

ACCEPTED MANUSCRIPT • OPEN ACCESS

Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV₆Sn₆

To cite this article before publication: Guoxin Zheng *et al* 2024 *J. Phys.: Condens. Matter* in press <https://doi.org/10.1088/1361-648X/ad2803>

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process, and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2024 The Author(s). Published by IOP Publishing Ltd.

As the Version of Record of this article is going to be / has been published on a gold open access basis under a CC BY 4.0 licence, this Accepted Manuscript is available for reuse under a CC BY 4.0 licence immediately.

Everyone is permitted to use all or part of the original content in this article, provided that they adhere to all the terms of the licence <https://creativecommons.org/licenses/by/4.0>

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required. All third party content is fully copyright protected and is not published on a gold open access basis under a CC BY licence, unless that is specifically stated in the figure caption in the Version of Record.

View the [article online](#) for updates and enhancements.

Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6

Guoxin Zheng¹, Yuan Zhu¹, Shirin Mozaffari², Ning Mao³, Kuan-Wen Chen¹, Kaila Jenkins¹, Dechen Zhang¹, Aaron Chan¹, Hasitha W. Suriya Arachchige³, Richa P. Madhogaria², Matthew Cothrine², William R. Meier², Yang Zhang^{3,4}, David Mandrus^{2,3,5} and Lu Li¹

¹Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

²Materials Science and Engineering Department, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA

³Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany

⁴Department of Physics and Astronomy, University of Tennessee Knoxville, Knoxville, Tennessee 37996, USA

⁵Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee 37996, USA

⁶Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

E-mail: luli@umich.edu

Abstract. Metals with kagome lattice provide bulk materials to host both the flat-band and Dirac electronic dispersions. A new family of kagome metals is recently discovered in AV_6Sn_6 . The Dirac electronic structures of this material needs more experimental evidence to confirm. In the manuscript, we investigate this problem by resolving the quantum oscillations in both electrical transport and magnetization in ScV_6Sn_6 . The revealed orbits are consistent with the electronic band structure models. Furthermore, the Berry phase of a dominating orbit is revealed to be around π , providing direct evidence for the topological band structure, which is consistent with calculations. Our results demonstrate a rich physics and shed light on the correlated topological ground state of this kagome metal.

Keywords: kagome metals, quantum oscillations, Fermi surface mapping, topological bands

1. Introduction

The kagome lattice is an ideal platform to host topological electronic states within the strong electron correlation regime due to the special lattice geometry. The characteristics of the kagome lattice band structure include a Dirac node at K point, a van Hove singularity at M , and flat bands over the Brillouin zone (BZ). Depending on the electron filling degrees and interactions, a wide variety of electronic states are possible, including charge density waves

1 2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 2 3

4 (CDWs) [3, 1, 2], spin liquid states [4], charge fractionalization [5, 6], superconductivity
5 [7, 8, 9], and newly reported topological charge order [11, 10]. Recently, the coexistence of
6 CDW and superconductivity has been discovered in the kagome metal family AV_3Sb_5 (A=K,
7 Rb, and Cs), which have a nonzero \mathbb{Z}_2 topological invariant [7, 8, 13, 14, 12, 15]. The Dirac
8 nodal lines and nodal loops have been identified in the CsV_3Sb_5 [16]. Moreover, the detailed
9 study of quantum oscillation spectrum in CsV_3Sb_5 signified the modification of Fermi surface
10 (FS) topology due to the CDW order [14, 17, 18, 19].
11

12 Another recently discovered kagome metal family is RV_6Sn_6 ($R = Sc, Y, Gd, Tb, Dy, Ho,$
13 $Er, Tm, \text{ and } Lu$) compounds, which host the non-magnetic vanadium kagome lattice that also
14 exists in CsV_3Sb_5 , playing an essential role on those exotic behaviors [20, 17]. Among these
15 compounds, topological Dirac surface states have been identified in GdV_6Sn_6 and HoV_6Sn_6
16 [21, 22], YV_6Sn_6 is claimed to be a topological metal [23]. The electronic and magnetic
17 properties of RV_6Sn_6 ($R = Tb, Dy, Ho, Er, \text{ and } Tm$) have been studied in Ref. [24]. Here
18 we focus on the kagome metal ScV_6Sn_6 , which is the only one showing a CDW transition in
19 RV_6Sn_6 family so far [3, 25], and its non-trivial topology has been studied by angle-resolved
20 photoemission spectroscopy (ARPES) [26, 27] and x-ray scattering [28] measurements.
21 Despite the similarities between AV_3Sb_5 compounds and ScV_6Sn_6 , their CDWs have different
22 wave vectors [7, 29, 20, 3], and ScV_6Sn_6 does not host superconductivity in the ground state
23 [3]. These differences and potential Dirac bands inspire us to investigate the FS topology in
24 the ground state of ScV_6Sn_6 .
25

