UC Santa Cruz
Journal of Systems Research

Title

[Solution] Mason: Scalable, Contiguous Sequencing for Building Consistent Services
Permalink

https://escholarship.org/uc/item/5hg1429j

Journal

Journal of Systems Research, 3(1)

Authors

Hodsdon, Christopher
Stavrinos, Theano
Katz-Bassett, Ethan

Publication Date
2023

DOI
10.5070/SR33161354

Copyright Information

Copyright 2023 by the author(s).This work is made available under the terms of a Creative
Commons Attribution-NonCommercial License, available at
https://creativecommons.org/licenses/by-nc/4.0/)

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/5hg1429j
https://escholarship.org/uc/item/5hg1429j#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

Journal of Systems Research (JSys) Volume 3, Issue 1, June 2023

[SOLUTION] MASON: SCALABLE, CONTIGUOUS SEQUENCING FOR BUILDING
CONSISTENT SERVICES

Christopher Hodsdon Theano Stavrinos Ethan Katz-Bassett Wyatt Lloyd
Princeton University, Columbia University Princeton University Columbia University Princeton University

Foreword by the Area Chair

This paper introduces a contiguous multi-sequence abstraction for building consistent, scalable services. The multi-sequence
abstraction is useful when dealing with sharded datastores; the contiguity property strengthens the multi-sequence abstraction
to guarantee no gaps in the sequence can be left even in the presence of failures. The outcome is an increased simplicity
in developing consistent services, which is crucial for practical systems. The paper also presents MASON, a system that
implements the multi-sequence abstraction and solves the scalability problem of a single monolithic sequencer. For the sake
of evaluating its performance, MASON has been integrated into a distributed shared log based on CORFU, and a distributed
prototype of the coordination service ZooKeeper. Overall, reviewers found the problem very relevant and timely. The presented
solution is well presented, and well evaluated.

— Roberto Palmieri ®, Lehigh University
— Lewis Tseng @, Boston College

Reviewers

¢ Ailidani Ailijiang, Microsoft
* Aleksey Charapko, University of New Hampshire
* Roberto Palmieri ®, Lehigh University

Artifacts

The artifacts for this work were independently evaluated by the Artifact Evaluation Board (AEB) led by Eric Eide
The AEB determined that the artifact is usable by a third party and that it allows reproducing the main results from the paper.
Artifact: https://github.com/princeton-sns/mason

Reviews

Anonymized reviews are publicly available.
Reviews: https://openreview.net/forum?id=hj77e0QNIrx

Copyright and License

Licensed under Creative Common License CC-BY-NC. Copyright retained by the authors.

N0

MASON: Scalable, Contiguous Sequencing
for Building Consistent Services

Christopher Hodsdon*", Theano Stavrinos*, Ethan Katz-Bassett”, Wyatt Lloyd*

*Princeton University, t Columbia University

Abstract

Some recent services use a sequencer to simplify ordering
operations on sharded data. The sequencer assigns each op-
eration a multi-sequence number which explicitly orders the
operation on each shard it accesses. Existing sequencers have
two shortcomings. First, failures can result in some multi-
sequence numbers never being assigned, exposing a non-
contiguous multi-sequence, which requires complex scaffold-
ing to handle. Second, existing implementations use single-
machine sequencers, limiting service throughput to the order-
ing throughput of one machine.

We make two contributions. First, we posit that sequencers
should expose our new contiguous multi-sequence abstraction.
Contiguity guarantees every sequence number is assigned an
operation, simplifying the abstraction. Second, we design and
implement MASON, the first system to expose the contiguous
multi-sequence abstraction and the first to provide a scalable
multi-sequence. MASON is thus an ideal building block for
consistent, scalable services. Our evaluation shows MASON
unlocks scalable throughput for two strongly-consistent ser-
vices built on it.

1 Introduction

Designers of large-scale distributed services grapple with the
tradeoff between strong consistency on one hand and high per-
formance on the other hand. A strongly-consistent distributed
service is a useful building block because applications can
reason about its behavior as if it were running on a single
machine. However, strong consistency requires coordination
among a service’s servers, adding overhead.

Some recent services achieve consistency using a se-
quencer to explicitly order data accesses a priori, removing
the need to coordinate concurrent accesses [37, 56]. This en-
ables sequencer-based designs to achieve strong consistency
with higher throughput than other approaches.

Early work using sequencers used a sequence abstraction
that globally orders all operations [3, 49]. More recent work,
and this work, target the multi-sequence abstraction that only
explicitly orders operations that execute on the same subset
of data [37, 56]. This allows operations spanning multiple

subsets of data to only be ordered with respect to other opera-
tions on intersecting subsets, reducing contention compared
to ordering all operations globally, and improving throughput
and latency.

The multi-sequence abstraction uses a collection of se-
quence spaces, i.e., logically independent sequences of strictly
increasing integers, to provide a strictly serializable ordering
of accesses to different subsets (shards) of the service’s data.
An operation that needs cross-shard ordering gets an atomi-
cally assigned multi-sequence number containing a sequence
number from the sequence space of each shard the operation
accesses. An execution protocol, designed by the service de-
veloper, defines the sequence spaces involved in an operation
and how shards use multi-sequence numbers to execute oper-
ations. Driven by the execution protocol, the service’s servers
use the sequence numbers to order operations on the shard(s)
they manage, with the multi-sequence numbers atomically
ordering operations relative to other operations to provide
strong consistency. Operations ordered by multi-sequence
numbers can be executed without coordination across servers,
enabling strongly consistent, scalable, and efficient services.

However, the abstraction used by recent services is a non-
contiguous multi-sequence: failures can cause holes in the
sequence space, i.e., sequence numbers that are never used.
To preserve consistency, a service must identify and reason
about all holes. Identifying holes requires service-wide coor-
dination between the service’s servers to reach consensus on
whether a sequence number has an associated operation that
can be recovered. If not, then it is a hole, and the servers must
coordinate to avoid using any sequence numbers that are part
of the same multi-sequence number as the hole. Implement-
ing consensus and service-wide coordination to handle holes
significantly complicates execution protocol design (§2.2).

This paper introduces the contiguous multi-sequence ab-
straction for building consistent, scalable services. The con-
tiguous multi-sequence abstraction assigns exactly one op-
eration to every integer in each sequence space such that
no sequence space has a hole. Contiguity strengthens the
multi-sequence abstraction over its existing noncontiguous
counterpart by hiding consensus and service-wide coordina-

tion, simplifying the development of services. Some existing
services use the noncontiguous multi-sequence abstraction
internally to expose higher-level abstractions like distributed
databases [37, 56]. Compared to higher-level abstractions, the
contiguous multi-sequence supports developing more diverse
functionality, e.g., ephemeral objects (§06).

In addition to being noncontiguous, existing implementa-
tions of the multi-sequence abstraction [37, 56] suffer from
a second limitation: they have an ordering throughput ceil-
ing that limits the throughput of any services built on top of
them. These implementations use a monolithic sequencer, a
single machine whose only task is to hand out multi-sequence
numbers, enabling low-latency ordering that is easy to rea-
son about. A monolithic sequencer can order operations with
higher throughput than coordination-based mechanisms, but
this design can only achieve ordering throughput up to the
throughput limit of a single machine. Thus, a service built on
a monolithic sequencer cannot scale.

Our system, MASON, addresses the ordering throughput
limitation. MASON is a building block for distributed ser-
vices that provides the contiguous multi-sequence abstraction
with no ceiling on ordering throughput, unlocking scalabil-
ity for services that were previously unscalable. MASON’s
contiguous multi-sequence implementation enables services
to (1) use simple execution protocols that need not incorpo-
rate consensus or service-wide coordination and (2) scale to
achieve service throughput far higher than what is possible
with monolithic sequencers.

Our key insight is that MASON can enable simple execu-
tion protocols and scalability via a layer of replicated proxies
between clients, which send operations, and a monolithic se-
quencer. To overcome the failure modes that expose holes,
the proxy layer provides fault tolerance for clients and the
sequencer. The proxy layer replicates enough of each client
operation’s state to ensure the operation can be completed
and a sequencer can recover without holes, thus guaranteeing
the contiguous multi-sequence abstraction.

To overcome the monolithic sequencer’s ceiling on order-
ing throughput, proxies batch requests for multi-sequence
numbers. This batching is perfect, in that the sequencer does
no more work to allocate one million contiguous numbers
than it does to allocate a single number. Each replicated proxy
operates essentially independently, allowing the proxy layer to
scale out; adding more proxies increases ordering throughput.
These techniques enable MASON to scale: if the sequencer is
the bottleneck, proxies increase batch size; if the proxy layer
is the bottleneck, more proxies are added.

Our evaluation shows MASON provides scalable or-
dering throughput: with one sequence space, MASON
achieves ~16.7 Mops/sec with 24 proxy machines, scaling to
~31.5 Mops/sec with 48 proxy machines. MASON’s tradeoff
for a stronger abstraction and scalable ordering throughput is
higher latency relative to monolithic-sequencer designs, since
the proxies and a single round of replication are on path for

each request. MASON’s latency is still low, however, with a
median latency of ~243 us at the reported throughputs.

We demonstrate MASON’s value as a building block by
using it to implement Corfu-MASON, a distributed shared log
modeled after CORFU [3]; and ZK-MASON, a distributed
prototype of the coordination service ZooKeeper [22]. With
MASON’s strong abstraction, it was easy to build these ser-
vices that consistently execute cross-shard operations (§6).
MASON also unlocked scalability for them in contrast to their
fundamentally unscalable original designs. Specifically, our
implementation of CORFU’s original design is limited to
~14.1 Mops/s (nearly line rate for a sequencer with a 10G
NIC, ~14.5 Mops/s). Building it on MASON lets it scale from
~7.3 Mops/s (one server) to ~29.1 Mops/s (four servers). Our
implementation of ZooKeeper’s original design is limited to
~150 Kops/s; its MASON-based implementation scales from
~1.3 Mops/s (one server) to ~7 Mops/s (eight servers).

This paper makes two major contributions. The first is
the contiguous multi-sequence abstraction, which simplifies
building correct services compared to the previous noncon-
tiguous multi-sequence abstraction. While the noncontiguous
multi-sequence abstraction demands significant distributed
systems expertise to use correctly, our abstraction shields
service developers from the complexity of reasoning about
holes (§2). By handling this complexity internally, the con-
tiguous multi-sequence abstraction enables faster develop-
ment of new services, promotes designs with fewer bugs, and
enables developers without distributed systems expertise to
develop scalable distributed services. The second major con-
tribution is the design of MASON, which notably is the first
multi-sequence design that is scalable. MASON’s inherent
scalability is the foundation for removing the throughput ceil-
ing from existing and future services built on a multi-sequence
abstraction (§5). Together, these contributions make it easy
to build consistent services with a newfound ability to scale
service throughput (§6).

2 The Contiguous Multi-Sequence

This section is an orientation to the multi-sequence abstrac-
tion. Section 2.1 explains how to build strongly-consistent
services with the generic multi-sequence abstraction. Sec-
tion 2.2 describes why building services with the existing
noncontiguous multi-sequence abstraction is challenging. Our
contiguous multi-sequence abstraction instead makes it easy
to use multi-sequences to build scalable, consistent services.

2.1 Building Services with Multi-Sequences

The sequence abstraction globally orders operations in a sin-
gle sequence space. The multi-sequence abstraction extends
the sequence abstraction to multiple sequence spaces to en-
able the service to order operations only when they execute
on the same subset of data. This enables services to execute
operations in order with less coordination: servers manag-
ing a subset of data only need local ordering information,

reducing contention compared to ordering all operations glob-
ally, improving throughput and latency. Services built on the
generic multi-sequence abstraction typically include clients,
a sequencing component, and servers, each holding one or
more shards. Typically, each shard stores a subset of the ser-
vice’s data and is replicated for fault tolerance. Each shard
has its own sequence space, a sequence of strictly increasing
integers that order operations on the shard’s data. To execute
an operation, a client identifies the shards involved in the op-
eration, gets a multi-sequence number from the sequencing
component with one number from each relevant shard’s se-
quence space, and sends the operation to the shards’ servers
with the multi-sequence number. Each server locally uses the
multi-sequence number to order this operation’s data accesses
relative to other operations’ accesses. In contrast, with a sin-
gle, global sequence space, each shard would need to know
the next operation to execute across all shards instead of only
the next operation concerning its own data.

We next define multi-sequence numbers, explain how they
are assigned to operations consistently, and describe how exe-
cution protocols use them to scale execution.

Multi-sequence numbers. A multi-sequence number, n, is
a set of (ssid, sn) tuples where ssid is a unique number identi-
fying the sequence space, and s is a sequence number in that
space. The sequence number in space s in multi-sequence
number n is denoted n;. For a set of sequence spaces re-
quested by a client, the sequencing component returns a multi-
sequence number consisting of the next sequence number rg
in each relevant space s.

Strictly serializable multi-sequence number assignment.
From clients’ perspectives, strictly serializable services pro-
cess operations one at a time in an order that a single machine
could have received them [48]. Concretely, strict serializabil-
ity requires that there exists a legal total order of operations
consistent with the partial ordering of “real-time” precedence,
i.e., if a completes before b begins, then a must be ordered
before b [21, 48].

