
SIGFuzz: A Framework for Discovering

Microarchitectural Timing Side Channels
Chathura Rajapaksha, Leila Delshadtehrani, Manuel Egele, Ajay Joshi

Department of ECE, Boston University, {chath, delshad, megele, joshi}@bu.edu

Abstract—Timing side channels can be inadvertently introduced
into processor microarchitecture during the design process, mainly
due to optimizations carried out to improve processor perfor-
mance. These timing side channels have been used in various
attacks including transient execution attacks on recent commodity
processors. Hence, we need a tool to detect timing side channels
during the design process. This paper presents SIGFuzz, a fuzzing-
based framework for detecting microarchitectural timing side
channels. A designer can use SIGFuzz to detect side channels early
in the design flow and mitigate potential vulnerabilities associated
with them. SIGFuzz generates a cycle-accurate microarchitectural
trace for a program that executes on the target processor, it then
uses two trace properties to identify side channels that would have
been formed by the program. These two trace properties evaluate
the effect of each instruction in the program, on the timing of
its prior and later instructions, respectively. SIGFuzz also uses a
statistical distribution of execution delays of instructions with the
same mnemonic to flag potential side channels that manifest with
different operands of an instruction. Furthermore, SIGFuzz auto-
matically groups the detected side channels based on the microar-
chitectural activity trace (i.e. signature) of the instruction that trig-
gered it. We evaluated SIGFuzz on two real-world open-source pro-
cessor designs: Rocket and BOOM, and found three new side chan-
nels and two known side channels. We present a novel Spectre-style
attack on BOOM based on one of the newly detected side channel.

Index Terms—side channels, microarchitecture, hardware
fuzzing

I. INTRODUCTION

Microarchitectural side channels have been threatening the

security of computing systems for decades [1]. The recent

discovery of side-channel based transient-execution attacks

such as Spectre [2] and Meltdown [3] has led to a flurry of new

side-channel based attacks [4]. These microarchitectural side

channels are often introduced due to power, performance and/or

area optimizations. For example, Shin et al. [5] showed that

data prefetching, a performance optimization technique used

in modern processors, introduces side channels that attackers

can exploit. Therefore, identifying side channels early in the

design flow and mitigating any vulnerabilities associated with

them is vital to ensure processor security.

Typically, side channels have been discovered through

manual inspection and experiments. For example, Fogh et al.

[6] discovered side channels related to rdseed and pause

instructions in Intel CPUs through the processor documentation

and experiments. However, manual inspection is not a practical

method to identify side channels at design time as it can be

quite cumbersome. Moreover, manually checking the interplay

between all instruction combinations and their side effects is

practically impossible due to the limited ‘time to market’ for

any processor. Hence, there is a pressing need for a tool that

can detect various types of side channels with reduced manual

effort during the design stage of processors.

Several automation methods have been proposed in recent

work for detecting side channels in processors. These include

dynamic verification (fuzzing) methods [7] as well as formal

verification methods [8]. Fuzzing is a popular software testing

method [9], which involves running a target software with

random or mutated inputs to find bugs. Fuzzing has been

recently adapted for hardware testing [7], [10]–[13].

Osiris [7] introduced an automated method to find

microarchitectural side channels using a generic three-step

model. Covert Shotgun [14] and ABSynthe [15] automated the

detection of contention-based side channels that occur when

instructions are executed in hyper threads (two logical cores)

simultaneously. UPEC [8] introduced an exhaustive formal

verification method for detecting side channels in the context

of transient execution attacks. AutoCAT [16] introduced a

reinforcement learning based framework for automatically

generating cache-timing attack sequences for any given cache.

Unfortunately, these prior work either can detect a specific

type of side channels or are limited by their applicability. Osiris

is limited to detecting side channels formed by three instructions

that follow their model, which limits the types of side channels it

can detect. Methods proposed by Covert Shotgun and ABSynthe

are unique for detecting contention-based side channels and

hence, they are not applicable for other classes of side channels

(e.g., single core timing side channels). Adapting the UPEC

approach involves considerable manual effort for building

models and proving properties (e.g.-Microequivalence [8]) for

each target processor, which hinders its applicability. AutoCAT

specializes in detecting cache timing channels, which limits its

capability to find side channels in other microarchitectural units.

