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Decoding silent speech commands from
articulatory movements through
soft magnetic skin and machine learning†
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Shanshan Yao *a

Silent speech interfaces have been pursued to restore spoken

communication for individuals with voice disorders and to facilitate

intuitive communications when acoustic-based speech communi-

cation is unreliable, inappropriate, or undesired. However, the

current methodology for silent speech faces several challenges,

including bulkiness, obtrusiveness, low accuracy, limited portability,

and susceptibility to interferences. In this work, we present a wireless,

unobtrusive, and robust silent speech interface for tracking and

decoding speech-relevant movements of the temporomandibular

joint. Our solution employs a single soft magnetic skin placed

behind the ear for wireless and socially acceptable silent speech

recognition. The developed system alleviates several concerns

associated with existing interfaces based on face-worn sensors,

including a large number of sensors, highly visible interfaces on the

face, and obtrusive interconnections between sensors and data

acquisition components. With machine learning-based signal pro-

cessing techniques, good speech recognition accuracy is achieved

(93.2% accuracy for phonemes, and 87.3% for a list of words from

the same viseme groups). Moreover, the reported silent speech

interface demonstrates robustness against noises from both ambi-

ent environments and users’ daily motions. Finally, its potential in

assistive technology and human–machine interactions is illustrated

through two demonstrations – silent speech enabled smartphone

assistants and silent speech enabled drone control.

1. Introduction

Spoken communication, being one of the most intuitive means
of communication, plays a vital role in conveying informa-
tion among humans and human–machine interactions (HMI).
However, it is susceptible to physiological constraints and

environmental interferences.1 Physiologically, speech generation
involves multiple organs such as the lungs, larynx, tongues, lips,
teeth, jaws, and ears, which are responsible for phonation, articu-
lations, resonance, and auditory perceptions, respectively.2,3

Any disruption to these organs can impact speech or hearing
abilities and potentially lead to voice disorders or hearing
impairments,4 thus diminishing communication efficiency in
both human–human and human–machine scenarios. On the
other hand, environmental factors such as noisy surroundings
(e.g., acoustically harsh workplaces, crowded gatherings, or
background noise from televisions), situations requiring quiet
or privacy (e.g., hospitals, public areas, or private communications),
and environments lacking an acoustic medium (e.g., underwater
or in the space) often impose limitations on voice-based speech
communication.5,6
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New concepts
In this study, we introduce a ground-breaking concept in the field of
silent speech interfaces. Central to our concept is the utilization of a
single soft magnetic skin discreetly positioned in the ramus-temporal
junction area, which enables socially acceptable silent speech recognition
through precise decoding of articulatory movements. The fabricated
magnetic skin exhibits conformability to the human skin while
providing a robust magnetic signal strength. Consequently, it achieves
great sensitivity to even subtle deformations of the skin. Compared to
current methodologies, our approach effectively overcomes concerns
associated with face-worn sensor interfaces, minimizes sensor quantity,
reduces facial visibility, and eliminates obtrusive interconnections
between sensors and data acquisition components. By employing
machine learning-based signal processing techniques, we achieve
remarkable speech recognition accuracy, with 93.2% accuracy for
phonemes and 87.3% accuracy for a list of words from the same viseme
groups. Notably, our proposed silent speech interface demonstrates
exceptional robustness against ambient noises and users’ daily
motions. Furthermore, we showcase the potential applications of this
novel concept in assistive technology and human–machine interactions
through two practical demonstrations: silent speech enabled smartphone
assistants and silent speech enabled drone control.
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The silent speech interface, which eliminates the need for
acoustic speech sounds, emerges as an alternative method to
overcome physiological and environmental challenges for voca-
lized speech. This technique enables speech communication by
detecting and interpreting subvocalized articulatory movements.7,8

Methods for silent speech recognition can be broadly classified
into two categories: contactless approaches and contact-based
approaches. Contactless approaches are mainly explored through
camera-based visual signals,9–15 ultrasound signals.16–23 Camera-
based visual solutions require external video tracking devices,
and users must remain within the camera’s line of sight. Despite
efforts to develop compact shoulder-mounted devices9 to
enhance portability, visual solutions still face challenges in terms
of lighting conditions and angles between users and cameras,
thereby limiting their practicality. For ultrasound-based solu-
tions, ultrasonic imaging devices were employed to construct
2D lip and tongue images.17,24,25 While these systems overcome
the issue of visible light intensity, they encounter a similar
alignment issue between the device and targeted articulators.
As a more portable and user-friendly ultrasound-based solution,
the speaker of the cell phone was used to emit ultrasound signals,
and the microphone was employed to capture reflected signals
from the lips.16,18–22 This method is not hands-free and is
susceptible to multipath interferences caused by bodily move-
ments and surrounding objects.

Contact-based approaches involve attaching sensors to sub-
jects’ tongue, facial or neck skin, speech motor cortex, or inside
the ear canal to detect signals induced by articulator move-
ments (Table S1, ESI†). These approaches include systems that
utilize physiological signals (e.g., Electromyography (EMG),
electroencephalography (EEG), and electropalatography (EPG))
and articulatory movement-induced signals (e.g., strain, pres-
sure, acceleration, angular velocity, and magnetic signals). EEG
methods26–28 can interpret speech information but are suscep-
tible to interferences, especially when subjects experience
cognitive distractions or mental deviations. Silent speech inter-
faces based on inertial measurement units (IMU) attached to
the temporomandibular joint3,29 or the chin and neck skin,30

proximity sensors attached to the ear canal,18,31 and rigid
magnets to the tongue and facial skin32–34 can achieve high
portability and accuracy. These systems implement rigid com-
ponents and highly visible interfaces on the skin.