Multi-sequence numbers enable strongly consistent dis-
tributed services when assigned to operations in a strictly
serializable order. To simplify discussion, we define a default,
A, where ng = A for all ng not mapped to a specific sequence
number (i.e., all s not in this multi-sequence number). For
the set of all sequence spaces S, we define a partial order-
ing over all multi-sequence numbers where a < b <= Vs €
S,as # ANby # A = a; < b,. The multi-sequence abstrac-
tion guarantees that two multi-sequence numbers either share
no common sequence spaces or are strictly ordered (i.e., if
as < by for one common space s, then ay < by for all com-
mon spaces s', implying a < b). The partial ordering of the
multi-sequence numbers defines the ordering of operations.
If strict serializability imposes an ordering between two oper-
ations, then multi-sequence numbers assigned on path with
their execution capture that ordering.

Execution protocols. To use the multi-sequence abstraction,
a service developer implements an execution protocol that
executes operations in order of their multi-sequence numbers,
yielding a strictly serializable service. The execution protocol
runs on clients (typically encapsulated in a client library) and
on the service’s servers. For clients, the execution protocol
defines how operations are mapped to the service’s shards
and which sequence spaces are involved in a given operation.
For servers, it determines when shards can safely execute
operations, based on the operations’ multi-sequence numbers.

Scalable execution. Multi-sequence numbers enable ser-
vices to scale throughput up to the rate the sequencer can as-
sign sequence numbers. Execution scales through parallelism:
when some shards are executing an operation, other shards can
execute a different operation. The sequence spaces in multi-
sequence numbers determine which operations can execute in
parallel, as operations with disjoint multi-sequence numbers
access different shards. As long as multi-sequence number
assignment keeps up, the service can increase its throughput
by adding more machines and creating more shards. How-
ever, existing multi-sequenced services use monolithic (single-
machine) sequencers, which can never assign sequence num-
bers to operations at a higher rate than a single machine can
support and hence limit the service’s scalability.

2.2 From Noncontiguous to Contiguous

The generic multi-sequence abstraction is realized as a non-
contiguous abstraction in existing services, which use it to
expose higher-level abstractions [37, 56]. As we explain next,
noncontiguity complicates service development. In contrast,
the contiguous multi-sequence abstraction simplifies devel-
oping services with multi-sequences by encapsulating that
complexity within the abstraction.

Holes in a noncontiguous sequence complicate the ab-
straction. Holes occur when a sequence number is not used
for an operation. For example, a hole occurs if a client fails
after receiving a sequence number but before using it. A shard
may see, e.g., sequence numbers 1-3 and then receive an op-
eration with sequence number 5, indicating a potential hole
at 4. To preserve strict serializability, the shard may only exe-
cute operation 5 after 4 is used, since 4 could belong to any
operation. To make progress in the absence of an operation,
the service must decide that the entire multi-sequence number
is a hole and enforce that it is not used on any shard, typically
by assigning a no-op to each of its sequence numbers.
Handling holes complicates service design. The service
must have a mechanism to identify sequence numbers that
are potential holes. Existing designs use timeouts [3, 56] or
infer holes from out-of-order operation arrival [37, 56]. More
challenging is that the service’s servers must reach service-
wide consensus on whether a sequence number is a hole,
then coordinate to ensure that the other numbers in the hole’s
multi-sequence number are treated as holes to avoid partially
executing a cross-shard operation. Existing services achieve

this with a global shared log [56] or a failure coordinator [37].
Requiring consensus in the execution protocol makes a ser-
vice developer’s task significantly more difficult. Consensus is
hard to implement and incorporate [7, 47], and requires devel-
opers to understand the nuances of the sequencing component
and consensus implementation in depth.

Although existing services feature workable solutions for
handling holes, requiring services to select and properly in-
corporate a solution does not reflect operational best prac-
tices. Much of the purpose of providing infrastructure build-
ing blocks (such as an implementation of the multi-sequence
abstraction) is to enable services to use them without need-
ing to understand their complexities, via clean abstractions
that mask the subtleties of their internal operation and failure
modes. Pushing the complexity of handling holes to services
increases the chances of one doing so incorrectly, similar to
how pushing memory management to individual program-
mers increases the chances of memory leaks.

Our contiguous multi-sequence avoids holes and hides
consensus. Our abstraction assigns exactly one operation to
each sequence number in each sequence space. Service devel-
opers can focus on designing execution protocols that achieve
their services’ goals, a much simpler task when freed from rea-
soning about holes or implementing consensus. Eris [37] and
vCorfu [56], the two existing designs built on the noncontigu-
ous multi-sequence abstraction, were developed by distributed
systems experts. With the contiguous multi-sequence abstrac-
tion, we aim to empower developers without such expertise
to use multi-sequences to build scalable, consistent services,
and make it easier and faster for experts.

3 MASON Overview

The central contributions of MASON are to shield services
from the complexity of dealing with holes by providing the
contiguous multi-sequence, and to provide the benefits of the
multi-sequence abstraction while allowing ordering through-
put to scale beyond what a monolithic sequencer can provide.
Section 4 describes how the components work together to
guarantee a contiguous multi-sequence. Section 5 describes
how MASON enables scalability with two mechanisms that
relieve all throughput bottlenecks.

3.1 Model and Assumptions

We assume a set of processes that communicate via point-to-
point communication over an asynchronous network, where
messages can be arbitrarily delayed and reordered. We assume
a crash failure model, where processes execute according to
their specification until they cease sending messages and the
failure is undetectable to other processes. MASON is safe un-
der these assumptions. We assume service shards implement
at-most-once semantics to handle retransmissions.

—_——— — — —
proxy

, 222
client | ; Ear:ggr <\§~
™

replica, 4

Figure 1: The components of a service built with MASON
and an operation’s flow through the service. Blue com-
ponents are part of MASON; yellow components are sup-
plied by the service. Numbers correspond to steps in §3.3.

3.2 MASON Components

Figure | shows how MASON is used in a service. It also shows
MASON’s two types of internal components: a sequencer and
replicated proxies. The core of MASON’s design is a mono-
lithic sequencer that provides high-throughput operation or-
dering, surrounded by a replicated proxy layer that handles the
failure modes and bottlenecks impeding existing sequencers.

The sequencer allocates increasing multi-sequence num-
bers. It is implemented by a single machine, and only one se-
quencer is active at a time. MASON maintains a cold standby
sequencer for failure recovery.The standby sequencer does not
participate in normal operation; it is only required for liveness.
The monolithic sequencer at MASON’s core provides the ben-
efits of existing sequencers: contention-free, high-throughput
ordering of operations in a distributed system. In our sys-
tem, MASON itself is the distributed system, leveraging the
sequencer’s benefits while managing its drawbacks to provide
a simpler, scalable building block to the service.

Proxies are replicated state machines (RSMs). We treat
the RSM protocol as a black box, but for liveness require
that it is leader-based and informs a replica when it gains
and loses leadership. These two properties enable a leader
takeover protocol that allows MASON to only replicate state
after receiving the response from the sequencer, discussed
below (§4.1). Both requirements could be eschewed at the
cost of adding normal-case latency by replicating state both
before making a request to the sequencer and after receiv-
ing a response. However, because leader-based protocols are
common in practice, we choose the lower latency design. Our
implementation uses Raft [46]. A proxy is logically a single
entity implemented by a leader process and multiple follower
processes on separate machines. The leader accepts opera-
tions from clients and executes them via the service stub using
multi-sequence numbers. The rest of this paper refers to a
proxy replica group simply as a proxy. A MASON deployment
may have one or more proxies, depending on system load.

Identical to many other RSM-based systems, we assume at
most f of 2f + 1 proxy replicas fail [30, 36, 41, 46]. A MA-
SON deployment must be configured so that f is sufficiently
large. In the rare event that more than f machines fail, manual
intervention by an operator is necessary to restore availability.

Service stubs are implemented by the service built on MA-

SON and drive the execution protocol on the proxies. Service
developers interact with MASON on the proxies through ser-
vice stubs which execute within the proxy’s process. When a
proxy receives an operation from a service’s client, it passes
the operation to the stub. The stub either requests that MASON
order the operation, or executes the operation immediately if
it need not be ordered, e.g., an inconsistent read. After order-
ing and replicating the operation, the proxy returns it back to
the stub which begins the execution protocol. Stubs are analo-
gous to client libraries in existing multi-sequenced services.
Section 6 shows how stubs are used to develop services.

The proxy may batch requests for multi-sequence numbers
for scalability, i.e., request multi-sequence numbers for multi-
ple client operations in a single sequencer request (§5). The
sequencer allocates a multi-sequence number for each opera-
tion in the batch. An allocated multi-sequence number is one
given to a proxy that the sequencer promises not to allocate
again. Proxies assign multi-sequence numbers to client oper-
ations. Assignment uses replication to permanently associate
a multi-sequence number with an operation and guarantee it
will never be assigned to another operation. Once the proxy
has replicated the assignment of a multi-sequence number to
an operation, it returns the operation and its multi-sequence
number to the service stub for execution.

3.3 Normal-Case Operation of MASON

The normal case operation of MASON, shown in Figure 1,
includes the following steps:

1. A client sends an operation to a proxy.

2. The proxy passes the operation to the service stub which
determines the relevant sequence spaces.

3. The proxy asks the sequencer to allocate a multi-sequence
number covering the relevant sequence spaces.

4. The proxy replicates the allocated number and operation,
assigning the number to the operation.

5. The proxy returns the operation and multi-sequence num-
ber to the service stub.

6. The service stub and shards run the execution protocol.

7. The proxy sends the response from the stub to the client.

4 Ensuring a Contiguous Multi-Sequence

MASON provides a contiguous multi-sequence by handling
all potential sources of holes: client failures (Figure 2a), net-
work drops (Figure 2b), sequencer failures (Figure 2¢), and
combinations thereof. This section covers how MASON han-
dles each of these failure scenarios and then sketches a proof
of strict serializability.

4.1 Proxies Prevent Holes from Client Failure

In a multi-sequenced service, client failure can cause holes
when the client obtains a sequence number and fails before
it uses the sequence number in the service. For instance, Fig-
ure 2a shows Client A failing before using sequence number

3 from sequence space i, resulting in a hole at 3. MASON
prevents such holes with proxies that manage multi-sequence
numbers on clients’ behalf. Proxies are replicated for fault
tolerance, eliminating this source of holes. A proxy will al-
ways return an operation that was assigned a multi-sequence
number to the service stub even if the client fails and even if
a minority of proxy replicas fails.

A byproduct of replication is that proxies maintain a record
of every assigned sequence number, which is used in se-
quencer recovery (§4.3). By masking client failure and main-
taining state needed for sequencer recovery, proxy replication
is a key mechanism for avoiding holes in MASON.

The proxy replication strategy is driven by correctness and
performance. Proxies must replicate enough information to
preserve contiguity and strict serializability. Replicating every
input to the proxy leader would be correct, but this would add
unacceptable latency to client requests and burden proxies
with excessive communication overhead. Fortunately, MA-
SON can skip replication for all but one step in operation
processing, because the other steps can be safely retried, in-
cluding after client, sequencer, and/or proxy replica failure.

The exception is step 5 (Fig. 1), returning a multi-
sequenced client operation to the service stub. Replicating the
mapping of each client operation to a multi-sequence number
before this step is critical for correctness in MASON. Sup-
pose the mapping is not replicated. The sequencer and proxy
leader could fail concurrently after the leader returns a multi-
sequenced client operation to its service stub, but before the
stub sends its operation to every relevant shard. The shards
that received the operation may execute it, but the operation
will not be completed after recovery because the mapping of
multi-sequence number to operation was lost. Exposing the
partial execution violates strict serializability. Therefore, be-
fore returning an operation to the service stub, the proxy must
permanently associate the operation with a multi-sequence
number through replication. Once replication succeeds, the
sequence number is assigned to the operation.

We next describe how the proxy processes operations, in
order to explain why all other steps are safe to retry. We
discuss one operation and a single sequence space for ease of
explanation; the reasoning can be easily extended to batches
of operations and multiple sequence spaces.

Receiving a client operation. Clients can send an operation
to any proxy. When a proxy leader receives an operation
from a client, it passes the operation to the service stub. If
the stub requests that the operation be ordered, the leader
allocates a sequencer request ID for that operation (step 3 in
Figure 1). Sequencer request IDs are allocated only by the
leader, so they are trivially contiguous and strictly increas-
ing. Sequencer request IDs are used during proxy failover
to recover sequence numbers that were allocated but not yet
assigned to any operation, i.e., potential holes.

Requesting a sequence number. The leader then requests a
sequence number from the sequencer, with the sequencer re-

Client A Sequencer Client B Client A Sequencer Client A Sequencer Client B
Si=3 Si=3 Si=3
RequestSeqnum eauestseqium) eauestsegium)
X [
3 - StSeqNUmU)
Siz4 Y [si=4 Reque
) 4
RequestseaNum®) RequestSequm) X
R I——Y New Sequencer
Reque Js.=
4 4 W{ 3:=5
S;=5 \ 4/ Si=5 5
—— |Si=6

(a) Hole caused by client failure.

(b) Hole caused by network drop.

(c) Hole caused by sequencer failure.

Figure 2: Potential sources of holes. S; is the next sequence number in sequence space i.

quest ID (step 3). If the sequencer has not seen this sequencer
request ID from this proxy, the sequencer updates its state
in two relevant ways: it allocates a sequence number for this
request by incrementing the sequence counter in the requested
sequence space, and maps the sequencer request ID to the
allocated number. If the sequencer has seen the sequencer
request ID before, it responds with the previously allocated
sequence number and marks it as a retransmit.

