
UC Santa Cruz
Journal of Systems Research

Title
[Solution] Mason: Scalable, Contiguous Sequencing for Building Consistent Services

Permalink
https://escholarship.org/uc/item/5hg1429j

Journal
Journal of Systems Research, 3(1)

Authors
Hodsdon, Christopher
Stavrinos, Theano
Katz-Bassett, Ethan
et al.

Publication Date
2023

DOI
10.5070/SR33161354

Copyright Information
Copyright 2023 by the author(s).This work is made available under the terms of a Creative
Commons Attribution-NonCommercial License, available at
https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5hg1429j
https://escholarship.org/uc/item/5hg1429j#author
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

MASON: Scalable, Contiguous Sequencing

for Building Consistent Services

Christopher Hodsdon⋆†, Theano Stavrinos⋆, Ethan Katz-Bassett†, Wyatt Lloyd⋆
⋆Princeton University, †Columbia University

Abstract

Some recent services use a sequencer to simplify ordering

operations on sharded data. The sequencer assigns each op-

eration a multi-sequence number which explicitly orders the

operation on each shard it accesses. Existing sequencers have

two shortcomings. First, failures can result in some multi-

sequence numbers never being assigned, exposing a non-

contiguous multi-sequence, which requires complex scaffold-

ing to handle. Second, existing implementations use single-

machine sequencers, limiting service throughput to the order-

ing throughput of one machine.

We make two contributions. First, we posit that sequencers

should expose our new contiguous multi-sequence abstraction.

Contiguity guarantees every sequence number is assigned an

operation, simplifying the abstraction. Second, we design and

implement MASON, the first system to expose the contiguous

multi-sequence abstraction and the first to provide a scalable

multi-sequence. MASON is thus an ideal building block for

consistent, scalable services. Our evaluation shows MASON

unlocks scalable throughput for two strongly-consistent ser-

vices built on it.

1 Introduction

Designers of large-scale distributed services grapple with the

tradeoff between strong consistency on one hand and high per-

formance on the other hand. A strongly-consistent distributed

service is a useful building block because applications can

reason about its behavior as if it were running on a single

machine. However, strong consistency requires coordination

among a service’s servers, adding overhead.

Some recent services achieve consistency using a se-

quencer to explicitly order data accesses a priori, removing

the need to coordinate concurrent accesses [37, 56]. This en-

ables sequencer-based designs to achieve strong consistency

with higher throughput than other approaches.

Early work using sequencers used a sequence abstraction

that globally orders all operations [3, 49]. More recent work,

and this work, target the multi-sequence abstraction that only

explicitly orders operations that execute on the same subset

of data [37, 56]. This allows operations spanning multiple

subsets of data to only be ordered with respect to other opera-

tions on intersecting subsets, reducing contention compared

to ordering all operations globally, and improving throughput

and latency.

The multi-sequence abstraction uses a collection of se-

quence spaces, i.e., logically independent sequences of strictly

increasing integers, to provide a strictly serializable ordering

of accesses to different subsets (shards) of the service’s data.

An operation that needs cross-shard ordering gets an atomi-

cally assigned multi-sequence number containing a sequence

number from the sequence space of each shard the operation

accesses. An execution protocol, designed by the service de-

veloper, defines the sequence spaces involved in an operation

and how shards use multi-sequence numbers to execute oper-

ations. Driven by the execution protocol, the service’s servers

use the sequence numbers to order operations on the shard(s)

they manage, with the multi-sequence numbers atomically

ordering operations relative to other operations to provide

strong consistency. Operations ordered by multi-sequence

numbers can be executed without coordination across servers,

enabling strongly consistent, scalable, and efficient services.

However, the abstraction used by recent services is a non-

contiguous multi-sequence: failures can cause holes in the

sequence space, i.e., sequence numbers that are never used.

To preserve consistency, a service must identify and reason

about all holes. Identifying holes requires service-wide coor-

dination between the service’s servers to reach consensus on

whether a sequence number has an associated operation that

can be recovered. If not, then it is a hole, and the servers must

coordinate to avoid using any sequence numbers that are part

of the same multi-sequence number as the hole. Implement-

ing consensus and service-wide coordination to handle holes

significantly complicates execution protocol design (§2.2).

This paper introduces the contiguous multi-sequence ab-

straction for building consistent, scalable services. The con-

tiguous multi-sequence abstraction assigns exactly one op-

eration to every integer in each sequence space such that

no sequence space has a hole. Contiguity strengthens the

multi-sequence abstraction over its existing noncontiguous

counterpart by hiding consensus and service-wide coordina-

1

tion, simplifying the development of services. Some existing

services use the noncontiguous multi-sequence abstraction

internally to expose higher-level abstractions like distributed

databases [37, 56]. Compared to higher-level abstractions, the

contiguous multi-sequence supports developing more diverse

functionality, e.g., ephemeral objects (§6).

In addition to being noncontiguous, existing implementa-

tions of the multi-sequence abstraction [37, 56] suffer from

a second limitation: they have an ordering throughput ceil-

ing that limits the throughput of any services built on top of

them. These implementations use a monolithic sequencer, a

single machine whose only task is to hand out multi-sequence

numbers, enabling low-latency ordering that is easy to rea-

son about. A monolithic sequencer can order operations with

higher throughput than coordination-based mechanisms, but

this design can only achieve ordering throughput up to the

throughput limit of a single machine. Thus, a service built on

a monolithic sequencer cannot scale.

Our system, MASON, addresses the ordering throughput

limitation. MASON is a building block for distributed ser-

vices that provides the contiguous multi-sequence abstraction

with no ceiling on ordering throughput, unlocking scalabil-

ity for services that were previously unscalable. MASON’s

contiguous multi-sequence implementation enables services

to (1) use simple execution protocols that need not incorpo-

rate consensus or service-wide coordination and (2) scale to

achieve service throughput far higher than what is possible

with monolithic sequencers.

Our key insight is that MASON can enable simple execu-

tion protocols and scalability via a layer of replicated proxies

between clients, which send operations, and a monolithic se-

quencer. To overcome the failure modes that expose holes,

the proxy layer provides fault tolerance for clients and the

sequencer. The proxy layer replicates enough of each client

operation’s state to ensure the operation can be completed

and a sequencer can recover without holes, thus guaranteeing

the contiguous multi-sequence abstraction.

To overcome the monolithic sequencer’s ceiling on order-

ing throughput, proxies batch requests for multi-sequence

numbers. This batching is perfect, in that the sequencer does

no more work to allocate one million contiguous numbers

than it does to allocate a single number. Each replicated proxy

operates essentially independently, allowing the proxy layer to

scale out; adding more proxies increases ordering throughput.

These techniques enable MASON to scale: if the sequencer is

the bottleneck, proxies increase batch size; if the proxy layer

is the bottleneck, more proxies are added.

Our evaluation shows MASON provides scalable or-

dering throughput: with one sequence space, MASON

achieves ~16.7 Mops/sec with 24 proxy machines, scaling to

~31.5 Mops/sec with 48 proxy machines. MASON’s tradeoff

for a stronger abstraction and scalable ordering throughput is

higher latency relative to monolithic-sequencer designs, since

the proxies and a single round of replication are on path for

each request. MASON’s latency is still low, however, with a

median latency of ~243 µs at the reported throughputs.

We demonstrate MASON’s value as a building block by

using it to implement Corfu-MASON, a distributed shared log

modeled after CORFU [3]; and ZK-MASON, a distributed

prototype of the coordination service ZooKeeper [22]. With

MASON’s strong abstraction, it was easy to build these ser-

vices that consistently execute cross-shard operations (§6).

MASON also unlocked scalability for them in contrast to their

fundamentally unscalable original designs. Specifically, our

implementation of CORFU’s original design is limited to

~14.1 Mops/s (nearly line rate for a sequencer with a 10G

NIC, ~14.5 Mops/s). Building it on MASON lets it scale from

~7.3 Mops/s (one server) to ~29.1 Mops/s (four servers). Our

implementation of ZooKeeper’s original design is limited to

~150 Kops/s; its MASON-based implementation scales from

~1.3 Mops/s (one server) to ~7 Mops/s (eight servers).

This paper makes two major contributions. The first is

the contiguous multi-sequence abstraction, which simplifies

building correct services compared to the previous noncon-

tiguous multi-sequence abstraction. While the noncontiguous

multi-sequence abstraction demands significant distributed

systems expertise to use correctly, our abstraction shields

service developers from the complexity of reasoning about

holes (§2). By handling this complexity internally, the con-

tiguous multi-sequence abstraction enables faster develop-

ment of new services, promotes designs with fewer bugs, and

enables developers without distributed systems expertise to

develop scalable distributed services. The second major con-

tribution is the design of MASON, which notably is the first

multi-sequence design that is scalable. MASON’s inherent

scalability is the foundation for removing the throughput ceil-

ing from existing and future services built on a multi-sequence

abstraction (§5). Together, these contributions make it easy

to build consistent services with a newfound ability to scale

service throughput (§6).

2 The Contiguous Multi-Sequence

This section is an orientation to the multi-sequence abstrac-

tion. Section 2.1 explains how to build strongly-consistent

services with the generic multi-sequence abstraction. Sec-

tion 2.2 describes why building services with the existing

noncontiguous multi-sequence abstraction is challenging. Our

contiguous multi-sequence abstraction instead makes it easy

to use multi-sequences to build scalable, consistent services.

2.1 Building Services with Multi-Sequences

The sequence abstraction globally orders operations in a sin-

gle sequence space. The multi-sequence abstraction extends

the sequence abstraction to multiple sequence spaces to en-

able the service to order operations only when they execute

on the same subset of data. This enables services to execute

operations in order with less coordination: servers manag-

ing a subset of data only need local ordering information,

2

reducing contention compared to ordering all operations glob-

ally, improving throughput and latency. Services built on the

generic multi-sequence abstraction typically include clients,

a sequencing component, and servers, each holding one or

more shards. Typically, each shard stores a subset of the ser-

vice’s data and is replicated for fault tolerance. Each shard

has its own sequence space, a sequence of strictly increasing

integers that order operations on the shard’s data. To execute

an operation, a client identifies the shards involved in the op-

eration, gets a multi-sequence number from the sequencing

component with one number from each relevant shard’s se-

quence space, and sends the operation to the shards’ servers

with the multi-sequence number. Each server locally uses the

multi-sequence number to order this operation’s data accesses

relative to other operations’ accesses. In contrast, with a sin-

gle, global sequence space, each shard would need to know

the next operation to execute across all shards instead of only

the next operation concerning its own data.

We next define multi-sequence numbers, explain how they

are assigned to operations consistently, and describe how exe-

cution protocols use them to scale execution.

Multi-sequence numbers. A multi-sequence number, n, is

a set of 〈ssid,sn〉 tuples where ssid is a unique number identi-

fying the sequence space, and sn is a sequence number in that

space. The sequence number in space s in multi-sequence

number n is denoted ns. For a set of sequence spaces re-

quested by a client, the sequencing component returns a multi-

sequence number consisting of the next sequence number ns

in each relevant space s.

Strictly serializable multi-sequence number assignment.

From clients’ perspectives, strictly serializable services pro-

cess operations one at a time in an order that a single machine

could have received them [48]. Concretely, strict serializabil-

ity requires that there exists a legal total order of operations

consistent with the partial ordering of “real-time” precedence,

i.e., if a completes before b begins, then a must be ordered

before b [21, 48].

Multi-sequence numbers enable strongly consistent dis-

tributed services when assigned to operations in a strictly

serializable order. To simplify discussion, we define a default,

∆, where ns = ∆ for all ns not mapped to a specific sequence

number (i.e., all s not in this multi-sequence number). For

the set of all sequence spaces S, we define a partial order-

ing over all multi-sequence numbers where a < b ⇐⇒ ∀s ∈
S,as 6= ∆∧bs 6= ∆ =⇒ as < bs. The multi-sequence abstrac-

tion guarantees that two multi-sequence numbers either share

no common sequence spaces or are strictly ordered (i.e., if

as < bs for one common space s, then as′ < bs′ for all com-

mon spaces s′, implying a < b). The partial ordering of the

multi-sequence numbers defines the ordering of operations.

If strict serializability imposes an ordering between two oper-

ations, then multi-sequence numbers assigned on path with

their execution capture that ordering.

Execution protocols. To use the multi-sequence abstraction,

a service developer implements an execution protocol that

executes operations in order of their multi-sequence numbers,

yielding a strictly serializable service. The execution protocol

runs on clients (typically encapsulated in a client library) and

on the service’s servers. For clients, the execution protocol

defines how operations are mapped to the service’s shards

and which sequence spaces are involved in a given operation.

For servers, it determines when shards can safely execute

operations, based on the operations’ multi-sequence numbers.

Scalable execution. Multi-sequence numbers enable ser-

vices to scale throughput up to the rate the sequencer can as-

sign sequence numbers. Execution scales through parallelism:

when some shards are executing an operation, other shards can

execute a different operation. The sequence spaces in multi-

sequence numbers determine which operations can execute in

parallel, as operations with disjoint multi-sequence numbers

access different shards. As long as multi-sequence number

assignment keeps up, the service can increase its throughput

by adding more machines and creating more shards. How-

ever, existing multi-sequenced services use monolithic (single-

machine) sequencers, which can never assign sequence num-

bers to operations at a higher rate than a single machine can

support and hence limit the service’s scalability.

