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Simultaneous localization and mapping (SLAM) is paramount for unmanned

systems to achieve self-localization and navigation. It is challenging to perform

SLAM in large environments, due to sensor limitations, complexity of the

environment, and computational resources. We propose a novel approach for

localization and mapping of autonomous vehicles using radio fingerprints,for

example wireless fidelity or long term evolution radio features, which are widely

available in the existing infrastructure. In particular, we present two solutions to

exploit the radio fingerprints for SLAM. In the first solution—namely Radio SLAM,

the output is a radio fingerprint map generated using SLAM technique. In the

second solution—namely Radio+LiDAR SLAM, we use radio fingerprint to assist

conventional LiDAR-based SLAM to improve accuracy and speed, while generating

the occupancy map. We demonstrate the effectiveness of our system in three

different environments, namely outdoor, indoor building, and semi-indoor

environment.

S
imultaneous localization and mapping (SLAM)

is essential for unmanned system to carry out

high level tasks, such as navigation and explo-

ration in unknown environments.1 SLAM allows to

build a map and localize an autonomous vehicle at the

same time. With tremendous improvements in com-

puting power and availability of low-cost sensors,

SLAM is now used for many robotics applications.

One example is DARPA subterranean challenge,2

which explored innovative technologies to rapidly

map, navigate, and search in subterranean domains

using robotic systems.

Odometry is commonly used to estimate the posi-

tion of vehicle. However, long period of localization

often suffers from accumulative error. SLAM is consid-

ered as a fundamental problem in robotics commu-

nity. The core of SLAM is to correct the drifting error

of odometry by recognizing if a place has been revis-

ited by the robot. Efficient SLAM solvers have been

introduced and their performance has been evaluated

with a variety of sensors (e.g., visual camera and

LiDAR). We are now entering an era of robust percep-

tion, which considers the long-term operation of the

vehicle in large environments.

With the growing popularity of smartphones, most

existing buildings have been deployed with wireless

fidelity (WiFi) and long term evolution (LTE) networks

for communication purposes.3 Such radio network

can be exploited for localization and mapping with

low-hardware requirement and computational cost.4
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In contrast to visual camera and LiDAR, which mea-

sure the similarity of observations by scan matching

or feature matching, the radio infrastructure provides

an opportunity for SLAM in a cost-efficient way. Each

base station carries a unique ID, which tells if vehicle

is in the proximity. Particularly, fingerprinting-based

approach uses a set of radio signals to represent loca-

tion5,6 which is more accurate when compared to

model-based approaches.

This article provides an overview of the current

status of SLAM with emphasis on the challenges and

future research directions. An illustration of the SLAM

approaches based on different sensors is shown in

Figure 1. For Radio SLAM, the SLAM is simultaneous

localization and radio fingerprint mapping, while the

LiDAR SLAM is with the mapping of range scanning.

Each approach has its advantages as well as chal-

lenges. For example, LiDAR gives an accurate repre-

sentation of the environment, but it has issues during

loop closure in perceptually degraded environment.

Radio fingerprint uses a collection of radio signals to

represent location, which is shown to be robust again

environmental distortions when compared to visual or

LiDAR-based approaches, but obtaining a precise

position estimation is challenging, due to multipath

signal propagation.

To utilize radio features in the existing infrastruc-

ture, we present two solutions to use radio finger-

prints to perform SLAM. In the first solution—namely

Radio SLAM, while generating the trajectory, we gen-

erate a radio fingerprint map using SLAM technique,

where the produced radio map can be used for locali-

zation with the state-of-the-art fingerprinting-based

approaches.3,7 In the second solution—namely Radio

+LiDAR SLAM, we use radio fingerprint to assist con-

ventional LiDAR-based SLAM. While generating the

trajectory, we also generate occupancy map and show

that the mapping processing is faster than the con-

ventional approach. We conducted experiments in

three different environments to illustrate the effec-

tiveness of our approach.