26 In this work, we present the electrical transport and magnetic properties of ScV_6Sn_6
27 single crystals. The resolved quantum oscillations from the Shubnikov–de Haas (SdH) effect
28 and de Haas–van Alphen (dHvA) effect were analyzed and compared with the modeling based
29 on WIEN2k density functional theory (DFT) calculations, indicating a slight modification of
30 FSs affected by the CDW order formed below 92 K. Furthermore, the analysis of quantum
31 oscillations shows one small orbit carries non-trivial Berry phase, which is consistent with the
32 Dirac bands resolved by the theoretical calculation. These results provide direct evidence for
33 topologically non-trivial electrical structure in ScV_6Sn_6 .
34

35 **2. Methods**

36 Single crystals of ScV_6Sn_6 were synthesized via a self-flux growth method [3]. The
37 electrical transport measurements were carried out in the Quantum Design physical
38 property measurement system (PPMS Dynacool-14T) and the SCM2 system with an 18
39 T superconducting magnet with variable temperature insert (VTI) in NHMFL, Tallahassee.
40 The torque magnetometry measurements were also performed using capacitive cantilevers
41 in the SCM2 system. The magnetization measurements were conducted in a Quantum
42 Design magnetic property measurement system 3 (MPMS 3) using the Vibrating Sample
43 Magnetometer (VSM) option. DFT calculations were performed with the WIEN2k package
44 [30]. The angular dependence of FS cross-sectional areas was computed via SKEAF [31].
45

1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 3
3
4
5

6 **3. Results and Discussion**

7 The temperature (T) dependence of ab -plane resistivity ρ_{xx} is shown in figure 1(a). ScV_6Sn_6
8 resistivity exhibits a metallic behavior with a significant drop around 92 K which is confirmed
9 to be a CDW transition [3], and no bulk superconductivity is observed down to 1.8 K, which is
10 consistent with Ref. [3]. figure 1(b) displays the magnetoresistance of ρ_{xx} when the magnetic
11 field H is applied in the ab -plane under different T . These magnetoresistance (MR) curves
12 exhibit sub-quadratic or nearly linear behavior. This linear MR feature also reported recently
13 in Ref. [32, 33] could indicate an unconventional phase, such as the formation of a pseudogap
14 as claimed in Ref. [32]. The main feature in figure 1(b) is the clear SdH oscillations when $H >$
15 3.5 T, and the amplitude decreases with increasing T . The transverse resistivity ρ_{xy} has also
16 been measured at $T = 1.8$ K when the field is along the c axis as shown in figure 1(b) inset.
17 ρ_{xy} shows a nonlinear behavior with a negative slope below 1.7 T and a positive slope above,
18 which can be well fitted by the two-band model [32, 34] (Also see supplementary material
19 [46] section E). After subtracting a smooth non-oscillatory background, the SdH oscillations
20 are isolated in figure 1(c) as a function of $1/\mu_0H$ and visible up to 25 K. The beating periodic
21 oscillatory patterns indicate the contribution of two different frequency components. After
22 doing the Fast Fourier transform (FFT), the spectra are shown in figure 1(d), which gives
23 two dominant frequencies, $F_\alpha \sim 21$ T and $F_\beta \sim 44$ T. Another orbit $F_\gamma \sim 43$ T with weak
24 amplitude showed up after we conducted the angular dependence of FFT, as shown in figure
25 3(a) top panel, which has a similar frequency with the β orbit but comes from a different band.
26 No high-frequency peak is observed in the FFT spectra.
27
28

29 In general, the SdH oscillations with several frequencies can be considered as the linear
30 superposition of the Lifshitz-Kosevich (LK) formula of different frequency F , and each LK
31 formula can be expressed as [35, 36, 14]:
32
33

$$34 \quad \Delta\rho \propto B^{1/2} R_T R_D R_S \cos\left[2\pi\left(\frac{F}{B} - \gamma + \delta + \phi\right)\right] \quad (1)$$