2.2 From Noncontiguous to Contiguous

The generic multi-sequence abstraction is realized as a non-

contiguous abstraction in existing services, which use it to

expose higher-level abstractions [37, 56]. As we explain next,

noncontiguity complicates service development. In contrast,

the contiguous multi-sequence abstraction simplifies devel-

oping services with multi-sequences by encapsulating that

complexity within the abstraction.

Holes in a noncontiguous sequence complicate the ab-

straction. Holes occur when a sequence number is not used

for an operation. For example, a hole occurs if a client fails

after receiving a sequence number but before using it. A shard

may see, e.g., sequence numbers 1–3 and then receive an op-

eration with sequence number 5, indicating a potential hole

at 4. To preserve strict serializability, the shard may only exe-

cute operation 5 after 4 is used, since 4 could belong to any

operation. To make progress in the absence of an operation,

the service must decide that the entire multi-sequence number

is a hole and enforce that it is not used on any shard, typically

by assigning a no-op to each of its sequence numbers.

Handling holes complicates service design. The service

must have a mechanism to identify sequence numbers that

are potential holes. Existing designs use timeouts [3, 56] or

infer holes from out-of-order operation arrival [37, 56]. More

challenging is that the service’s servers must reach service-

wide consensus on whether a sequence number is a hole,

then coordinate to ensure that the other numbers in the hole’s

multi-sequence number are treated as holes to avoid partially

executing a cross-shard operation. Existing services achieve

3

SON and drive the execution protocol on the proxies. Service

developers interact with MASON on the proxies through ser-

vice stubs which execute within the proxy’s process. When a

proxy receives an operation from a service’s client, it passes

the operation to the stub. The stub either requests that MASON

order the operation, or executes the operation immediately if

it need not be ordered, e.g., an inconsistent read. After order-

ing and replicating the operation, the proxy returns it back to

the stub which begins the execution protocol. Stubs are analo-

gous to client libraries in existing multi-sequenced services.

Section 6 shows how stubs are used to develop services.

The proxy may batch requests for multi-sequence numbers

for scalability, i.e., request multi-sequence numbers for multi-

ple client operations in a single sequencer request (§5). The

sequencer allocates a multi-sequence number for each opera-

tion in the batch. An allocated multi-sequence number is one

given to a proxy that the sequencer promises not to allocate

again. Proxies assign multi-sequence numbers to client oper-

ations. Assignment uses replication to permanently associate

a multi-sequence number with an operation and guarantee it

will never be assigned to another operation. Once the proxy

has replicated the assignment of a multi-sequence number to

an operation, it returns the operation and its multi-sequence

number to the service stub for execution.

3.3 Normal-Case Operation of MASON

The normal case operation of MASON, shown in Figure 1,

includes the following steps:

1. A client sends an operation to a proxy.

2. The proxy passes the operation to the service stub which

determines the relevant sequence spaces.

3. The proxy asks the sequencer to allocate a multi-sequence

number covering the relevant sequence spaces.

4. The proxy replicates the allocated number and operation,

assigning the number to the operation.

5. The proxy returns the operation and multi-sequence num-

ber to the service stub.

6. The service stub and shards run the execution protocol.

7. The proxy sends the response from the stub to the client.

4 Ensuring a Contiguous Multi-Sequence

MASON provides a contiguous multi-sequence by handling

all potential sources of holes: client failures (Figure 2a), net-

work drops (Figure 2b), sequencer failures (Figure 2c), and

combinations thereof. This section covers how MASON han-

dles each of these failure scenarios and then sketches a proof

of strict serializability.

4.1 Proxies Prevent Holes from Client Failure

In a multi-sequenced service, client failure can cause holes

when the client obtains a sequence number and fails before

it uses the sequence number in the service. For instance, Fig-

ure 2a shows Client A failing before using sequence number

3 from sequence space i, resulting in a hole at 3. MASON

prevents such holes with proxies that manage multi-sequence

numbers on clients’ behalf. Proxies are replicated for fault

tolerance, eliminating this source of holes. A proxy will al-

ways return an operation that was assigned a multi-sequence

number to the service stub even if the client fails and even if

a minority of proxy replicas fails.

A byproduct of replication is that proxies maintain a record

of every assigned sequence number, which is used in se-

quencer recovery (§4.3). By masking client failure and main-

taining state needed for sequencer recovery, proxy replication

is a key mechanism for avoiding holes in MASON.

The proxy replication strategy is driven by correctness and

performance. Proxies must replicate enough information to

preserve contiguity and strict serializability. Replicating every

input to the proxy leader would be correct, but this would add

unacceptable latency to client requests and burden proxies

with excessive communication overhead. Fortunately, MA-

SON can skip replication for all but one step in operation

processing, because the other steps can be safely retried, in-

cluding after client, sequencer, and/or proxy replica failure.

The exception is step 5 (Fig. 1), returning a multi-

sequenced client operation to the service stub. Replicating the

mapping of each client operation to a multi-sequence number

before this step is critical for correctness in MASON. Sup-

pose the mapping is not replicated. The sequencer and proxy

leader could fail concurrently after the leader returns a multi-

sequenced client operation to its service stub, but before the

stub sends its operation to every relevant shard. The shards

that received the operation may execute it, but the operation

will not be completed after recovery because the mapping of

multi-sequence number to operation was lost. Exposing the

partial execution violates strict serializability. Therefore, be-

fore returning an operation to the service stub, the proxy must

permanently associate the operation with a multi-sequence

number through replication. Once replication succeeds, the

sequence number is assigned to the operation.

We next describe how the proxy processes operations, in

order to explain why all other steps are safe to retry. We

discuss one operation and a single sequence space for ease of

explanation; the reasoning can be easily extended to batches

of operations and multiple sequence spaces.

Receiving a client operation. Clients can send an operation

to any proxy. When a proxy leader receives an operation

from a client, it passes the operation to the service stub. If

the stub requests that the operation be ordered, the leader

allocates a sequencer request ID for that operation (step 3 in

Figure 1). Sequencer request IDs are allocated only by the

leader, so they are trivially contiguous and strictly increas-

ing. Sequencer request IDs are used during proxy failover

to recover sequence numbers that were allocated but not yet

assigned to any operation, i.e., potential holes.

Requesting a sequence number. The leader then requests a

sequence number from the sequencer, with the sequencer re-

5

Client A Sequencer

RequestSeqNum(i)

Si=4

Si=3

Client B

Si=5

RequestS
eqNum(i)

4

3

(a) Hole caused by client failure.

Client A Sequencer

RequestSeqNum(i)

Si=4

Si=3

Si=5

3

RequestSeqNum(i)

4

(b) Hole caused by network drop.

5

RequestS
eqNum(i)

Client A Sequencer

RequestSeqNum(i)

Si=4

Si=3

Client B

4

3

RequestSeqNum(i) Si=5

Si=6

New Sequencer

(c) Hole caused by sequencer failure.

Figure 2: Potential sources of holes. Si is the next sequence number in sequence space i.

quest ID (step 3). If the sequencer has not seen this sequencer

request ID from this proxy, the sequencer updates its state

in two relevant ways: it allocates a sequence number for this

request by incrementing the sequence counter in the requested

sequence space, and maps the sequencer request ID to the

allocated number. If the sequencer has seen the sequencer

request ID before, it responds with the previously allocated

sequence number and marks it as a retransmit.

Proxy leader failure. When a proxy leader fails, the new

leader must recover the sequence numbers that were allocated

but not yet assigned. The state needed to correctly match allo-

cated but unassigned sequence numbers to operations was lost

with the failed leader, so these are temporary holes. We now

explain how we use sequencer request IDs to recover such

holes. This is the key mechanism for ensuring correctness

when proxies execute only one round of replication.

The new leader collaborates with the sequencer to identify

these temporary holes as follows:

1. The new leader saw a contiguous set of sequencer request

IDs until some ID x, after which it saw noncontiguous IDs

until y. The range from x to y is noncontiguous because

the leader replicates sequence number-operation pairs as

they arrive from the sequencer, which may be out of order.

2. The new leader requests sequence numbers for all IDs from

x+1 until y−1 that were not replicated. The sequencer

will either return already-allocated sequence numbers, or

will allocate new numbers for the IDs.

3. The new leader replicates and assigns all returned sequence

numbers to no-ops and returns them to the service stub.

4. The new leader then resumes normal operation, allocating

sequencer request IDs from y+1.

There may be allocated but unassigned sequence numbers

with sequence request IDs greater than y. In such cases, the

sequencer will mark the returned sequence numbers as re-

transmits. The leader replicates and assigns them to no-ops

and retries the request with a new sequencer request ID. If

the sequencer fails concurrently with leader failure, the se-

quencer recovery protocol recovers and assigns no-ops to any

allocated but unassigned sequence numbers (§4.3).

Returning the operation and sequence number to the ser-

vice stub (step 5). Strict serializability dictates that the ser-

vice’s execution protocol cannot use one sequence number

for multiple operations, and different sequence numbers can-

not be used for one operation. MASON must therefore guar-

antee the sequence number associated with an operation

never changes once the service is made aware of it. MASON

thus replicates the sequence number-to-operation assignment

(step 4) before passing the operation to the service stub.

The proxy leader’s other steps in handling a client

operation—passing the operation to the service stub and for-

warding the service’s response to the client (step 7)—can

be safely left unreplicated. Retrying these steps is safe. The

service stub, shards, and clients already provide at-most-once

semantics to handle retransmission due to network drops, so

they will be able to handle retransmission from the proxies.

4.2 Reliable Transport Prevents Holes from

Packet Loss

Holes can occur after network drops (as illustrated in Fig-

ure 2b). MASON handles network drops with a reliable trans-

port layer. Since the state needed to reliably transport multi-

sequence numbers is lost on sequencer failure, MASON uses

a recovery protocol to correctly fill holes with no-ops in case

of simultaneous packet loss and sequencer failure (§4.3). Re-

liable transport and the sequencer recovery protocol ensure

that every allocated multi-sequence number arrives at a proxy.

4.3 Recovering to Prevent Holes from Se-

quencer Failure

Sequencer failure can cause holes if failure occurs before

the reliable transport protocol can retransmit a dropped re-

sponse. For instance, suppose the sequencer allocates and

sends the sequence number 3 for sequence space i and later 4

for the same sequence space i for two client operations, as il-

lustrated in Figure 2c. If the message containing 3 is dropped

and the sequencer fails before retransmission, but a client

receives 4, then 3 is a temporary hole. One solution replicates

6

the sequencer to permanently associate client requests and

multi-sequence numbers. However, replication compromises

the main benefit of a sequencer: simplified ordering so the

sequencer can devote all its resources to allocating numbers.

MASON instead runs one active sequencer, backed by an

idle standby sequencer and sequencer recovery protocol. If

the active sequencer fails, the standby sequencer takes over

and executes the recovery protocol to correctly fill any tem-

porary holes caused by the failure, ensuring a contiguous

multi-sequence when the standby resumes normal operation.

MASON’s sequencer recovery protocol is based on two ob-

servations. First, the proxies’ collective state includes which

sequence numbers have been assigned, so they collectively

know where potential holes in each sequence space are. MA-

SON assigns these sequence numbers to no-ops. Second, all

outstanding operations are concurrent. An outstanding op-

eration is one that a proxy received (step 1 in Fig. 1), but

has not yet assigned a sequence number (step 4), and thus

is not ordered. When the standby sequencer resumes normal

operation, it can allocate new multi-sequence numbers for

outstanding operations in any relative order, as long as they

are ordered after the highest previously-assigned sequence

number in each sequence space, which the proxies collectively

know.

The steps in MASON’s sequencer recovery protocol are:

a) Detect sequencer failure and activate a standby sequencer.

b) Identify potential holes in each sequence space.

c) Replicate the assignment of no-ops to holes.

d) Resume normal operation with new sequence numbers.

Failure detection and standby sequencer activation. Prox-

ies unreliably detect sequencer failure with timeouts and pings.

If a proxy does not hear from the sequencer after a timeout

(.5 s in our implementation), it pings the sequencer. After an-

other timeout, the proxy declares the sequencer failed and

initiates recovery by activating the standby sequencer. The

standby sequencer informs the other proxies that recovery

has begun. All proxies then replicate a special recovery op-

eration and seal their sequence spaces, rejecting any packets

from the previous sequencer. The new sequencer waits for

all proxies to complete the sealing process before resuming

recovery. Replicating the recovery operation on all proxies

before allowing the standby sequencer to resume recovery

ensures proxies reject all packets from the previous sequencer.

This in turn, ensures there is only one active sequencer at a

time even when proxy leaders fail, sequencer-failure detection

is incorrect, or messages from the previous sequencer were

delayed or reordered in the network.