SENSORS AND ALGORITHMS IN
SLAM

Over the past decades, indoor positioning shows a

growing popularity due to the increasing demand of

location-aware applications.3 SLAM addresses the

problem of SLAM in unknown environment, which has

achieved significant achievements over the past

years. In this section, we review the popular sensors

and algorithms used for SLAM.

Sensors Used for SLAM
Depending on the types of sensors, one can classify

the SLAM into LiDAR SLAM, visual SLAM, mmWave

SLAM, and WiFi SLAM. LiDAR SLAM uses LiDAR to

create structural map of an environment. Visual SLAM

utilizes camera to construct 3D model of the scene.

Visual SLAM (for example ORB-SLAM38 and Super-

point9) has undergone significant upgrades in recent

years due to the evolution of neural networks.

mmWave carries massive amounts of data at high

speed and low latency, which will soon become a fun-

damental component of 5G-and-beyond communica-

tion networks. The emerging mmWave technology

opens new opportunity for localization and SLAM in

both wireless and robotics community.10,11 Although

SLAM is used for some practical applications, several

technical challenges prevent more general-purpose

adoption. One challenge is the high computational

cost in data processing, particularly when implement-

ing SLAM on compact and low-energy embedded

microprocessors.

With the development of Internet of Things and

wireless communication,12,13 urban environments are

deployed with WiFi APs and LTE base stations, which

can be exploited for SLAM. WiFi SLAM uses wireless

signature and odometry for localization and radio

mapping in unknown environments. Ismail et al.13 pro-

posed to estimate the pose of the vehicle with WiFi

fingerprint sequence. Adhivarahan and Dantu12 used

WiFi to determine the coarse orientation between

LiDAR submaps during online distributed mapping.

Algorithms in SLAM
Throughout the years, many techniques and algo-

rithms have been proposed for SLAM,1 including filter-

ing-based solutions and graph-based solutions. The

choice of the SLAM solution depends on sensors,

computational resources, and applications. Graph-

based approaches1 formulate the SLAM as maximum

likelihood estimation and has become one of the

favorable approaches. The graph-based approach con-

sists of two main modules: frontend and backend. The

FIGURE 1. Overview of the SLAM solutions based on different

sensors.
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frontend constructs pose graph based the sensor

measurements, while the backend performs optimiza-

tion based on the pose graph obtained from the

frontend.

When the vehicle operates in the environment for a

long time, the size of pose graph becomes unbounded,

which prevents the optimization of SLAM in real time. A

common technique is sparsification, which reduces the

number of nodes in the graph by pruning.14 The wrong

loop closures impair the quality of the backend optimi-

zation. A number of strategies have been proposed

to address this problem. Pfeifer et al.15 presented max-

mixture model for robust sensor fusion by combining

expectation–maximization and nonlinear least square

optimization. Several researchers also proposed to

remove outliers at the frondend. For example Neira and

Tardos16 used joint compatibility test to reject spurious

constraints.

CHALLENGES AND OPEN
RESEARCH DIRECTIONS

Despite tremendous improvements in SLAM, the

implementation and deployment of SLAM in practice

still face a number of challenges. In this section, we

discuss the challenges as well as potential research

trends in SLAM.

Data association with sensor fusion: The introduc-

tion of novel sensors innovates new applications in

SLAM. The choice of sensors depends on the applica-

tions and environments. It is difficult to rely on a single

sensor to achieve effective frontend sensor fusion due

to the sensor limitations. For example, LiDAR enables

the creation of occupancy map of an environment,

but LiDAR does not work well in perceptually

degraded environments (for example long corridors or

tunnels). In our approach, each radio base station has

a unique ID. This makes the data association easier,

as entering the same area can be known by the base

station ID.

Mapping in large environment: With a continuous

operation in large scale environment, the size of map

may become unbounded, which prevents the loop clo-

sure detection in real time. The design of efficient

SLAM solutions with acceptable memory and compu-

tational cost is necessary. One solution is to develop

efficient similarity searching algorithms to find poten-

tial loop closures. One example is Faiss librarya from

Facebook, which allows fast similarity search of dense

vectors. Our approach uses radio signature as fea-

tures to assist the conventional LiDAR SLAM to create

a map in large environment. Another solution is to

perform distributed SLAM with multiple robots.