Soft electronics have greatly contributed to contact-based
approaches due to their conformable contact with the tissue
surface, which allows for high accuracy and sensitivity. EPG
utilizes a high-density electrode array placed on the hard
palate.35 Though effective, it is an invasive method and requires
wiring to connect EPG electrodes in the mouth to an external
circuit. EMG-based systems5,36–41 are very promising, and
researchers have developed soft conformal dry EMG elec-
trodes42,43 to improve their signal quality and long-term wear-
ability. However, EMG-based interfaces often require multiple
electrodes placed on the face or the neck, increasing system
complexity and reducing user acceptance. An ionic hydrogel-
based pressure sensor was developed to track throat pressure
and translate signals to speech using Morse code.44 Another

approach involves translating sign language to speech by
measuring finger strain.45 This system has good wearing comfort
and offers high accuracy. However, they are not based on natural
speech. Recently, another approach is attaching soft resistive or
triboelectricity-based strain sensors to the facial skin46–52 for mea-
suring skin strains induced by lip and jawmovements. More efforts
are needed to improve speech recognition accuracy of this
approach and alleviate the obtrusiveness of sensors and intercon-
nects placed on the facial skin. Overall, the soft skin-worn sensors
have superior wearing comfort and/or sensitivity than conventional
rigid electronics, these silent speech systems face several critical
challenges, including a large number of sensors, obtrusive and
socially inappropriate interfaces on the skin, low accuracy, poor
robustness to interferences, inability to handle natural language. In
addition to Fig. 1(a)–(l) for describing our work, the comparison is
summarized in Fig. 1(m).

In this work, we present an unobtrusive, wireless, and robust
silent speech interface that addresses the above challenges
through innovations in materials, structural design, sensing loca-
tion, and signal processing algorithms. Our system tracks speech-
relevant magnetic signals induced by the movement of the
temporomandibular joint and decodes these signals into speech.
Efforts were made to overcome the limitations of traditional
magnetic signals-based speech recognition interfaces: (1) the
silent speech interface utilizes only one piece of soft magnetic
skin placed behind the ear and no cumbersome wires or cables
between sensors and data acquisition components, allowing for a
wireless, unobtrusive, user-friendly system for daily use. (2) With
the optimized polymer matrix, magnetic particle loading ratio,
and magnetization direction, the magnetic skins possess skin-like
softness and can precisely track subtle skin movements in all
three axes without affecting natural skin movements. (3) Displace-
ment and strain changes in the temporomandibular joint area
were measured using the digital correlate image (DIC) technique
to facilitate the selection of optimal sensing locations. (4) The
signal processing was facilitated by machine learning (ML)
methods, which enable the recognition of phonemes, word pairs
with similar pronunciations, and sentences/phrases with high
accuracy. (5) With a reference magnetometer and advanced signal
processing algorithms, the developed silent speech interface
exhibited robustness against environmental acoustic noises, light-
ing conditions, and daily motion induced interferences, which are
top concerns for acoustic-, visual-, and many sensor-based systems.
Building upon the silent speech interface, two demonstrations,
including a silent speech enabled smartphone assistant and drone
control, were developed. These systems demonstrate the potential
of the developed silent speech interfaces in assistive technology
and human–machine interactions.

2. Results and discussions
2.1. Overview of the wireless silent speech interface based on
soft magnetic skin

Fig. 1(a) provides the conceptual overview of the wireless silent
speech interface. The interface consists of a magnetic skin
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Fig. 1 Overview of the wireless silent speech interfaces based on soft magnetic skin. (a) Conceptual overview of the silent speech interface. (b)
Photograph of a subject wearing the silent speech interface. (c) Structure of the magnetic skin. (d) Photograph showing the softness of the magnetic
skin. (e) Illustration showing the magnetization direction of the magnetic skin. (f) DIC image of a face region painted with black dots. (g) 3D constructed
model of the facial skin where the region of interest is indicated by the yellow outline. (h), (i) DIC images showing the displacement (h) and major strain (i)
profiles when the subject is silently speaking the phoneme/o/. (j) One trial signal of the phoneme/m/. (k) Feature calculations in both the time and
frequency domains. (l) LDA classifications based on the calculated features. (m) Comparison of different silent speech interfaces based on soft skin-worn
sensors.
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affixed to the skin area between the ramus and temporal bone,
a working Bluetooth magnetometer attached to the temporal
bone on one side of the head behind the ear, and another
reference Bluetooth magnetometer attached to the temporal
bone on the other side of the head (Fig. S1, ESI†). Soft magnetic
skin is a composite material composed of small magnetic
particles embedded in a soft polymer matrix.53–56 The magnetic
skin is on the skin beside the ramus, which is the junction of
the mandible and sternocleidomastoid muscle. When a subject
(Fig. 1(b)) attempts to speak by opening the mouth, the working
magnetometer remains stationary, while the movement of
temporomandibular joints causes displacement and strain
changes in the magnetic skin. Consequently, the magnetic flux
density captured by the magnetometer changes, which is highly
correlated with the speech content. The reference magnet-
ometer is included to minimize unwanted environmental and
motion-induced noises, such as signal changes induced by
geomagnetic fields and walking. The weight of one magnetic
skin is approximately 0.2 g and one Bluetooth magnetometer
is about 16 g. Thus, the weight of the total system is around
32.2 g (two magnetometers and one magnetic skin).