Proxy leader failure. When a proxy leader fails, the new
leader must recover the sequence numbers that were allocated
but not yet assigned. The state needed to correctly match allo-
cated but unassigned sequence numbers to operations was lost
with the failed leader, so these are temporary holes. We now
explain how we use sequencer request IDs to recover such
holes. This is the key mechanism for ensuring correctness
when proxies execute only one round of replication.

The new leader collaborates with the sequencer to identify
these temporary holes as follows:

1. The new leader saw a contiguous set of sequencer request
IDs until some ID x, after which it saw noncontiguous IDs
until y. The range from x to y is noncontiguous because
the leader replicates sequence number-operation pairs as
they arrive from the sequencer, which may be out of order.

2. The new leader requests sequence numbers for all IDs from
x+ 1 until y — 1 that were not replicated. The sequencer
will either return already-allocated sequence numbers, or
will allocate new numbers for the IDs.

3. The new leader replicates and assigns all returned sequence
numbers to no-ops and returns them to the service stub.

4. The new leader then resumes normal operation, allocating
sequencer request IDs from y+ 1.

There may be allocated but unassigned sequence numbers
with sequence request IDs greater than y. In such cases, the
sequencer will mark the returned sequence numbers as re-
transmits. The leader replicates and assigns them to no-ops
and retries the request with a new sequencer request ID. If
the sequencer fails concurrently with leader failure, the se-
quencer recovery protocol recovers and assigns no-ops to any

allocated but unassigned sequence numbers (§4.3).

Returning the operation and sequence number to the ser-
vice stub (step 5). Strict serializability dictates that the ser-
vice’s execution protocol cannot use one sequence number
for multiple operations, and different sequence numbers can-
not be used for one operation. MASON must therefore guar-
antee the sequence number associated with an operation
never changes once the service is made aware of it. MASON
thus replicates the sequence number-to-operation assignment
(step 4) before passing the operation to the service stub.

The proxy leader’s other steps in handling a client
operation—passing the operation to the service stub and for-
warding the service’s response to the client (step 7)—can
be safely left unreplicated. Retrying these steps is safe. The
service stub, shards, and clients already provide at-most-once
semantics to handle retransmission due to network drops, so
they will be able to handle retransmission from the proxies.

4.2 Reliable Transport Prevents Holes from
Packet Loss

Holes can occur after network drops (as illustrated in Fig-
ure 2b). MASON handles network drops with a reliable trans-
port layer. Since the state needed to reliably transport multi-
sequence numbers is lost on sequencer failure, MASON uses
a recovery protocol to correctly fill holes with no-ops in case
of simultaneous packet loss and sequencer failure (§4.3). Re-
liable transport and the sequencer recovery protocol ensure
that every allocated multi-sequence number arrives at a proxy.

4.3 Recovering to Prevent Holes from Se-
quencer Failure

Sequencer failure can cause holes if failure occurs before
the reliable transport protocol can retransmit a dropped re-
sponse. For instance, suppose the sequencer allocates and
sends the sequence number 3 for sequence space i and later 4
for the same sequence space i for two client operations, as il-
lustrated in Figure 2c. If the message containing 3 is dropped
and the sequencer fails before retransmission, but a client
receives 4, then 3 is a temporary hole. One solution replicates

the sequencer to permanently associate client requests and
multi-sequence numbers. However, replication compromises
the main benefit of a sequencer: simplified ordering so the
sequencer can devote all its resources to allocating numbers.

MASON instead runs one active sequencer, backed by an
idle standby sequencer and sequencer recovery protocol. If
the active sequencer fails, the standby sequencer takes over
and executes the recovery protocol to correctly fill any tem-
porary holes caused by the failure, ensuring a contiguous
multi-sequence when the standby resumes normal operation.

MASON’s sequencer recovery protocol is based on two ob-
servations. First, the proxies’ collective state includes which
sequence numbers have been assigned, so they collectively
know where potential holes in each sequence space are. MA-
SON assigns these sequence numbers to no-ops. Second, all
outstanding operations are concurrent. An outstanding op-
eration is one that a proxy received (step | in Fig. 1), but
has not yet assigned a sequence number (step 4), and thus
is not ordered. When the standby sequencer resumes normal
operation, it can allocate new multi-sequence numbers for
outstanding operations in any relative order, as long as they
are ordered after the highest previously-assigned sequence
number in each sequence space, which the proxies collectively
know.

The steps in MASON’s sequencer recovery protocol are:

a) Detect sequencer failure and activate a standby sequencer.
b) Identify potential holes in each sequence space.

c¢) Replicate the assignment of no-ops to holes.

d) Resume normal operation with new sequence numbers.

Failure detection and standby sequencer activation. Prox-
ies unreliably detect sequencer failure with timeouts and pings.
If a proxy does not hear from the sequencer after a timeout
(.5 s in our implementation), it pings the sequencer. After an-
other timeout, the proxy declares the sequencer failed and
initiates recovery by activating the standby sequencer. The
standby sequencer informs the other proxies that recovery
has begun. All proxies then replicate a special recovery op-
eration and seal their sequence spaces, rejecting any packets
from the previous sequencer. The new sequencer waits for
all proxies to complete the sealing process before resuming
recovery. Replicating the recovery operation on all proxies
before allowing the standby sequencer to resume recovery
ensures proxies reject all packets from the previous sequencer.
This in turn, ensures there is only one active sequencer at a
time even when proxy leaders fail, sequencer-failure detection
is incorrect, or messages from the previous sequencer were
delayed or reordered in the network.

Identifying potential holes. During normal operation, prox-
ies track their local views of each sequence space. A proxy’s
local view is the subsequence of numbers in each sequence
space that the proxy has assigned to operations. After sealing,
proxies send their local views to the standby sequencer. The

standby sequencer reconstructs each sequence space, expos-
ing any temporary holes. Garbage collection of proxies’ local
views is described at the end of this section.

Assigning temporary holes to no-ops. The standby se-
quencer notifies proxies of any temporary holes in each se-
quence space. Proxies assign these sequence numbers to no-
ops, replicate the assignment, and pass them to the service
stubs, as they would with client-issued operations.

Resuming normal operation. The standby sequencer iden-
tifies the start of each sequence space based on the highest
number in each sequence space compiled from the proxies.
It then notifies proxies to resume normal operation and allo-
cates new sequence numbers from that point. Proxies must
re-request sequence numbers for all outstanding operations.

Concurrent proxy leader failure. If a proxy leader fails
during sequencer recovery, the new leader will have enough
state to correctly participate in recovery. In particular, if the
leader fails before replicating the recovery operation, the se-
quencer will not have started recovery, and all holes normally
recovered as part of leader recovery will be found when the
sequencer is rebuilding the sequence. If the leader fails after
replicating the recovery operation, the new leader will have
the same state as the previous leader when the previous leader
began sequencer recovery.

Garbage-collecting sequence number tracking state.
Proxies run a lightweight garbage collection protocol to dis-
card tracked sequence numbers that are no longer needed for
sequencer recovery. Each sequence space is partitioned into
intervals of size N. When all N sequence numbers in an inter-
val have been assigned to operations, it is safe to discard the
state associated with those sequence numbers. To determine
when all N numbers have been assigned, the proxies form a
communication ring and periodically send an accumulating
count of the sequence numbers assigned in each sequence
space’s latest interval. At the end of a round, if any sequence
space’s count is N, the interval is completely assigned; all
state associated with that interval is discarded.

4.4 Proof Sketch of Strict Serializability

This subsection sketches a proof of the strict serializability of
the assignment of multi-sequence numbers to operations. The
formal proofis in §A. We make the assumptions stated in §3.1.
Our proof reasons about pairs of operations, showing they are
either strictly concurrent, where they do not share sequence
spaces, or strictly ordered, where if a, < b, for some over-
lapping sequence space n, then a,y < b,y for all overlapping
sequence spaces n’, where a,, denotes the sequence number
in sequence space n assigned to operation a.

To show that there exists a total order over all completed op-
erations consistent with the partial ordering of real-time prece-
dence, we exhaustively analyzed all cases of failure scenarios
from no failures to concurrent failure of proxy leaders, proxy
followers, and sequencer. In all cases an operation is assigned

at most one multi-sequence number which occurs if/when
replication to a majority of replicas in a proxy succeeds. The
assigned multi-sequence numbers for all operations that ac-
cess overlapping sequence spaces are then strictly ordered
by either the same sequencer, or by an initial sequencer and
a standby sequencer that recovers all previous assignments
before allocating any new multi-sequence numbers. Thus,
the partial order of assigned multi-sequence numbers strictly
orders all conflicting operations. Further, this partial order
is consistent with real-time precedence either trivially when
two operations are ordered by the same sequencer or because
a standby sequencer only allocates numbers larger than the
maximum previously assigned in each sequence space. Only
strictly concurrent (i.e., no overlapping sequence spaces) oper-
ations are unordered by that partial order, and any ordering of
them results in a valid total order. Extending the partial order
to a total order consistent with real-time precedence is thus
trivial: unordered operations are first ordered by the partial
order of real-time precedence and then remaining unordered
operations are arbitrarily ordered.

5 Supporting Scalable Throughput

A service’s achievable throughput (service throughput) is
capped by the minimum of the rate at which it can execute
requests (execution throughput) and the rate at which it can
order requests (ordering throughput). Execution throughput
scales when more service shards are added if and only if
the service implements a scalable execution protocol. Order-
ing throughput scales only if the ordering component scales.
Previous multi-sequence abstraction designs do not scale.

MASON supports scalable service throughput by removing
the bottlenecks that limit monolithic-sequencer designs and
achieving scalable ordering. This section describes two com-
plementary mechanisms that alleviate all ordering through-
put bottlenecks: horizontally scaling out the proxy layer, and
batching requests to the sequencer.

Potential ordering throughput bottlenecks. MASON has
two components, so there are two potential bottlenecks on
computation: the proxy layer and the sequencer. Each com-
ponent sends and receives network traffic, so there are four
potential bottlenecks on network bandwidth. Our two scaling
mechanisms address all six bottlenecks: scaling out the proxy
layer relieves all bottlenecks at the proxy layer, and batching
relieves all bottlenecks at the sequencer.

The proxy layer scales out. When MASON is bottlenecked
by a proxy layer resource, the proxy layer can scale out. Each
proxy operates essentially independently, so holding all else
constant, doubling the number of proxies doubles the amount
of computation and bandwidth available at the proxies for pro-
cessing client operations, doubling the proxy layer’s achiev-
able throughput.

In truth, proxies are not completely independent; there is
overhead to garbage collect multi-sequence number tracking

state (§4.3). However, the overhead is constant for each proxy
with respect to the number of proxies because of the ring
communication pattern; thus, it does not affect the proxy
layer’s scalability.

In §3-4 we have assumed a static configuration where the
numbers of proxies and shards do not change. MASON compo-
nents can be reconfigured as follows. To add a new proxy, the
new proxy first creates a connection to the sequencer and then
joins the garbage collection ring using standard techniques,
e.g., those used in distributed hash tables [52]. Removing
proxies is more difficult to do safely. For example, if a proxy
is removed and the sequencer fails, the recovery protocol
may not be able to reconstruct a complete view of the used se-
quence numbers (i.e., it will be missing those numbers used by
the removed proxy but which were not yet garbage-collected).
It may attempt to assign those used sequence numbers to no-
ops, which is not safe. Thus, to remove a proxy, the proxy
stops processing client requests, but continues to take part
in garbage collection until all sequence numbers the proxy
received are garbage collected. At this point the proxy can
remove itself from the ring and disconnect from the sequencer.
Waiting until all of its numbers are garbage collected ensures
any used multi-sequence number will not be assigned a no-op.
Alternatively, the proxy could transfer all of its sequence num-
bers to a different proxy, e.g., the next proxy in the garbage
collection ring, and then leave the ring. Reconfiguring the
service’s shards can be achieved through operations internal
to the service and via the service stubs.

Batches are as efficient as single requests. When MASON
is bottlenecked by the sequencer proxies can increase through-
put by batching multi-sequence number requests. This batch-
ing is perfect, holding all else constant, in that a request for
one client operation uses the same resources as a request for
multiple operations.

To request multi-sequence numbers for a batch of client
requests, the proxy constructs a sequencer request which in-
dicates the relevant sequence spaces and how many numbers
are required from each sequence space to order the opera-
tions in the batch and sends a single sequencer request for
the batch. The sequencer allocates the requested count of se-
quence numbers in each sequence space and replies with the
lowest allocated number in each sequence space. Finally, the
proxy iterates through client operations in the order they were
received and gives each operation the next lowest sequence
number in each of its sequence spaces.

MASON alleviates all bottlenecks on the sequencer by in-
creasing the batch size. MASON’s batching is timeout-driven:
all client requests that arrive at a proxy within the timeout
are batched together. By doubling the timeout (hence batch
size) at a given client load, proxies can halve the rate at which
they issue sequencer requests. The sequencer, in turn, would
need half the resources to handle the same client load. The
sequencer can thus handle twice the ordering throughput be-
fore hitting the same bottleneck. Timeout-driven batching is

naturally dynamic: higher client load results in larger batches.

Why not batch at clients? A strawman design for increasing
ordering throughput is to batch requests at clients, which has
two limitations. First, the maximum throughput is limited by
the number of parallel requests a client will individually make.
Second, batching at clients requires waiting until the client
has issued those requests, which can substantially increase
latency. In contrast, MASON’s proxies can batch across any
number of clients, achieving the large batches that allow it to
scale. In general, naively adding only a batching layer to prior
designs does not work, as it introduces new failure modes
(e.g., batching machine failure) that require a comprehensive
service redesign such as that of MASON.