Mangelson et al.17 proposed a mechanism called pair-

wise consistency maximization to filter out spurious

loop closures between robots.

Failure recovery mechanism: Incorrect data associ-

ation ruins the optimization in SLAM. To address this

issue, researchers have proposed several techniques

in the backend to deal with outliers.15,16 These meth-

ods determine the validity of loop closure by checking

the residual error during optimization. Despite the

efforts made on the backend optimization, current

SLAM solutions are susceptible to false loop closures,

which lead to poor estimation and prevent the exclu-

sion of spurious loop closures afterward. Therefore, a

mechanism to recover from such failures is a future

research trend.

Semantic mapping: In contrast to the geometric

representation of the environment, semantic map-

ping18 provides an opportunity to understand the

scene and interact with the environment. This tech-

nique represents the scene in an unambiguous and

informative way, enabling large scale autonomy and

robust perception in highly unstructured environ-

ments. The development of semantic mapping is still

at its early phase and new tools for example deep

learning will obviously hasten the progress of seman-

tic SLAM in real applications.

RADIO SLAM AND RADIO+LIDAR
SLAM

Radio signals are commonly used for localization in

many commercial and industrial applications.3 We pro-

pose to use radio fingerprints as alternative to the

conventional range-based or visual-based SLAM. We

present two solutions to use radio fingerprints for

SLAM. In the first solution—Radio SLAM, we use radio

fingerprint to estimate the trajectory of a robot and

generate a radio map of the environment. In the sec-

ond solution—Radio+LiDAR SLAM, we incorporate

LiDAR by scan matching to produce a more accurate

trajectory and generate an occupancy map of the

environment. An overview of the proposed approach

is shown in Figure 2. The similarity check and SLAM

are working in parallel in the proposed approach. The

similarity check is used to determinate if two locations

are in the same place (i.e., loop closures). Meanwhile,

the SLAM takes the loop closures as inputs to opti-

mize the trajectory. Our approach provides an efficient

way to perform SLAM in large scale environment,

while the conventional LiDAR-based SLAM falls short

due to the lack of robust data association algorithms.a[Online]. Available: htt_ps://faiss.ai/
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Overview of Graph-Based SLAM
Graph-based approach formulates the SLAM as maxi-

mum likelihood estimation.We denote the pose of robot

as x ¼ fx; y; ug, where x and y are the 2D location and u

is the heading of the robot. The sensors carried by the

robot are used to infer the constraints. Graph optimiza-

tion aims to find the best configuration of nodes tomini-

mize the following equation given constraintsC:

argmin
x

X

ðxi;xjÞ2C

ðzij � ẑijðxi; xjÞÞ
⊺
Sij

�1

� ðzij � ẑijðxi; xjÞÞ (1)

where, the subscript i and j are used to denote the

time reported from the sensor. We use zij to represent

the constraint and its associated weight is denoted as

covariance matrix Sij. The constraint can be either

successive odometry or loop closure inferred from

nonsequential observations. Two types of loop clo-

sures are involved in optimization, namely radio-based

loop closures and LiDAR-based loop closures. The for-

mer is represented as the distance, which is deter-

mined by the fingerprint similarity, as shown in the

“Radio SLAM based on Fingerprint Similarity” section.

The latter is denoted as the rigid body transformation

by LiDAR scan matching. We consider a pair < i; j >

as WiFi loop closure if the similarity score is over a

threshold. We treat a pair < i; j > as LiDAR loop clo-

sure if the scan matching satisfies a predefined condi-

tion. Those loop closures (i.e., WiFi loop closures and

LiDAR loop closures) and odometry are used as con-

straints to optimize the trajectory of the robot through

pose graph optimization, as shown in (1).