As depicted in Fig. 1(c), the magnetic skin is composed of
magnetic particles dispersed in a matrix of silicone polymers.
The softness enables it to conform to the contour of human skin
and enhances its sensitivity to skin deformations (Fig. 1(d)). The
magnetic skin (18 mm � 12 mm) consists of three units (6 mm �
12 mm each) with three different magnetization directions
(Fig. 1(e)). The diverse magnetization directions within one single
magnetic skin provide strong signals in all x, y, and z directions,

thereby offering more valuable information for silent speech
analysis. The DIC technique (Fig. 1(f)–(i)) is employed to analyse
the displacement and strain changes during speech and determine
the optimal location for the device placement. A three-dimensional
model of the human facial skin is constructed (Fig. 1(f) and (g)).
This allows for the measurement of displacement (Fig. 1(h)) and
strain (Fig. 1(i)) by tracking the position and shape changes of small
dots painted on the face. The region enclosed within the yellow line
(Fig. 1(g)) was selected for analysis due to its unobtrusiveness.
Attaching the speech interface within this region is much more
socially acceptable compared to the area surrounding the lips.

Fig. 1(j)–(l) outline the brief process of ML-based silent
speech recognition. The tri-axis working magnetometer effectively
captures magnetic flux densities in three directions. To enhance
the signal quality, the captured signals are first denoised using the
signals acquired by the reference magnetometer. These signals
are then differentiated with respect to time, yielding three addi-
tional signal channels. Thus, six channels of time series signals
can be acquired. Based on six channels of signals, which are (Bx,
By, Bz) and (dBx/dt, dBy/dt, dBz/dt), multiple features related to
speech recognition can be calculated and labelled for the follow-
ing supervised learning. Linear discriminant analysis (LDA) is
employed here to classify different silent speech contents based
on the calculated features and labels (Fig. 1(l)).

2.2. Design, fabrication, and characterization of the soft
magnetic skin

The fabrication process of the magnetic skin is depicted in
Fig. 2(a), and magnetization directions are shown in Fig. 2(b)–(e).

Fig. 2 Fabrication process and magnetization directions of the magnetic skins (a) Schematic illustration showing the fabrication process of the magnetic
skin with different magnetization directions. (b)–(e) Schematic illustrations of magnetic skins composed of units with different magnetic directions: (b)
XYZ sample, (c) XXX sample. (d) YYY sample. (e) ZZZ sample.
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In brief, the magnetic skin consists of the magnetic layer and the
adhesive layer. The magnetic layer is composed of NdFeB mag-
netic particles and the silicone polymer matrix. The mixture was
first poured onto a glass substrate and heated to cure. The
resulting composite thin film was then magnetized by an impulse
magnetizer. Finally, three pieces of thin films with the same or
different magnetization directions were assembled by a thin layer
of Ecoflex Gel. The Ecoflex Gel also serves as the adhesive layer for
attaching the sample to the skin.

The design goal of the magnetic skin is to achieve skin-like
softness and optimal sensitivity and signal amplitude in the x,
y, and z directions. We optimized the design of the magnetic
skin in the following aspects: (1) selection of the silicone
polymer; (2) weight ratio between the silicone polymer and
magnetic particles; (3) magnetization directions. The silicone
polymer serves as the matrix of the magnetic skin and plays a
crucial role in the softness of the magnetic skin. Two different
silicones are employed to fabricate the polymer matrix. Ecoflex
00-30 is introduced into Liveo MG 7-9900 with a weight ratio of
1 : 4 to render the elastomer free-standing while maintaining
superior stretchability and softness.

To determine the optimal weight ratio of magnetic particles
to the silicone polymer, the strain–stress curve (Fig. 3(a)) and
magnetic flux density (Fig. 3(b)) were measured at different
weight ratios. As can be expected, increasing the proportion of
magnetic particles leads to an increase in the magnetic flux
density. But in the meantime, the elastic modulus of the
magnetic layer is increased. When the weight ratio (magnetic
particles to silicone polymer) reaches 7 : 1 and 8 : 1, the mag-
netic skin becomes brittle, with fracture strains at 33% and
22%, respectively (Fig. 3(a)). The elastic modulus of the epider-
mis layer of human skin is approximately 1 MPa.57 Considering
that the elastic modulus of the sample at the ratio of 6 : 1 is
approximately 0.84 MPa, this weight ratio is used for the
following experiments to achieve a stretchable and skin-like
magnetic skin, without sacrificing much of the magnetic flux
density.

Magnetic skins composed of units with different magnetiza-
tion directions (Fig. 2(b)–(e)) can provide different signal
amplitudes in the x, y, and z directions. The ideal scenario is
to obtain decent signal amplitudes in all three directions, which
provides comprehensive information on speech-induced move-
ments. Performances of samples composed of units with different
magnetization directions (Fig. 3(c)–(k)) were tested using the setup
shown in Fig. 3(l) and Fig. S2, ESI.† The magnetic skin was
attached to a skin replica that was stretched from 0% to 10%
strain along the y direction to mimic the skin deformation at the
junction area of the mandible and sternocleidomastoid muscle
during speech. The influence of the stretchability of the magnetic
skin on the measured magnetic flux density was first evaluated.
In the first set of experiments (Fig. 3(c), (e), (g), and (i)), as-
prepared stretchable magnetic skins with different magnetization
directions were tested. When stretching the skin replica, the
magnetic skin experiences both displacement and strain changes,
leading to variations in the magnetic flux density. In the second
set of experiments (Fig. 3(d), (f), (h), and (j)), the stretchability of