35 where $R_T = \frac{\alpha m^* T / B}{\sinh(\alpha m^* T / B)}$, $R_D = e^{-\alpha m^* T_D / B}$, and $R_S = \cos(\frac{\pi}{2} g^* m^*)$ stand for the reduction
36 factors due to the temperature, scattering, and spin splitting. Here T_D is Dingle temperature
37 defined as $T_D = \frac{\hbar}{2\pi k_B \tau}$, where the scattering time τ is related to the electronic mobility
38 as $\mu_e = e\tau/m^*$. F is frequency, m^* is effective mass in unit of free electron mass m_e ,
39 $\alpha = 2\pi^2 k_B m_e / e\hbar = 14.69$ T/K is a constant, and g^* is the effective g factor. The phase
40 factor $\phi = -\gamma + \delta + \phi$ comes from multiple factors: (1) $\phi = \frac{1}{2}$ when $\rho_{xx} \gg \rho_{xy}$ and $\phi = 0$
41 when $\rho_{xx} \ll \rho_{xy}$. (2) $\delta = 0$ for a two-dimensional (2D) Fermi surface, $\delta = -\frac{1}{8}$ for a three-
42 dimensional (3D) Fermi surface when the extremal orbit is the local maximum of the orbit,
43 and $\delta = +\frac{1}{8}$ for a 3D Fermi surface when the extremal orbit is the local minimum of the orbit.
44 (3), Finally, $\gamma = \frac{1}{2} - \frac{\phi_B}{2\pi}$ with ϕ_B the Berry phase.
45
46

47 The effective masses can be estimated by fitting the oscillation amplitudes as a function
48 of T using the LK formula, shown in the inset of figure 1(d). The determined masses are
49 $m_\alpha^* = 0.12 m_e$ and $m_\beta^* = 0.19 m_e$, both are small light pockets.
50
51

52 The SdH signals are confirmed with the dHvA effect observed in the magnetization M
53 and magnetic torque of ScV_6Sn_6 . The H -dependence of M is shown in figure 2(a), with
54
55

1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 4
3
4

5 H along c axis and at $T = 2$ K. The curve shows a typical paramagnetic response without
6 saturation in H up to 7 T. The oscillatory patterns caused by the dHvA effect appear at $H > 3$
7 T, which come from a single frequency contribution resolved by the FFT spectra shown in the
8 inset of figure 2(a). We identify this frequency as $F_\beta \sim 76$ T with $H \parallel c$. The magnetic torque
9 τ measurement setup is shown in figure 2(b) inset and θ is the tilt angle between H and the
10 crystalline c axis. The H -dependence of torque under selected T is shown in figure 2(b) with
11 offset. Torque magnetometry directly measures the anisotropy of magnetic susceptibility of
12 the sample[37]. All torque curves have a quadratic polynomial background, consistent with
13 paramagnetic responses [37]. The quantum oscillations in figure 2(b) are separated in figure
14 2(c) after subtracting a polynomial background, showing clear periodic oscillatory patterns
15 which are observable up to 20 K. The quantum oscillations at another angle 39.0° are shown
16 in the inset of (c), which are clearly dominated by β orbit.
17
18

19 Similar to Eq. 1, the LK formula describing the field and temperature-dependence of the
20 dHvA oscillations of the magnetization along field direction is given by [35, 38]:
21
22

$$23 \quad \Delta M_{||} \propto -B^{1/2} R_T R_D R_S \sin[2\pi(\frac{F}{B} - \gamma + \delta)] \quad (2)$$

24 Here R_T, R_D, R_S, γ , and δ have the same definitions as in Eq. (1). Take the derivative on the
25 $\Delta M_{||}$, the dominating part of the relative magnetic susceptibility $\chi_{||}$ provides an easier way
26 to extract the correct phase of the dHvA oscillations, which is given by:
27
28

$$29 \quad \Delta \chi_{||} = \frac{d(\Delta M_{||})}{dB} \propto B^{-3/2} R_T R_D R_S \cos[2\pi(\frac{F}{B} - \gamma + \delta)] \quad (3)$$

30 figure 2(d) displays the FFT spectra of dHvA oscillations under different temperatures,
31 which is similar to the SdH FFT in figure 1(d). Effective masses of F_α and F_β found in dHvA
32 oscillations are given in the inset of figure 2(d), which are slightly higher than the results in
33 figure 1(d). We also notice a small peak located at 67.5 T, which is very close to the value of
34 $F_\alpha + F_\beta$, and the mass of this frequency is $0.32 m_e$, also close to the sum of the mass of α and
35 β orbit. Therefore we suggest this 67.5 T peak is the magnetic breakdown of F_α and F_β .
36
37