Identifying potential holes. During normal operation, prox-

ies track their local views of each sequence space. A proxy’s

local view is the subsequence of numbers in each sequence

space that the proxy has assigned to operations. After sealing,

proxies send their local views to the standby sequencer. The

standby sequencer reconstructs each sequence space, expos-

ing any temporary holes. Garbage collection of proxies’ local

views is described at the end of this section.

Assigning temporary holes to no-ops. The standby se-

quencer notifies proxies of any temporary holes in each se-

quence space. Proxies assign these sequence numbers to no-

ops, replicate the assignment, and pass them to the service

stubs, as they would with client-issued operations.

Resuming normal operation. The standby sequencer iden-

tifies the start of each sequence space based on the highest

number in each sequence space compiled from the proxies.

It then notifies proxies to resume normal operation and allo-

cates new sequence numbers from that point. Proxies must

re-request sequence numbers for all outstanding operations.

Concurrent proxy leader failure. If a proxy leader fails

during sequencer recovery, the new leader will have enough

state to correctly participate in recovery. In particular, if the

leader fails before replicating the recovery operation, the se-

quencer will not have started recovery, and all holes normally

recovered as part of leader recovery will be found when the

sequencer is rebuilding the sequence. If the leader fails after

replicating the recovery operation, the new leader will have

the same state as the previous leader when the previous leader

began sequencer recovery.

Garbage-collecting sequence number tracking state.

Proxies run a lightweight garbage collection protocol to dis-

card tracked sequence numbers that are no longer needed for

sequencer recovery. Each sequence space is partitioned into

intervals of size N. When all N sequence numbers in an inter-

val have been assigned to operations, it is safe to discard the

state associated with those sequence numbers. To determine

when all N numbers have been assigned, the proxies form a

communication ring and periodically send an accumulating

count of the sequence numbers assigned in each sequence

space’s latest interval. At the end of a round, if any sequence

space’s count is N, the interval is completely assigned; all

state associated with that interval is discarded.

4.4 Proof Sketch of Strict Serializability

This subsection sketches a proof of the strict serializability of

the assignment of multi-sequence numbers to operations. The

formal proof is in §A. We make the assumptions stated in §3.1.

Our proof reasons about pairs of operations, showing they are

either strictly concurrent, where they do not share sequence

spaces, or strictly ordered, where if an < bn for some over-

lapping sequence space n, then an′ < bn′ for all overlapping

sequence spaces n′, where an denotes the sequence number

in sequence space n assigned to operation a.

To show that there exists a total order over all completed op-

erations consistent with the partial ordering of real-time prece-

dence, we exhaustively analyzed all cases of failure scenarios

from no failures to concurrent failure of proxy leaders, proxy

followers, and sequencer. In all cases an operation is assigned

7

at most one multi-sequence number which occurs if/when

replication to a majority of replicas in a proxy succeeds. The

assigned multi-sequence numbers for all operations that ac-

cess overlapping sequence spaces are then strictly ordered

by either the same sequencer, or by an initial sequencer and

a standby sequencer that recovers all previous assignments

before allocating any new multi-sequence numbers. Thus,

the partial order of assigned multi-sequence numbers strictly

orders all conflicting operations. Further, this partial order

is consistent with real-time precedence either trivially when

two operations are ordered by the same sequencer or because

a standby sequencer only allocates numbers larger than the

maximum previously assigned in each sequence space. Only

strictly concurrent (i.e., no overlapping sequence spaces) oper-

ations are unordered by that partial order, and any ordering of

them results in a valid total order. Extending the partial order

to a total order consistent with real-time precedence is thus

trivial: unordered operations are first ordered by the partial

order of real-time precedence and then remaining unordered

operations are arbitrarily ordered.

5 Supporting Scalable Throughput

A service’s achievable throughput (service throughput) is

capped by the minimum of the rate at which it can execute

requests (execution throughput) and the rate at which it can

order requests (ordering throughput). Execution throughput

scales when more service shards are added if and only if

the service implements a scalable execution protocol. Order-

ing throughput scales only if the ordering component scales.

Previous multi-sequence abstraction designs do not scale.

MASON supports scalable service throughput by removing

the bottlenecks that limit monolithic-sequencer designs and

achieving scalable ordering. This section describes two com-

plementary mechanisms that alleviate all ordering through-

put bottlenecks: horizontally scaling out the proxy layer, and

batching requests to the sequencer.

Potential ordering throughput bottlenecks. MASON has

two components, so there are two potential bottlenecks on

computation: the proxy layer and the sequencer. Each com-

ponent sends and receives network traffic, so there are four

potential bottlenecks on network bandwidth. Our two scaling

mechanisms address all six bottlenecks: scaling out the proxy

layer relieves all bottlenecks at the proxy layer, and batching

relieves all bottlenecks at the sequencer.

The proxy layer scales out. When MASON is bottlenecked

by a proxy layer resource, the proxy layer can scale out. Each

proxy operates essentially independently, so holding all else

constant, doubling the number of proxies doubles the amount

of computation and bandwidth available at the proxies for pro-

cessing client operations, doubling the proxy layer’s achiev-

able throughput.

In truth, proxies are not completely independent; there is

overhead to garbage collect multi-sequence number tracking

state (§4.3). However, the overhead is constant for each proxy

with respect to the number of proxies because of the ring

communication pattern; thus, it does not affect the proxy

layer’s scalability.

In §3–4 we have assumed a static configuration where the

numbers of proxies and shards do not change. MASON compo-

nents can be reconfigured as follows. To add a new proxy, the

new proxy first creates a connection to the sequencer and then

joins the garbage collection ring using standard techniques,

e.g., those used in distributed hash tables [52]. Removing

proxies is more difficult to do safely. For example, if a proxy

is removed and the sequencer fails, the recovery protocol

may not be able to reconstruct a complete view of the used se-

quence numbers (i.e., it will be missing those numbers used by

the removed proxy but which were not yet garbage-collected).

It may attempt to assign those used sequence numbers to no-

ops, which is not safe. Thus, to remove a proxy, the proxy

stops processing client requests, but continues to take part

in garbage collection until all sequence numbers the proxy

received are garbage collected. At this point the proxy can

remove itself from the ring and disconnect from the sequencer.

Waiting until all of its numbers are garbage collected ensures

any used multi-sequence number will not be assigned a no-op.

Alternatively, the proxy could transfer all of its sequence num-

bers to a different proxy, e.g., the next proxy in the garbage

collection ring, and then leave the ring. Reconfiguring the

service’s shards can be achieved through operations internal

to the service and via the service stubs.

Batches are as efficient as single requests. When MASON

is bottlenecked by the sequencer proxies can increase through-

put by batching multi-sequence number requests. This batch-

ing is perfect, holding all else constant, in that a request for

one client operation uses the same resources as a request for

multiple operations.

To request multi-sequence numbers for a batch of client

requests, the proxy constructs a sequencer request which in-

dicates the relevant sequence spaces and how many numbers

are required from each sequence space to order the opera-

tions in the batch and sends a single sequencer request for

the batch. The sequencer allocates the requested count of se-

quence numbers in each sequence space and replies with the

lowest allocated number in each sequence space. Finally, the

proxy iterates through client operations in the order they were

received and gives each operation the next lowest sequence

number in each of its sequence spaces.

MASON alleviates all bottlenecks on the sequencer by in-

creasing the batch size. MASON’s batching is timeout-driven:

all client requests that arrive at a proxy within the timeout

are batched together. By doubling the timeout (hence batch

size) at a given client load, proxies can halve the rate at which

they issue sequencer requests. The sequencer, in turn, would

need half the resources to handle the same client load. The

sequencer can thus handle twice the ordering throughput be-

fore hitting the same bottleneck. Timeout-driven batching is

8

naturally dynamic: higher client load results in larger batches.

Why not batch at clients? A strawman design for increasing

ordering throughput is to batch requests at clients, which has

two limitations. First, the maximum throughput is limited by

the number of parallel requests a client will individually make.

Second, batching at clients requires waiting until the client

has issued those requests, which can substantially increase

latency. In contrast, MASON’s proxies can batch across any

number of clients, achieving the large batches that allow it to

scale. In general, naïvely adding only a batching layer to prior

designs does not work, as it introduces new failure modes

(e.g., batching machine failure) that require a comprehensive

service redesign such as that of MASON.

6 Services

This section explains how services can easily use MA-

SON and its contiguous multi-sequence abstraction to scale

service throughput. We describe two services we imple-

mented over MASON: a distributed shared log based on

CORFU [3] and a distributed prototype of the coordination

service ZooKeeper [22].

6.1 Interaction with MASON

A service’s execution protocol consists of (at least) two com-

ponents: shards and service stubs. Shards are implemented

entirely by the service and interact with service stubs and

other service-implemented components. Service stubs are the

mechanism by which services interact with proxies. They de-

termine an operation’s relevant sequence spaces and request

ordering via MASON if necessary, drive the execution protocol

interacting with other service components, and have control

of the operation until informing MASON that the operation

is complete. This is sufficient for the services we implement

here; more complex services may need multi-round sequenc-

ing for some operations, e.g., where the write set depends on

the read set. In that case, MASON could be augmented so that

the stub could request another round of ordering and include

metadata, which MASON replicates and the service can use

to resume execution if the current proxy leader fails.

6.2 Making CORFU Scalable: Corfu-MASON

CORFU is a shared log supporting append and read operations

that consistently execute across shards [3]. Appends write a

value to the current tail of the log. Reads return the value

written to a specified log position. Many applications can

be implemented with shared logs, e.g., producer-consumer

queues and logging [24, 51].

We use MASON to implement Corfu-MASON, a service

based on CORFU. CORFU’s original implementation does

not scale; although CORFU has a scalable execution protocol,

the implementation is limited by the ordering throughput of

its monolithic sequencer [3, 56]. By replacing the sequencer

with MASON, MASON’s scalable ordering combines with

CORFU’s scalable execution protocol to enable the whole

service to scale.

Corfu-MASON uses CORFU’s scalable execution protocol.

The shared log is represented by a single sequence space.

Appends acquire a sequence number that directly determines

which log position to write. A round-robin mapping of log

position-to-shard ensures append load is uniform on shards,

enabling appends to execute in parallel [3].

Corfu-MASON implements two of CORFU’s three opera-

tions, append(b) and read(l). append(b) appends the entry

b to the log and returns the log position l to which it was writ-

ten. read(l) returns the entry at log position l, or an error

code if the entry does not exist. CORFU implements a third

operation, fill(l), to fill holes in the sequence (and the log)

caused by failed clients. CORFU clients detect holes in the log

with a timeout and execute fill(l) to fill the lth position with

junk. The timeout-and-fill(l) procedure is unnecessary in

Corfu-MASON because of MASON’s contiguous sequence.

Corfu-MASON’s execution protocol uses sequence num-

bers for appends to determine which log positions to write,

which in turn map to specific shards. In addition to eliminating

the need for fill operations, MASON’s contiguous sequence

simplifies reads. If a client attempts to read a log position

that has not been written yet, it can simply keep checking

that log position. The contiguous sequence guarantees that

the entry will eventually be written. reads need not be or-

dered and hence are not ordered or replicated by MASON; the

service stub executes reads immediately. CORFU tolerates

shard failure using client-driven chain replication [55], and

so Corfu-MASON uses service stub-driven chain replication.

Corfu-MASON was implemented in a single day thanks to

both the simplicity of CORFU and the strong abstraction of a

contiguous sequence provided by MASON.

6.3 Making ZooKeeper Scalable: ZK-MASON

ZK-MASON is a ZooKeeper-like coordination service built

on MASON. ZooKeeper [22] is a widely-used coordina-

tion service implemented on ZooKeeper Atomic Broadcast

(ZAB) [25], a version of state machine replication (SMR).

ZAB, like other SMR protocols, cannot scale: it is fundamen-

tally limited by the rate a single machine can execute requests.

Furthermore, ZooKeeper uses a single replicated state ma-

chine to ensure consistency, so an instance cannot be sharded.

We designed ZK-MASON to be scalable, using the cross-shard

consistency and scalable ordering provided by MASON.

ZK-MASON operations. Similar to ZooKeeper, ZK-

MASON maintains a set of znodes. Each znode has a

pathname beginning with “/” (similar to a filesystem) and

data associated with it. We implemented seven operations in

ZK-MASON:

• create(path,data,flags): creates a znode with pathname

path and data data. flags allows the client to specify a

persistent or ephemeral znode.

9

• setData(path,data,version): sets the data at path if ver-

sion matches the current version, or if version is −1.

• getData(path,watch): gets the data at path.

• exists(path,watch): checks if the znode exists.

• delete(path,version): deletes znode specified by path if

version matches the current version, or if version is −1.

• getChildren(path,watch): returns the children of path

The read operations getData, exists, and getChildren

return the znode’s current version. Read operations have a

watch flag, which sets a watch on the znode if the flag is set.

ZK-MASON watches have the same semantics as ZooKeeper

watches. Watches are triggered by updates depending on the

type of read operation and the type of update operation. For

example, a watch set by getChildren is triggered after a

create or delete of a child, but not by any setData on its

children, as that does not change the result of getChildren.

ZK-MASON notifies the client when its watch is triggered.