the as-prepared magnetic skin was constrained using a non-
stretchable tape attached below it. When stretching the skin
replica, the magnetic skin experiences only displacement
change, while its strain is minimized by the strain-limiting
layer. Notably, the signal amplitudes of magnetic skins under-
going both displacement and strain changes are larger than
that of samples experiencing only displacement changes, indi-
cating the advantage of stretchable magnetic skins. Among
magnetic skins with different magnetization directions, the
XXX sample shows minimal signal changes in the z direction
(Fig. 3(c) and (d)), while YYY and ZZZ samples display extremely
small signal amplitudes in the x direction. Only the XYZ sample
demonstrates a decent signal amplitude in all three directions,
although with a slightly reduced maximum amplitude com-
pared to other samples. As depicted in Fig. S3, ESI,† the
magnetic signals obtained from the magnetic skin (XYZ sam-
ple) exhibit good repeatability during over 1100 cycles of
stretching/releasing at 10% strain. The adhesive layer main-
tains consistent adhesion to the skin replica during repeated
stretching and releasing cycles. No delamination and fracture
of the magnetic skin were observed visually or from signal
changes. It is worth noting that the skin deformations during
speech within the ramus area are typically within 5%, a strain
level lower than the applied strain during testing. In addition,
rigid permanent magnets (z-direction magnetized) assembled
into a similar size to the magnetic skin (Fig. S4, ESI†) were
tested for comparison. The signals measured from rigid mag-
nets are much higher in amplitude in the y direction (Fig. 3(k))
compared to that from soft magnetic skins, due to a larger
thickness and magnetic material density. However, the rigid
magnet is unable to conform to the human skin, leading to a
lower recognition accuracy compared to the magnetic skin
(discussed in detail in Section 2.4).

2.3. Optimization of sensing location and speech dictionary
for verification

The location to attach the magnetic sensor is optimized using
the DIC technique. The process of speech generation can be
divided into three sub-processes related to the lung, vocal cord,
and articulator.3,29 Initially, the air is inhaled by the lungs. The
subsequent air pressure generated by the lungs causes the vocal
cords to vibrate and produce sound. The sound is then shaped
into recognizable speech through the movement of articulators
such as the tongue, lips, teeth, and jaw. The process for silent
speech is similar except that the vocal cord does not vibrate,
resulting in the absence of audible sound production. The
articulatory movements remain active during silent speech.
Studying the movement of the tongue and teeth typically
requires implantable devices. Additionally, the skin area
around the lips is unsuitable for developing a socially accep-
table device for daily use. Therefore, the skin area related to jaw
movement was selected for our silent speech interface. The DIC
technique was employed to measure displacement and strain
changes to identify the region with the largest movements. This
step is especially important for detecting jaw movement, as the
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skin deformation and displacement are more subtle compared
to the skin around the lips.

Fig. 4 presents the displacement and major strain of the
phoneme ‘/o/’ and word ‘pay’ over time as examples. The
images from 0 s to 1 s illustrate the process of mouth opening
and closing. Two regions exhibit significant deformations and
strains: the temporomandibular joint area and the ramus area
(Fig. 1(a) and 4). The skin in the temporomandibular joint area
experiences larger deformations due to joint rotation during
silent speech. Similarly, the skin on the ramus, which is a part
of the mandible, shows substantial deformations as the ramus
rotates around the joints, moving toward the back of the head.
In addition to determining the position of the magnetic skin,
the placement of the magnetometer must also be considered.
To minimize the noise caused by skin deformations, the
magnetometer is attached to the skin above the temporal bone,
close to the ear (Fig. S1, ESI†). The skin in that area is relatively
unaffected by articulatory movements since the temporal bone
is part of the skull. When ranking skin deformations from high
to low, the order is as follows: ramus area close to the chin,
ramus area close to the ear, temporomandibular joint area,

and the remaining area. The magnetic skin is attached to the
ramus area close to the ear (between the ramus and the
temporal bone shown in Fig. S1, ESI†). The ramus area close
to the chin was not selected because it is too far from the
magnetometer (placed on the temporal bone), resulting in a
significant attenuation of the magnetic signal due to increased
distance. The size of the magnetic skin was determined as
18 mm � 12 mm (length � width) to sufficiently cover the
ramus area close to the ear. The magnetic skin is aligned
parallel to the magnetometer along its length, allowing for
the closest possible distance between the magnetometer and
the magnetic skin.

The recognition of different phonemes is of great signifi-
cance for silent speech recognition, given that English is a
language composed of a sequence of phonemes. A phoneme
is a unit of sound that distinguishes the pronunciation
of words.58 To evaluate the effectiveness of our silent speech
interface, the nine most frequently used phonemes in the
English language, 3 namely/m/,/k/,/i/,/a/,/j/,/p/,/u/,/n/, and/o/,
were selected for the study. Additionally, a very challenging
list of words (Table S2, ESI†) was chosen to further test the

Fig. 3 Characterizations and optimizations of the magnetic skin. (a), (b) Stress–strain curves (a) and magnetic flux densities (b) for samples with different
weight ratios between the polymer and magnetic particles. The error bar in (b) is due to the magnetic flux density differences between the edges and
central points of the magnetic skin. (c)–(g) Magnetic flux density changes when the skin replica was stretched with a strain between 0 to 10% along the y
axis three times. Magnetic skins composed of units with different magnetic directions were tested: (c) XXX sample, (d) XXX sample with strain-limiting
tape, (e) YYY sample, (f) YYY sample without strain, (g) ZZZ sample, (h) ZZZ sample without strain, (i) XYZ sample, (j) XYZ sample without strain. (k) Magnetic
flux density changes of the sample with rigid magnets. (l) Photograph of the setup for measuring magnetic flux density changes showing in (c)–(k).
Changes of magnetic flux density in (c)–(k) are normalized by dividing all values by 100 mT and taking the absolute value.
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capabilities of the developed silent speech interface. The list
contains word pairs with similar pronunciations. For instance,
although ‘‘pay’’ and ‘‘bay’’ contain different phonemes/p/and/b/,
these two phonemes have similar pronunciations as they
belong to the same viseme group (known as the Bilabial
viseme).5 The term ‘‘viseme’’ refers to a visual speech unit that
includes phonemes with identical visual representations.47

Essentially, when a subject attempts to articulate ‘‘pay’’ and
‘‘bay,’’ the lip gestures and muscle movements will be quite
similar, leading to comparable jaw movements. Moreover, in
this word list, several words from different viseme groups
contain the same element. For example, the words ‘‘pay’’,
‘‘bay’’, ‘‘kay’’, ‘‘gay’’, ‘‘way’’ all have ‘‘ay’’ as the ending pho-
neme. Successfully recognizing subtle differences in this word
list is a difficult task for speech recognition.