6 Services

This section explains how services can easily use MA-
SON and its contiguous multi-sequence abstraction to scale
service throughput. We describe two services we imple-
mented over MASON: a distributed shared log based on
CORFU [3] and a distributed prototype of the coordination
service ZooKeeper [22].

6.1 Interaction with MASON

A service’s execution protocol consists of (at least) two com-
ponents: shards and service stubs. Shards are implemented
entirely by the service and interact with service stubs and
other service-implemented components. Service stubs are the
mechanism by which services interact with proxies. They de-
termine an operation’s relevant sequence spaces and request
ordering via MASON if necessary, drive the execution protocol
interacting with other service components, and have control
of the operation until informing MASON that the operation
is complete. This is sufficient for the services we implement
here; more complex services may need multi-round sequenc-
ing for some operations, e.g., where the write set depends on
the read set. In that case, MASON could be augmented so that
the stub could request another round of ordering and include
metadata, which MASON replicates and the service can use
to resume execution if the current proxy leader fails.

6.2 Making CORFU Scalable: Corfu-MASON

CORFU is a shared log supporting append and read operations
that consistently execute across shards [3]. Appends write a
value to the current tail of the log. Reads return the value
written to a specified log position. Many applications can
be implemented with shared logs, e.g., producer-consumer
queues and logging [24, 51].

We use MASON to implement Corfu-MASON, a service
based on CORFU. CORFU’s original implementation does
not scale; although CORFU has a scalable execution protocol,
the implementation is limited by the ordering throughput of
its monolithic sequencer [3, 56]. By replacing the sequencer
with MASON, MASON’s scalable ordering combines with

CORFU'’s scalable execution protocol to enable the whole
service to scale.

Corfu-MASON uses CORFU’s scalable execution protocol.
The shared log is represented by a single sequence space.
Appends acquire a sequence number that directly determines
which log position to write. A round-robin mapping of log
position-to-shard ensures append load is uniform on shards,
enabling appends to execute in parallel [3].

Corfu-MASON implements two of CORFU’s three opera-
tions, append (b) and read (/). append (b) appends the entry
b to the log and returns the log position / to which it was writ-
ten. read (/) returns the entry at log position /, or an error
code if the entry does not exist. CORFU implements a third
operation, £i11 (), to fill holes in the sequence (and the log)
caused by failed clients. CORFU clients detect holes in the log
with a timeout and execute £111 (/) to fill the /th position with
junk. The timeout-and-£i11 (/) procedure is unnecessary in
Corfu-MASON because of MASON’s contiguous sequence.

Corfu-MASON’s execution protocol uses sequence num-
bers for appends to determine which log positions to write,
which in turn map to specific shards. In addition to eliminating
the need for £i11 operations, MASON’s contiguous sequence
simplifies reads. If a client attempts to read a log position
that has not been written yet, it can simply keep checking
that log position. The contiguous sequence guarantees that
the entry will eventually be written. reads need not be or-
dered and hence are not ordered or replicated by MASON; the
service stub executes reads immediately. CORFU tolerates
shard failure using client-driven chain replication [55], and
so Corfu-MASON uses service stub-driven chain replication.

Corfu-MASON was implemented in a single day thanks to
both the simplicity of CORFU and the strong abstraction of a
contiguous sequence provided by MASON.

6.3 Making ZooKeeper Scalable: ZK-MASON

ZK-MASON is a ZooKeeper-like coordination service built
on MASON. ZooKeeper [22] is a widely-used coordina-
tion service implemented on ZooKeeper Atomic Broadcast
(ZAB) [25], a version of state machine replication (SMR).
ZAB, like other SMR protocols, cannot scale: it is fundamen-
tally limited by the rate a single machine can execute requests.
Furthermore, ZooKeeper uses a single replicated state ma-
chine to ensure consistency, so an instance cannot be sharded.
We designed ZK-MASON to be scalable, using the cross-shard
consistency and scalable ordering provided by MASON.

ZK-MASON operations. Similar to ZooKeeper, ZK-
MASON maintains a set of znodes. Each znode has a
pathname beginning with “/” (similar to a filesystem) and
data associated with it. We implemented seven operations in
ZK-MASON:

* create (path,data, flags) : creates a znode with pathname
path and data data. flags allows the client to specify a
persistent or ephemeral znode.

* setData (path, data, version): sets the data at path if ver-
sion matches the current version, or if version is —1.

* getData (path, watch) : gets the data at path.

* exists (path, watch): checks if the znode exists.

* delete (path, version): deletes znode specified by path if
version matches the current version, or if version is —1.

* getChildren (path, watch): returns the children of path

The read operations getData, exists, and getChildren
return the znode’s current version. Read operations have a
watch flag, which sets a watch on the znode if the flag is set.
ZK-MASON watches have the same semantics as ZooKeeper
watches. Watches are triggered by updates depending on the
type of read operation and the type of update operation. For
example, a watch set by getChildren is triggered after a
create or delete of a child, but not by any setData on its
children, as that does not change the result of getChildren.
ZK-MASON notifies the client when its watch is triggered.

ZK-MASON execution protocol. ZK-MASON’s execution
protocol is based on Eris’s execution protocol [37]. ZK-
MASON assigns znodes to shards based on a hash of the full
pathname. Shards consist of 2 f + 1 servers; each shard toler-
ates f failures. Each server executes incoming operations in
order of the shard’s sequence space. When a proxy receives a
client operation, the service stub determines which shards are
involved in the operation and requests a multi-sequence num-
ber for the relevant sequence spaces. For example, to execute
a create, the service stub hashes the path and the parent path-
name to get the sequence spaces for those two shards. MASON
acquires and replicates a multi-sequence number with the two
sequence spaces. The service stub sends a create operation
to each server in path’s shard and an addChild operation to
each server in path’s parent’s shard in parallel. When the stub
receives a quorum of f 4 1 responses from each shard, the
operation is complete; the stub informs MASON of comple-
tion, and MASON returns to the client. Read operations, for
example, getData, only need to receive one response from
the shard before returning to the client because they are se-
quenced and do not change state.

Ephemeral znodes. Ephemeral znodes are transient znodes
that exist only during an active client connection. They are
created by a client and deleted by the service when the client
disconnects, either explicitly or due to failure. Ephemeral zn-
odes can be used to add to a distributed queue: if the creating
client fails, the object is removed. They can also help manage
locks: if a client acquires a lock and fails, the lock is released
when the ephemeral object disappears [53]. Implementing
ephemeral znodes in ZK-MASON is straightforward. Shards
keep a timer that is reset with client heartbeats. After timing
out, the shard sends a delete to a proxy to delete the node.
The delete is ordered to prevent divergent shards.

The contiguous multi-sequence abstraction simplifies
ZK-MASON. Implementing this service over a noncontigu-
ous multi-sequence would require consensus to deal with

10

holes. Because a missing sequence number could belong to a
multi-shard operation, e.g., create, the hole-filling consensus
would need to be service-wide to avoid partially executing
the operation on some shards but not others. To handle cases
where aborting a partially-executed operation is impossible,
each full operation would need to be persisted by the service
so it could be recovered by shards that never received it (e.g.,
the full operation could be sent to every relevant shard).

In ZK-MASON, if a shard encounters a gap in its sequence
space, it can wait for the missing operation and each shard
only needs to receive the parts of the operation that will exe-
cute on that shard. The contiguous multi-sequence guarantees
that the operation will be executed.

7 Evaluation

MASON provides two main innovations for building services.
First, it is a general, reusable building block that offers the
contiguous multi-sequence abstraction. This makes it easy to
build efficient implementations of complex services (§6). But,
as with any such abstraction, we expect overheads compared
to specialized implementations. Second, MASON provides
a scalable multi-sequence allowing previously unscalable
services to now scale. This section quantifies the overhead
of MASON'’s general abstraction for two services (§7.2 and
§7.3), shows MASON provides scalable ordering (§7.1), that
its scalable ordering does indeed enable services to scale
(§7.2 and §7.3), and that MASON does provide a contiguous
multi-sequence despite failures (§7.4).

Implementation. MASON is written in C++. All compo-
nents, including clients, service shards, and MASON com-
ponents, communicate with eRPC, a reliable RPC frame-
work [27]. eRPC uses unreliable datagrams in Intel DPDK
(v. 17.11.5) as its transport layer [14]. We replicate prox-
ies with Raft [46], and periodically durably snapshot their
state for Raft log compaction. We do not implement re-
configuration. MASON’s source code is available at https:
//github.com/princeton-sns/mason.

Evaluation setup. We evaluate MASON on the Emulab
testbed [57] with Dell R430 (d430) machines [11]. We run
Ubuntu 18.04.11 with Linux kernel version 4.15.0. The ma-
chines have two hyperthreaded 8-core CPUs (Intel E5-2630
“Haswell”, 2.4 GHz) with 20 MB L3 cache, 64 GB RAM, and
one dual-port 10 GbE PCI-Express NIC (Intel X710).

We load MASON with clients running on separate ma-
chines of the same type. Unless otherwise specified, each
client machine runs 16 threads, each implementing several
logical closed-loop clients that generate new operations as
previous operations complete. We control load by varying the
number of client machines and the number of logical closed-
loop clients per thread. Latency is measured at clients for
each operation. We report the median over five trials of the
median latency over all clients in a trial. We present latency as
median/99th percentile. Throughput is also measured at each

1000 1000

1 Proxy sepe— 1 Proxy sepe—
2 Proxies ==@= 2 Proxies ==@=
g 800 g E:g:::g - g 800 4 Proxies ===
@ 16 Proxies === @
2 600 2 600
g g
§ 400 & 400
3 200 S 200
0 ! 0 !
0O 5 10 15 20 25 30 35 0 5 10 15 20 25

Throughput (Mregs/sec) Throughput (Mregs/sec)

(a) 1 Sequence Space (b) 2 Sequence Spaces

30

1000
800
600
400
200

0

1 Proxy s

2 Proxies ==@=—

4 Proxies ===

8 Proxies ===

16 Proxies ===

Latency (usec)
Latency (usec)

02 4
Throughput (Mregs/sec)

6 8 10 12 14 16 18 20 0

2 4 6 8 10
Throughput (Mregs/sec)

(c) 4 Sequence Spaces (d) 8 Sequence Spaces

Figure 3: MASON ordering throughput-latency; each point represents a given load, doubling the client load from the
previous point. MASON scales linearly with the number of proxies: as the number of proxies doubles, the ordering
throughput also roughly doubles for each sequence space count.

client and aggregated over all clients in a trial. For all scal-
ability experiments we derive the throughput by increasing
load (i.e., the number of logical clients). We report the highest
throughput before latency spikes from overload. We show the
median throughput over five trials. Trials are 68 seconds each;
the first and last 4 seconds of measurements are discarded.
Each proxy is replicated on 3 machines. Experiments in
Sections 7.1 and 7.4 use a stub service with one operation:
clients indicate relevant sequence spaces and the service re-
turns the assigned multi-sequence number to the client.

7.1 MASON Scales Ordering Throughput

MASON uses two mechanisms to scale ordering throughput:
adding more proxies and increasing batching to the sequencer.
The first mechanism, adding more proxies, is evaluated in Fig-
ure 3. Ordering throughput is the number of client operations
per second that receive a multi-sequence number and return
to clients. To stress ordering throughput, the proxies do not
execute operations on behalf of clients in this experiment. We
present latency as median/99th percentile.

Figure 3 shows that, as the number of proxies doubles, the
ordering throughput also roughly doubles for each sequence
space count. As the number of sequence spaces in the system
increases, the per-proxy machine throughput decreases, so
overall ordering throughput with the same number of proxies
is lower. Latency at these throughputs ranges from ~243 (me-
dian)/~380 us (99th percentile) for a single sequence space to
~358/~693 us for 8 sequence spaces. This experiment demon-
strates that adding more proxies enables MASON to scale
ordering throughput.

We are unable to test our second mechanism, increasing
batching to the sequencer, because we cannot saturate the
sequencer with the machines available on Emulab. With 48
proxy machines, the sequencer processes ~3.2 Mops/s, which
is far from the ~14.5 Mops/s possible at line rate. As MASON
scales linearly with increasing proxies, we expect to be able
to achieve over 142 Mops/s before the sequencer becomes the
bottleneck. At that point, we expect to be able to continue
doubling the ordering throughput of MASON by doubling the
number of proxies and doubling the batch sizes. Average batch
size for 48 proxies with one sequence space is ~8 operations.

11

7.2 Making CORFU Scalable

MASON provides scalable ordering that, when coupled with a
scalable execution protocol, enables services to scale. Corfu-
MASON replaces CORFU’s monolithic sequencer with MA-
SON, yielding a scalable distributed shared log (§6.2).

We compare Corfu-MASON with CORFU’, our implemen-
tation of CORFU in the same environment as Corfu-MASON,
using C++ and eRPC over DPDK. CORFU’’s sequencer pro-
cesses requests at ~14.2 Mops/s, nearly line-rate for our mes-
sage size (~14.5 Mops/s). This is a fairer baseline than using
CORFU’s improved sequencer, whose maximum ordering
throughput is ~570 Kops/s [3, 4].