ZK-MASON execution protocol. ZK-MASON’s execution

protocol is based on Eris’s execution protocol [37]. ZK-

MASON assigns znodes to shards based on a hash of the full

pathname. Shards consist of 2 f +1 servers; each shard toler-

ates f failures. Each server executes incoming operations in

order of the shard’s sequence space. When a proxy receives a

client operation, the service stub determines which shards are

involved in the operation and requests a multi-sequence num-

ber for the relevant sequence spaces. For example, to execute

a create, the service stub hashes the path and the parent path-

name to get the sequence spaces for those two shards. MASON

acquires and replicates a multi-sequence number with the two

sequence spaces. The service stub sends a create operation

to each server in path’s shard and an addChild operation to

each server in path’s parent’s shard in parallel. When the stub

receives a quorum of f + 1 responses from each shard, the

operation is complete; the stub informs MASON of comple-

tion, and MASON returns to the client. Read operations, for

example, getData, only need to receive one response from

the shard before returning to the client because they are se-

quenced and do not change state.

Ephemeral znodes. Ephemeral znodes are transient znodes

that exist only during an active client connection. They are

created by a client and deleted by the service when the client

disconnects, either explicitly or due to failure. Ephemeral zn-

odes can be used to add to a distributed queue: if the creating

client fails, the object is removed. They can also help manage

locks: if a client acquires a lock and fails, the lock is released

when the ephemeral object disappears [53]. Implementing

ephemeral znodes in ZK-MASON is straightforward. Shards

keep a timer that is reset with client heartbeats. After timing

out, the shard sends a delete to a proxy to delete the node.

The delete is ordered to prevent divergent shards.

The contiguous multi-sequence abstraction simplifies

ZK-MASON. Implementing this service over a noncontigu-

ous multi-sequence would require consensus to deal with

holes. Because a missing sequence number could belong to a

multi-shard operation, e.g., create, the hole-filling consensus

would need to be service-wide to avoid partially executing

the operation on some shards but not others. To handle cases

where aborting a partially-executed operation is impossible,

each full operation would need to be persisted by the service

so it could be recovered by shards that never received it (e.g.,

the full operation could be sent to every relevant shard).

In ZK-MASON, if a shard encounters a gap in its sequence

space, it can wait for the missing operation and each shard

only needs to receive the parts of the operation that will exe-

cute on that shard. The contiguous multi-sequence guarantees

that the operation will be executed.

7 Evaluation

MASON provides two main innovations for building services.

First, it is a general, reusable building block that offers the

contiguous multi-sequence abstraction. This makes it easy to

build efficient implementations of complex services (§6). But,

as with any such abstraction, we expect overheads compared

to specialized implementations. Second, MASON provides

a scalable multi-sequence allowing previously unscalable

services to now scale. This section quantifies the overhead

of MASON’s general abstraction for two services (§7.2 and

§7.3), shows MASON provides scalable ordering (§7.1), that

its scalable ordering does indeed enable services to scale

(§7.2 and §7.3), and that MASON does provide a contiguous

multi-sequence despite failures (§7.4).

Implementation. MASON is written in C++. All compo-

nents, including clients, service shards, and MASON com-

ponents, communicate with eRPC, a reliable RPC frame-

work [27]. eRPC uses unreliable datagrams in Intel DPDK

(v. 17.11.5) as its transport layer [14]. We replicate prox-

ies with Raft [46], and periodically durably snapshot their

state for Raft log compaction. We do not implement re-

configuration. MASON’s source code is available at https:

//github.com/princeton-sns/mason.

Evaluation setup. We evaluate MASON on the Emulab

testbed [57] with Dell R430 (d430) machines [11]. We run

Ubuntu 18.04.11 with Linux kernel version 4.15.0. The ma-

chines have two hyperthreaded 8-core CPUs (Intel E5-2630

“Haswell”, 2.4 GHz) with 20 MB L3 cache, 64 GB RAM, and

one dual-port 10 GbE PCI-Express NIC (Intel X710).

We load MASON with clients running on separate ma-

chines of the same type. Unless otherwise specified, each

client machine runs 16 threads, each implementing several

logical closed-loop clients that generate new operations as

previous operations complete. We control load by varying the

number of client machines and the number of logical closed-

loop clients per thread. Latency is measured at clients for

each operation. We report the median over five trials of the

median latency over all clients in a trial. We present latency as

median/99th percentile. Throughput is also measured at each

10

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30 35

L
a
te
n
c
y
 (
µ
s
e
c
)

Throughput (Mreqs/sec)

1 Proxy
2 Proxies
4 Proxies
8 Proxies
16 Proxies

(a) 1 Sequence Space

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

L
a
te
n
c
y
 (
µ
s
e
c
)

Throughput (Mreqs/sec)

1 Proxy
2 Proxies
4 Proxies
8 Proxies
16 Proxies

(b) 2 Sequence Spaces

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12 14 16 18 20

L
a
te
n
c
y
 (
µ
s
e
c
)

Throughput (Mreqs/sec)

1 Proxy
2 Proxies
4 Proxies
8 Proxies
16 Proxies

(c) 4 Sequence Spaces

 0

 200

 400

 600

 800

 1000

 0 2 4 6 8 10 12

L
a
te
n
c
y
 (
µ
s
e
c
)

Throughput (Mreqs/sec)

1 Proxy
2 Proxies
4 Proxies
8 Proxies
16 Proxies

(d) 8 Sequence Spaces

Figure 3: MASON ordering throughput-latency; each point represents a given load, doubling the client load from the

previous point. MASON scales linearly with the number of proxies: as the number of proxies doubles, the ordering

throughput also roughly doubles for each sequence space count.

client and aggregated over all clients in a trial. For all scal-

ability experiments we derive the throughput by increasing

load (i.e., the number of logical clients). We report the highest

throughput before latency spikes from overload. We show the

median throughput over five trials. Trials are 68 seconds each;

the first and last 4 seconds of measurements are discarded.

Each proxy is replicated on 3 machines. Experiments in

Sections 7.1 and 7.4 use a stub service with one operation:

clients indicate relevant sequence spaces and the service re-

turns the assigned multi-sequence number to the client.

7.1 MASON Scales Ordering Throughput

MASON uses two mechanisms to scale ordering throughput:

adding more proxies and increasing batching to the sequencer.

The first mechanism, adding more proxies, is evaluated in Fig-

ure 3. Ordering throughput is the number of client operations

per second that receive a multi-sequence number and return

to clients. To stress ordering throughput, the proxies do not

execute operations on behalf of clients in this experiment. We

present latency as median/99th percentile.

Figure 3 shows that, as the number of proxies doubles, the

ordering throughput also roughly doubles for each sequence

space count. As the number of sequence spaces in the system

increases, the per-proxy machine throughput decreases, so

overall ordering throughput with the same number of proxies

is lower. Latency at these throughputs ranges from ~243 (me-

dian)/~380 µs (99th percentile) for a single sequence space to

~358/~693 µs for 8 sequence spaces. This experiment demon-

strates that adding more proxies enables MASON to scale

ordering throughput.

We are unable to test our second mechanism, increasing

batching to the sequencer, because we cannot saturate the

sequencer with the machines available on Emulab. With 48

proxy machines, the sequencer processes ~3.2 Mops/s, which

is far from the ~14.5 Mops/s possible at line rate. As MASON

scales linearly with increasing proxies, we expect to be able

to achieve over 142 Mops/s before the sequencer becomes the

bottleneck. At that point, we expect to be able to continue

doubling the ordering throughput of MASON by doubling the

number of proxies and doubling the batch sizes. Average batch

size for 48 proxies with one sequence space is ~8 operations.

7.2 Making CORFU Scalable

MASON provides scalable ordering that, when coupled with a

scalable execution protocol, enables services to scale. Corfu-

MASON replaces CORFU’s monolithic sequencer with MA-

SON, yielding a scalable distributed shared log (§6.2).

We compare Corfu-MASON with CORFU′, our implemen-

tation of CORFU in the same environment as Corfu-MASON,

using C++ and eRPC over DPDK. CORFU′’s sequencer pro-

cesses requests at ~14.2 Mops/s, nearly line-rate for our mes-

sage size (~14.5 Mops/s). This is a fairer baseline than using

CORFU’s improved sequencer, whose maximum ordering

throughput is ~570 Kops/s [3, 4].

Figure 4a evaluates Corfu-MASON’s scalability. We run

a workload consisting entirely of 64 B appends and increase

the number of Corfu shards. We use 6 (replicated) proxies for

every Corfu shard, keeping the ratio of proxies to Corfu shards

constant. CORFU′ roughly doubles throughput from one to

two Corfu shards before the sequencer saturates and latency

increases; the maximum observed throughput of CORFU′

is ~14.1 Mops/s with latency of ~70 (median)/~90 µs (99th

percentile). MASON allows ordering in Corfu-MASON to

scale, enabling service throughput to increase linearly: Corfu-

MASON scales from ~7.3 Mops/s with one Corfu shard to

~29.1 Mops/s with four Corfu shards, an increase of ~3.98x.

Append latency at four Corfu shards is ~200/297 µs. The

increase in latency is from extra round trips (clients sending

requests to proxy leaders, which leaders replicate) and proxies

waiting for 20 µs to batch requests.

Figure 4b shows the scalability of reads. Clients execute

reads on random log positions in CORFU′ by reading a

shard’s tail replica. Reads in Corfu-MASON are executed

by proxy leaders, which read the tail replica. Reads are not

sequenced in either service, so reads scale the same in both

services. Latency for Corfu-MASON is ~97/~147 µs, ~65 µs

higher than CORFU′’s ~32/~62 µs, from the extra round trip

through the proxy leader.

7.3 Making ZooKeeper Scalable

ZK-MASON is a ZooKeeper-like coordination service [22]

(see Sec. 6.3). ZK-MASON uses a scalable execution protocol

with MASON’s scalable ordering to scale the entire service.

11

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 5 10 15 20 25 30 35

L
a
te
n
c
y
 (
µ
s
e
c
)

Throughput (Mreqs/sec)

Corfu-Mason 1 Shard

Corfu-Mason 2 Shards

Corfu-Mason 3 Shards

Corfu-Mason 4 Shards

CORFU' 1 Shard

CORFU' 2 Shards

CORFU' 3 Shards

CORFU' 4 Shards

(a) append throughput-latency

 0
 50

 100
 150
 200
 250
 300

 0 5 10 15 20 25 30 35

L
a
te
n
c
y
 (
µ
s
e
c
)

Throughput (Mreqs/sec)

Corfu-Mason 1 Shard

Corfu-Mason 2 Shards

Corfu-Mason 3 Shards

Corfu-Mason 4 Shards

CORFU' 1 Shard

CORFU' 2 Shards

CORFU' 3 Shards

CORFU' 4 Shards

(b) read throughput-latency

Operation Med. 99%

CORFU′ append 70 90

Corfu-MASON append 200 297

CORFU′ read 32 62

Corfu-MASON read 97 147

(c) Latency (µs).

Figure 4: CORFU′ and Corfu-MASON comparison; each point represents a given load, doubling the client load from

the previous point. Corfu-MASON append throughput scales linearly with more shards while CORFU′ saturates at 2

shards. Corfu-MASON has higher latency in exchange for contiguity and linear scalability.

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8

L
a
te
n
c
y
 (
µ
s
e
c
)

Throughput (Mreqs/sec)

RSMKeeper
1 Shard
2 Shards
4 Shards
8 Shards

(a) setData throughput-latency

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 1 2 3 4 5 6 7

L
a
te
n
c
y
 (
µ
s
e
c
)

Throughput (Mreqs/sec)

RSMKeeper
1 Shard
2 Shards
4 Shards
8 Shards

(b) getData throughput-latency

Operation (shards) Med. 99%

RSMKeeper set. (1) 211 355

ZK-MASON set. (1) 192 268

ZK-MASON set. (8) 276 518

RSMKeeper get. (1) 209 352

ZK-MASON get. (1) 224 304

ZK-MASON get. (8) 327 699

(c) Latency (µs).

Figure 5: RSMKeeper and ZK-MASON comparison; each point represents a given load, doubling the client load from

the previous point. ZK-MASON achieves higher throughput than RSMKeeper with a single shard at comparable latency.

ZK-MASON throughput scales linearly at the cost of a modest increase in latency.

To compare ZK-MASON and ZooKeeper we implemented

RSMKeeper, a prototype of ZooKeeper over Raft [46]. RSM-

Keeper has the same operations as ZK-MASON. Both are

implemented in C++ with eRPC over DPDK [14, 27]; RSM-

Keeper uses a single thread. We note that RSMKeeper has

much higher throughput than the original ZooKeeper imple-

mentation, providing a fairer baseline.

We configured RSMKeeper and ZK-MASON to maximize

service throughput while keeping latency low. RSMKeeper is

loaded by one client machine running 8 threads. ZK-MASON

clients use 16 threads. ZK-MASON uses 2 proxies per shard

and 1 client machine per proxy. Each proxy uses 8 threads

and each ZK-MASON shard uses 1 thread. This is the minimal

setup for a single shard that stresses the shard’s throughput.