In this paper, we propose SIGFuzz1 , a generic fuzzing-based

framework for discovering various types of microarchitectural

timing side channels. SIGFuzz executes random or mutated

assembly tests on the target processor and evaluates the effect of

each instruction on the execution time of other instructions in the

test to detect timing side channels. Our generated tests contain

>100 randomly ordered instructions with random operands (as

opposed to just three instructions with constant operands in

Osiris). This enables SIGFuzz to detect side channels formed

with more than three instructions with different operand values.

SIGFuzz generates cycle-accurate microarchitectural traces2

of tests and checks if the traces satisfied/violated two trace

properties to determine whether any instruction in the test

triggered a side channel. These two trace properties state whether

the instruction in question affected the commit time of prior

1Available at https://github.com/bu-icsg/SIGFuzz
2A trace that represents the microarchitectural state of the processor in each

clock cycle.

and later instructions in the program, respectively. SIGFuzz also

determines a statistical distribution of delays of instructions with

the same mnemonic to flag potential timing side channels. More

details about this process are provided in Section III. Further-

more, SIGFuzz features an automated method to group similar

side channels, based on the mnemonic and the microarchitectural

activity trace, i.e., the signature of the instruction that triggered

it. At the end of a fuzzing session, SIGFuzz automatically

generates a report of potential side channels that were detected.

We evaluated SIGFuzz by running it on two commonly

used RISC-V open-source processors, namely Rocket [17] and

BOOM [18]. SIGFuzz found both known and new side channels

in both processors. Additionally, we present a novel Spectre-

style attack on BOOM based on one of our newly detected side

channels. In summary, we make the following contributions:

1) We present a generic approach for discovering

microarchitectural timing side channels formed by a

given program. The generic nature of our approach

enables us to discover side channels in a broader scope

compared to prior work. Based on this approach, we

develop SIGFuzz, a fuzzing framework for discovering

microarchitectural timing side channels.

2) We discovered three new side channels in two open-source

RISC-V processors, Rocket and BOOM. Two of the

newly detected side channels are common to both Rocket

and BOOM, while the third one is unique to BOOM.

3) We present a novel Spectre-style attack based on a newly

detected side channel.

II. RELATED WORK

There have been several recent work that automate the

detection of side channels. Osiris [7] introduces an automated

method to discover microarchitectural side channels using

a generic three-step model, which iteratively checks all

three-instruction combinations in an ISA while keeping the

operands constant. Covert Shotgun [14] and ABSynthe [15]

automate the detection of contention-based side channels across

two hyperthreads. Covert Shotgun runs a set of hand-picked

instructions on two hyperthreads of a CPU simultaneously and

measures any observable contention from one instruction on the

other. ABSynthe improves on Covert Shotgun by automatically

finding the sequence of instructions that maximize the infor-

mation leakage for a given processor and using it to synthesize

cross-thread attacks. AutoCAT [16] introduces a reinforcement

learning based framework for automatically generating cache-

timing attack sequences for any given cache. UPEC [8] proposes

a formal verification-based method to exhaustively detect

transient execution side channels in processors at design time.

The aforementioned approaches are, however, either limited

to discovering a specific type of side channels or limited in their

practical applicability. For example, Osiris is limited to detecting

side channels that are formed by three instructions with constant

operands. In contrast, SIGFuzz is capable of discovering side

channels formed by any generic instruction sequence with

any number of instructions and different operands. Similarly,

AutoCAT is limited to detecting timing channels in the cache

while SIGFuzz introduces a more generic method that can

discover timing side channels formed in any microarchitectural

unit of a processor. The methods proposed by Covert Shotgun

and ABSynthe are not applicable beyond contention-based side

channels between hyperthreads. In contrast, SIGFuzz detects

timing-based side channels that manifest in a single hardware

thread. Unlike SIGFuzz, UPEC guarantees exhaustiveness when

detecting transient execution side channels. However, SIGFuzz

can be applied to a target with less manual effort without

developing models (microequivalence) or customization, which

is required for UPEC.