38 Furthermore, figure 3 shows the angular dependence of the FFT of quantum oscillations
39 in ScV_6Sn_6 . The top panel of figure 3(a) shows the angular dependence of the SdH
40 frequencies derived from ρ_{xx} . The FFT amplitudes are multiplied by 3 when $|\theta| < 40^\circ$ for
41 clarity. F_α has the largest amplitude when field is in the ab plane, and decays quickly when θ
42 decreases and vanishes around $\theta = 60^\circ$ eventually. However, F_β can be identified in all angle
43 ranges, reaches maxima 67.5 T when $\theta = 0^\circ$ and drops to minima 44 T when $\theta = \pm 90^\circ$.
44 This result implies the FS pocket related to F_β is a 3D ellipsoid with the minor axis along c
45 axis. From the different behavior of F_α and F_β in figure 3, the dominated frequency F_β in the
46 magnetization (figure 2(a)), and the angular dependence analysis in supplementary figure S5
47 [46], we can conclude that F_α and F_β are two different orbits, rather than that F_β is the second
48 harmonic frequency of F_α . As we mentioned before, F_γ shows up when $|\theta| < 30^\circ$, which
49 is confirmed by the DFT calculation shown in figure 3(b). Similarly, the bottom panel of
50 figure 3(a) gives the angular dependence FFT of dHvA data from torque measurements, which
51 shows similar evolution patterns of F_α and F_β compared with SdH FFT results. However, F_γ
52 observed in the SdH oscillations were missing in the dHvA data. This discrepancy could be
53
54
55
56
57
58
59
60

1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 5
34
5 caused by the different sensitivity between transport and torque measurements. The data of
6 angular dependence of F_α , F_β and F_γ are summarized in figure 3(b).
78 To better understand the experimental results and evaluate the influence of CDW band-
9 folding on FSs, we performed DFT calculations based on the room temperature (RT) and
10 low temperature (LT) crystal structures. The RT structure of ScV_6Sn_6 has the symmetry of
11 space group $P6/mmm$, and supplementary figure S1(a) [46] shows the RT band structure
12 considering spin-orbit coupling (SOC), which is similar to the band structure reported in
13 Ref. [41]. Multiple Dirac cones around K that arise from vanadium orbitals can be seen.
14 Next, we focus on the LT structure, which has a CDW phase transition with a (1/3, 1/3, 1/3)
15 propagation vector [3]. figure 4(a) shows the band structure calculation of prime cell with
16 SOC along high-symmetry paths labeled in figure 4(b), and E_F is shifted down 1.3 meV
17 to match the experimental frequency results. Bands 519 (red) and 521 (blue) are the bands
18 crossing E_F , and they are highlighted in figure 4(a), and their FSs are shown in figure 4(c) and
19 (d), respectively. The left panel of (a) shows the zoom-in region around α and β orbits and
20 Dirac nodes, and we can clearly see the degenerated bands resulting from SOC. A comparison
21 between DFT calculations and the angular dependence of the frequencies measured in SdH
22 and dHvA oscillations is shown in figure 3(b). F_α observed in the experiments agrees with
23 one frequency branch of the band 521 with a 6 T offset, which has an ellipsoid FS located at
24 $K_1(1/3, 1/3, 1/3)$ between $\Gamma-T$ in figure 4(d). The experimental data of F_β matched nicely
25 with one branch of band 519, which is also an ellipsoid FS with a minor axis along k_z located
26 at K_1 in figure 4(c). The third frequency F_γ can be assigned to one branch of band 521 located
27 at $M_1(1/2, 0, 1/2)$ according to the angular dependence. Their are several calculated high
28 frequency orbits in band 521 not observed in experiments. Therefore, further measurements
29 under higher magnetic fields should be helpful to resolve these orbits in the future. In figure
30 4(a), we can identify there is a Dirac node with an ignorable gap between $K_1 - M_1$ at just 57
31 meV below E_F , and surrounded by the β pocket. This meV Dirac gap opened by SOC is
32 small enough to generate a nontrivial Berry curvature in the β orbit, in contrast to the trivial
33 origin of π -phase-shifts in SOC metals, such as Bi_2O_2Se [39]. After mapping the k points
34 back to RT phase, we recognize that K_1 and M_1 are the K and M points in the RT phase. The
35 mapping method is discussed in supplementary section B [46].
3637 The V atoms in AV_3Sb_5 compounds have large displacements 0.009-0.085 Å and the
38 reconstructed FSs are intimately related to the V orbitals [17], especially near K , M and
39 L points. In contrast, in ScV_6Sn_6 , the vanadium atoms have much weaker displacements
40 0.004-0.006 Å [3], which indicates the reconstruction of FSs in ScV_6Sn_6 might be weaker
41 than AV_3Sb_5 compounds. ARPES measurements show that the Fermi surface significantly
42 reconstructed at Γ point while the V kagome bands near K and M remain almost unaltered
43 after CDW transiton [27].
4445 Recently, Tan et al. discussed the topology of ScV_6Sn_6 [41] based on the RT electronic
46 structure. At both RT and LT phases, the Dirac cone near K_1 is surrounded by β pocket,
47 which suggests the β orbit could be a topologically non-trivial orbit. Indeed this deduction
48 is revealed by the Berry phase identified from the Landau level indexing of the quantum
49 oscillation patterns. Given that $\rho_{xx}/\rho_{xy} \sim 30$ in ScV_6Sn_6 (see figure 1(b)), the maximum in
50
51
52
53
54
55
56
57
58
59
60