We add more ZK-MASON shards, keeping the ratio of clients

and proxies to shards constant. Our ZK-MASON experiments

show the scalability of the contiguous multi-sequence abstrac-

tion when scaling out the number of shards.

Figure 5a shows the throughput-latency of setData opera-

tions. RSMKeeper’s (and ZooKeeper’s) design uses a single

replicated state machine to ensure consistency and thus can-

not run with more than one shard; its maximum throughput

is ~150 Kops/s. With one shard, ZK-MASON has 8.6× the

service throughput of RSMKeeper, at ~1.29 Mops/s while

providing latency in a similar range as shown in Figure 5c.

ZK-MASON has lower latency than RSMKeeper in Figure 5c,

~192 µs vs ~211 µs, because of where we determined over-

load to be for RSMKeeper; we chose a point in the throughput-

latency curve that increased throughput at the cost of some

latency. At lower load and lower throughput settings, RSM-

Keeper has lower latency than ZK-MASON. For example,

RSMKeeper has ~94 µs median latency at ~85 Kops/s and ZK-

MASON has ~152 µs at ~212 Kops/s. ZK-MASON’s higher

single-shard throughput comes from the proxy layer scaling

with two (replicated) proxies handling client requests for one

ZK-MASON shard. Furthermore, ZK-MASON shards do less

work per setData operation than RSMKeeper. For each op-

eration, RSMKeeper handles operation execution, one round

of client-to-leader communication, two rounds of leader-to-

follower communication, and snapshotting Raft state and log

compaction to disk. On the other hand, MASON frees the ZK-

MASON shard from handling tasks related to ordering and

consensus. The shard only handles execution and one round

of proxy-to-shard communication. With more resources de-

voted to execution, one ZK-MASON shard has a higher max-

imum throughput than RSMKeeper. More importantly, ZK-

MASON is able to scale throughput by increasing the number

of shards and proxies: with eight shards its throughput scales

to ~7.1 Mops/s.

Figure 5b shows the throughput-latency of getData op-

12

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30

H
ig

h
e
s
t

 S
e
q
n
u
m

 (
M

)

Time (s)

Figure 6: Highest contiguous multi-sequence number re-

ceived across all clients at time t. We induce proxy leader

failure at 10 s and sequencer failure at 20 s.

erations. We configured RSMKeeper to replicate getData

operations to provide the same consistency as ZooKeeper’s

sync-getData construction and ZK-MASON’s getData op-

eration. RSMKeeper’s maximum throughput is ~150 Kops/s

with latency ~209 (median)/~352 µs (99th percentile). ZK-

MASON’s getData throughput scales from ~1.1 Mops/s with

one shard to ~6 Mops/s with eight shards. Latencies in those

runs range from ~224/~304 µs (one shard) to ~327/~699 µs

(eight shards). getData operations have slightly higher la-

tency than setData operations because proxies need to wait

for a response from a ZK-MASON replica which must execute

all operations ordered before the getData before returning

to the client, while setData can be executed on ZK-MASON

shards asynchronously.

7.4 MASON Provides a Contiguous Sequence

This experiment validates that MASON provides a contiguous

sequence despite component failures. We run MASON with

16 proxies. Each proxy machine hosts either 8 leaders or 8

followers in 8 different proxies for a total of 6 proxy machines

(2 leader machines and 4 follower machines). Load is gen-

erated by 4 client machines. Clients request one sequence

number from each of 4 sequence spaces. We inject proxy and

sequencer failure; network drops occur naturally.

Figure 6 shows the highest contiguous sequence number

successfully received by a client over time for each of 4 se-

quence spaces. That is, if Figure 6 indicates that at time x the

highest contiguous sequence number from a sequence space

is y, then each sequence number up to and including y in that

space was received by some client. We ran the experiment

with 4 sequence spaces and plotted the highest contiguous se-

quence number for each sequence space. Since clients request

one number from every sequence space, they advance at the

same rate and thus all four lines overlap.

We first kill a proxy machine hosting 8 proxy leaders 10 s

into the experiment. The 8 recovering proxies stop processing

client operations and may have uncompleted operations. The

flat region in the plot indicates where the sequence increase

is blocked by uncompleted operations. Once failover is com-

plete, the new leaders respond to pending client operations.

The plot spikes as gaps in the sequence are filled in and oper-

ations serviced by the two non-failing proxies are accounted

for. Proxy failure detection and failover take 3.06 s, including

1 s-2 s for the failure detection timeout, set randomly by Raft.

We kill the sequencer 20 s into the experiment. A proxy

times out 1 s later and begins the recovery protocol. Failure

detection and recovery take 2.38 s—the plot’s 2nd flat region—

and then the contiguous multi-sequence continues to grow.

8 Limitations

Resource Cost. MASON provides a contiguous, scalable

multi-sequence using replicated proxies. This ability to scale

adds overhead compared to non-scalable designs in opera-

tional settings that do not demand more throughput than the

latter can support. For instance, when CORFU′ saturates its

sequencer at 2 Corfu shards, Corfu-MASON uses 36 proxy

machines (12 proxy groups). Proxies process more RPCs

than Corfu shards, so Corfu-MASON needs more proxies than

shards to saturate the shards. The resource overhead (number

of machines) is thus 600% to saturate two Corfu shards with

Corfu-MASON (42 total machines including a standby for

Corfu-MASON and 6 including a standby for CORFU). As

another example, the overhead for the single-shard setup for

ZK-MASON is 266% (8 total machines including a standby

for ZK-MASON and 3 total machines for RSMKeeper).

However, MASON’s scalability means it can be used to

provide throughput beyond what can be achieved with non-

scalable designs. We evaluated up to a 206% throughput in-

crease for Corfu-MASON over CORFU′’s maximum through-

put and expect throughput to continue scaling. We evaluated

up to a 4733% throughput increase for ZK-MASON over

RSMKeeper’s maximum throughput and expect throughput to

continue scaling.

Thus, a practical deployment strategy could be to initially

deploy the service in a small one proxy setup and to colocate

the service’s processes on the machines used for the proxy. As

throughput demands increase, the service could then add more

proxy groups and eventually split proxies and the service’s

processes into different machines to scale them independently.

This strategy may add some operational overhead from chang-

ing configurations but would enable a service to pay a lower

cost for an initial setup.

Performance predictability. The intermediate components

between clients and the service can make the performance of

the system as a whole less predictable because tail latencies at

each hop can accumulate. Furthermore, MASON’s additional

components may complicate performance debugging since

more components will need to be inspected.

9 Related Work

This section explains MASON’s relationship to the five cat-

egories of related work it builds upon. At a high level, the

primary distinction of MASON is that it provides strict se-

rializability, unlike atomic multicast; it is scalable, unlike

state machine replication and fast ordering systems; it pro-

vides multiple sequence spaces, unlike shared logs; and its

13

abstraction enables more efficient, specialized service imple-

mentations than distributed databases.

Atomic multicast. Atomic multicast guarantees messages

are delivered reliably and satisfying a total order to one or

more groups of processes [8, 17, 18, 20]. Unlike the order

given by a contiguous multi-sequence, the total order given by

atomic multicast is not strictly serializable. Atomic multicast

is thus used directly in systems to provide weaker consistency

guarantees [39]. It may also be augmented to provide stronger

consistency [6, 34].

State machine replication. There is a large body of work on

state machine replication (SMR) implemented with consen-

sus [1, 12, 15, 19, 23, 25, 28, 30–33, 40, 41, 44–46, 50, 58],

which provides two properties MASON aims for: a contiguous

sequence via SMR’s log and fault tolerance via consensus.

These protocols have a fundamental throughput ceiling, the

rate a single machine can execute commands in order.

Compartmentalization is a technique to scale state machine

replication [58]. Compartmentalization “involves decoupling

individual bottlenecks into distinct components and scaling

these components independently”. How MASON scales order-

ing can be viewed as compartmentalization: ordering, handing

out multi-sequence numbers, is explicitly separated from exe-

cution, and scaled via the proxy layer and batching.

In the compartmentalized version of Multi-Paxos, a batch-

ing layer batches client requests before sending them to the

leader which orders batches in the log [58]. This technique

scales ordering, but is still limited to the rate a single machine

can execute commands in order, and does not easily extend to

the contiguous multi-sequencing abstraction.

Distributed shared logs. CORFU uses a monolithic se-

quencer to find the tail of a distributed shared log [3]. It cannot

scale beyond the throughput of the sequencer. MASON can

provide a contiguous sequence to a CORFU service while

scaling beyond the throughput of a monolithic sequencer, but

MASON requires more resources and has higher latency.

Delos [5] unifies separate shared log or storage instances

into a single virtualized shared log. It inherits the scalability

limitations of its underlying systems. Scalog [13] is a dis-

tributed shared log that uses a replicated ordering mechanism

to reliably totally order records in a log. Scalog increases the

write throughput ceiling compared to CORFU by two orders

of magnitude. It increases ordering throughput using a similar

technique as MASON’s proxies which batch requests across

clients: storage servers collect and periodically order multiple

operations at once using tiered aggregators “that relay order-

ing information” from the layer below it up to a replicated

sequencer. Scalog and MASON both guarantee that services al-

ways see a contiguous sequence of operations, unlike CORFU.

Scalog’s mechanism for guaranteeing contiguity is similar

to MASON’s, i.e., both replicate client operations before exe-

cuting them. Scalog also replicates its sequencer. However,

Scalog cannot be easily extended to multi-sequencing: Scalog

orders operations using a summary of operations that arrive

at individual shards. Scalog’s resource overhead is lower than

MASON for services where replicating an operation is the

same as executing the operation (e.g., a shared log). In such

services, Scalog replicates the operation on servers for con-

tiguity, which serves to execute the operation as well. The

same service over MASON must replicate the operation twice,

as separate steps on distinct components: the proxy layer

replicates the operation for contiguity, and execution is car-

ried out by storing the operation on service servers. For other

services where executing the operation is more than just stor-

ing its input, for example in ZK-MASON, Scalog’s technique

of replicating for contiguity would need to be accompanied

by a separate step of executing the operation. MASON’s and

Scalog’s overheads are thus similar for such services.

ChronoLog [29] uses physical time to order records by ac-

counting for skew among distributed components. It reports

an order of magnitude higher throughput than CORFU. Like

Scalog, Delos and ChronoLog cannot be easily extended to

multi-sequencing: both lack mechanisms to atomically ap-

pend to multiple logs. Thus, they cannot easily be modified

to support strictly serializable cross-shard operations.

Chariots [43] scales by delegating the ordering of disjoint

ranges of a shared log to independent servers, providing only

causal consistency [38]. FuzzyLog partially orders records in

exchange for better performance [39]. MASON provides the

stronger guarantee of strict serializability.

Fast ordering systems. State-of-the-art networks or network

appliances can support high-throughput, low-latency sequenc-

ing [26, 36, 37]. Unlike MASON, these sequencers cannot

scale, do not provide a contiguous sequence, and are not fault-

tolerant. However, such sequencers can provide sequencing

with much lower latency than MASON.

Kronos provides high-throughput happens-before order-

ing; services totally order operations [16]. Mostly-ordered

multicast uses datacenter network properties to provide con-

sistent multicasting except during network failures or packet

loss [50]. Reliable 1Pipe, 1Pipe’s strongest abstraction, pro-

vides ordered communication to receiver groups where mes-

sages eventually arrive absent failures and partitions [35].

Services detect and handle lost messages with consensus,

much like services using noncontiguous multi-sequences. In

contrast to these systems, MASON provides the stronger ab-

straction of a strictly serializable, contiguous sequence.

Distributed databases. FoundationDB uses a single se-

quence space with batching to scalably implement commit

timestamps [60], but does not provide contiguity or multi-

sequencing. Granola uses clock-based timestamps on clients

(through “client proxies” which are similar to our service stubs

in that they exist on the clients (proxies) to execute Granola

(service) code) and servers and coordination among shards

to determine a global transaction order [10]; the clock-based

timestamps do not provide contiguity or multi-sequencing.

Calvin uses a sequencing layer distributed across all servers in

14

the system [54]. The sequencing layer synchronously batches

operations, exchanges them among replicas, then exchanges

them among all servers in its copy of the database. Dis-

tributing the sequencer across servers and using large syn-

chronous batches enables the sequencer to be more scalable

than a single machine sequencer. However, as more shards

are added, the all-to-all communication within a copy of

the database will become a bottleneck, halting scalability.

Eris [37], Calvin [54], vCorfu [56], Tango [4], and other dis-

tributed databases [2, 42, 49, 51, 59, 60] provide a higher-

level abstraction than MASON. It is harder for services to build

efficient, specialized implementations over the distributed

database abstraction compared to the multi-sequence abstrac-

tion. For instance, ephemeral znodes (§6.3) do not fit the

traditional distributed database model; a service developer

would implement a new replicated component to manage

client connections and explicitly delete the znode at connec-

tion termination. In contrast, implementing ephemeral znodes

in ZK-MASON was straightforward.