2.4. Silent speech recognition by machine learning

Silent speech data was collected from five subjects (3 males and
2 females). Each phoneme was repeated fifty times by each
subject to generate the training data. Detailed signal processing
using MLmethods can be seen in the experimental section. The
results for different subjects are presented separately, as given
in Fig. 5 and Fig. S5–S16, ESI.† This section elaborates on the
results for subject 1. Statistical analysis for all five subjects can
be seen in Table S3, ESI† and the Experimental section. Fig. 5(a)
and (b) present a trial signal measured from the XYZ magnetic
skin for all nine phonemes, including both the magnetic flux
density signals and the signals after differentiation. The signals
acquired from magnetic skins with other magnetization direc-
tions are shown in Fig. S5a–f, ESI,† which only have strong

amplitudes in one or two directions. Signals from the XYZ
magnetic skin exhibit good amplitude in all three directions.
The resulting confusion matrix for the nine phonemes (Fig. 5(c))
demonstrates that the LDA model can effectively classify the
phonemes, achieving an overall classification accuracy of 92.7%.
The micro-average Receiver Operating Characteristic (ROC) curve
is commonly used to evaluate the performance of a classification
model by aggregating the true positive rate and false positive rate
across all classes into a single metric.59 Our system achieves a
remarkable value of 0.994 (Fig. 5(d)), indicating the model’s
exceptional ability to discriminate between classes. Moreover,
the optimal operating point at (0.02, 0.96), corresponding to the
threshold that maximizes the overall classification performance
across all classes,59 further illustrates the model’s high accuracy
and reliability. It should be noted that the algorithm utilized in
this study is user dependent due to the users’ different ways of
speech generation. Efforts were made to examine the accuracy of
the model across various subjects. Sequential incorporation
of data from subjects 2, 3, 4, and 5 into the training set was
executed while using the data set from subject 1 as the testing
data. The resulting recognition accuracy is notably low (Table S4,
ESI†). One potential solution to achieve a universal model is
to include a much larger training data from significantly more
subjects and use deep learning techniques for speech recognition.

In addition to phonemes, a challenging list of words con-
taining words from eleven visemes groups,5 as discussed in
Section 2.3, was also selected to test the developed silent speech
interface. Each word was repeated fifty times. The resulting
confusion matrix for these words (Fig. 5(e)) and micro-average
ROC curve (Fig. 5(f)) demonstrate that the employed algorithms

Fig. 4 DIC images of a subject showing the displacement and strain during the speech from the beginning to the end. The displacement (a) and major
strain (b) of four frames when speaking the phoneme/o/. The displacement (c) and major strain (d) of four frames when speaking the word ‘pay’.
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can successfully recognize the words with an accuracy of 85.6%.
This speech recognition accuracy is comparable to the previous
system based on 8-channel EMG sensors placed around lips
and on the neck and tested using the same list of words.5 This
demonstrates that the selected sensing area (the ramus area
near the ear) contains rich information of speech articulation,
comparable to the commonly used EMG methods. In despite of
similar accuracies, only a single magnetic skin is needed in this
work and the sensor placement location is much more socially
acceptable. Additionally, the word list is expanded to 54 words
(containing 20 words with similar pronunciations) to assess the
performance as the word count increases. The silent speech
recognition accuracy for 54 words is 85.7% (Fig. S6 and S7,
ESI†), with only a marginal increase of 0.1%. The classification
accuracy can be affected by several factors, including the
increased number of classes and the difficulty level of the
classification task. Here only signals from a single magnetic
skin were used and the sensor placement is much more
socially acceptable. These results demonstrate the effectiveness
of the silent speech interface in recognizing both phonemes
and words.

Furthermore, a comparison was made between the classifi-
cation results obtained using the magnetic skin and the rigid
magnet with a similar size (as mentioned in Section 2.2 and
Fig. S4, ESI†). Despite that the signal strength of the rigid
magnet (Fig. S5g–h, ESI†) is stronger than that of the magnetic
skin, the speech recognition accuracy for nine phonemes is only

about 75.6% (Fig. S8, ESI†), which is 17.1% lower than that of the
magnetic skin. Due to its rigidity, the magnet could not conform
to the skin topology and capture the subtle skin deformations
during the speech, thereby resulting in reduced accuracy.

The developed silent speech interface also exhibits good
robustness against interferences. In an environment with
ambient noises of 80 dB, the classification accuracy is about
93.3% for the nine phonemes (Fig. S9, ESI†). Besides, under a
dark environment, the classification accuracy is maintained
(92.8%) (Fig. S10, ESI†). The variation is small, within 0.6%.
Although these three sets of data were acquired from the same
subject and the signals are highly similar, the subject could not
control his/her speech muscle movements exactly the same
when signals were obtained for the normal condition, noisy
environment, and dark environment. Consequently, it is rea-
sonable to have small variations when processing these three
datasets for speech recognition. Similarly, during daily motions,
such as walking at a speed of 0.8 m s�1, the interface achieves an
accuracy of approximately 87.8% (Fig. S11a and b, ESI†), after a
calibration process using the data from the reference magneto-
meter attached beside the other ear. Without the calibration
process, the speech recognition accuracy is only 54.4% due to
the motion-induced interference (Fig. S11c and d, ESI†). The
Kabsch algorithm60 was utilized to perform calibration. The
rotation matrix between the working and reference magneto-
meters was first calculated and then the motion-related signals
captured by the reference magnetometer were subtracted from