Several other fuzzing methods have been introduced recently

for finding bugs in processors [10]–[12]. These methods use

an ISA simulator as a golden model, where any mismatch with

the golden model is considered a potential bug. However, ISA

simulators only model the architectural behavior, leaving the

microarchitectural behaviors of the target processor unchecked.

Therefore, these methods are not capable of detecting microar-

chitectural side channels and are not comparable with SIGFuzz.

III. SIGFUZZ

Figure 1 shows the overview of the SIGFuzz fuzzing

framework. At a high level, SIGFuzz uses a coverage-guided

fuzzing engine to generate tests. It then mutates these tests and

executes them on the target processor. Subsequently, SIGFuzz

relies on two trace properties to identify any side channels that

could form by the tests. SIGFuzz then extracts the signature

of each committed instruction and stores it in a bin database.

These signatures are then post-processed to detect potential

timing side channels. In the rest of this section, we first discuss

the motivation for the design of SIGFuzz, then discuss the

different steps of SIGFuzz in detail.

A. Motivation

Typically, a group of instructions is required to form a side

channel. If any instruction from the group affects the execution

time of a prior or later instruction in the group, it indicates

the existence of a potential side channel

Example 1: In the contention-based side channel used in

the Spectre-STC [8] attack, arithmetic and logic instructions

cause additional delays in prior division instructions due to the

contention at the register file write port.

Example 2: In the Flush+Reload [19] cache side-channel,

flush instruction affects the timing of a later memory access

instruction that reloads the data.

Motivated by the above observations, we came up with two

trace properties to detect the two types of side channels shown

in examples 1 and 2. (Property 1 and 2 in III-B4). Furthermore,

identifying whether a particular instruction had any effect on

the timing of another instruction is challenging. To address

this challenge, we propose a differential method based on the

nop instruction. We claim that the effect of an instruction

(say K) on the timing of other instructions in the test can be

accurately identified by replacing the instruction K with a nop

and comparing the commit times of each instruction when

using K and when using nop in place of K.

Fuzzing

Engine

Mutated

Test

Generation

Evaluate

Trace

Properties

Detect Potential

Side Channels

RTL

Simulation

RTL

Simulation
Signature

Extraction and

Binning

...

add

lw

divu

...

...

add

nop

divu

...

...

add

lw

divu

...

Coverage Feedback

Bin

Database1 4 5

6

3

Tref

Tmut

Sx

211
x

Report

Report

Generation

Fig. 1. SIGFuzz framework: SIGFuzz generates cycle-accurate microarchitectural traces (µT ref and µTmut
x) for the reference test and a mutated test. These traces

are used to evaluate the trace properties, detect potential side channels and extract the signature (Sx) of the instruction in question (lw in the example shown in the
figure). Signatures and information about the detected side channels are stored in the bin database, from which a report is generated at the end of the fuzzing session.

Additionally, an instruction by itself can manifest as a side

channel depending on its operands.

Example 3: If a division instruction takes a longer time to

execute when the divisor is greater than the dividend compared

to its usual execution time, an attacker can exploit this timing

difference to leak information about the data processed by the

division operation (we demonstrate this in Section V).

With the goal of detecting this type of side channels, we define

a metric called commit time difference (CTD) that represents

the execution time of an instruction (see Section III-B4).

B. SIGFuzz Framework

1) Fuzzing Engine: The fuzzing engine generates random

assembly tests and passes them to the next step. It receives

coverage information for a test from step 3©. If a test increased

the coverage of the design, that test is marked as ‘interesting’

and kept for further mutations.

2) Mutated Test Generation: SIGFuzz takes a test provided

by the fuzzing engine and mutates it to create more tests. The

mutation involves replacing each instruction with a nop instruc-

tion, one at a time. We refer to the original test provided by the

fuzzing engine as reference test T ref and a test that SIGFuzz

generates by replacing the xth instruction as mutated test Tmut
x .

3) RTL Simulation and Microarchitectural Trace Generation

: SIGFuzz then executes the reference test and the mutated test

in the target processor through two separate RTL simulations.