1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 6
3
45
6

ρ_{xx} corresponds to the minimum of the conductivity σ_{xx} , which marks the B -field for each
7 Landau level [40]. Therefore, the Landau index n is assigned to the maximum of ρ_{xx} in
8 figure 5(a) because the oscillation is still in the low field limit. These Landau level indexing
9 lines determine the intercepts in the limit of $1/B = 0$. As shown in figure 5(a) and its inset,
10 the intercept of α pocket is 0.21, β pockets is 0.43. The topology of α pocket is hard to
11 determine here, and we give a detailed discussion in supplement [46] section F. For β pocket,
12 this 0.43 intercept will give a Berry phase around 1.11π , which is pretty close to topological
13 nontrivial π Berry phase. The Berry phase of the γ orbit is challenging to determine due to
14 its small oscillation amplitude and its beating with the β orbit. Therefore, we will mainly
15 focus on studying the topolgy of β pocket here. Figure 5(b) shows a two-frequency LK fit for
16 the SdH signals that also determine the Berry phases. Similar Berry phase determination was
17 also carried out in the dHvA oscillations in both magnetizations (figure 5(c)) and magnetic
18 torques (see supplementary figure S3 in [46]). The histogram in figure 5(d) summarizes the
19 Berry phases for orbit β . Based on these multiple measurements, we conclude that orbit
20 β is topologically non-trivial. In other words, the small orbit centered at K in the RT phase
21 (along $\Gamma-T$ in LT phase) is topologically non-trivial, in sharp contrast to the topologically non-
22 trivial orbits around M and H point in CsV_3Sb_5 [14, 15]. In supplementary figure S8 [46],
23 the π Berry phase of β orbit is also observed in YV_6Sn_6 and LuV_6Sn_6 , although these two
24 compounds do not exhibit CDW transition. The calculations show that ScV_6Sn_6 , YV_6Sn_6 ,
25 and LuV_6Sn_6 have nearly identical band structures at room temperature [23, 34, 41]. Thanks
26 to the no change of the crystal structure, the band structures of YV_6Sn_6 and LuV_6Sn_6 should
27 be consistent from room temperature down to low temperature. Thus, we deduce that this
28 nontrivial β pocket also exists in ScV_6Sn_6 at RT phase, and survives in CDW transition
29 which is in agreement with the ARPES results [27]. The discussion is further elaborated
30 in supplement [46] section G. Our observation shows the robustness of this topological nature
31 of the β pocket, which indicates that this transport-detectable topological non-trivial orbit is
32 a peculiar property shared in RV_6Sn_6 family, and particularly the CDW transition in ScV_6Sn_6
33 will not destroy this Dirac point. In addition, the intrinsic anomalous Hall effect in ρ_{xz}
34 discovered recently in ScV_6Sn_6 is another observation to suggest that a large Berry curvature
35 arises from the non-trivial band structure [34].

36
37
38
39
40
41
42
43
44

45

Usually, in kagome metals, a CDW transition generally affects the electronic structures,
46 and thus the relationship between the CDW and the topology is rich and complicated. For
47 example, in the well-studied kagome metal AV_3Sb_5 , photoemission studies show that the
48 CDW does not generate obvious changes in the band structure [16], yet other studies suggest
49 that CDW opens energy gap at the Dirac cone [11]. A detailed band structure calculation
50 points out that the CDW creates many additional band crossings [19]. In the kagome metal
51 ScV_6Sn_6 , we present a case that the topological orbit survives the CDW transition. A potential
52 reason is the corresponding Fermi surface orbit at K point comes from the V atoms and does
53 not reconstruct much after the CDW transition [27, 41, 42].

