We compute the similarity
s;; between two recorded fingerprints F; and F; if the
distance traveled by the robot is larger than a prede-
fined thresholds (100 meters). The distance z;; is



TABLE 1. Description of the data collected in three environments and accuracy evaluation of pure odometry, wifi SLAM, and LTE

SLAM (mean and standard deviation in meters).

Environment Traj. Traj. WiFi MAC per scan/ LTE CelllD per Odom. WiFi LTE SLAM

length (m) | duration (s) total MAC scan/total LTE (m) | SLAM (m) (m)
SUTD outdoor 5171.3 5494.7 88.23/4488 18.74/170 75.06 | 8.82+3.94 | 18.38+10.70
SUTD indoor 1114.9 3092.1 118.34/1921 19.49/193 10.01 | 3.69+2.21 | 5.18+2.59
NTU semi- 1072.6 2583.9 48.88/1046 16.59/85 51.98 | 4.48+2.98 | 12.22+10.95
indoor

obtained based on the pretrained model in (3). We add
atuple < x;,x;,7; > as aloop closure if the similarity
s;; exceeds a threshold ¥,. Based on the radio loop
closures, we optimize (1) using g2o with Levenberg-
Marquardt solver.

Radio+Lidar SLAM

Based on the trajectory obtained from Radio SLAM,
we further refine the trajectory by fusing LiDAR scans.
This is achieved through a second pose graph optimi-
zation by considering LiDAR constraints (as shown in
Figure 2). By LiDAR scan registration, a precise trans-
formation between two poses can be computed. A
common method is iterative closest point (ICP), which
minimizes the sum of square distance (i.e., fitness
score) between correspondences in two scans. We
consider the following two manners to incorporate
LiDAR measurements.

> Registration of LiDAR scans in proximity: we per-
form ICP for the consecutive LiDAR scans to cor-
rect the short-term odometry errors. The
odometry measurement is used as an initial
guess of ICP algorithm to avoid the convergence
to local minima.

LiDAR loop closures: based on the optimized tra-
jectory from Radio SLAM, we perform the LiDAR
scan matching if the displacement between two
poses is smaller than a threshold. We consider a
LiDAR loop closure if the fitness score and the
matching points satisfy certain criteria. This step
determines loop closures between nonconsecu-
tive poses with a better accuracy when com-
pared to radio fingerprints. We perform the
second pose graph optimization by minimizing
(1) again but considering the new constraints
from LiDAR scan matching. The output of Radio
+LiDAR SLAM is occupancy map (the same as
the conventional LiDAR SLAM), which can be
used for the navigation and path planning for
autonomous vehicles.

v

Experimental Setup

The experiments were performed using a Clearpath
Husky vehicle. We evaluated the effectiveness of
the proposed algorithm in three different environ-
ments, which consist of Singapore University of
Technology and Design (SUTD) campus (outdoor,
approx. 75000 m?), SUTD building (indoor, approx.
5000 m?), and Nanyang Technological University
(NTU) carpark (semi-indoor, approx. 5100 m?). Five
Xiaomi Max3 smartphones were placed on the robot
to scan WiFi APs and LTE base stations. Each phone
is configured to scan one LTE band in Singapore.
Wheel odometry were recorded at a frequency of
10 Hz. Hokuyo UST-20LX LiDAR was used for LiDAR
scans. In outdoor experiment, we obtain the ground
truth by Android location service. For indoor envi-
ronments, we have created an indoor map of the
environment based on GMapping®. With the created
indoor map, we apply adaptive Monte Carlo localiza-
tion (AMCL) for ground truth based on probabilistic
algorithms. Particularly, AMCL tracks the 2D pose of
the robot against a known map based on particle fil-
tering. The algorithm performs pose prediction and
weights update of particles based on odometry and
2D LiDAR, respectively. During our implementation,
the map resolution is set to be 0.05 m and position
of the robot is known during the initialization of the
particle filtering. Throughout the experiments, the
robot traveled at an average speed of 0.4 m/s.
Table 1 summarizes the data collected in three
environments.

The models of WiFi and LTE generated with a bin-
ning size of 0.05 are visualized in Figure 3(a) and (b),
respectively. As can be seen from these figures,
given a similarity value, LTE model gives large dis-
tance and standard deviation when compared to
WiFi model. For NTU environment, we obtain mean

B[Online]. Available: http://wiki.ros.org/gmapping/
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FIGURE 3. A comparison of the models in three different envi-
ronments and visualization of ground truth, odometry, LTE
SLAM, and WiFi SLAM in NTU semi-indoor environment. (a)
WiFi model. (b) LTE model. (c) Trajectory estimation with dif-
ferent algorithms in NTU environment.

distance of 30.25 m and standard deviation of
22.13 m of LTE model given a similarity value of 0.8,
which are larger when compared to WiFi model
(mean distance of 3.79 m and standard deviation of
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2.70 m). To detect radio-based loop closures, we use
a similarity threshold of ¥,=0.7 for both WiFi and LTE.