Figure 4a evaluates Corfu-MASON’s scalability. We run
a workload consisting entirely of 64 B appends and increase
the number of Corfu shards. We use 6 (replicated) proxies for
every Corfu shard, keeping the ratio of proxies to Corfu shards
constant. CORFU’ roughly doubles throughput from one to
two Corfu shards before the sequencer saturates and latency
increases; the maximum observed throughput of CORFU’
is ~14.1 Mops/s with latency of ~70 (median)/~90 us (99th
percentile). MASON allows ordering in Corfu-MASON to
scale, enabling service throughput to increase linearly: Corfu-
MASON scales from ~7.3 Mops/s with one Corfu shard to
~29.1 Mops/s with four Corfu shards, an increase of ~3.98x.
Append latency at four Corfu shards is ~200/297 us. The
increase in latency is from extra round trips (clients sending
requests to proxy leaders, which leaders replicate) and proxies
waiting for 20 us to batch requests.

Figure 4b shows the scalability of reads. Clients execute
reads on random log positions in CORFU’ by reading a
shard’s tail replica. Reads in Corfu-MASON are executed
by proxy leaders, which read the tail replica. Reads are not
sequenced in either service, so reads scale the same in both
services. Latency for Corfu-MASON is ~97/~147 us, ~65 us
higher than CORFU”’s ~32/~62 us, from the extra round trip
through the proxy leader.

7.3 Making ZooKeeper Scalable

ZK-MASON is a ZooKeeper-like coordination service [22]
(see Sec. 6.3). ZK-MASON uses a scalable execution protocol
with MASON’s scalable ordering to scale the entire service.

Corfu-Mason 1 Shard ===
Corfu-Mason 2 Shards ==@=
Corfu-Mason 3 Shards ===
Corfu-Mason 4 Shards ===

CORFU' 1 Shard ===
CORFU' 2 Shards ===
CORFU' 3 Shards —@—
CORFU' 4 Shards =——é=—

Corfu-Mason 1 Shard ===
Corfu-Mason 2 Shards ==@=
Corfu-Mason 3 Shards ===
Corfu-Mason 4 Shards ===

CORFU' 1 Shard ==ji=
CORFU' 2 Shards ===
CORFU' 3 Shards —@—
CORFU' 4 Shards =——é—

Operation Med. | 99%
CORFU'’ append 70 90
Corfu-MASON append | 200 297
CORFU’ read 32 62
| | | | | : : : : | | Corfu-MASON read 97 147
0 5 10 15 20 25 30 35 °0c 5 10 15 20 25 30 3 (¢) Latency (us).

Throughput (Mregs/sec)

(a) append throughput-latency

Throughput (Mregs/sec)

(b) read throughput-latency

Figure 4: CORFU’ and Corfu-MASON comparison; each point represents a given load, doubling the client load from
the previous point. Corfu-MASON append throughput scales linearly with more shards while CORFU’ saturates at 2
shards. Corfu-MASON has higher latency in exchange for contiguity and linear scalability.

1200 900
RSM1K§§pedr —_—— 800

9199 sshwis S| 9700
g 800 8 Shards —#— g 600
=~ 600 g 500
2] & 400
% 400 % 300
3 20 520

J 0 1 1
2 3 4 5 6 7 8 0 1 2
Throughput (Mregs/sec)

(a) setData throughput-latency

3

Throughput (Mregs/sec)

) rios Operation (shards) Med. | 99%
i3hace i RSMKeeper set. (1) | 211 | 355
ZK-MASON set. (1) 192 268

ZK-MASON set. (8) 276 518

RSMKeeper get . (1) 209 352

ZK-MASON get. (1) 224 304

. 5 e L ZK-MASONget. (8) | 327 | 699

(c) Latency (us).

(b) getData throughput-latency

Figure 5: RSMKeeper and ZK-MASON comparison; each point represents a given load, doubling the client load from
the previous point. ZK-MASON achieves higher throughput than RSMKeeper with a single shard at comparable latency.
ZK-MASON throughput scales linearly at the cost of a modest increase in latency.

To compare ZK-MASON and ZooKeeper we implemented
RSMKeeper, a prototype of ZooKeeper over Raft [46]. RSM-
Keeper has the same operations as ZK-MASON. Both are
implemented in C++ with eRPC over DPDK [14, 27]; RSM-
Keeper uses a single thread. We note that RSMKeeper has
much higher throughput than the original ZooKeeper imple-
mentation, providing a fairer baseline.

We configured RSMKeeper and ZK-MASON to maximize
service throughput while keeping latency low. RSMKeeper is
loaded by one client machine running 8 threads. ZK-MASON
clients use 16 threads. ZK-MASON uses 2 proxies per shard
and 1 client machine per proxy. Each proxy uses 8 threads
and each ZK-MASON shard uses 1 thread. This is the minimal
setup for a single shard that stresses the shard’s throughput.
We add more ZK-MASON shards, keeping the ratio of clients
and proxies to shards constant. Our ZK-MASON experiments
show the scalability of the contiguous multi-sequence abstrac-
tion when scaling out the number of shards.

Figure 5a shows the throughput-latency of setData opera-
tions. RSMKeeper’s (and ZooKeeper’s) design uses a single
replicated state machine to ensure consistency and thus can-
not run with more than one shard; its maximum throughput
is ~150 Kops/s. With one shard, ZK-MASON has 8.6 the
service throughput of RSMKeeper, at ~1.29 Mops/s while
providing latency in a similar range as shown in Figure 5c.

12

ZK-MASON has lower latency than RSMKeeper in Figure 5c,
~192 us vs ~211 us, because of where we determined over-
load to be for RSMKeeper; we chose a point in the throughput-
latency curve that increased throughput at the cost of some
latency. At lower load and lower throughput settings, RSM-
Keeper has lower latency than ZK-MASON. For example,
RSMKeeper has ~94 us median latency at ~85 Kops/s and ZK-
MASON has ~152 us at ~212 Kops/s. ZK-MASON’s higher
single-shard throughput comes from the proxy layer scaling
with two (replicated) proxies handling client requests for one
ZK-MASON shard. Furthermore, ZK-MASON shards do less
work per setData operation than RSMKeeper. For each op-
eration, RSMKeeper handles operation execution, one round
of client-to-leader communication, two rounds of leader-to-
follower communication, and snapshotting Raft state and log
compaction to disk. On the other hand, MASON frees the ZK-
MASON shard from handling tasks related to ordering and
consensus. The shard only handles execution and one round
of proxy-to-shard communication. With more resources de-
voted to execution, one ZK-MASON shard has a higher max-
imum throughput than RSMKeeper. More importantly, ZK-
MASON is able to scale throughput by increasing the number
of shards and proxies: with eight shards its throughput scales
to ~7.1 Mops/s.

Figure 5b shows the throughput-latency of getData op-

50

o= 40

0 E 30

< S

o2 20

Ta 10
O 1 1 1]
0 5 10 15 20 25 30

Time (s)

Figure 6: Highest contiguous multi-sequence number re-
ceived across all clients at time #. We induce proxy leader
failure at 10 s and sequencer failure at 20s.

erations. We configured RSMKeeper to replicate getData
operations to provide the same consistency as ZooKeeper’s
sync-getData construction and ZK-MASON’s getData op-
eration. RSMKeeper’s maximum throughput is ~150 Kops/s
with latency ~209 (median)/~352 us (99th percentile). ZK-
MASON’s getData throughput scales from ~1.1 Mops/s with
one shard to ~6 Mops/s with eight shards. Latencies in those
runs range from ~224/~304 us (one shard) to ~327/~699 us
(eight shards). getData operations have slightly higher la-
tency than setData operations because proxies need to wait
for a response from a ZK-MASON replica which must execute
all operations ordered before the getData before returning
to the client, while setData can be executed on ZK-MASON
shards asynchronously.

7.4 MASON Provides a Contiguous Sequence

This experiment validates that MASON provides a contiguous
sequence despite component failures. We run MASON with
16 proxies. Each proxy machine hosts either 8 leaders or 8
followers in 8 different proxies for a total of 6 proxy machines
(2 leader machines and 4 follower machines). Load is gen-
erated by 4 client machines. Clients request one sequence
number from each of 4 sequence spaces. We inject proxy and
sequencer failure; network drops occur naturally.

Figure 6 shows the highest contiguous sequence number
successfully received by a client over time for each of 4 se-
quence spaces. That is, if Figure 6 indicates that at time x the
highest contiguous sequence number from a sequence space
is y, then each sequence number up to and including y in that
space was received by some client. We ran the experiment
with 4 sequence spaces and plotted the highest contiguous se-
quence number for each sequence space. Since clients request
one number from every sequence space, they advance at the
same rate and thus all four lines overlap.

We first kill a proxy machine hosting 8 proxy leaders 10s
into the experiment. The 8 recovering proxies stop processing
client operations and may have uncompleted operations. The
flat region in the plot indicates where the sequence increase
is blocked by uncompleted operations. Once failover is com-
plete, the new leaders respond to pending client operations.
The plot spikes as gaps in the sequence are filled in and oper-
ations serviced by the two non-failing proxies are accounted

13

for. Proxy failure detection and failover take 3.06 s, including
1 s-2 s for the failure detection timeout, set randomly by Raft.
We kill the sequencer 20s into the experiment. A proxy
times out 1 s later and begins the recovery protocol. Failure
detection and recovery take 2.38 s—the plot’s 2nd flat region—
and then the contiguous multi-sequence continues to grow.

8 Limitations

Resource Cost. MASON provides a contiguous, scalable
multi-sequence using replicated proxies. This ability to scale
adds overhead compared to non-scalable designs in opera-
tional settings that do not demand more throughput than the
latter can support. For instance, when CORFU’ saturates its
sequencer at 2 Corfu shards, Corfu-MASON uses 36 proxy
machines (12 proxy groups). Proxies process more RPCs
than Corfu shards, so Corfu-MASON needs more proxies than
shards to saturate the shards. The resource overhead (number
of machines) is thus 600% to saturate two Corfu shards with
Corfu-MASON (42 total machines including a standby for
Corfu-MASON and 6 including a standby for CORFU). As
another example, the overhead for the single-shard setup for
ZK-MASON is 266% (8 total machines including a standby
for ZK-MASON and 3 total machines for RSMKeeper).

However, MASON’s scalability means it can be used to
provide throughput beyond what can be achieved with non-
scalable designs. We evaluated up to a 206% throughput in-
crease for Corfu-MASON over CORFU”’s maximum through-
put and expect throughput to continue scaling. We evaluated
up to a 4733% throughput increase for ZK-MASON over
RSMKeeper’s maximum throughput and expect throughput to
continue scaling.

Thus, a practical deployment strategy could be to initially
deploy the service in a small one proxy setup and to colocate
the service’s processes on the machines used for the proxy. As
throughput demands increase, the service could then add more
proxy groups and eventually split proxies and the service’s
processes into different machines to scale them independently.
This strategy may add some operational overhead from chang-
ing configurations but would enable a service to pay a lower
cost for an initial setup.

Performance predictability. The intermediate components
between clients and the service can make the performance of
the system as a whole less predictable because tail latencies at
each hop can accumulate. Furthermore, MASON’s additional
components may complicate performance debugging since
more components will need to be inspected.

9 Related Work

This section explains MASON’s relationship to the five cat-
egories of related work it builds upon. At a high level, the
primary distinction of MASON is that it provides strict se-
rializability, unlike atomic multicast; it is scalable, unlike
state machine replication and fast ordering systems; it pro-
vides multiple sequence spaces, unlike shared logs; and its

abstraction enables more efficient, specialized service imple-
mentations than distributed databases.

Atomic multicast. Atomic multicast guarantees messages
are delivered reliably and satisfying a total order to one or
more groups of processes [8, 17, 18, 20]. Unlike the order
given by a contiguous multi-sequence, the total order given by
atomic multicast is not strictly serializable. Atomic multicast
is thus used directly in systems to provide weaker consistency
guarantees [39]. It may also be augmented to provide stronger
consistency [6, 34].

State machine replication. There is a large body of work on
state machine replication (SMR) implemented with consen-
sus [1, 12, 15, 19, 23, 25, 28, 30-33, 40, 41, 44-46, 50, 58],
which provides two properties MASON aims for: a contiguous
sequence via SMR’s log and fault tolerance via consensus.
These protocols have a fundamental throughput ceiling, the
rate a single machine can execute commands in order.

Compartmentalization is a technique to scale state machine
replication [58]. Compartmentalization “involves decoupling
individual bottlenecks into distinct components and scaling
these components independently”. How MASON scales order-
ing can be viewed as compartmentalization: ordering, handing
out multi-sequence numbers, is explicitly separated from exe-
cution, and scaled via the proxy layer and batching.

In the compartmentalized version of Multi-Paxos, a batch-
ing layer batches client requests before sending them to the
leader which orders batches in the log [58]. This technique
scales ordering, but is still limited to the rate a single machine
can execute commands in order, and does not easily extend to
the contiguous multi-sequencing abstraction.