54
55
56
57
58
59
60

1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 7
3
45 **4. Conclusion**
67
8 In conclusion, quantum oscillations have been observed by electrical transport, magnetization,
9 and torque measurements in ScV_6Sn_6 . The angular dependence of oscillation frequencies is
10 consistent with the theoretical frequencies in LT phase DFT calculations. The comparison
11 between the LT and RT phases calculations and the comparison between the quantum
12 oscillations among ScV_6Sn_6 , YV_6Sn_6 and LuV_6Sn_6 imply the CDW transition reconstructs
13 the FS but preserve the topological non-trivial band. The Dirac cones from the LT DFT
14 calculations and π Berry phase revealed for the β orbit show a topological non-trivial
15 electronic band structure of ScV_6Sn_6 . Therefore, ScV_6Sn_6 provides a platform to study the
16 topological electronic systems under CDW order.
17
1819 It is worth mentioning that another two studies [44, 45] on quantum oscillations in
20 ScV_6Sn_6 were reported during the submission of this manuscript. The β orbit around 50
21 T is recognized as a topological nontrivial orbit in both papers, which is consistent with the
22 key result of this manuscript.
23
2425 **Data availability statement**
2627
28 All data that support the findings of this study are included within the article (and any
29 supplementary files).
30
3132 **acknowledgments**
3334
35 The work at Michigan is supported by the National Science Foundation under Award No.
36 DMR-2004288 (transport measurements), by the Department of Energy under Award No.
37 DE-SC0020184 (magnetometry measurements). D. M. acknowledges support from the US
38 Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and
39 Engineering Division. Y.Z. acknowledge support from the start-up fund at the University of
40 Tennessee. S. M., H.W.S. A., R. P. M., M.C., and W. R. M. acknowledge support from the
41 Gordon and Betty Moore Foundation's EPiQS Initiative, Grant No. GBMF9069 to D. M.. The
42 experiment in NHMFL is funded in part by a QuantEmX grant from ICAM and the Gordon
43 and Betty Moore Foundation through Grant No. GBMF5305 to K.-W. C., D. Z., G. Z., A.
44 C., Y. Z., and K. J.. A portion of this work was performed at the National High Magnetic
45 Field Laboratory (NHMFL), which is supported by National Science Foundation Cooperative
46 Agreement No. DMR-1644779 and the State of Florida.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 8
3
45 **Reference**

[1] B. R. Ortiz, et al. *Phys. Rev. Mater.* **3**, 094407 (2019)

[2] H. Li, T. T. Zhang, T. Yilmaz, Y. Y. Pai, C. E. Marvinney, A. Said, et al., *Physical Review X* **11**, 031050 (2021).

[3] H. W. S. Arachchige, W. R. Meier, M. Marshall, T. Matsuoka, R. Xue, M. A. McGuire, R. P. Hermann, H. Cao, and D. Mandrus, *Phys. Rev. Lett.* **129**, 216402 (2022).

[4] S. Yan, D. A. Huse, and S. R. White, *Science* **332**, 1173 (2011).

[5] A. O'Brien, F. Pollmann, and P. Fulde, *Physical Review B* **81**, 235115 (2010).

[6] A. Ruegg and G. A. Fiete, *Physical Review B* **83**, 165118 (2011).

[7] B. R. Ortiz, S.M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, *Phys. Rev. Lett.* **125**, 247002 (2020).

[8] B. R. Ortiz, P. M. Sarte, E. M. Kenney, M. J. Graf, S. M. L. Teicher, R. Seshadri, and S. D. Wilson, *Physical Review Materials* **5**, 034801 (2021).

[9] W.-S. Wang, Z.-Z. Li, Y.-Y. Xiang, and Q.-H. Wang, *Physical Review B* **87**, 115135 (2013).

[10] Z. Wang et al., *Physical Review B* **104**, 075148 (2021).

[11] Y.-X. Jiang et al., *Nature Materials* **20**, 1353 (2021).

[12] S. Zhou and Z. Wang, *Nature Communications* **13**, 7288 (2022).

[13] Q. Yin, Z. Tu, C. Gong, Y. Fu, S. Yan, and H. Lei, *Chinese Physics Letters* **38**, 037403 (2021).

[14] Y. Fu et al., *Physical Review Letters* **127**, 207002 (2021).

[15] K. Shrestha et al., *Physical Review B* **105**, 024508 (2022).

[16] Z. Hao et al., *Physical Review B* **106**, L081101 (2022).

[17] B. R. Ortiz, S. M. L. Teicher, L. Kautzsch, P. M. Sarte, N. Ratcliff, J. Harter, J. P. C. Ruff, R. Seshadri, and S. D. Wilson, *Physical Review X* **11**, 041030 (2021).

[18] R. Chapai et al., *Physical Review Letters* **130**, 126401 (2023).

[19] H. Tan, Y. Li, Y. Liu, D. Kaplan, Z. Wang, and B. Yan, *npj Quantum Materials* **8**, 39 (2023).

[20] M. Kang et al., *Nature Physics* (2022).

[21] S. Peng et al., *Physical Review Letters* **127**, 266401 (2021).

[22] Y. Hu, X. Wu, Y. Yang, S. Gao, N. C. Plumb, A. P. Schnyder, W. Xie, J. Ma, and M. Shi, *Science Advances* **8**, eadd2024 (2022).

[23] G. Pokharel, S. M. L. Teicher, B. R. Ortiz, P. M. Sarte, G. Wu, S. Peng, J. He, R. Seshadri, and S. D. Wilson, *Physical Review B* **104**, 235139 (2021).

[24] X. Zhang et al., *Physical Review Materials* **6**, 105001 (2022).