The multi-leader approach to system design, as used in,

for example, Spanner [9], uses a replica designated as the

leader for each shard. A shard leader coordinates with repli-

cas in its own shard and with leaders in other shards for

operations that span multiple shards. For example, the service

must implement consensus to order operations within a shard,

perhaps via state-machine replication, and concurrency con-

trol, like optimistic concurrency control or two-phase locking

with two-phase commit, to order operations across shards.

Thus, multi-leader services are more difficult to implement

than services using the multi-sequence abstraction, which

orders operations within a shard by assigning a sequence

space to a shard and across shards by atomically allocating a

multi-sequence number. Therefore, services built on the multi-

sequence abstraction do not need to implement coordination

across shards for ordering; they only need to implement the

service semantics.

MASON’s contiguous multi-sequence abstraction is an ex-

cellent candidate for implementing distributed databases. Its

contiguity would eliminate significant complexity in ported

implementations of Eris and vCorfu. Similarly, its contiguity

would greatly simplify developing new multi-sequence-based

distributed databases. Its scalable multi-sequence would en-

able Eris, vCorfu, and future databases to scale far higher than

the throughput ceiling of monolithic sequencers. This is an

important avenue for future work.

10 Conclusion

The multi-sequence abstraction extends the sequence abstrac-

tion to enable consistent ordering across shards with only

local ordering information. This paper proposed the con-

tiguous multi-sequence abstraction for building consistent

services. It is a stronger abstraction than the noncontiguous

multi-sequence abstraction in use today, making it easier to

build services with multi-sequences. We also presented MA-

SON, the first system to expose the contiguous multi-sequence

abstraction and the first to provide a scalable multi-sequence.

We demonstrated MASON’s usefulness as a building block for

scalable, consistent services by using it to enable scalability in

two services that were previously fundamentally unscalable.

Acknowledgements. We thank the anonymous JSys review-

ers for their feedback. We are grateful to Mohsin Ali, who

contributed to early stages of this work. We thank Jeffrey Helt,

Khiem Ngo, Zhenyu Song, Jennifer Lam, and Anja Kalaba

for their help improving this work. Our experimental results

were made possible by the Emulab testbed [57]. This mate-

rial is based upon work supported by the National Science

Foundation under Grant Nos. CNS-1910390, CNS-1564242,

and CNS-1835253. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of

the author(s) and do not necessarily reflect the views of the

National Science Foundation.

References

[1] R. C. Aksoy and M. Kapritsos. Aegean: replication

beyond the client-server model. In Proceedings of the

27th ACM Symposium on Operating Systems Principles

(SOSP’19), Huntsville, ON, Canada, 2019. ACM. URL

https://doi.org/10.1145/3341301.3359663.

[2] P. Antonopoulos, A. Budovski, C. Diaconu, A. Her-

nandez Saenz, J. Hu, H. Kodavalla, D. Kossmann,

S. Lingam, U. F. Minhas, N. Prakash, V. Purohit, H. Qu,

C. Sreenivas Ravella, K. Reisteter, S. Shrotri, D. Tang,

and V. Wakade. Socrates: the new SQL server in the

cloud. In Proceedings of the 2019 International Con-

ference on Management of Data (SIGMOD’19), Ams-

terdam, The Netherlands, 2019. Association for Com-

puting Machinery (ACM). URL https://doi.org/

10.1145/3299869.3314047.

[3] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber,

M. Wei, and J. D. Davis. Corfu: A shared log design for

flash clusters. In Proceedings of the 9th USENIX Sympo-

sium on Networked Systems Design and Implementation

(NSDI’12), San Jose, CA, USA, 2012. USENIX Associ-

ation.

[4] M. Balakrishnan, D. Malkhi, T. Wobber, M. Wu, V. Prab-

hakaran, M. Wei, J. D. Davis, S. Rao, T. Zou, and

A. Zuck. Tango: Distributed data structures over a

shared log. In Proceedings of the 24th ACM Symposium

on Operating Systems Principles (SOSP’13), Farming-

ton, PA, USA, 2013. Association for Computing Ma-

chinery (ACM). URL https://doi.org/10.1145/

2517349.2522732.

[5] M. Balakrishnan, J. Flinn, C. Shen, M. Dharamshi,

A. Jafri, X. Shi, S. Ghosh, H. Hassan, A. Sagar, R. Shi,

et al. Virtual Consensus in Delos. In 14th USENIX Sym-

posium on Operating Systems Design and Implementa-

tion (OSDI’20), Online, 2020. USENIX Association.

15

[6] C. E. Bezerra, F. Pedone, and R. Van Renesse. Scal-

able State-Machine Replication. In Proceedings of

the 9th European Conference on Computer Systems

(EuroSys’14), Amsterdam, The Netherlands, 2014. As-

sociation for Computing Machinery (ACM). URL

https://doi.org/10.1109/DSN.2014.41.

[7] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos

made live: an engineering perspective. In Proceedings

of the 26th ACM SIGACT-SIGOPS Symposium on Prin-

ciples of Distributed Computing (PODC’07), Portland,

OR, USA, 2007. Association for Computing Machinery

(ACM). URL https://doi.org/10.1145/1281100.

1281103.

[8] P. R. Coelho, N. Schiper, and F. Pedone. Fast atomic

multicast. In Proceedings of the 2017 47th Annual

IEEE/IFIP International Conference on Dependable

Systems and Networks (DSN’17), Denver, CO, USA,

2017. IEEE. URL https://doi.org/10.1109/DSN.

2017.15.

[9] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,

J. Furman, S. Ghemawat, A. Gubarev, C. Heiser,

P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li,

A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan,

R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor,

R. Wang, and D. Woodford. Spanner: Google’s

Globally-Distributed database. In 10th USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI 12), pages 261–264, Hollywood, CA, Oct. 2012.

USENIX Association. ISBN 978-1-931971-96-6. URL

https://www.usenix.org/conference/osdi12/

technical-sessions/presentation/corbett.

[10] J. A. Cowling and B. Liskov. Granola: Low-overhead

distributed transaction coordination. In USENIX Annual

Technical Conference, volume 12, 2012. URL https:

//doi.org/10.5555/2342821.2342842.

[11] D430. D430. https://wiki.emulab.net/wiki/

d430, 2021. Accessed: 12-10-2021.

[12] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and

R. Soulé. Netpaxos: Consensus at network speed. In

Proceedings of the 1st ACM SIGCOMM Symposium

on Software Defined Networking Research (SOSR’15),

Santa Clara, CA, USA, 2015. Association for Comput-

ing Machinery (ACM). URL https://doi.org/10.

1145/2774993.2774999.

[13] C. Ding, D. Chu, E. Zhao, X. Li, L. Alvisi, and R. van

Renesse. Scalog: Seamless Reconfiguration and Total

Order in a Scalable Shared Log. In Proceedings of the

17th USENIX Conference on Networked Systems Design

and Implementation (NSDI’20), Santa Clara, CA, USA,

2020. USENIX Association.

[14] DPDK Project. DPDK. https://dpdk.org, 2021.

Accessed: 12-10-2021.

[15] V. Enes, C. Baquero, T. F. Rezende, A. Gotsman, M. Per-

rin, and P. Sutra. State-machine replication for planet-

scale systems. In Proceedings of the 15th European Con-

ference on Computer Systems (EuroSys’20), Heraklion,

Greece, 2020. Association for Computing Machinery

(ACM). URL https://doi.org/10.1145/3342195.

3387543.

[16] R. Escriva, A. Dubey, B. Wong, and E. G. Sirer. Kronos:

The design and implementation of an event ordering

service. In Proceedings of the 9th European Confer-

ence on Computer Systems (EuroSys’14), Amsterdam,

The Netherlands, 2014. Association for Computing Ma-

chinery (ACM). URL https://doi.org/10.1145/

2592798.2592822.

[17] A. Gotsman, A. Lefort, and G. Chockler. White-box

atomic multicast. In Proceedings of the 2019 49th An-

nual IEEE/IFIP International Conference on Depend-

able Systems and Networks (DSN’19), Portland, OR,

USA, 2019. IEEE. URL https://doi.org/10.1109/

dsn.2019.00030.

[18] R. Guerraoui and A. Schiper. Genuine atomic multicast

in asynchronous distributed systems. Theoretical Com-

puter Science, 254(1-2):297–316, 2001. URL https:

//doi.org/10.1016/S0304-3975(99)00161-9.

[19] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and

L. Zhuang. Rex: Replication at the speed of multi-

core. In Proceedings of the 9th European Confer-

ence on Computer Systems (EuroSys’14), Amsterdam,

The Netherlands, 2014. Association for Computing Ma-

chinery (ACM). URL https://doi.org/10.1145/

2592798.2592800.

[20] V. Hadzilacos and S. Toueg. A modular approach to

fault-tolerant broadcasts and related problems. Techni-

cal report, Cornell University, 1994.

[21] M. P. Herlihy and J. M. Wing. Linearizability: A

correctness condition for concurrent objects. ACM

Transactions on Programming Languages and Systems

(TOPLAS), 12(3), 1990. URL https://doi.org/10.

1145/78969.78972.

[22] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed.

ZooKeeper: Wait-free Coordination for Internet-scale

Systems. In Proceedings of the 2010 USENIX Annual

Technical Conference (USENIX ATC’10), Boston, MA,

USA, 2010. USENIX Association.

[23] Z. István, D. Sidler, G. Alonso, and M. Vukolic. Con-

sensus in a Box: Inexpensive Coordination in Hardware.

In Proceedings of the 13th USENIX Conference on Net-

worked Systems Design and Implementation (NSDI’16),

Santa Clara, CA, USA, 2016. USENIX Association.

[24] Z. Jia and E. Witchel. Boki: Stateful Serverless Comput-

ing with Shared Logs. In Proceedings of the 28th ACM

Symposium on Operating Systems Principles (SOSP’21),

16

Online, 2021. Association for Computing Machinery

(ACM). URL https://doi.org/10.1145/3477132.

3483541.

[25] F. P. Junqueira, B. C. Reed, and M. Serafini. Zab: High-

performance broadcast for primary-backup systems. In

Proceedings of the 2011 41st Annual IEEE/IFIP Inter-

national Conference on Dependable Systems and Net-

works (DSN’11), Hong Kong, China, 2011. IEEE. URL

https://doi.org/10.1109/DSN.2011.5958223.

[26] A. Kalia, M. Kaminsky, and D. G. Andersen. Design

guidelines for high performance RDMA systems. In

Proceedings of the 2016 USENIX Annual Technical Con-

ference (USENIX ATC’16), Denver, CO, USA, 2016.

USENIX Association. URL https://doi.org/10.

5555/3026959.3027000.

[27] A. Kalia, M. Kaminsky, and D. G. Andersen. Datacenter

RPCs can be general and fast. In Proceedings of the 16th

USENIX Conference on Networked Systems Design and

Implementation (NSDI’19), Boston, MA, USA, 2019.

USENIX Association.

[28] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi,

and M. Dahlin. All about Eve: Execute-Verify Repli-

cation for Multi-Core Servers. In Proceedings of the

10th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’12), Hollywood, CA, USA,

2012. USENIX Association.

[29] A. Kougkas, H. Devarajan, K. Bateman, J. Cernuda,

N. Rajesh, and X.-H. Sun. ChronoLog: A Distributed

Shared Tiered Log Store with Time-based Data Order-

ing. In Proceedings of the 36th International Conference

on Massive Storage Systems and Technology (MSST’20),

Santa Clara, CA, USA, 2020. IEEE.

[30] L. Lamport. The part-time parliament. ACM Transac-

tions on Computer Systems (TOCS), 16(2), 1998.

[31] L. Lamport. Generalized consensus and Paxos. Techni-

cal Report MSR-TR-2005-33, 2005.

[32] L. Lamport. Fast Paxos. Distributed Comput-

ing, 19(2), 2006. URL https://doi.org/10.1007/

s00446-006-0005-x.

[33] L. Lamport, D. Malkhi, and L. Zhou. Vertical Paxos

and Primary-Backup Replication. In Proceedings of the

28th ACM SIGACT-SIGOPS Symposium on Principles

of Distributed Computing (PODC’09), Calgary, Alberta,

Canada, 2009. Association for Computing Machinery

(ACM). URL https://doi.org/10.1145/1582716.

1582783.

[34] L. H. Le, E. Fynn, M. Eslahi-Kelorazi, R. Soulé, and

F. Pedone. Dynastar: Optimized dynamic partitioning

for scalable state machine replication. In 2019 IEEE

39th International Conference on Distributed Comput-

ing Systems (ICDCS’19), Dallas, TX, USA, 2019. IEEE.

[35] B. Li, G. Zuo, W. Bai, and L. Zhang. 1Pipe: Scal-

able Total Order Communication In Data Center Net-

works. In Proceedings of the 2021 ACM SIGCOMM

2021 Conference (SIGCOMM’21), Online, 2021. As-

sociation for Computing Machinery (ACM). URL

https://doi.org/10.1145/3452296.3472909.

[36] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R.