Fig. 5 Results of silent speech recognition (subject 1). (a) Time series signals of nine phonemes. The signals are normalized by dividing all values by
30 mT. (b) Time-series signals of the nine phonemes after differentiation. The signals after differentiation are normalized by dividing all values by
150 mT s�1. (c) Confusion matrix for the nine phonemes using the LDA classifier. (d) Micro-average ROC curve for nine phonemes. (e) Confusion matrix for
a list of words containing word pairs with similar pronunciations (from the same viseme group) using the LDA classifier. (f) Micro-average ROC curve of
words with similar pronunciations.
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signals detected by the working magnetometer. In this way, the
influence of motion-induced interferences can be significantly
reduced. The detailed calibration process is shown in the
Experimental section and ESI.† These experiments conducted
under normal, noisy, dark, and motion conditions collectively
illustrate the insensitivity of the developed silent speech inter-
faces to acoustic noises, lighting conditions, and daily motions,
which are top concerns for acoustic-based, visual-based, and
many sensor-based speech recognition methods.

Experiments were conducted to examine the device variations.
Two distinct magnetometers were consecutively affixed at the
same position, measuring the magnetic flux density alteration
as the magnetic skin underwent stretching. As depicted in
Fig. S12a, ESI,† the signal variations were found to be minor,
and the largest difference is approximately 1 mT (2% variation) in
the y direction. In order to assess the influence of device variations
on the recognition accuracy, we obtained silent speech signals
using different magnetometers and magnetic skins. Another set
of phonemes (/m/,/k/,/i/,/a/,/j/,/p/,/u/,/n/,/o/) data was acquired and
added to the training set for subject 1. The final confusion matrix
is presented in Fig. S12b, ESI,† revealing an accuracy of 93.1%, a
value slightly higher than the original accuracy of 92.6%.

2.5. Applications in phone assistant and drone control

Two demonstrations were developed to illustrate the potential
of the developed wireless silent speech interface in assistive
technology and human–machine interactions. Fig. 6 presents
the flow chart of the development process, and detailed
descriptions can be found in the experimental section. In the
first demonstration (silent speech-based phone assistant,
shown in Fig. 7(a), (b), (d), (e), (g), and (i)), the silent speech
is utilized as an alternative input modality to replace the voiced
speech to assist in the cell phone control. The silent speech
assistant is based on the Android system, and six sentences/
phrases (Fig. 7(d) and (e)) were pre-trained to interact with the
phone as examples. The confusion matrix (Fig. 7(g)) and ROC
curve (Fig. 7(i)) demonstrate the remarkable performance of the
silent speech interface in recognizing diverse sentences/
phrases, achieving an overall accuracy of 96.7%. The entire
application is in real-time. When the user speaks the specified
sentences/phrases silently, the intended speech information
is interpreted from the acquired magnetic signals by the pre-

trained ML model and sent to the Android phone. The corres-
ponding tasks are then executed on the smartphone. With the
silent speech assistant, users can perform various operations
on their smartphones, such as playing music or opening apps
(see Supporting Video 1, ESI†).

In the second demonstration (silent speech-based drone con-
trol, shown in Fig. 7(b), (c), (f), (h), and (j)), silent speech interfaces
are used for human–machine interactions. A Tello drone is used
as an example to receive the commands delivered by silent speech
and execute corresponding movements. Drones have been widely
used in various inspection tasks and voice control has been
implemented to enable intuitive and hand-free communications
between the operator and the drone.61 Eight commands (shown
in Fig. 7(f)) for drone control were pre-trained. The confusion
matrix (Fig. 7(h)) and the ROC curve (Fig. 7(j)) indicate a good
accuracy of 93.5%. Supporting Video 2, ESI† shows the process of
drone control by the silent speech interface.

3. Conclusions

In conclusion, this study presents a wireless, unobtrusive, robust,
and accurate silent speech interface through comprehensive
explorations of materials, structural design, sensing location,
MLMethods, and noise reduction algorithms. The cost of a single
magnetic skin is approximately $0.6 and the Bluetooth magnet-
ometer for data acquisition is around $130 each. The costs can be
further reduced for mass production. An average recognition
accuracy of 93.2% was achieved for phonemes and 87.3% for a
list of words containing words from the same viseme group. Two
proof-of-concept applications were developed that demonstrate
the system’s capability to decode silent speech signals in real time
and enable interactions with external devices. The silent speech
interface provides a novel communication interface, which can
find broad applications in assistive technology for voice disorders,
robot control, and human–machine collaborative systems.

4. Experimental section
Materials

NdFeB magnetic particles (MQP-15-7-20065) were provided
by Magnequench. The toluene solvent was purchased from

Fig. 6 Flowchart of data acquisition, signal processing, and application development.
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Sigma-Aldrich. The silicone adhesive (Liveot MG 7-9900) was
provided by Knowde. The silicone elastomer (Ecoflext 00-30)
and release agent (Easy Releaset 200) were obtained from
Smooth-On. The clown white and custom body paint were
obtained fromMehron and TCP Global, respectively. All materials
were used as received.