[25] W. R. Meier et al., *Journal of the American Chemical Society* **145**, 20943 (2023).

[26] D. Di Sante et al., *Nature Physics* **19**, 1135 (2023).

[27] S. Lee et al., *arXiv preprint arXiv:2304.11820* (2023).

[28] A. Korshunov et al., *Nature Communications* **14**, 6646 (2023).

[29] Z. Liang et al., *Physical Review X* **11**, 031026 (2021).

[30] K. Schwarz, P. Blaha, and G. K. Madsen, *Computer physics communications* **147**, 71 (2002).

[31] P. M.C. Rourke and S.R. Julian, *Comput. Phys. Commun.* **183**, 324 (2012).

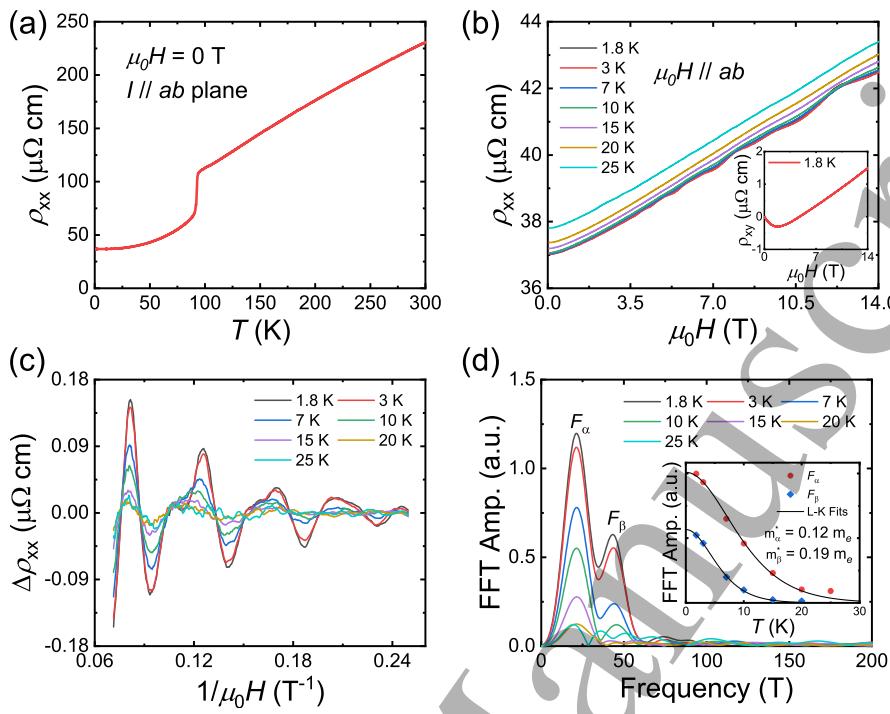
[32] J. M. DeStefano, E. Rosenberg, O. Peek, Y. Lee, Z. Liu, Q. Jiang, L. Ke, and J.-H. Chu, *npj Quantum Materials* **8**, 65 (2023).

[33] Z. Guguchia et al., *Nature Communications* **14**, 7796 (2023).

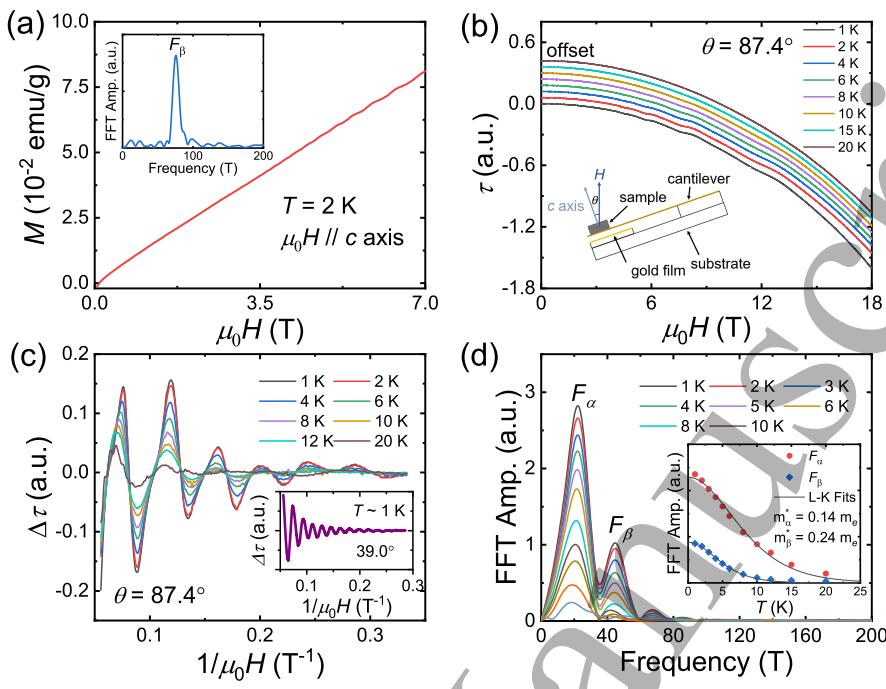
[34] S. Mozaffari et al., *arXiv preprint arXiv:2305.02393* (2023).