Ports. Just Say NO to Paxos Overhead: Replacing Con-

sensus with Network Ordering. In Proceedings of the

12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI’16), Savannah, GA, USA,

2016. USENIX Association.

[37] J. Li, E. Michael, and D. R. Ports. Eris: Coordination-

Free Consistent Transactions Using In-Network Concur-

rency Control. In Proceedings of the 26th ACM Sym-

posium on Operating Systems Principles (SOSP’17),

Shanghai, China, 2017. Association for Computing Ma-

chinery (ACM). URL https://doi.org/10.1145/

3132747.3132751.

[38] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G.

Andersen. Don’t settle for eventual: Scalable causal

consistency for wide-area storage with COPS. In Pro-

ceedings of the 23rd ACM Symposium on Operating

Systems Principles (SOSP’11), Cascais, Portugal, 2011.

Association for Computing Machinery (ACM). URL

https://doi.org/10.1145/2043556.2043593.

[39] J. Lockerman, J. M. Faleiro, J. Kim, S. Sankaran, D. J.

Abadi, J. Aspnes, S. Sen, and M. Balakrishnan. The

FuzzyLog: a partially ordered shared log. In Proceed-

ings of the 13th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI’18), Carlsbad,

CA, USA, 2018. USENIX Association.

[40] Y. Mao, F. P. Junqueira, and K. Marzullo. Mencius:

building efficient replicated state machines for WANs.

In Proceedings of the 8th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI’08),

San Diego, CA, USA, 2008. USENIX Association.

[41] I. Moraru, D. G. Andersen, and M. Kaminsky. There

Is More Consensus in Egalitarian Parliaments. In Pro-

ceedings of the 24th ACM Symposium on Operating Sys-

tems Principles (SOSP’13), Farmington, PA, USA, 2013.

Association for Computing Machinery (ACM). URL

https://doi.org/10.1145/2517349.2517350.

[42] S. Mu, L. Nelson, W. Lloyd, and J. Li. Consolidating

Concurrency Control and Consensus for Commits under

Conflicts. In Proceedings of the 12th USENIX Sympo-

sium on Operating Systems Design and Implementation

(OSDI’16), Savannah, GA, USA, 2016. USENIX Asso-

ciation.

[43] F. Nawab, V. Arora, D. Agrawal, and A. El Abbadi. Char-

iots: A scalable shared log for data management in multi-

datacenter cloud environments. In Proceedings of the

18th International Conference on Extending Database

Technology (EDBT’15), Brussels, Belgium, 2015. Open-

17

Proceedings.org.

[44] K. Ngo, S. Sen, and W. Lloyd. Tolerating slowdowns

in replicated state machines using copilots. In 14th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI’20), Online, 2020. USENIX As-

sociation.

[45] B. M. Oki and B. H. Liskov. Viewstamped Replica-

tion: A New Primary Copy Method to Support Highly-

Available Distributed Systems. In Proceedings of

the Seventh Annual ACM Symposium on Principles

of Distributed Computing (PODC’88), Toronto, On-

tario, Canada, 1988. Association for Computing Ma-

chinery (ACM). URL https://doi.org/10.1145/

62546.62549.

[46] D. Ongaro and J. K. Ousterhout. In search of an under-

standable consensus algorithm. In Proceedings of the

2014 USENIX Annual Technical Conference (USENIX

ATC’14), Philadelphia, PA, USA, 2014. USENIX Asso-

ciation.

[47] H. Pan, J. Tuglu, N. Zhou, T. Wang, Y. Shen, X. Zheng,

J. Tassarotti, L. Tseng, and R. Palmieri. Rabia: Simplify-

ing State-Machine Replication Through Randomization.

In Proceedings of the 28th ACM Symposium on Op-

erating Systems Principles (SOSP’21), Online, 2021.

Association for Computing Machinery (ACM). URL

https://doi.org/10.1145/3477132.3483582.

[48] C. H. Papadimitriou. The serializability of concurrent

database updates. Journal of the ACM (JACM), 26

(4), 1979. URL https://doi.org/10.1145/322154.

322158.

[49] D. Peng and F. Dabek. Large-scale Incremental Process-

ing Using Distributed Transactions and Notifications. In

Proceedings of the 9th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI’10),

Vancouver, BC, Canada, 2010. USENIX Association.

[50] D. R. Ports, J. Li, V. Liu, N. K. Sharma, and A. Kr-

ishnamurthy. Designing Distributed Systems Using

Approximate Synchrony in Data Center Networks. In

Proceedings of the 12th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI’15),

Oakland, CA, USA, 2015. USENIX Association.

[51] K. Ren, D. Li, and D. J. Abadi. SLOG: serializable,

low-latency, geo-replicated transactions. Proceedings

of the VLDB Endowment, 12(11), 2019. URL https:

//doi.org/10.14778/3342263.3342647.

[52] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and

H. Balakrishnan. Chord: A Scalable Peer-to-Peer

Lookup Service for Internet Applications. In Proceed-

ings of the 2001 Conference on Applications, Technolo-

gies, Architectures, and Protocols for Computer Commu-

nications (SIGCOMM’01), San Diego, CA, USA, 2001.

Association for Computing Machinery (ACM). URL

https://doi.org/10.1145/383059.383071.

[53] The Apache Software Foundation. ZooKeeper Recipes

and Solutions. https://zookeeper.apache.org/

doc/current/recipes.html, 2021. Accessed: 12-10-

2021.

[54] A. Thomson, T. Diamond, S.-C. Weng, K. Ren, P. Shao,

and D. J. Abadi. Calvin: Fast Distributed Transac-

tions for Partitioned Database Systems. In Proceed-

ings of the 2012 ACM SIGMOD International Confer-

ence on Management of Data (SIGMOD’12), Scottsdale,

AZ, USA, 2012. Association for Computing Machinery

(ACM). URL https://doi.org/10.1145/2213836.

2213838.

[55] R. Van Renesse and F. B. Schneider. Chain Replication

for Supporting High Throughput and Availability. In

Proceedings of the 6th USENIX Symposium on Oper-

ating Systems Design and Implementation (OSDI’04),

San Francisco, CA, USA, 2004. USENIX Association.

[56] M. Wei, A. Tai, C. J. Rossbach, I. Abraham, M. Mun-

shed, M. Dhawan, J. Stabile, U. Wieder, S. Fritchie,

S. Swanson, et al. vCorfu: A Cloud-Scale Object

Store on a Shared Log. In Proceedings of the 14th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI’17), Boston, MA, USA, 2017.

USENIX Association.

[57] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,

M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An

Integrated Experimental Environment for Distributed

Systems and Networks. In Proceedings of the 5th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI’02), Barcelona, Catalonia-Spain,

2002. USENIX Association. URL https://doi.org/

10.1145/1060289.1060313.

[58] M. Whittaker, A. Ailijiang, A. Charapko, M. Demirbas,

N. Giridharan, J. M. Hellerstein, H. Howard, I. Stoica,

and A. Szekeres. Scaling replicated state machines

with compartmentalization. Proceedings of the VLDB

Endowment, 14(11):2203–2215, 2021. URL https:

//doi.org/10.14778/3476249.3476273.

[59] I. Zhang, N. K. Sharma, A. Szekeres, A. Krishnamurthy,

and D. R. Ports. Building Consistent Transactions

with Inconsistent Replication. ACM Transactions on

Computer Systems (TOCS), 35(4), 2018. URL https:

//doi.org/10.1145/2815400.2815404.

[60] J. Zhou, M. Xu, A. Shraer, B. Namasivayam, A. Miller,

E. Tschannen, S. Atherton, A. J. Beamon, R. Sears,

J. Leach, et al. Foundationdb: A distributed unbun-

dled transactional key value store. In Proceedings of the

2021 International Conference on Management of Data,

pages 2653–2666, 2021. URL https://doi.org/10.

1145/3448016.3457559.

18

Algorithm 1: Sequencer Protocol

1 S ; // Set of sequence spaces

2 atMostOnce[]; // Map of (proxy, seqReqId) to

the response

3 activeSequencer← False;

4 when the sequencer receives a message m, from proxy p

do

5 case m = RequestSeqNum(seqReqId,{counti}
|S |
i=0)

do

6 if ¬activeSequencer then

7 return null;

8 if (p,seqReqId) ∈ atMostOnce then

9 return atMostOnce[(p,seqReqId)],True;

10 resp←{ /0}
|S |
i=0;

11 for i ∈ {0, ..., |S |} do

12 if counti 6= 0 then

13 respi← Si;

14 Si← Si + counti;

15 atMostOnce[(proxyId,seqReqId)]← resp;

16 return resp,False;

17 case m = Recover do

18 for each proxy do

19 send GetMaxAndSeal to each proxy

20 wait for all proxies to reply

// Portion of recovery for contiguity

is omitted.

21 for i ∈ {0, ..., |S |} do

22 Si← max
response∈responses

Si in response + 1;

23 activeSequence← True;

A Proof of Strict Serializability

This presents a proof of the strict serializability of assignment

of multi-sequence numbers to operations.

A.1 Definitions

Strict serializability requires that there exists a legal total order

of operations and that the total order reflects the real-time

ordering constraints. Formally: A complete history h satisfies

linearizability if there exists a legal total order τ of ops(h)
such that ∀op1,op2 ∈ ops(h).op1 <h op2⇒ op1 <τ op2.

That is, if an operation x ends before an operation y begins

then x must appear before y in the total order.

Let S = {S0,S1, ...} be the set of all sequence spaces. We

say that two multi-sequence numbers a and b conflict if ∃n∈ S

such that an 6= ∆∧ bn 6= ∆. Multi-sequence numbers are or-

dered by the partial ordering τ over all multi-sequence num-

bers where a < b ⇐⇒ ∀n∈ S,an 6= ∆∧bn 6= ∆ =⇒ an < bn.

Note that this partial ordering includes the possibility of

Algorithm 2: Proxy State and Request Protocol

1 curSeqReqId← 0;

2 maxCmtdSeqReqId←−1; // updated in ApplyLog

locally

3 cmtdSeqReqIds[]; // holds all committed

SeqReqIds

4 maxRecvdSeqNum[]; // max received sequence

number for each sequence space

5 sequencers[]; // array of sequencers

6 activeIndex← 0; // index of the active

sequencer

7 when proxy p receives a message m do

8 case m =ClientRequest(op) do

9 retx← True;

10 seqReqId← curSeqReqId;

11 curSeqReqId← curSeqReqId +1;

12 activeSequencer← sequencers[activeIndex];
13 nextSequencer← sequencers[activeIndex+1];
14 while retx do

15 send (resp,retx)←
seqnumReq(myProxyId,seqReqId,op.seqReq)
to activeSequencer;

16 wait for response or suspect

activeSequencer has failed;

17 if suspect activeSequencer has failed then

18 send Recover to nextSequencer

19 wait for response from activeSequencer;

20 if sequencers[activeIndex] 6=
activeSequencer then

21 return

22 if retx then

23 executeNoop(resp);
24 seqReqId← curSeqReqId;

25 curSeqReqId← curSeqReqId +1;

26 replicate(seqReqId,resp);
27 wait for commit;

28 updateMaxRecvdSeqNum(resp);
29 execute(op); // Determined by service.

30 return to op.client;

31 case m = GetMaxAndSeal do

32 activeIndex← activeIndex+1;

33 replicate(seal); // contains activeIndex

34 wait for commit;

35 return maxRecvdSeqNum;

conflicting multi-sequence numbers not being ordered: i.e.

where ai < bi∧b j < a j for some i, j ∈ S =⇒ a‖b.

The goal of MASON is to provide an ordering for a service

built on MASON. Thus, we prove that the partial ordering τ

produced by MASON is a legal total order satisfying lineariz-

19

Algorithm 3: Proxy Leader Failover Recovery Protocol

1 when proxy replica gains Raft leadership do

2 UncmtdSeqReqIds←{i.i ∈ Z∧ i≤
maxCmtdSeqReqId};

3 UncmtdSeqReqIds←
UncmtdSeqReqIds\ cmtdSeqReqIds;

4 for seqReqId ∈UncmtdSeqReqIds do

5 send (resp,retx)←
seqnumReq(myProxyId,seqReqId,0);

6 wait for response;

7 if retx then

8 executeNoop(resp);

9 curSeqReqId← maxCmtdSeqReqId +1;

ability. It is then up to the service to apply the operations in

the order determined by τ.

An operation is assigned a multi-sequence number when

the Raft entry containing the operation and multi-sequence

number pair is committed. Multi-sequence numbers are allo-

cated by the sequencer to a request from the proxy; this does

not guarantee the operation for which the proxy requested a

multi-sequence number will be assigned the allocated multi-

sequence number.

We allow operations to be assigned a range of sequence

numbers in each sequence space. We will share notation for

operations and sequence numbers where for an operation

x, xn denotes the maximum sequence number assigned to

operation x in sequence space n. The comparison xn < yn,

and xn ≤ yn compares the highest assigned sequence number

for operation x in sequence space n and the lowest assigned

sequence number for operation y in sequence space n That is,

xn < yn ⇐⇒ max
i∈xn

i < min
i∈yn

i and xn ≤ yn ⇐⇒ max
i∈xn

i≤min
i∈yn

i.