Distributed shared logs. CORFU uses a monolithic se-
quencer to find the tail of a distributed shared log [3]. It cannot
scale beyond the throughput of the sequencer. MASON can
provide a contiguous sequence to a CORFU service while
scaling beyond the throughput of a monolithic sequencer, but
MASON requires more resources and has higher latency.
Delos [5] unifies separate shared log or storage instances
into a single virtualized shared log. It inherits the scalability
limitations of its underlying systems. Scalog [13] is a dis-
tributed shared log that uses a replicated ordering mechanism
to reliably totally order records in a log. Scalog increases the
write throughput ceiling compared to CORFU by two orders
of magnitude. It increases ordering throughput using a similar
technique as MASON’s proxies which batch requests across
clients: storage servers collect and periodically order multiple
operations at once using tiered aggregators “that relay order-
ing information” from the layer below it up to a replicated
sequencer. Scalog and MASON both guarantee that services al-
ways see a contiguous sequence of operations, unlike CORFU.
Scalog’s mechanism for guaranteeing contiguity is similar
to MASON'’s, i.e., both replicate client operations before exe-
cuting them. Scalog also replicates its sequencer. However,
Scalog cannot be easily extended to multi-sequencing: Scalog

14

orders operations using a summary of operations that arrive
at individual shards. Scalog’s resource overhead is lower than
MASON for services where replicating an operation is the
same as executing the operation (e.g., a shared log). In such
services, Scalog replicates the operation on servers for con-
tiguity, which serves to execute the operation as well. The
same service over MASON must replicate the operation twice,
as separate steps on distinct components: the proxy layer
replicates the operation for contiguity, and execution is car-
ried out by storing the operation on service servers. For other
services where executing the operation is more than just stor-
ing its input, for example in ZK-MASON, Scalog’s technique
of replicating for contiguity would need to be accompanied
by a separate step of executing the operation. MASON’s and
Scalog’s overheads are thus similar for such services.

ChronoLog [29] uses physical time to order records by ac-
counting for skew among distributed components. It reports
an order of magnitude higher throughput than CORFU. Like
Scalog, Delos and ChronoLog cannot be easily extended to
multi-sequencing: both lack mechanisms to atomically ap-
pend to multiple logs. Thus, they cannot easily be modified
to support strictly serializable cross-shard operations.

Chariots [43] scales by delegating the ordering of disjoint
ranges of a shared log to independent servers, providing only
causal consistency [38]. FuzzyLog partially orders records in
exchange for better performance [39]. MASON provides the
stronger guarantee of strict serializability.

Fast ordering systems. State-of-the-art networks or network
appliances can support high-throughput, low-latency sequenc-
ing [26, 36, 37]. Unlike MASON, these sequencers cannot
scale, do not provide a contiguous sequence, and are not fault-
tolerant. However, such sequencers can provide sequencing
with much lower latency than MASON.

Kronos provides high-throughput happens-before order-
ing; services totally order operations [16]. Mostly-ordered
multicast uses datacenter network properties to provide con-
sistent multicasting except during network failures or packet
loss [50]. Reliable 1Pipe, 1Pipe’s strongest abstraction, pro-
vides ordered communication to receiver groups where mes-
sages eventually arrive absent failures and partitions [35].
Services detect and handle lost messages with consensus,
much like services using noncontiguous multi-sequences. In
contrast to these systems, MASON provides the stronger ab-
straction of a strictly serializable, contiguous sequence.

Distributed databases. FoundationDB uses a single se-
quence space with batching to scalably implement commit
timestamps [60], but does not provide contiguity or multi-
sequencing. Granola uses clock-based timestamps on clients
(through “client proxies” which are similar to our service stubs
in that they exist on the clients (proxies) to execute Granola
(service) code) and servers and coordination among shards
to determine a global transaction order [10]; the clock-based
timestamps do not provide contiguity or multi-sequencing.
Calvin uses a sequencing layer distributed across all servers in

the system [54]. The sequencing layer synchronously batches
operations, exchanges them among replicas, then exchanges
them among all servers in its copy of the database. Dis-
tributing the sequencer across servers and using large syn-
chronous batches enables the sequencer to be more scalable
than a single machine sequencer. However, as more shards
are added, the all-to-all communication within a copy of
the database will become a bottleneck, halting scalability.
Eris [37], Calvin [54], vCorfu [56], Tango [4], and other dis-
tributed databases [2, 42, 49, 51, 59, 60] provide a higher-
level abstraction than MASON. It is harder for services to build
efficient, specialized implementations over the distributed
database abstraction compared to the multi-sequence abstrac-
tion. For instance, ephemeral znodes (§6.3) do not fit the
traditional distributed database model; a service developer
would implement a new replicated component to manage
client connections and explicitly delete the znode at connec-
tion termination. In contrast, implementing ephemeral znodes
in ZK-MASON was straightforward.

The multi-leader approach to system design, as used in,
for example, Spanner [9], uses a replica designated as the
leader for each shard. A shard leader coordinates with repli-
cas in its own shard and with leaders in other shards for
operations that span multiple shards. For example, the service
must implement consensus to order operations within a shard,
perhaps via state-machine replication, and concurrency con-
trol, like optimistic concurrency control or two-phase locking
with two-phase commit, to order operations across shards.
Thus, multi-leader services are more difficult to implement
than services using the multi-sequence abstraction, which
orders operations within a shard by assigning a sequence
space to a shard and across shards by atomically allocating a
multi-sequence number. Therefore, services built on the multi-
sequence abstraction do not need to implement coordination
across shards for ordering; they only need to implement the
service semantics.

MASON’s contiguous multi-sequence abstraction is an ex-
cellent candidate for implementing distributed databases. Its
contiguity would eliminate significant complexity in ported
implementations of Eris and vCorfu. Similarly, its contiguity
would greatly simplify developing new multi-sequence-based
distributed databases. Its scalable multi-sequence would en-
able Eris, vCorfu, and future databases to scale far higher than
the throughput ceiling of monolithic sequencers. This is an
important avenue for future work.

10 Conclusion

The multi-sequence abstraction extends the sequence abstrac-
tion to enable consistent ordering across shards with only
local ordering information. This paper proposed the con-
tiguous multi-sequence abstraction for building consistent
services. It is a stronger abstraction than the noncontiguous
multi-sequence abstraction in use today, making it easier to
build services with multi-sequences. We also presented M A-

15

SON, the first system to expose the contiguous multi-sequence
abstraction and the first to provide a scalable multi-sequence.
We demonstrated MASON’s usefulness as a building block for
scalable, consistent services by using it to enable scalability in
two services that were previously fundamentally unscalable.

Acknowledgements. We thank the anonymous JSys review-
ers for their feedback. We are grateful to Mohsin Ali, who
contributed to early stages of this work. We thank Jeffrey Helt,
Khiem Ngo, Zhenyu Song, Jennifer Lam, and Anja Kalaba
for their help improving this work. Our experimental results
were made possible by the Emulab testbed [57]. This mate-
rial is based upon work supported by the National Science
Foundation under Grant Nos. CNS-1910390, CNS-1564242,
and CNS-1835253. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of the
National Science Foundation.

References

[1] R. C. Aksoy and M. Kapritsos. Aegean: replication
beyond the client-server model. In Proceedings of the
27th ACM Symposium on Operating Systems Principles
(SOSP’19), Huntsville, ON, Canada, 2019. ACM. URL
https://doi.org/10.1145/3341301.3359663.

P. Antonopoulos, A. Budovski, C. Diaconu, A. Her-
nandez Saenz, J. Hu, H. Kodavalla, D. Kossmann,
S. Lingam, U. F. Minhas, N. Prakash, V. Purohit, H. Qu,
C. Sreenivas Ravella, K. Reisteter, S. Shrotri, D. Tang,
and V. Wakade. Socrates: the new SQL server in the
cloud. In Proceedings of the 2019 International Con-
ference on Management of Data (SIGMOD’19), Ams-
terdam, The Netherlands, 2019. Association for Com-
puting Machinery (ACM). URL https://doi.org/
10.1145/3299869.3314047.

M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber,
M. Wei, and J. D. Davis. Corfu: A shared log design for
flash clusters. In Proceedings of the 9th USENIX Sympo-
sium on Networked Systems Design and Implementation
(NSDI’12), San Jose, CA, USA, 2012. USENIX Associ-
ation.

M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-
hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and
A. Zuck. Tango: Distributed data structures over a
shared log. In Proceedings of the 24th ACM Symposium
on Operating Systems Principles (SOSP’13), Farming-
ton, PA, USA, 2013. Association for Computing Ma-
chinery (ACM). URL https://doi.org/10.1145/
2517349.2522732.

M. Balakrishnan, J. Flinn, C. Shen, M. Dharamshi,
A. Jafri, X. Shi, S. Ghosh, H. Hassan, A. Sagar, R. Shi,
et al. Virtual Consensus in Delos. In 74th USENIX Sym-

posium on Operating Systems Design and Implementa-
tion (OSDI’20), Online, 2020. USENIX Association.

(2]

(3]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

C. E. Bezerra, F. Pedone, and R. Van Renesse. Scal-
able State-Machine Replication. In Proceedings of
the 9th European Conference on Computer Systems
(EuroSys’14), Amsterdam, The Netherlands, 2014. As-
sociation for Computing Machinery (ACM). URL
https://doi.org/10.1109/DSN.2014.41.

T. D. Chandra, R. Griesemer, and J. Redstone. Paxos
made live: an engineering perspective. In Proceedings
of the 26th ACM SIGACT-SIGOPS Symposium on Prin-
ciples of Distributed Computing (PODC’07), Portland,
OR, USA, 2007. Association for Computing Machinery
(ACM). URL https://doi.org/10.1145/1281100.
1281103.

P. R. Coelho, N. Schiper, and F. Pedone. Fast atomic
multicast. In Proceedings of the 2017 47th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN’17), Denver, CO, USA,
2017. IEEE. URL https://doi.org/10.1109/DSN.
2017.15.

J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,
P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,
A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,
R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,
R. Wang, and D. Woodford. = Spanner: Google’s
Globally-Distributed database. In 10th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI 12), pages 261-264, Hollywood, CA, Oct. 2012.
USENIX Association. ISBN 978-1-931971-96-6. URL
https://www.usenix.org/conference/osdil2/
technical-sessions/presentation/corbett.

J. A. Cowling and B. Liskov. Granola: Low-overhead
distributed transaction coordination. In USENIX Annual
Technical Conference, volume 12, 2012. URL https:
//doi.org/10.5555/2342821.2342842.

D430. D430. https://wiki.emulab.net/wiki/
d430, 2021. Accessed: 12-10-2021.

H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and
R. Soulé. Netpaxos: Consensus at network speed. In
Proceedings of the 1st ACM SIGCOMM Symposium
on Software Defined Networking Research (SOSR’15),
Santa Clara, CA, USA, 2015. Association for Comput-

ing Machinery (ACM). URL https://doi.org/10.

1145/2774993.2774999.

C. Ding, D. Chu, E. Zhao, X. Li, L. Alvisi, and R. van
Renesse. Scalog: Seamless Reconfiguration and Total
Order in a Scalable Shared Log. In Proceedings of the
17th USENIX Conference on Networked Systems Design
and Implementation (NSDI’20), Santa Clara, CA, USA,
2020. USENIX Association.

DPDK Project. DPDK. https://dpdk.org, 2021.
Accessed: 12-10-2021.

16

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

V. Enes, C. Baquero, T. F. Rezende, A. Gotsman, M. Per-
rin, and P. Sutra. State-machine replication for planet-
scale systems. In Proceedings of the 15th European Con-
ference on Computer Systems (EuroSys’20), Heraklion,
Greece, 2020. Association for Computing Machinery
(ACM). URL https://doi.org/10.1145/3342195.
3387543.

R. Escriva, A. Dubey, B. Wong, and E. G. Sirer. Kronos:
The design and implementation of an event ordering
service. In Proceedings of the 9th European Confer-
ence on Computer Systems (EuroSys’14), Amsterdam,
The Netherlands, 2014. Association for Computing Ma-
chinery (ACM). URL https://doi.org/10.1145/
2592798.2592822.

A. Gotsman, A. Lefort, and G. Chockler. White-box
atomic multicast. In Proceedings of the 2019 49th An-
nual IEEE/IFIP International Conference on Depend-
able Systems and Networks (DSN’19), Portland, OR,
USA, 2019. IEEE. URL https://doi.org/10.1109/
dsn.2019.00030.

R. Guerraoui and A. Schiper. Genuine atomic multicast
in asynchronous distributed systems. Theoretical Com-
puter Science, 254(1-2):297-316, 2001. URL https:
//doi.org/10.1016/50304-3975(99)00161-9.

Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and
L. Zhuang. Rex: Replication at the speed of multi-
core. In Proceedings of the 9th European Confer-
ence on Computer Systems (EuroSys’14), Amsterdam,
The Netherlands, 2014. Association for Computing Ma-
chinery (ACM). URL https://doi.org/10.1145/
2592798.2592800.

V. Hadzilacos and S. Toueg. A modular approach to
fault-tolerant broadcasts and related problems. Techni-
cal report, Cornell University, 1994.

M. P. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems
(TOPLAS), 12(3), 1990. URL https://doi.org/10.
1145/78969.78972.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.
ZooKeeper: Wait-free Coordination for Internet-scale
Systems. In Proceedings of the 2010 USENIX Annual
Technical Conference (USENIX ATC’10), Boston, MA,
USA, 2010. USENIX Association.

Z. Istvan, D. Sidler, G. Alonso, and M. Vukolic. Con-
sensus in a Box: Inexpensive Coordination in Hardware.
In Proceedings of the 13th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI’16),
Santa Clara, CA, USA, 2016. USENIX Association.

Z. Jia and E. Witchel. Boki: Stateful Serverless Comput-
ing with Shared Logs. In Proceedings of the 28th ACM
Symposium on Operating Systems Principles (SOSP’21),

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Online, 2021. Association for Computing Machinery
(ACM). URL https://doi.org/10.1145/3477132.
3483541.

F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-
performance broadcast for primary-backup systems. In
Proceedings of the 2011 41st Annual IEEE/IFIP Inter-
national Conference on Dependable Systems and Net-
works (DSN’11), Hong Kong, China, 2011. IEEE. URL
https://doi.org/10.1109/DSN.2011.5958223.