These RTL simulations generate microarchitectural traces

of the tests (µT ref and µTmut
x). SIGFuzz generates these

traces from the RTL simulation of the target processor for

two purposes. First, to check violation of trace properties

and detect potential side channels formed by the tests, which

require a cycle-accurate commit trace. Second, to extract the

microarchitectural activity trace i.e. signature of an instruction,

which requires a mechanism to represent the microarchitectural

state of the processor at each clock cycle.

To satisfy the first need, we instrumented the RTL design

of the target processor to print commit and program counter

RTL signals in each clock cycle and included it in the

microarchitectural trace. The commit signal is set to 1 whenever

an instruction is committed. To satisfy the second need, SIGFuzz

uses regstate representation of an RTL module used in the

register-coverage metric introduced by DifuzzRTL [11]. Difuz-

zRTL identifies all control signals that drive the muxes in a mod-

ule in an RTL design of a processor and hashes them together to

1#0x800004a4:0x65e28,0x17d71,0xdeafc,...,0x188e9,0x20,0x1

1#0x800004a8:0x65e28,0x17d71,0x10b98,...,0x3c49e,0x30,0x1

0#0x800004a8:0x65e28,0x17d71,0x50adc,...,0xa45de,0x30,0x0
1#0x800004ac:0x65e28,0x17d71,0xaffb8,...,0xe3f28,0x20,0x1

Commit

Program

Counter

regstate values of

RTL modules

Fig. 2. Part of a microarchitectural trace generated by SIGFuzz. Each line in the
microarchitectural trace represents a clock cycle during the test execution in the
processor. The leftmost value in the trace is the commit signal, which indicates
whether the program counter in the same row is committed in that clock cycle.
The program counter located in the second column does not carry any meaning
if the commit signal is zero. Each comma-separated value after the “:” sign
represents the regstate value of an RTL module in the target processor.

 ...

add sp, s0, s1

lw a4, 0(s4)

divu s3, a2, a5

 ...

 ...

add sp, s0, s1

nop

divu s3, a2, a5

 ...

...

x-1

x

x+1

...

T ref T mut

...

tref

tref

tref

...

x-1

x

x+1

...

tmut

tmut

tmut

...

x-1

x

x+1

x

Fig. 3. A minimal example of a reference test (T ref) and a mutated test
generated from that (Tmut). x−1, x, x+1 represent the instruction number in

both tests. t
ref
x−1

, t
ref
x , t

ref
x+1

and tmut
x−1

, tmut
x , tmut

x+1
represent the time in clock

cycles when each instruction was committed in T ref and Tmut, respectively.

create regstate for that module. Therefore, regstate rep-

resents the microarchitectural state of an RTL module in a given

clock cycle. To enable regstate for all modules, we instru-

mented the RTL design of the processor with register-coverage

and used regstate values of each RTL module to generate a

microarchitectural activity in each clock cycle. Figure 2 shows

an example microarchitectural trace generated by SIGFuzz.

4) Evaluate Trace Properties: Using the differential method

mentioned in III-A, we define two trace properties to evaluate

the effect of one instruction on others. We use the example

tests shown in Figure 3 to describe these.

Property 1. This property checks whether an instruction x

affects the commit time of an earlier instruction in the test. It

can be formally expressed as follows:

∀n<x : trefn = tmut
n

where trefn and tmut
n correspond to the commit time of the nth

instruction in the reference test and the mutated test.

Property 2. This property checks whether an instruction x

affects the commit time of later instructions in the test. It can

be formally expressed as follows:

∀n>x : trefn −trefx = tmut
n −tmut

x

 ...

add sp, s0, s1

lw a4, 0(s4)

divu s3, a2, a5

 ...

 ...

add sp, s0, s1

nop

divu s3, a2, a5

 ...

T ref T mut

-

...

x-1

x

x+1

...

Sx

x

Fig. 4. Signature extraction process for instruction x (lw a4,0(s4) in the
figure). The signature is extracted from the bitwise subtraction operation between
the microarchitectural trace of the reference test (µTref) and that of the mutated
test (µTx). x−1, x, x+1 represent the instruction numbers in both tests.