Fingerprint Similarity
Given a received signal strength (RSS) from a base sta-

tion, it is straightforward to know if an area has been

visited by the robot, since each reported RSS is associ-

ated with a unique ID. Estimating the precise transfor-

mation between two fingerprints turns out to be tricky,

since radio signal neither reports distance nor bearing

information. In our approach, the closeness of two

locations is determined by the fingerprint similarity. We

train a model to represent the distance and variance of

radio-based loop closures given the similarity of two

location fingerprints, which will be detailed in the

“Radio SLAMbased on Fingerprint Similarity” section.

We represent a fingerprint at pose xt as a pair Ft ¼

ðft; xtÞ. ft consists of RSS from L access points (APs)

or base stations: ft ¼ fft;1; . . .; ft;Lg. Let Li and Lj

denote the number of detections in fi and fj, respec-

tively. Lij ¼ jfi \ fjj represents the common APs or

base stations in fi and fj. We use a cosine similarity

metric to measure the similarity cosðFi; FjÞ between

two fingerprints Fi and Fj

sij ¼ cosðFi; FjÞ ¼

PLij

l¼1
f l
i
f l
j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PLi

l¼1
ðf l

i
Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PLj

l¼1
ðf l

j
Þ2

q : (2)

Radio SLAM Based on Fingerprint

Similarity
Parameterization of the constraint is required to opti-

mize the pose graph. For odometry-based constraint,

the parameter is obtained from the motion model. We

need to derive a model to represent the distance and

uncertainty given two fingerprints. Our solution is to

train such model by passing over odometry and radio

recordings. Although odometry error accumulates over

long period, it is sufficiently small for a short distance

traveled. Therefore, we compute the degree of similar-

ity for close fingerprint pairs, which are annotated with

the distance determined by the odometry. As a result,

we obtain a set of K training samples: fsk; dkg
K
k¼1,

where sk is the fingerprint similarity and dk is the physi-

cal distance of the fingerprint pair. We then train a

model, which features the mean distance mðdjsÞ and

variance varðdjsÞ given a similarity value s by binning

mðdjsÞ ¼
1

cðbðs; rÞÞ

X

k2bðs;rÞ

dk
2

varðdjsÞ ¼
1

cðbðs; rÞÞ

X

k2bðs;rÞ

ðdk � mðdjsÞÞ2 (3)

where, bðs; rÞ denotes the samples that sit in the inter-

val r around a similarity value s. cð�Þ counts the num-

ber of samples. Equation (3) gives the covariance

matrix for radio-based loop closure for (1). To optimize

the trajectory with (1), we need to find the constraints

for nonconsecutive poses. We compute the similarity

sij between two recorded fingerprints Fi and Fj if the

distance traveled by the robot is larger than a prede-

fined thresholds (100 meters). The distance zij is

FIGURE 2. Overview of Radio SLAM and Radio+LiDAR SLAM.
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obtained based on the pretrained model in (3). We add

a tuple < xi; xj; zij > as a loop closure if the similarity

sij exceeds a threshold #s. Based on the radio loop

closures, we optimize (1) using g2o with Levenberg–

Marquardt solver.1

Radio+Lidar SLAM
Based on the trajectory obtained from Radio SLAM,

we further refine the trajectory by fusing LiDAR scans.

This is achieved through a second pose graph optimi-

zation by considering LiDAR constraints (as shown in

Figure 2). By LiDAR scan registration, a precise trans-

formation between two poses can be computed. A

common method is iterative closest point (ICP), which

minimizes the sum of square distance (i.e., fitness

score) between correspondences in two scans. We

consider the following two manners to incorporate

LiDAR measurements.

› Registration of LiDAR scans in proximity: we per-

form ICP for the consecutive LiDAR scans to cor-

rect the short-term odometry errors. The

odometry measurement is used as an initial

guess of ICP algorithm to avoid the convergence

to local minima.