Evaluation of Radio SLAM

The comparison of the track between odometry, LTE
SLAM, WiFi SLAM, and ground truth in NTU environ-
ment are visualized in Figure 3(c). Table 1 summarizes
the results of three experiments. As can be seen from
this table, our proposed radio SLAM is more accurate
when compared to pure odometry. For WiFi SLAM,
indoor environments give better accuracy when com-
pared to outdoor environment. For example, in SUTD
indoor and NTU semi-indoor, we obtain a localization
accuracy of 3.69 and 4.48 m, which are better than the
accuracy of SUTD outdoor environment (8.82 m).
Although a large number of APs are detected in out-
door environment, low signal strength values result in
more uncertainty, since these APs inside buildings are
far away from the moving path of the robot. In general,
WiFi SLAM gives better accuracy than LTE SLAM, due
to the dense WiFi coverage in the environment. For
NTU semi-indoor environment, we obtain an accuracy
of 4.48 m with WiFi SLAM, which is an improvement of
63.34% when compared to LTE SLAM (12.22 m).

Evaluation of Radio+LiDAR SLAM

Based on the optimized trajectory obtained from
Radio SLAM, we perform LiDAR scan matching to fur-
ther improve the accuracy based on the technique in
the “Radio+LiDAR SLAM" section. A valid match is
identified if the fitness score is smaller than 0.1 and
the matching points are larger than half of the average
number of points in both scans. For NTU carpark semi-
indoor environment, our WiFi+LiDAR SLAM provided a
localization accuracy of 0.84 m, while GMapping gave
a localization accuracy of 4.31 m and failed to correct
odometry error.

We tested our approach on Intel Core i7-6700HQ
CPU with 2.6 GHz frequency and 8 GB RAM. We
observe that the time consumed for WiFi SLAM is
insignificant as compared to time of data recording,
while the computational time for WiFi+LiDAR SLAM is
much longer, due to the high cost of LiDAR scan
matching. The time required for performing one WiFi
similarity comparison with 44 MAC addresses is
0.029 ms, while the time required for one LiDAR scan
matching of 600 points is 13.04 ms. Therefore, LiDAR
scan matching is the current bottleneck of the pro-
posed Radio+LiDAR SLAM.

To visually inspect the quality of the optimized tra-
jectory, we generate the occupancy grid map by evalu-
ating the respective grid using LIiDAR scans at
optimized poses, as shown in Figure 4. We also
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FIGURE 4. Comparison of the occupancy maps created by
different approaches. (a) WiFi+LiDAR SLAM. (b) GMapping.
(c) Ground truth.

compared our results with GMapping, which applies
particle filtering-based approach for SLAM. The map
generated with GMapping is not consistent with the
true map due to the drift of odometry. This can be seen
from the nonoverlapping boundaries representing the
walls in Figure 4(b). The quality of the map is signifi-
cantly improved by the fusion of WiFi in Figure 4(a).

A comparison of the path required for mapping
large indoor building based on different approaches is
shown in Figure 5. To ensure the quality of map using
the conventional LiDAR-based SLAM (i.e., GMapping),
we have to design a cumbersome strategy for the
robot (see the blue path in Figure 5 with a total travel
time of 8619.2 s) to traverse different small regions
and avoid large loops, which normally lead to mapping
failure due to the lack of LiDAR loop closures to cor-
rect the large odometry drift after long distance travel.
Our approach uses radio fingerprints to assist the con-
ventional LiDAR-based SLAM. The proposed approach
provides a comparable mapping quality when com-
pared to the conventional LiDAR-based SLAM, but at
a much faster scanning speed. It is important to point
out that the deployment of radio infrastructure in the
testing area is a necessity to perform the proposed
radio SLAM. The accuracy will be decreasing if the
density of APs or base stations is low.

l Traditional LiDAR-based SLAM ——  Our Radio+LiDAR SLAM —‘

FIGURE 5. lllustration of the path traveled by the conventional
LiDAR-based SLAM (i.e., GMapping) and our proposed Radio
+LiDAR SLAM for the mapping of a large indoor building.

This article discussed the favorable sensors, popular
algorithms, and critical challenges in SLAM. We pro-
posed to use opportunistic WiFi and LTE signals,
which are available in the existing infrastructure to
perform SLAM. The performance of the system is veri-
fied in three different environments. We achieve a
positioning accuracy of less than 10 m using WiFi
SLAM in all test environments. In addition, we present
Radio+LiDAR SLAM that integrates LiDAR scan
matching to improve the accuracy. The proposed
approach produced comparable map quality versus
LiDAR-based SLAM but at a much faster scanning
speed. Our approach makes use of the existing radio
infrastructure for sensing and has no assumption
about the locations of the base stations. In future, we
would like to test our approach in different environ-
ments to validate the generalization of the proposed
approach. Another direction to investigate the possi-
bility to use the created occupancy map for the navi-
gation and path following of autonomous vehicles.
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