With the goal of detecting side channels that manifest in a

single instruction (Example 3 in III-A), we define a new metric

CTD, which represents the difference in the commit time of

xth instruction in Tref and the nop instruction (that replaced

the xth instruction) in Tmut, i.e. CTD = trefx −tmut
x .

SIGFuzz checks if any of the instructions in the reference and

mutated tests have violated property 1 or property 2 using the

microarchitectural traces generated in step 3©. A violation of ei-

ther property indicates a potential side channel. This information

is relayed to 5©. SIGFuzz also calculates CTD using microarchi-

tectural traces and passes it on to step 5©, where it gets stored in

the bin database along with the signature of the xth instruction.

5) Signature Extraction and Binning: Due to the random

nature of tests generated by a fuzzing engine, the same side

channel can be formed multiple times during a fuzzing session.

To avoid analyzing the same side channel repetitively, SIGFuzz

introduces a grouping method based on the microarchitectural

activity trace, i.e., the signature of the trigger instruction. This

is based on the idea that if two instructions triggered two side

channels and the signatures of the two instructions are the

same, the side channel they triggered should be the same.

Extracting the signature. The signature of an instruction is

extracted by applying the same differential method mentioned

in section III-A on microarchitectural traces. To explain the

process of signature extraction, let’s call the signature of the

xth instruction as Sx. Sx is extracted by performing a bitwise

subtraction operation between µT ref and µTmut
x from the

beginning of two logs till the commit line of x in µTref . This

process is illustrated in Figure 4. In a scenario where x takes

more clock cycles to commit than the nop instruction (CTD >

0), additional lines in µTx are included directly in the signature

without the subtraction operation.

Bin Database (BDB). SIGFuzz maintains a bin database for

storing the signatures captured during a fuzzing session. In

BDB, signatures are first sorted based on their instruction

mnemonic, and for each mnemonic we have one or more bins,

where each bin corresponds to a group of similar signatures.

After extracting a signature, SIGFuzz checks the bins under

the instruction mnemonic for a similar signature. If a similar

signature is found in a bin, the extracted signature is added to

the same bin. The process for checking similarity is described

later in this section. If the extracted signature is different from

the existing signature(s) for that instruction mnemonic, a new

bin is created with the new signature. In summary, the bin

database contains bins for each mnemonic, each bin representing

a unique microarchitectural behavior of an instruction.

Comparing signatures. All signatures added to a bin are

averaged to create a ‘composite signature’ that represents all

signatures in the bin. Averaging is also done individually for each

bit in the signature. To check the similarity of a new signature

with the ‘composite signature’ of a bin, SIGFuzz first checks

whether the new signature and the ‘composite signature’ have

the same length. If the length of the two signatures is the same,

we create a binary matrix for each signature where each column

represents how a mux control signal in the processor changed

during the lifetime of an instruction. Then, SIGFuzz calculates

the Normalized Hamming Distance (NHD) between correspond-

ing columns of two matrices and generates a list of NHD values,

one for each column. The maximum of these NHD values is used

as an inversely related metric for the similarity of two signatures.

For example, if the maximum NHD between the columns of two

signatures is 0.2 (out of 1), that relates to a 80% similarity be-

tween the two signatures. SIGFuzz then uses a predefined thresh-

old of 0.3 with the maximum NHD value to classify whether

two signatures are similar or not. We decided the threshold value

manually by checking the NHD values between the signatures

of instructions that have the same microarchitectural behaviors.

If step 4© indicated a property violation by an instruction,

the bin containing the signature of that instruction is marked in

BDB with the property it violated. After SIGFuzz executes all

mutated tests in step 1©, it takes another test from the fuzzing

engine and continues the same process.

6) Report Generation: Once the fuzzing session ends after

a user-specified time, SIGFuzz automatically generates a

detailed report from the bin database, with bins that relate to

side-channel behaviors flagged. During this process, SIGFuzz

creates a histogram of CTD for each instruction mnemonic.