› LiDAR loop closures: based on the optimized tra-

jectory from Radio SLAM, we perform the LiDAR

scan matching if the displacement between two

poses is smaller than a threshold. We consider a

LiDAR loop closure if the fitness score and the

matching points satisfy certain criteria. This step

determines loop closures between nonconsecu-

tive poses with a better accuracy when com-

pared to radio fingerprints. We perform the

second pose graph optimization by minimizing

(1) again but considering the new constraints

from LiDAR scan matching. The output of Radio

+LiDAR SLAM is occupancy map (the same as

the conventional LiDAR SLAM), which can be

used for the navigation and path planning for

autonomous vehicles.

EXPERIMENTAL RESULTS

Experimental Setup
The experiments were performed using a Clearpath

Husky vehicle. We evaluated the effectiveness of

the proposed algorithm in three different environ-

ments, which consist of Singapore University of

Technology and Design (SUTD) campus (outdoor,

approx. 75000 m2), SUTD building (indoor, approx.

5000 m2), and Nanyang Technological University

(NTU) carpark (semi-indoor, approx. 5100 m2). Five

Xiaomi Max3 smartphones were placed on the robot

to scan WiFi APs and LTE base stations. Each phone

is configured to scan one LTE band in Singapore.

Wheel odometry were recorded at a frequency of

10 Hz. Hokuyo UST-20LX LiDAR was used for LiDAR

scans. In outdoor experiment, we obtain the ground

truth by Android location service. For indoor envi-

ronments, we have created an indoor map of the

environment based on GMappingb. With the created

indoor map, we apply adaptive Monte Carlo localiza-

tion (AMCL) for ground truth based on probabilistic

algorithms. Particularly, AMCL tracks the 2D pose of

the robot against a known map based on particle fil-

tering. The algorithm performs pose prediction and

weights update of particles based on odometry and

2D LiDAR, respectively. During our implementation,

the map resolution is set to be 0.05 m and position

of the robot is known during the initialization of the

particle filtering. Throughout the experiments, the

robot traveled at an average speed of 0.4 m/s.

Table 1 summarizes the data collected in three

environments.

The models of WiFi and LTE generated with a bin-

ning size of 0.05 are visualized in Figure 3(a) and (b),

respectively. As can be seen from these figures,

given a similarity value, LTE model gives large dis-

tance and standard deviation when compared to

WiFi model. For NTU environment, we obtain mean

TABLE 1. Description of the data collected in three environments and accuracy evaluation of pure odometry, wifi SLAM, and LTE

SLAM (mean and standard deviation in meters).

Environment Traj.

length (m)

Traj.

duration (s)

WiFi MAC per scan/

total MAC

LTE CellID per

scan/total LTE

Odom.

(m)

WiFi

SLAM (m)

LTE SLAM

(m)

SUTD outdoor 5171.3 5494.7 88.23/4488 18.74/170 75.06 8.82�3.94 18.38�10.70

SUTD indoor 1114.9 3092.1 118.34/1921 19.49/193 10.01 3.69�2.21 5.18�2.59

NTU semi-

indoor

1072.6 2583.9 48.88/1046 16.59/85 51.98 4.48�2.98 12.22�10.95

b[Online]. Available: htt_p://wiki.ros.org/gmapping/
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distance of 30.25 m and standard deviation of

22.13 m of LTE model given a similarity value of 0.8,

which are larger when compared to WiFi model

(mean distance of 3.79 m and standard deviation of

2.70 m). To detect radio-based loop closures, we use

a similarity threshold of #s=0.7 for both WiFi and LTE.

Evaluation of Radio SLAM
The comparison of the track between odometry, LTE

SLAM, WiFi SLAM, and ground truth in NTU environ-

ment are visualized in Figure 3(c). Table 1 summarizes

the results of three experiments. As can be seen from

this table, our proposed radio SLAM is more accurate

when compared to pure odometry. For WiFi SLAM,

indoor environments give better accuracy when com-

pared to outdoor environment. For example, in SUTD

indoor and NTU semi-indoor, we obtain a localization

accuracy of 3.69 and 4.48 m, which are better than the

accuracy of SUTD outdoor environment (8.82 m).