A. Kalia, M. Kaminsky, and D. G. Andersen. Design
guidelines for high performance RDMA systems. In
Proceedings of the 2016 USENIX Annual Technical Con-
ference (USENIX ATC’16), Denver, CO, USA, 2016.
USENIX Association. URL https://doi.org/10.
5555/3026959.3027000.

A. Kalia, M. Kaminsky, and D. G. Andersen. Datacenter
RPCs can be general and fast. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and
Implementation (NSDI’19), Boston, MA, USA, 2019.
USENIX Association.

M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi,
and M. Dahlin. All about Eve: Execute-Verify Repli-
cation for Multi-Core Servers. In Proceedings of the
10th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’12), Hollywood, CA, USA,
2012. USENIX Association.

A. Kougkas, H. Devarajan, K. Bateman, J. Cernuda,
N. Rajesh, and X.-H. Sun. ChronoLog: A Distributed
Shared Tiered Log Store with Time-based Data Order-
ing. In Proceedings of the 36th International Conference
on Massive Storage Systems and Technology (MSST’20),
Santa Clara, CA, USA, 2020. IEEE.

L. Lamport. The part-time parliament. ACM Transac-
tions on Computer Systems (TOCS), 16(2), 1998.

L. Lamport. Generalized consensus and Paxos. Techni-
cal Report MSR-TR-2005-33, 2005.

L. Lamport. Fast Paxos. Distributed Comput-
ing, 19(2), 2006. URL https://doi.org/10.1007/
s00446-006-0005-x.

L. Lamport, D. Malkhi, and L. Zhou. Vertical Paxos
and Primary-Backup Replication. In Proceedings of the
28th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (PODC’09), Calgary, Alberta,
Canada, 2009. Association for Computing Machinery

(ACM). URL https://doi.org/10.1145/1582716.

1582783.

L. H. Le, E. Fynn, M. Eslahi-Kelorazi, R. Soulé, and
F. Pedone. Dynastar: Optimized dynamic partitioning
for scalable state machine replication. In 2019 IEEE
39th International Conference on Distributed Comput-
ing Systems (ICDCS’19), Dallas, TX, USA, 2019. IEEE.

B. Li, G. Zuo, W. Bai, and L. Zhang. 1Pipe: Scal-

17

(36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

able Total Order Communication In Data Center Net-
works. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference (SIGCOMM’21), Online, 2021. As-
sociation for Computing Machinery (ACM). URL
https://doi.org/10.1145/3452296.34729009.

J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.
Ports. Just Say NO to Paxos Overhead: Replacing Con-
sensus with Network Ordering. In Proceedings of the
12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI’16), Savannah, GA, USA,
2016. USENIX Association.

J. Li, E. Michael, and D. R. Ports. Eris: Coordination-
Free Consistent Transactions Using In-Network Concur-
rency Control. In Proceedings of the 26th ACM Sym-
posium on Operating Systems Principles (SOSP’17),
Shanghai, China, 2017. Association for Computing Ma-
chinery (ACM). URL https://doi.org/10.1145/
3132747.3132751.

W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.
Andersen. Don’t settle for eventual: Scalable causal
consistency for wide-area storage with COPS. In Pro-
ceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP’11), Cascais, Portugal, 2011.
Association for Computing Machinery (ACM). URL
https://doi.org/10.1145/2043556.2043593.

J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaran, D. J.
Abadi, J. Aspnes, S. Sen, and M. Balakrishnan. The
FuzzylLog: a partially ordered shared log. In Proceed-
ings of the 13th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI’18), Carlsbad,
CA, USA, 2018. USENIX Association.

Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:
building efficient replicated state machines for WANS.
In Proceedings of the 8th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’08),
San Diego, CA, USA, 2008. USENIX Association.

I. Moraru, D. G. Andersen, and M. Kaminsky. There
Is More Consensus in Egalitarian Parliaments. In Pro-
ceedings of the 24th ACM Symposium on Operating Sys-
tems Principles (SOSP’13), Farmington, PA, USA, 2013.
Association for Computing Machinery (ACM). URL
https://doi.org/10.1145/2517349.2517350.

S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating
Concurrency Control and Consensus for Commits under
Conflicts. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation
(OSDI’16), Savannah, GA, USA, 2016. USENIX Asso-
ciation.

F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi. Char-
iots: A scalable shared log for data management in multi-
datacenter cloud environments. In Proceedings of the
18th International Conference on Extending Database
Technology (EDBT’15), Brussels, Belgium, 2015. Open-

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

Proceedings.org.

K. Ngo, S. Sen, and W. Lloyd. Tolerating slowdowns
in replicated state machines using copilots. In /4th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’20), Online, 2020. USENIX As-
sociation.

B. M. Oki and B. H. Liskov. Viewstamped Replica-
tion: A New Primary Copy Method to Support Highly-
Available Distributed Systems. In Proceedings of
the Seventh Annual ACM Symposium on Principles
of Distributed Computing (PODC’88), Toronto, On-
tario, Canada, 1988. Association for Computing Ma-
chinery (ACM). URL https://doi.org/10.1145/
62546.625409.

D. Ongaro and J. K. Ousterhout. In search of an under-
standable consensus algorithm. In Proceedings of the
2014 USENIX Annual Technical Conference (USENIX
ATC’14), Philadelphia, PA, USA, 2014. USENIX Asso-
ciation.

H. Pan, J. Tuglu, N. Zhou, T. Wang, Y. Shen, X. Zheng,
J. Tassarotti, L. Tseng, and R. Palmieri. Rabia: Simplify-
ing State-Machine Replication Through Randomization.
In Proceedings of the 28th ACM Symposium on Op-
erating Systems Principles (SOSP’21), Online, 2021.
Association for Computing Machinery (ACM). URL
https://doi.org/10.1145/3477132.3483582.

C. H. Papadimitriou. The serializability of concurrent
database updates. Journal of the ACM (JACM), 26
(4), 1979. URL https://doi.org/10.1145/322154.
322158.

D. Peng and F. Dabek. Large-scale Incremental Process-
ing Using Distributed Transactions and Notifications. In
Proceedings of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’10),
Vancouver, BC, Canada, 2010. USENIX Association.
D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Kr-
ishnamurthy. Designing Distributed Systems Using
Approximate Synchrony in Data Center Networks. In
Proceedings of the 12th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI’15),
Oakland, CA, USA, 2015. USENIX Association.

K. Ren, D. Li, and D. J. Abadi. SLOG: serializable,
low-latency, geo-replicated transactions. Proceedings
of the VLDB Endowment, 12(11), 2019. URL https:
//doi.org/10.14778/3342263.3342647.

I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-Peer
Lookup Service for Internet Applications. In Proceed-
ings of the 2001 Conference on Applications, Technolo-
gies, Architectures, and Protocols for Computer Commu-
nications (SIGCOMM’01), San Diego, CA, USA, 2001.
Association for Computing Machinery (ACM). URL

18

(53]

[54]

[55]

[56]

[57]

(58]

[59]

(60]

https://doi.org/10.1145/383059.383071.

The Apache Software Foundation. ZooKeeper Recipes
and Solutions. https://zookeeper.apache.org/
doc/current/recipes.html, 2021. Accessed: 12-10-
2021.

A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,
and D. J. Abadi. Calvin: Fast Distributed Transac-
tions for Partitioned Database Systems. In Proceed-
ings of the 2012 ACM SIGMOD International Confer-
ence on Management of Data (SIGMOD’12), Scottsdale,
AZ, USA, 2012. Association for Computing Machinery
(ACM). URL https://doi.org/10.1145/2213836.
2213838.

R. Van Renesse and F. B. Schneider. Chain Replication
for Supporting High Throughput and Availability. In
Proceedings of the 6th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI’04),
San Francisco, CA, USA, 2004. USENIX Association.
M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Mun-
shed, M. Dhawan, J. Stabile, U. Wieder, S. Fritchie,
S. Swanson, et al. vCorfu: A Cloud-Scale Object
Store on a Shared Log. In Proceedings of the 14th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI’17), Boston, MA, USA, 2017.
USENIX Association.

B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integrated Experimental Environment for Distributed
Systems and Networks. In Proceedings of the 5th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI’02), Barcelona, Catalonia-Spain,
2002. USENIX Association. URL https://doi.org/
10.1145/1060289.1060313.

M. Whittaker, A. Ailijiang, A. Charapko, M. Demirbas,
N. Giridharan, J. M. Hellerstein, H. Howard, 1. Stoica,
and A. Szekeres. Scaling replicated state machines
with compartmentalization. Proceedings of the VLDB
Endowment, 14(11):2203-2215, 2021. URL https:
//doi.org/10.14778/3476249.3476273.

I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,
and D. R. Ports. Building Consistent Transactions
with Inconsistent Replication. ACM Transactions on
Computer Systems (TOCS), 35(4), 2018. URL https:
//doi.org/10.1145/2815400.2815404.

J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller,
E. Tschannen, S. Atherton, A. J. Beamon, R. Sears,
J. Leach, et al. Foundationdb: A distributed unbun-
dled transactional key value store. In Proceedings of the
2021 International Conference on Management of Data,
pages 2653-2666, 2021. URL https://doi.org/10.
1145/3448016.3457559.

Algorithm 1: Sequencer Protocol

Algorithm 2: Proxy State and Request Protocol

1.5

2 atMostOncell;
the response

activeSequencer < False;

4 when the sequencer receives a message m, from proxy p
do

5 case m = RequestSeqNum(seqReqld, {count,'}l‘ilo)

// Set of sequence spaces
// Map of (proxy, seqRegld) to

w

do
6 if —activeSequencer then
7 L return null;
8 if (p,seqReqld) € atMostOnce then
9 | return atMostOnce|(p, seqReqld)], True;
10 resp < {0}1.“30;
1 for i € {0,...,|5|} do
12 if count; # 0 then

resp; < Si;

Si < S + count;;,

13
14

15
16

atMostOnce[(proxyld, seqReqld)] < resp;
return resp, False;

17 case m = Recover do

18 for each proxy do
19 L send GetMaxAndSeal to each proxy
20 wait for all proxies to reply
// Portion of recovery for contiguity
is omitted.
21 foric {0,...,]S|} do
22 Si +— max S; in response + 1;
resp()m‘eEresp()nsex
23 activeSequence <— True;

A Proof of Strict Serializability

This presents a proof of the strict serializability of assignment
of multi-sequence numbers to operations.

A.1 Definitions

Strict serializability requires that there exists a legal total order
of operations and that the total order reflects the real-time
ordering constraints. Formally: A complete history h satisfies
linearizability if there exists a legal total order t of ops(h)
such that Yopi,0ps € ops(h).op1 <, ops = op1 <g opa.

That is, if an operation x ends before an operation y begins
then x must appear before y in the total order.

Let S = {%,51,...} be the set of all sequence spaces. We
say that two multi-sequence numbers a and b conflict if 3n € S
such that a, # AA b, # A. Multi-sequence numbers are or-
dered by the partial ordering T over all multi-sequence num-
bers where a < b <= Vn € S,a, #ANb, #A = a, < by,.

Note that this partial ordering includes the possibility of

19

1 curSeqReqld < 0;

2 maxCmtdSeqReqld <— —1; // updated in ApplyLog
locally

3 cmtdSeqReqlds]|;
SeqReqlds

4 maxRecvdSeqNum([]; ~ // max received sequence
number for each sequence space

5 sequencers]); // array of sequencers

6 activelndex + 0; // index of the active
sequencer

7 when proxy p receives a message m do

// holds all committed

8 case m = ClientRequest(op) do
9 retx < True;

10 seqReqld <— curSeqReqld,

11 curSeqReqld < curSeqReqld + 1,

12 activeSequencer < sequencers|activelndex];

13 nextSequencer < sequencerslactivelndex + 1];

14 while retx do

15 send (resp, retx) +
seqgnumReq(myProxyld,seqReqld,op.seqReq)
to activeSequencer;

16 wait for response or suspect
activeSequencer has failed;

17 if suspect activeSequencer has failed then

18 L send Recover to nextSequencer

19 wait for response from activeSequencer;

20 if sequencers|activelndex] #
activeSequencer then

21 | return

22 if retx then

23 executeNoop(resp);

24 seqReqld < curSeqReqld,;

25 curSeqReqld < curSeqReqgld + 1,

26 replicate(seqReqld, resp);

27 wait for commit;

28 updateMaxRecvdSeqNum(resp);

29 execute(op); // Determined by service.

30 return to op.client;

31 case m = GetMaxAndSeal do

32 activelndex < activelndex +1;

33 replicate(seal); // contains activeIndex

34 wait for commit;

35 return maxRecvdSeqNum;

conflicting multi-sequence numbers not being ordered: i.e.
where a; < b Abj < aj for some i, j € S = al|b.

The goal of MASON is to provide an ordering for a service
built on MASON. Thus, we prove that the partial ordering T
produced by MASON is a legal total order satisfying lineariz-

Algorithm 3: Proxy Leader Failover Recovery Protocol

1 when proxy replica gains Raft leadership do
2 UncmtdSeqReqlds < {i.i€ ZNi <
maxCmtdSeqReqld};

3 UncmtdSeqReqlds <
UncmtdSeqReqlds \ cmtdSeqReqlds;

4 for seqReqld € UncmtdSeqReqlds do

5 send (resp, retx) <
seqnumReq(myProxyld, seqReqld,0);

6 wait for response;

7 if retx then

8 L executeNoop(resp);

9 | curSeqReqld <— maxCmidSeqReqld + 1;

ability. It is then up to the service to apply the operations in
the order determined by 7.