That is used to generate a Gaussian Kernel Density Estimate

(KDE) function, in which maxima and minima are used to

identify the number of clusters in the distribution. The number

of clusters for each mnemonic is included in the report and

mnemonics with more than one cluster are marked as having

potential side-channel behaviors. We show an example on how

clusters in CTD histogram relate to side channels in Section IV.

IV. SIDE CHANNEL DETECTION

In this section, we first describe our experimental setup and

then present an example of how finding clusters in the histogram

of CTDs led us to discover a new side channel. Next, we present

the new and known side channels discovered by SIGFuzz.

A. Experimental Setup

We implemented and evaluated SIGFuzz on two commonly

used open-source RISC-V processors, Rocket [17] and BOOM

[18]. We used DifuzzRTL [11] as the fuzzing engine and

register coverage [11] as feedback in the implementation of

SIGFuzz. We used the Verilator RTL simulator to run RTL

simulations for both processors. All results were obtained by

running SIGFuzz on server nodes with Intel Xeon E5-2670

CPUs and CentOS Linux 7 as the operating system.

We ran five 4-hour fuzzing sessions with SIGFuzz for each

processor and collected the automatically generated reports.

We went through the instructions and bins that were flagged as

potential side channels in these reports and found three new side

channels and two known side channels [8], [20]. Two of these

TABLE I
SIDE CHANNELS DISCOVERED BY SIGFUZZ IN ROCKET AND BOOM PROCESSORS.

No Processor Description of the side channel New/Known? Flagged property or CTD

1 Rocket,
BOOM

Store conditional (sc) instructions bring data to cache and mark them as dirty regardless
of the store conditional success. This delays the later memory accesses that map to the
same cache line because data needs to be written back.

New Property 2

2 Rocket,
BOOM

In a division instruction, if the divisor is larger than the dividend or equal to zero, the
instruction takes longer time to execute compared to other scenarios.

New CTD

3 BOOM If a load instruction is followed by another load instruction, the earlier load gets delayed. New Property 1

4 Rocket Side channel used in ORC attack [20]. If there is a pending store to a particular cache line,
loads that map to the same cache line are delayed till the store is done.

Known Property 2

5 BOOM Side channel used in Spectre-STC [8] attack. Division instructions get delayed due to the
contention created at the registerfile write port by later ALU and multiplication instructions.

Known Property 1

1 array1_sz = array1_sz << 3;
2 asm("fcvt.s.lu fa4, %[in]\n"
3 "fcvt.s.lu fa5, %[inout]\n"
4 "fdiv.s fa5, fa5, fa4\n"
5 "fdiv.s fa5, fa5, fa4\n"
6 "fdiv.s fa5, fa5, fa4\n"
7 "fcvt.lu.s %[out], fa5, rtz\n"
8 : [out] "=r" (array1_sz)
9 : [inout] "r" (array1_sz),

10 [in] "r" (dummy)
11 : "fa4", "fa5");
12
13 if (idx < array1_sz){
14 asm("div x1, %[dvd], %[dvs]\n"
15 "slli x1, x1, 6\n"
16 "add x1, x1, %[daddr]\n"
17 "lw %[out], (x1)\n"
18 : [out] "=r" (dummy)
19 : [dvd] "r" (array1[idx]),
20 [dvs] "r" (probe_val),
21 [daddr] "r" (&dummyaddr)
22 : "x1");
23 }

Fig. 6. Minimal RISC-V code for Spectre-style attack based on the side
channel in the division instruction.

the dividend of the division instruction on line 14. Division

instruction at line 14 uses the probe_val as the divisor.

If the secret value is greater than the probe_val, division in-

struction takes less time to execute, allowing the load instruction

at line 17 to execute during the transient window, which accesses

a dummy address accessible to the attacker. If the secret value

is less than the probe_val, division instruction takes more

time to execute, resulting in the load instruction not executing

within the transient window. If the load instruction is executed,

it brings the data at dummyaddr to the cache. Also, note that a

dependence between the division result and the load instruction

is added so that the load instruction is not speculatively executed

while the processor calculates the division result. Therefore, after

the code sequence given in Figure 6 is executed, an attacker can

check whether the data at dummyaddr is cached or not and de-

duce whether the secret value was greater than the probe_val

or not. The attacker can use different values for probe_val

iteratively and figure out the secret value (through binary search).