Fabrication of the magnetic skin

Fig. 2 depicts the fabrication process of the magnetic films.
0.20 g silicone adhesive part A, 0.20 g silicone adhesive part B,
0.05 g silicone elastomer part A, 0.05 g silicone elastomer part
B, and 1.5 g Toluene were first mixed using the mixer (AR-100,
Thinky) at 1000 rpm for 30 s. Subsequently, 3.0 g NdFeB micro

magnetic particles were introduced to the mixture and mixed at
1000 rpm for an additional 30 s. The release agent was then
uniformly sprayed onto a glass substrate (5.08 cm by 7.62 cm)
followed by a drying period of 5 minutes at the ambient
temperature. Next, a 3 g portion of the mixture was poured
onto the prepared glass substrate and allowed to dry naturally
for 30 minutes to evaporate the toluene. After the toluene had
completely evaporated, the sample was cured at 80 1C for
1 hour. Afterward, three pieces of the sample with a length
of 6 mm and a width of 5 cm were cut off. The three sample
pieces were then placed into two distinct 3D-printed molds
(Fig. S17, ESI†) with different orientations, after which they
were magnetized along the x, y, and z directions using an

Fig. 7 Two demonstrations based on magnetic skin-enabled silent speech interfaces. (a) Demonstration 1: silent speech assistant for smartphone
control. (b) Schematic of a user wearing the silent speech interface. (c) Demonstration 2: silent speech interaction for drone control. (d) Selected
sentences/phrases for demonstration 1. (e) Time series signals of the selected sentences/phrases for demonstration 1. (f) Time series signals of the
selected commands for demonstration 2. (g) Confusion matrix of selected sentences/phrases for demonstration 1. (h) Confusion matrix of selected
commands for demonstration 2. (i) Micro-average ROC curve corresponding to (g). (j) Micro-average ROC curve corresponding to (h).
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impulse magnetizer (IM-10-30, ASC Scientific). The impulse
magnetizer employed a 1.2500 coil that yielded a resulting
magnetic flux density of 2.6 T. Finally, the three sample pieces
were arranged on the glass substrate and bonded together
using silicone adhesive.

Measurement of the strain–stress curve

Measurement of the strain–stress curve was conducted using a
material testing system (858 Mini Bionix II, MTS) operating at a
constant speed of 10 mm min�1. The load cell embedded
within the system offers a resolution of 0.001 N. The magnetic
skin was applied with 50% strain. Simultaneous recording of
distance and tensile force was performed at a frequency of
100 Hz. The stress values were obtained by dividing the tensile
force by the cross-sectional area of the magnetic skin. The
strain values were calculated by dividing the distance by the
length of the magnetic skin.

Comparisons of magnetic flux densities for samples with
varying material ratios

A series of samples with varying weight ratios (1 : 1, 1 : 2, 1 : 3,
1 : 4, 1 : 5, 1 : 6, 1 : 7, and 1 : 8) between the silicone mixture and
magnetic particles were prepared. From each sample, pieces
measuring 5 mm � 5 mm � 0.9 mm were cut. Subsequently,
magnetic flux densities of all sample pieces were measured
using a magnetometer (Metamotions, Mbientlab). The size
of the magnetic skin is larger than the magnetometer chip.
Therefore, multiple locations were measured, including the
edges and central points of the magnetic skin. The magnetic
flux density at the central point is larger than that at the edges.
The results shown in Fig. 3(b) indicate the mean value and the
error bar.

Measurement of changes in magnetic flux density under strains

The Dragon Skin 20 elastomer (Smooth-On) was selected to
fabricate the skin replica due to its similar elastic modulus
compared to the human skin.62 Parts A and B were mixed
in a 1 : 1 ratio using a mixer (AR-100, Thinky) operating at
1000 rpm for 30 s followed by curing at 80 1C for 1 hour. The
resulting cured Dragon Skin elastomer was then cut into a
rectangular piece measuring 90 mm � 25 mm. During the
investigation of magnetic flux changes, the magnetic skin was
affixed onto the Dragon Skin elastomer, which was subjected
to stretching using a customized tensile stage (Fig. 3(l) and
Fig. S2a, ESI†) at a controlled speed of 0.75 mm s�1 until
reaching a strain of 10%. Meanwhile, a magnetometer (Meta-
motions, Mbientlab) was used for measuring the magnetic
flux change (Fig. S2b, ESI†). To reveal the effect of stretch-
ability on the magnetic flux changes, after testing the as-
prepared stretchable magnetic skins, tapes (Transporet 3M)
were attached to the magnetic skin and placed on the skin
replica to limit its stretchability. The skin replica was once
again stretched to achieve a strain of 10%, while the magnet-
ometer simultaneously recorded the magnetic flux changes.
Another experiment was conducted to assess the repeatability
of the magnetic skin with an optimized ratio of 6 : 1, under a

10% strain. Over 1100 cycles of stretching/releasing were
conducted using the same setup as shown in Fig. 3(l).

DIC analysis of the movement patterns of the
temporomandibular joint region

The 3D-DIC system (Trilion) was used to obtain the motion of
the temporomandibular joint region. The hardware setup of the
3D-DIC system is illustrated in Fig. S18a, ESI.† Two cameras
were positioned at an approximate angle of 301 before calibra-
tion. Thirteen pairs of photographs of the calibration pad
(Fig. S18b, ESI†), taken at various angles, were acquired using
the cameras. The distance between the DIC system and the
calibration pad was approximately 1 m. These photographs
were subsequently imported into the commercial software
GOM Correlate for calibration.