An operation is assigned a multi-sequence number when
the Raft entry containing the operation and multi-sequence
number pair is committed. Multi-sequence numbers are allo-
cated by the sequencer to a request from the proxy; this does
not guarantee the operation for which the proxy requested a
multi-sequence number will be assigned the allocated multi-
sequence number.

We allow operations to be assigned a range of sequence
numbers in each sequence space. We will share notation for
operations and sequence numbers where for an operation
X, x, denotes the maximum sequence number assigned to
operation x in sequence space n. The comparison x, < yy,
and x, <y, compares the highest assigned sequence number
for operation x in sequence space n and the lowest assigned
sequence number for operation y in sequence space n That is,

Xp < yp <= maxi < miniand x, <y, <= maxi < mini.
i€xy i€yy i€xy i€yy

The term proxy indicates a replicated state machine that
executes the MASON protocol detailed in Alg 2 and Alg 3.
Sequencer denotes a machine executing the protocol detailed
in Alg 1. A standby sequencer may begin executing the se-
quencer protocol from line 17 of Alg | when notified by any

Proxy.
A.2 Assumptions

The model consists of a set of processes, P, which contains
clients, proxy replicas, and sequencers. Processes may fail
according to the crash failure model, where processes stop
executing requests, and the failure is undetectable to other
processes.

We assume an asynchronous network model where mes-
sages can be arbitrarily delayed and reordered.

We develop MASON’s proxies with Raft and assume the
following as guarantees from Raft [46], the guarantee A.1
being explicitly stated in the paper.

20

Guarantee A.1 “If a log entry is committed in a given term,
then that entry will be present in the logs of the leaders for
all higher-numbered terms.”

Guarantee A.2 Raft is available as long as a majority of
replicas have not failed.

A.3 Proof of total order

To prove that MASON provides a linearizable ordering we
first show that its ordering is a total order and then prove that
the total order respects the real-time order.

To provide a total order MASON needs to ensure for any two
operations x and yone of x < y,y < x,orVn € S,x, =AVy, =
A. The latter case describes when the two operations share
no sequence spaces, which we will call strictly concurrent
and denote x||,y; in this case x and y are trivially ordered in
either order. When any of these relations are true we will
say operations x and y are strictly ordered. More specifically
for any two operations x and y, x and y are strictly ordered if
and only if (x, < y,Vn € S.(xn ZAAY, #A))V (yy <x,Vn €
S.(%n # AN yn # A)).

We prove that MASON provides a total order, that is, where
all operations are strictly ordered as described above.

Lemma A.1 The assigned multi-sequence numbers for any
replicated and committed operation do not change.

Proof: Directly implied by SMR Guarantee A.1; any elected
leader will have the operation and multi-sequence number
pairing in its log. [J

The goal then is to prove that any two assigned operations
are totally ordered, that is we need to show that Vx,y, (x <
y)V (y < x) Vx||sy. We first prove a total order for conflicting
operations.

Lemma A.2 Any two conflicting operations x, y are strictly
ordered.

Proof: We prove by case analysis on all possible combinations
of failures of MASON components.

Case 0: No failures. The sequencer trivially guarantees the
existence of a total order in normal operation. Consider
any two conflicting operations x,y € ops(h) and any two
sequence spaces on which x and y conflict, n,m, such that
Xn # ANYn # ANXym # ANy, # A. Without loss of general-
ity let x arrive at the sequencer before y. Let S, = i, 5, = j
when x arrives. Lines 11 — 14 of Alg | increment S, and .S,
by the respective counts before responding. Once the proxy
replicates the assigned multi-sequence numbers for x the as-
signment does not change by Lemma A.1. Then, y, arriving
later, must receive S, > i+ x,.count, S, > i+ X,,.count where
Xxp.count is the number of sequence numbers requested for .S,
by operation x (line 14 of Alg 1). Thus, x, < y, Axm < Y
that is, they are strictly ordered.

Case 1: Proxy follower failure. This case is equivalent to
Case 0 by SMR guarantee A.2: proxies execute as normal
with a majority of non-failing machines in the proxy.

Case 2: Proxy leader failure. Consider two conflicting op-
erations x,y, and any two sequence spaces on which x and y
conflict n,m. Upon proxy leader failure there are four cases.

Case 2a: x and y are assigned (committed) before failure.
This case is equivalent to Case 0 by Lemma A.1.

Case 2b: Neither x nor y are assigned before failure. When
x and y are retransmitted by their clients (not shown) they will
be allocated seqgReqlds greater than maxCmtdSeqReqld, by
line 9 of Alg 3 and 10 of Alg 2. Without loss of generality
consider x and its seqReqld, x.seqReqld. If the sequencer has
already allocated a multi-sequence number for x.seqReqld
the sequencer responds with retx == True and the new leader
will allocate a new seqReqld, by lines 8 —9 of Alg | and lines
14 — 25 of Alg 2. The x.seqReqld is then incremented and
the request to the sequencer is resent lines 14 — 25 of Alg 2.
This is repeated, line 14 of Alg 2, until the sequencer has not
allocated a multi-sequence number for x.seqReqld, indicated
by returning retx == False, line 16 of Alg | and line 14 of
Alg 2. x is then allocated a new multi-sequence number. Thus,
x and y eventually receive new sequence numbers and this
case is equivalent to Case 0.

Case 2c: Either x ory is assigned before failure, and the
other is not. Without loss of generality assume x is assigned a
multi-sequence number and y is not. The logic is similar to
Case 2b. When y is retransmitted by its client (not shown) it
will be allocated a seqReqld greater than maxCmtdSeqReqld,
by line 9 of Alg 3 and 10 of Alg 2. Consider y’s seqReqld,
y.seqRegld. If the sequencer has already allocated a multi-
sequence number for y.seqReqld the sequencer responds
with retx == True and the new leader will allocate a new
seqReqld, by lines 8 — 9 of Alg | and lines 14 — 25 of Alg 2.
The y.seqReqld is then incremented and the request to the se-
quencer is resent lines 14 — 25 of Alg 2. This is repeated,
line 14 of Alg 2, until the sequencer has not allocated a
multi-sequence number for y.seqReqld, indicated by return-
ing retx == False, line 16 of Alg | and line 14 of Alg 2.
y is then allocated a new multi-sequence number. Thus, y
eventually receives a new sequence number and this case is
equivalent to y arriving to the sequencer later as in Case 0.
These subcases exhaust all 4 combinations of the state of
processing of x and y.

Case 3: Sequencer failure. All multi-sequence numbers
replicated (and assigned) before sequencer failure are totally
ordered by Case 0 and Lemma A.1. What remains to show
is that all multi-sequencers assigned after failure are totally
ordered. No multi-sequence number allocated by the previous
sequencer will be assigned after line 34 of Alg 2 because
of lines 32 and 20 — 21 of Alg 2. Proxies trivially ensure
maxRecvdSeqNum > all assigned multi-sequence numbers at
commit time, line 28 of Alg 2. Thus, for any assigned multi-
sequence number x at the time of seal commit: x; < §;.i € 5,

21

by lines 21 — 22 of Alg 1. For any multi-sequence number,
v, assigned after recovery, S; < y;.i € S, line 14 of Alg 1. So,
x <y for any pair (x,y) where x is assigned before recovery
seal and y is assigned after recovery seal. Vj, k € ops(h).j, k
assigned after recovery, j and k are strictly ordered or strictly
concurrent by Case 0.

Case 4: Concurrent proxy leader and proxy follower
failure. This case is equivalent to Case 2 by the guaran-
tee of availability when fewer than a majority of machines
failed A.2.

Case 5: Concurrent proxy follower failure and sequencer
failure. As a guarantee of SMR, proxies continue to operate
as normal with a majority of non-failing machines (A.2). Thus,
this case is equivalent to Case 3.

Case 6: Concurrent proxy leader and sequencer failure.

Case 6a: The sealing operation on the proxy was not repli-
cated. The new sequencer cannot execute the recovery process
until it receives confirmation from every proxy that they were
sealed, line 20 of Alg 1. Sealed confirmations are not sent un-
til the seal is replicated. Thus, the new leader will eventually
hear, via retransmits, from the new sequencer, and begin repli-
cating the seal, line 33 of Alg 2. Thus, this case is equivalent
to Case 3.

Case 6b: The sealing operation on the proxy was repli-
cated. SMR guarantees that only a replica with all committed
operations can become the new leader, guarantee A.1. Thus,
the new leader has the seal operation, and begins to execute
recovery. Thus, this case becomes equivalent to Case 3. These
two cases are exhaustive as the proxy either committed the
seal command or did not at any point in time.

Case 7: Concurrent proxy leader, proxy follower, and se-
quencer failure. This case is equivalent to Case 6 by the
guarantees of SMR when f or fewer replicas fail.

These cases are exhaustive because they are all combina-
tions of possible failures of components in MASON.[]

Lemma A.3 MASON’s ordering is a total order, that is, ¥
assigned operations x,y, (x < y)V (y < x) V x||sy-

Proof: Either x and y conflict or they do not. If x and y con-
flict, then they are totally ordered by Lemma A 2. If they are
non-conflicting, then they are strictly concurrent and can be
ordered by 7 in any order.

A.4 Proof of real-time order

We need to show for any operation x returned to a client, any
operation y invoked after x returned is ordered after x in the
total order. We denote the event of the response to a client as
resp(op) and the invocation event inv(op).

Lemma A.4 If an operation, x, is assigned a multi-sequence
number, n, then a sequencer allocated n for x.

Proof: Lines 9 — 26 of Alg 2 imply that the proxy only
replicates, assigns, an operation if retx is False (line 14). This

implies the returned n was allocated for x, lines 8 — 16 of
Alg 1.0

Lemma A.5 For any two operations x and y, resp(x) pre-
cedes inv(y) in real-time implies x < y.

Proof: Given any two operations x and y and, without loss
of generality, assume resp(x) precedes inv(y) in real-time,
there are two cases x and y conflict or they do not.

Case 0: x and y do not conflict. In this case x and y are
strictly concurrent and can be assigned in either order. We
order y after x in the total order.

Case 1: x and y conflict. Given Lemma A .4, it is sufficient
to show that for any y invoked after resp(x), y is allocated a
higher multi-sequence number than x, such that x < y. There
are thus two cases: the sequencer that allocated the assigned
multi-sequence number for x allocates the assigned multi-
sequence number for y or it does not.

Case 1a: The sequencer that allocated the assigned multi-
sequence number for x allocates the assigned multi-sequence
number for y. In this case x < y by the normal case ordering.
Specifically resp(x) < inv(y) implies that x, being already
assigned, arrives to the sequencer before y. Line 11 — 14 of
Alg 1 increases all sequence spaces for which x requested
a sequence number. Thus, the conflicting sequence spaces
are increased. The sequence spaces on any sequencer do not
decrease, thus, y is allocated a higher multi-sequence number.
So,Vn € S.xy ANy, # Axy <y, thus x < y.

Case 1b: The sequencer that allocated the assigned multi-
sequence number for x does not allocate the assigned multi-
sequence number for y. Without loss of generality let the
sequencer that allocates the multi-sequence number eventu-
ally assigned to x be S, and the sequencer that allocates the
multi-sequence number eventually assigned to y be S,. Be-
cause y is assigned a multi-sequence number allocated by S,
and x is assigned a multi-sequence number allocated by S, and
resp(x) < inv(y), Sy must have become the active sequencer
after x.seqnum was allocated. To become the active sequencer
Sy must have received a Recover message from a proxy
and executed recovery, receiving the maxRecvdSegNum from
every proxy (lines 3, 17, 18 — 20, and 23 of Alg | and
31 — 35 of Alg 2). As S, allocated the sequence number
eventually assigned to x, x.segnum must be assigned (repli-
cated) before the proxy receives GetMaxAndSeal and repli-
cates the seal; otherwise, the proxy would have incremented
activelndex and began to ignore messages from Sy, lines 20
— 21 and 30 — 31 of Alg 2. Thus, x.segnum is replicated be-
fore seal and the proxy replies with a multi-sequence num-
ber, max such that Vn.x, # A, x, < max,. Thus, S, will have
x; <max; < §Vi.x; # A, line 19 of Alg 1 and line 35 of Alg 2.
The sequence spaces on any sequencer do not decrease and
so Vn.x, # ANy, # A x, < max, < y,. Thus, x <y. O

Theorem A.1 MASON provides a strictly serializable total
ordering.

22

Proof: MASON provides a total order, by A.3, that respects
real-time ordering, by A.5. [J

	Introduction
	The Contiguous Multi-Sequence
	Building Services with Multi-Sequences
	From Noncontiguous to Contiguous

	Mason Overview
	Model and Assumptions
	Mason Components
	Normal-Case Operation of Mason

	Ensuring a Contiguous Multi-Sequence
	Proxies Prevent Holes from Client Failure
	Reliable Transport Prevents Holes from Packet Loss
	Recovering to Prevent Holes from Sequencer Failure
	Proof Sketch of Strict Serializability

	Supporting Scalable Throughput
	Services
	Interaction with Mason
	Making CORFU Scalable: Corfu-Mason
	Making ZooKeeper Scalable: ZK-Mason

	Evaluation
	Mason Scales Ordering Throughput
	Making CORFU Scalable
	Making ZooKeeper Scalable
	Mason Provides a Contiguous Sequence

	Limitations
	Related Work
	Conclusion
	Proof of Strict Serializability
	Definitions
	Assumptions
	Proof of total order
	Proof of real-time order