Although a large number of APs are detected in out-

door environment, low signal strength values result in

more uncertainty, since these APs inside buildings are

far away from the moving path of the robot. In general,

WiFi SLAM gives better accuracy than LTE SLAM, due

to the dense WiFi coverage in the environment. For

NTU semi-indoor environment, we obtain an accuracy

of 4.48 m with WiFi SLAM, which is an improvement of

63.34% when compared to LTE SLAM (12.22 m).

Evaluation of Radio+LiDAR SLAM
Based on the optimized trajectory obtained from

Radio SLAM, we perform LiDAR scan matching to fur-

ther improve the accuracy based on the technique in

the “Radio+LiDAR SLAM” section. A valid match is

identified if the fitness score is smaller than 0.1 and

the matching points are larger than half of the average

number of points in both scans. For NTU carpark semi-

indoor environment, our WiFi+LiDAR SLAM provided a

localization accuracy of 0.84 m, while GMapping gave

a localization accuracy of 4.31 m and failed to correct

odometry error.

We tested our approach on Intel Core i7-6700HQ

CPU with 2.6 GHz frequency and 8 GB RAM. We

observe that the time consumed for WiFi SLAM is

insignificant as compared to time of data recording,

while the computational time for WiFi+LiDAR SLAM is

much longer, due to the high cost of LiDAR scan

matching. The time required for performing one WiFi

similarity comparison with 44 MAC addresses is

0.029 ms, while the time required for one LiDAR scan

matching of 600 points is 13.04 ms. Therefore, LiDAR

scan matching is the current bottleneck of the pro-

posed Radio+LiDAR SLAM.

To visually inspect the quality of the optimized tra-

jectory, we generate the occupancy grid map by evalu-

ating the respective grid using LiDAR scans at

optimized poses, as shown in Figure 4. We also

FIGURE 3. A comparison of the models in three different envi-

ronments and visualization of ground truth, odometry, LTE

SLAM, and WiFi SLAM in NTU semi-indoor environment. (a)

WiFi model. (b) LTE model. (c) Trajectory estimation with dif-

ferent algorithms in NTU environment.
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compared our results with GMapping, which applies

particle filtering-based approach for SLAM. The map

generated with GMapping is not consistent with the

true map due to the drift of odometry. This can be seen

from the nonoverlapping boundaries representing the

walls in Figure 4(b). The quality of the map is signifi-

cantly improved by the fusion ofWiFi in Figure 4(a).

A comparison of the path required for mapping

large indoor building based on different approaches is

shown in Figure 5. To ensure the quality of map using

the conventional LiDAR-based SLAM (i.e., GMapping),

we have to design a cumbersome strategy for the

robot (see the blue path in Figure 5 with a total travel

time of 8619.2 s) to traverse different small regions

and avoid large loops, which normally lead to mapping

failure due to the lack of LiDAR loop closures to cor-

rect the large odometry drift after long distance travel.

Our approach uses radio fingerprints to assist the con-

ventional LiDAR-based SLAM. The proposed approach

provides a comparable mapping quality when com-

pared to the conventional LiDAR-based SLAM, but at

a much faster scanning speed. It is important to point

out that the deployment of radio infrastructure in the

testing area is a necessity to perform the proposed

radio SLAM. The accuracy will be decreasing if the

density of APs or base stations is low.

CONCLUSION
This article discussed the favorable sensors, popular

algorithms, and critical challenges in SLAM. We pro-

posed to use opportunistic WiFi and LTE signals,

which are available in the existing infrastructure to

perform SLAM. The performance of the system is veri-

fied in three different environments. We achieve a

positioning accuracy of less than 10 m using WiFi

SLAM in all test environments. In addition, we present

Radio+LiDAR SLAM that integrates LiDAR scan

matching to improve the accuracy. The proposed

approach produced comparable map quality versus

LiDAR-based SLAM but at a much faster scanning

speed. Our approach makes use of the existing radio

infrastructure for sensing and has no assumption

about the locations of the base stations. In future, we

would like to test our approach in different environ-

ments to validate the generalization of the proposed

approach. Another direction to investigate the possi-

bility to use the created occupancy map for the navi-

gation and path following of autonomous vehicles.
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