To capture images of the subject’s skin surface of interest
(temporomandibular joint region), the area was cleaned with
water and gently dried with paper towels. Fig. S19 and S20, ESI†
show the skin painting process. Clown white makeup (Mehron)
was applied to the target skin area using a paintbrush (Amazon
Basics), as demonstrated in Fig. S20a, ESI.† Afterward, a mask
(Fig. S19, ESI†) was cut by a mechanical plotter (Cameo 4,
Silhouette). The mask pattern, generated using a MATLAB
toolbox,63 consisted of 40 � 40 holes with random shapes,
spanning a 10 cm square. The random shapes could help the
DIC system track skin motion more effectively. The mask was
then affixed to the skin area of interest and secured using tapes
(Fig. S20b, ESI†). Next, black custom body paint makeup (TCP
Global) was sprayed onto the skin surface with a white back-
ground using an airbrush (Model G222, Master Airbrush).
Following the removal of the mask, a marker pen (Sharpie)
was used to add dots and fill any remaining blank areas
(Fig. S20c, ESI†) to get the final appearance (Fig. S20d, ESI†).
All makeup products employed on the skin were FDA-approved,
biocompatible, and easy to clean, ensuring their safety and
compatibility with human skin.62 During the experimental
setup, the subject was seated in a chair while maintaining the
head position aligned with the previously placed calibration
pad. The subject silently spoke various phonemes, words, and
sentences, while the DIC system captured photos at a frequency
of 4 Hz. Following the photo collection, all images were
imported into the GOM Correlate software to calculate the
displacement and strain data for the skin area of interest.

Signal acquisition and processing of silent speech

All signal processing was performed using the Python program-
ming language. The collected signals were transmitted wire-
lessly to a laptop via Bluetooth. The signal processing
procedure is outlined as follows: (1) zero baseline: the change
of the magnetic flux density is the key to recognition. Hence,
zero-baseline manipulations were first conducted by subtracting
the average of the first ten data points to get the time series data
DB. (2) Blip glitch removal: the blip glitch is a common noise
problem of time series data. The signals were first traversed to
find each blip glitch. One blip glitch was identified by comparing
the change between two data points. When detected, a blip glitch
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data point was replaced with the value of the preceding data
point. (3) Average filtering: an average filter that averaged the
adjacent three data points was applied to the signal. This process
served to smooth out the signal and reduce noise. (4) Interference
removal: interferences include the geomagnetic field and motion
artifacts. The geomagnetic field was assumed evenly distributed
around the subject. A magnetometer placed behind the subject’s
right ear captured interference signals, while another magneto-
meter behind the subject’s left ear detected both magnetic skin
signals and interferences. As shown in Fig. S1, ESI,† the coordi-
nate of the working (left) magnetometer was denoted as X, Y, and
Z, while the coordinate of the reference (right) magnetometer was
denoted as x, y, and z. The rotation matrix between the two
coordinates can be determined by eqs (S1)–(S5) (ESI). Hence the
noise caused by interferences can be cancelled (Fig. S21, ESI†) by
using Equation S6. A detailed description can be found in the
‘Method for eliminating signal interferences’ section of the ESI.†
(5) Differentiation: differentiation was performed by calculating
the rate of change of the signal over time, resulting in another set
of data for subsequent analysis. The average filter can help to
reduce the noise. (6) Signal segment: each phoneme, word, and
sentence was repeated 50 times so the segment program helped
extract the data of each trial. (7) Feature extraction: thirteen
features in the time domain and eight features in the frequency
domain, as listed in Table S5, ESI,† were calculated. (8) Classifier:
the LDA algorithm was applied to classify silent speech. Five-fold
validation was employed for the evaluation of the classifier.
The calculated feature data and label data were input into the
algorithm to obtain the results.

Demonstration of phone assistant

After training the LDA classification model, the model was
utilized for real-time identification of the collected signals.
A phone assistant using the silent speech interface was devel-
oped. To establish a connection between an Android phone
(Moto G) and a Windows laptop (Dell Latitude 7410), both
devices were connected to the same WIFI network. Then the
software Android Studio was used to enable the wireless data
transfer between the phone and the laptop. The Android debug
bridge (ADB)64 command-line tool was integrated into the
Python program running on the laptop. After the collected
signals were converted into sentences or phrases by the pre-
strained ML model, the ADB tool would transmit the corres-
ponding command line to the phone. The phone would then
perform the corresponding task, as requested by the command
line. Supporting Video 1, ESI† presents a demonstration of the
phone assistant enabled by silent speech recognition.

Demonstration of drone control

Similar to the phone assistant application, the captured signals
were decoded in real-time by a pre-trained ML model for drone
control. The drone (Ryze Tech Tello) was connected to a
Windows laptop (Dell Latitude 7410) via WIFI service. The
Python package DJITelloPy65 was employed for the program
running on the laptop. When the model classified the specific
command words from the acquired magnetic skin signals,

these words were transmitted from the laptop to the drone
using a designated command line enabled by DJITelloPy.
The drone would subsequently execute the corresponding
movement as controlled by the command line. Supporting
Video 2 (ESI†) presents a demonstration of the drone control
application.

Statistical analysis

All characterization measurements were performed five times
for each sample piece, and the average value was selected to
represent the final result. For silent speech recognition, mag-
netic signals were collected from five subjects, comprising
3 male and 2 female subjects, with ages ranging from 20 to
30 years old. The authors have complied with all relevant
ethical regulations. Study procedures were conducted in accor-
dance with the guidelines provided by Stony Brook University.
Prior to participation, informed consent was obtained from all
subjects. Fig. 5(c)–(f) and Fig. S13–S16, ESI† provide a compre-
hensive summary of the confusion matrices and ROC curves for
five individual subjects. The recognition accuracy (Table S3,
ESI†) for the nine phonemes was measured to be 93.2% �
2.62%. For a dictionary containing word pairs from the same
viseme group, it was determined to be 87.3% � 2.14%. These
recognition accuracies are presented as the mean � standard
deviation. The statistical analysis was conducted using the
MATLAB software.

Data availability

All data needed to evaluate the conclusions in the paper are
presented in the manuscript and the ESI.† Additional data
related to this paper may be provided on request.
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