VI. CONCLUSION

We propose SIGFuzz, a fuzzing-based framework for

detecting microarchitectural timing side channels at design

time. SIGFuzz determines variations in instruction execution

times to identify timing-based side channels. We implemented

and evaluated SIGFuzz on two open-source RISC-V processors,

Rocket and BOOM. SIGFuzz discovered three new and

two known side channels in these processors, demonstrating

its effectiveness and practicality. We presented a novel

Spectre-style attack based on a new side channel that SIGFuzz

detected, showing the importance of identifying side channels

early in the design process to ensure processor security.

ACKNOWLEDGMENT

Parts of this work are funded by Air Force Research

Laboratory (AFRL) and Defense Advanced Research Projects

Agency (DARPA) under agreement number FA8650-18-2-

7856, and by NSF Award 1916393. The U.S. Government is

authorized to reproduce and distribute reprints for Governmental

purposes notwithstanding any copyright notation thereon.

REFERENCES

[1] Q. Ge et al., “A survey of microarchitectural timing attacks and
countermeasures on contemporary hardware,” Journal of Cryptographic

Engineering, vol. 8, no. 1, pp. 1–27, 2018.

[2] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
IEEE SP, 2019, pp. 1–19.

[3] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in USENIX Security, 2018, pp. 973–990.

[4] X. Lou et al., “A survey of microarchitectural side-channel vulnerabilities,
attacks, and defenses in cryptography,” ACM Comput. Surv., vol. 54,
no. 6, 2021.

[5] Y. Shin et al., “Unveiling hardware-based data prefetcher, a hidden source
of information leakage,” in CCS, 2018, p. 131145.

[6] A. Fogh, “Two covert channels,” https://cyber.wtf/2016/08/, 2016.

[7] D. Weber et al., “Osiris: Automated discovery of microarchitectural side
channels,” in USENIX Security, 2021, pp. 1415–1432.

[8] M. R. Fadiheh et al., “An exhaustive approach to detecting transient
execution side channels in rtl designs of processors,” IEEE Transactions

on Computers, pp. 1–1, 2022.

[9] Google, “Oss-fuzz: Continuous fuzzing for open source software,”
https://github.com/google/oss-fuzz, 2016.

[10] S. Canakci et al., “Processorfuzz: Guiding processor fuzzing
using control and status registers,” 2022. [Online]. Available:
https://arxiv.org/abs/2209.01789

[11] J. Hur et al., “Difuzzrtl: Differential fuzz testing to find cpu bugs,” in
IEEE SP, 2021, pp. 1286–1303.

[12] R. Kande et al., “TheHuzz: Instruction fuzzing of processors using
Golden-Reference models for finding Software-Exploitable vulnerabilities,”
in USENIX Security, 2022, pp. 3219–3236.

[13] S. Canakci et al., “Directfuzz: Automated test generation for rtl designs
using directed graybox fuzzing,” in DAC, 2021, pp. 529–534.

[14] A. Fogh, “Covert shotgun: automatically finding smt covert channels,”
https://cyber.wtf/2016/09/27/covert-shotgun/, 2016.

[15] B. Gras et al., “ABSynthe: Automatic Blackbox Side-channel Synthesis
on Commodity Microarchitectures,” in NDSS, 2020.

[16] M. Luo et al., “Autocat: Reinforcement learning for automated exploration
of cache timing-channel attacks,” 2022.

[17] “The rocket chip generator,” https://github.com/chipsalliance/rocket-chip.

[18] “Boom: Berkeley out-of-order machine,” https://github.com/riscv-
boom/riscv-boom.

[19] Y. Yarom et al., “FLUSH+RELOAD: A high resolution, low noise, l3
cache Side-Channel attack,” in USENIX Security, 2014, pp. 719–732.

[20] M. R. Fadiheh et al., “Processor hardware security vulnerabilities and
their detection by unique program execution checking,” in DATE, 2019,
pp. 994–999.