The term proxy indicates a replicated state machine that

executes the MASON protocol detailed in Alg 2 and Alg 3.

Sequencer denotes a machine executing the protocol detailed

in Alg 1. A standby sequencer may begin executing the se-

quencer protocol from line 17 of Alg 1 when notified by any

proxy.

A.2 Assumptions

The model consists of a set of processes, P , which contains

clients, proxy replicas, and sequencers. Processes may fail

according to the crash failure model, where processes stop

executing requests, and the failure is undetectable to other

processes.

We assume an asynchronous network model where mes-

sages can be arbitrarily delayed and reordered.

We develop MASON’s proxies with Raft and assume the

following as guarantees from Raft [46], the guarantee A.1

being explicitly stated in the paper.

Guarantee A.1 “If a log entry is committed in a given term,

then that entry will be present in the logs of the leaders for

all higher-numbered terms.”

Guarantee A.2 Raft is available as long as a majority of

replicas have not failed.

A.3 Proof of total order

To prove that MASON provides a linearizable ordering we

first show that its ordering is a total order and then prove that

the total order respects the real-time order.

To provide a total order MASON needs to ensure for any two

operations x and y one of x< y, y< x, or ∀n∈ S,xn = ∆∨yn =
∆. The latter case describes when the two operations share

no sequence spaces, which we will call strictly concurrent

and denote x‖sy; in this case x and y are trivially ordered in

either order. When any of these relations are true we will

say operations x and y are strictly ordered. More specifically

for any two operations x and y, x and y are strictly ordered if

and only if (xn < yn∀n ∈ S.(xn 6= ∆∧yn 6= ∆))∨ (yn < xn∀n ∈
S.(xn 6= ∆∧ yn 6= ∆)).

We prove that MASON provides a total order, that is, where

all operations are strictly ordered as described above.

Lemma A.1 The assigned multi-sequence numbers for any

replicated and committed operation do not change.

Proof: Directly implied by SMR Guarantee A.1; any elected

leader will have the operation and multi-sequence number

pairing in its log. �

The goal then is to prove that any two assigned operations

are totally ordered, that is we need to show that ∀x,y,(x <

y)∨ (y < x)∨ x‖sy. We first prove a total order for conflicting

operations.

Lemma A.2 Any two conflicting operations x, y are strictly

ordered.

Proof: We prove by case analysis on all possible combinations

of failures of MASON components.

Case 0: No failures. The sequencer trivially guarantees the

existence of a total order in normal operation. Consider

any two conflicting operations x,y ∈ ops(h) and any two

sequence spaces on which x and y conflict, n,m, such that

xn 6= ∆∧ yn 6= ∆∧ xm 6= ∆∧ ym 6= ∆. Without loss of general-

ity let x arrive at the sequencer before y. Let Sn = i,Sm = j

when x arrives. Lines 11 – 14 of Alg 1 increment Sn and Sm

by the respective counts before responding. Once the proxy

replicates the assigned multi-sequence numbers for x the as-

signment does not change by Lemma A.1. Then, y, arriving

later, must receive Sn ≥ i+xn.count,Sm ≥ i+xm.count where

xn.count is the number of sequence numbers requested for Sn

by operation x (line 14 of Alg 1). Thus, xn < yn ∧ xm < ym;

that is, they are strictly ordered.

20

Case 1: Proxy follower failure. This case is equivalent to

Case 0 by SMR guarantee A.2: proxies execute as normal

with a majority of non-failing machines in the proxy.

Case 2: Proxy leader failure. Consider two conflicting op-

erations x,y, and any two sequence spaces on which x and y

conflict n,m. Upon proxy leader failure there are four cases.

Case 2a: x and y are assigned (committed) before failure.

This case is equivalent to Case 0 by Lemma A.1.

Case 2b: Neither x nor y are assigned before failure. When

x and y are retransmitted by their clients (not shown) they will

be allocated seqReqIds greater than maxCmtdSeqReqId, by

line 9 of Alg 3 and 10 of Alg 2. Without loss of generality

consider x and its seqReqId, x.seqReqId. If the sequencer has

already allocated a multi-sequence number for x.seqReqId

the sequencer responds with retx == True and the new leader

will allocate a new seqReqId, by lines 8 – 9 of Alg 1 and lines

14 – 25 of Alg 2. The x.seqReqId is then incremented and

the request to the sequencer is resent lines 14 – 25 of Alg 2.

This is repeated, line 14 of Alg 2, until the sequencer has not

allocated a multi-sequence number for x.seqReqId, indicated

by returning retx == False, line 16 of Alg 1 and line 14 of

Alg 2. x is then allocated a new multi-sequence number. Thus,

x and y eventually receive new sequence numbers and this

case is equivalent to Case 0.

Case 2c: Either x or y is assigned before failure, and the

other is not. Without loss of generality assume x is assigned a

multi-sequence number and y is not. The logic is similar to

Case 2b. When y is retransmitted by its client (not shown) it

will be allocated a seqReqId greater than maxCmtdSeqReqId,

by line 9 of Alg 3 and 10 of Alg 2. Consider y’s seqReqId,

y.seqReqId. If the sequencer has already allocated a multi-

sequence number for y.seqReqId the sequencer responds

with retx == True and the new leader will allocate a new

seqReqId, by lines 8 – 9 of Alg 1 and lines 14 – 25 of Alg 2.

The y.seqReqId is then incremented and the request to the se-

quencer is resent lines 14 – 25 of Alg 2. This is repeated,

line 14 of Alg 2, until the sequencer has not allocated a

multi-sequence number for y.seqReqId, indicated by return-

ing retx == False, line 16 of Alg 1 and line 14 of Alg 2.

y is then allocated a new multi-sequence number. Thus, y

eventually receives a new sequence number and this case is

equivalent to y arriving to the sequencer later as in Case 0.

These subcases exhaust all 4 combinations of the state of

processing of x and y.

Case 3: Sequencer failure. All multi-sequence numbers

replicated (and assigned) before sequencer failure are totally

ordered by Case 0 and Lemma A.1. What remains to show

is that all multi-sequencers assigned after failure are totally

ordered. No multi-sequence number allocated by the previous

sequencer will be assigned after line 34 of Alg 2 because

of lines 32 and 20 – 21 of Alg 2. Proxies trivially ensure

maxRecvdSeqNum≥ all assigned multi-sequence numbers at

commit time, line 28 of Alg 2. Thus, for any assigned multi-

sequence number x at the time of seal commit: xi ≤ Si.i ∈ S ,

by lines 21 – 22 of Alg 1. For any multi-sequence number,

y, assigned after recovery, Si < yi.i ∈ S , line 14 of Alg 1. So,

x < y for any pair (x,y) where x is assigned before recovery

seal and y is assigned after recovery seal. ∀ j,k ∈ ops(h). j,k
assigned after recovery, j and k are strictly ordered or strictly

concurrent by Case 0.

Case 4: Concurrent proxy leader and proxy follower

failure. This case is equivalent to Case 2 by the guaran-

tee of availability when fewer than a majority of machines

failed A.2.

Case 5: Concurrent proxy follower failure and sequencer

failure. As a guarantee of SMR, proxies continue to operate

as normal with a majority of non-failing machines (A.2). Thus,

this case is equivalent to Case 3.

Case 6: Concurrent proxy leader and sequencer failure.

Case 6a: The sealing operation on the proxy was not repli-

cated. The new sequencer cannot execute the recovery process

until it receives confirmation from every proxy that they were

sealed, line 20 of Alg 1. Sealed confirmations are not sent un-

til the seal is replicated. Thus, the new leader will eventually

hear, via retransmits, from the new sequencer, and begin repli-

cating the seal, line 33 of Alg 2. Thus, this case is equivalent

to Case 3.

Case 6b: The sealing operation on the proxy was repli-

cated. SMR guarantees that only a replica with all committed

operations can become the new leader, guarantee A.1. Thus,

the new leader has the seal operation, and begins to execute

recovery. Thus, this case becomes equivalent to Case 3. These

two cases are exhaustive as the proxy either committed the

seal command or did not at any point in time.

Case 7: Concurrent proxy leader, proxy follower, and se-

quencer failure. This case is equivalent to Case 6 by the

guarantees of SMR when f or fewer replicas fail.

These cases are exhaustive because they are all combina-

tions of possible failures of components in MASON.�

Lemma A.3 MASON’s ordering is a total order, that is, ∀
assigned operations x,y,(x < y)∨ (y < x)∨ x‖sy.

Proof: Either x and y conflict or they do not. If x and y con-

flict, then they are totally ordered by Lemma A.2. If they are

non-conflicting, then they are strictly concurrent and can be

ordered by τ in any order. �

A.4 Proof of real-time order

We need to show for any operation x returned to a client, any

operation y invoked after x returned is ordered after x in the

total order. We denote the event of the response to a client as

resp(op) and the invocation event inv(op).

Lemma A.4 If an operation, x, is assigned a multi-sequence

number, n, then a sequencer allocated n for x.

Proof: Lines 9 – 26 of Alg 2 imply that the proxy only

replicates, assigns, an operation if retx is False (line 14). This

21

implies the returned n was allocated for x, lines 8 – 16 of

Alg 1. �

Lemma A.5 For any two operations x and y, resp(x) pre-

cedes inv(y) in real-time implies x < y.

Proof: Given any two operations x and y and, without loss

of generality, assume resp(x) precedes inv(y) in real-time,

there are two cases x and y conflict or they do not.

Case 0: x and y do not conflict. In this case x and y are

strictly concurrent and can be assigned in either order. We

order y after x in the total order.

Case 1: x and y conflict. Given Lemma A.4, it is sufficient

to show that for any y invoked after resp(x), y is allocated a

higher multi-sequence number than x, such that x < y. There

are thus two cases: the sequencer that allocated the assigned

multi-sequence number for x allocates the assigned multi-

sequence number for y or it does not.

Case 1a: The sequencer that allocated the assigned multi-

sequence number for x allocates the assigned multi-sequence

number for y. In this case x < y by the normal case ordering.

Specifically resp(x) < inv(y) implies that x, being already

assigned, arrives to the sequencer before y. Line 11 – 14 of

Alg 1 increases all sequence spaces for which x requested

a sequence number. Thus, the conflicting sequence spaces

are increased. The sequence spaces on any sequencer do not

decrease, thus, y is allocated a higher multi-sequence number.

So, ∀n ∈ S .xn 6= ∆∧ yn 6= ∆,xn < yn, thus x < y.

Case 1b: The sequencer that allocated the assigned multi-

sequence number for x does not allocate the assigned multi-

sequence number for y. Without loss of generality let the

sequencer that allocates the multi-sequence number eventu-

ally assigned to x be Sx and the sequencer that allocates the

multi-sequence number eventually assigned to y be Sy. Be-

cause y is assigned a multi-sequence number allocated by Sy

and x is assigned a multi-sequence number allocated by Sx and

resp(x)< inv(y), Sy must have become the active sequencer

after x.seqnum was allocated. To become the active sequencer

Sy must have received a Recover message from a proxy

and executed recovery, receiving the maxRecvdSeqNum from

every proxy (lines 3, 17, 18 – 20, and 23 of Alg 1 and

31 – 35 of Alg 2). As Sx allocated the sequence number

eventually assigned to x, x.seqnum must be assigned (repli-

cated) before the proxy receives GetMaxAndSeal and repli-

cates the seal; otherwise, the proxy would have incremented

activeIndex and began to ignore messages from Sx, lines 20

– 21 and 30 – 31 of Alg 2. Thus, x.seqnum is replicated be-

fore seal and the proxy replies with a multi-sequence num-

ber, max such that ∀n.xn 6= ∆,xn ≤ maxn. Thus, Sy will have

xi ≤maxi < Si∀i.xi 6= ∆, line 19 of Alg 1 and line 35 of Alg 2.

The sequence spaces on any sequencer do not decrease and

so ∀n.xn 6= ∆∧ yn 6= ∆,xn ≤ maxn < yn. Thus, x < y. �

Theorem A.1 MASON provides a strictly serializable total

ordering.

Proof: MASON provides a total order, by A.3, that respects

real-time ordering, by A.5. �

22

	Introduction
	The Contiguous Multi-Sequence
	Building Services with Multi-Sequences
	From Noncontiguous to Contiguous

	Mason Overview
	Model and Assumptions
	Mason Components
	Normal-Case Operation of Mason

	Ensuring a Contiguous Multi-Sequence
	Proxies Prevent Holes from Client Failure
	Reliable Transport Prevents Holes from Packet Loss
	Recovering to Prevent Holes from Sequencer Failure
	Proof Sketch of Strict Serializability

	Supporting Scalable Throughput
	Services
	Interaction with Mason
	Making CORFU Scalable: Corfu-Mason
	Making ZooKeeper Scalable: ZK-Mason

	Evaluation
	Mason Scales Ordering Throughput
	Making CORFU Scalable
	Making ZooKeeper Scalable
	Mason Provides a Contiguous Sequence

	Limitations
	Related Work
	Conclusion
	Proof of Strict Serializability
	Definitions
	Assumptions
	Proof of total order
	Proof of real-time order