[35] D. Shoenberg, *Magnetic Oscillations in Metals* (Cambridge University Press, Cambridge, England, 1984).

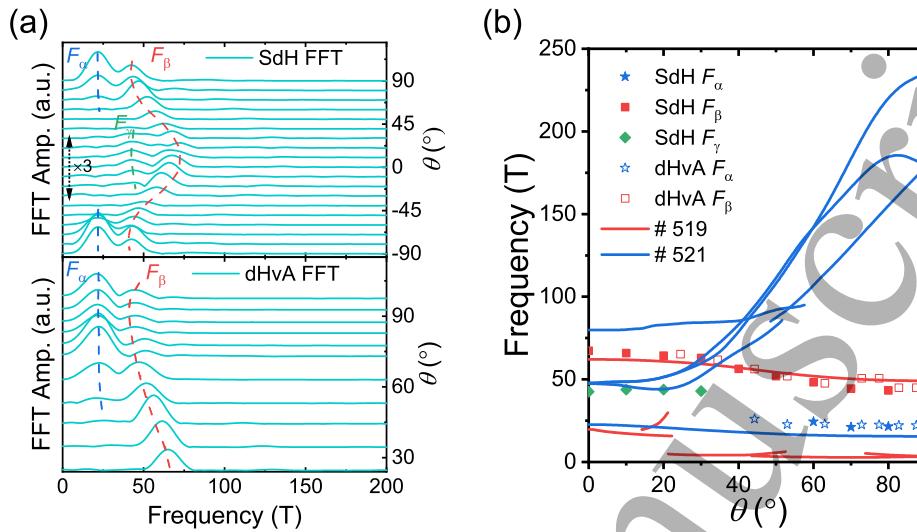
[36] H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, *Science* **342**, 1490 (2013).

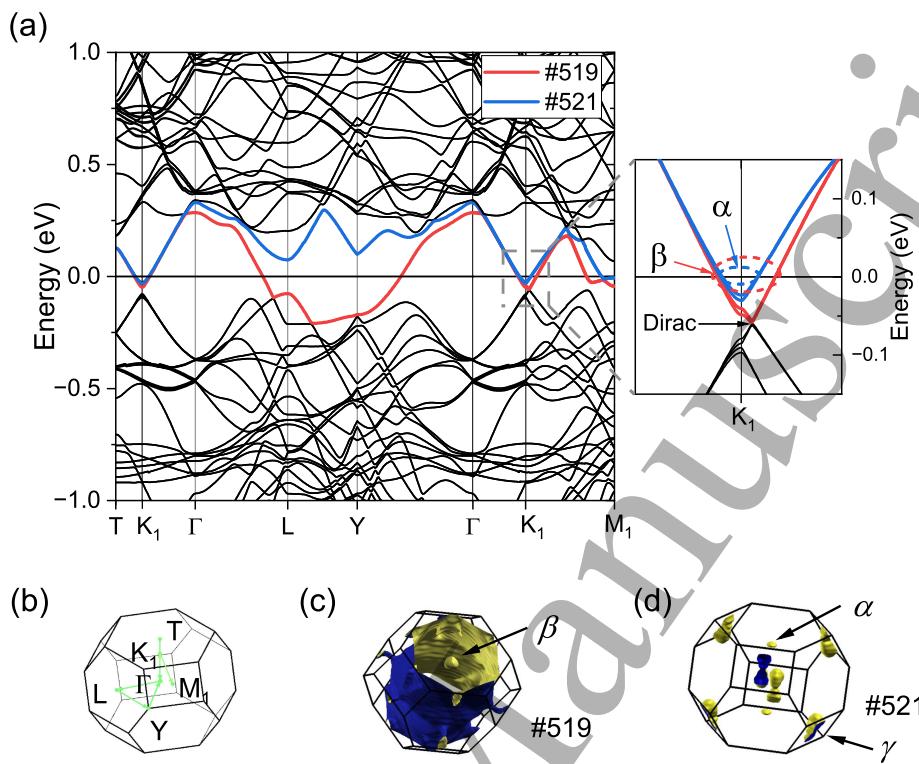

[37] L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, and N. P. Ong, *Science* **321**, 547 (2008).

[38] K. W. Chen et al., *Physical Review Letters* **120**, 206401 (2018).

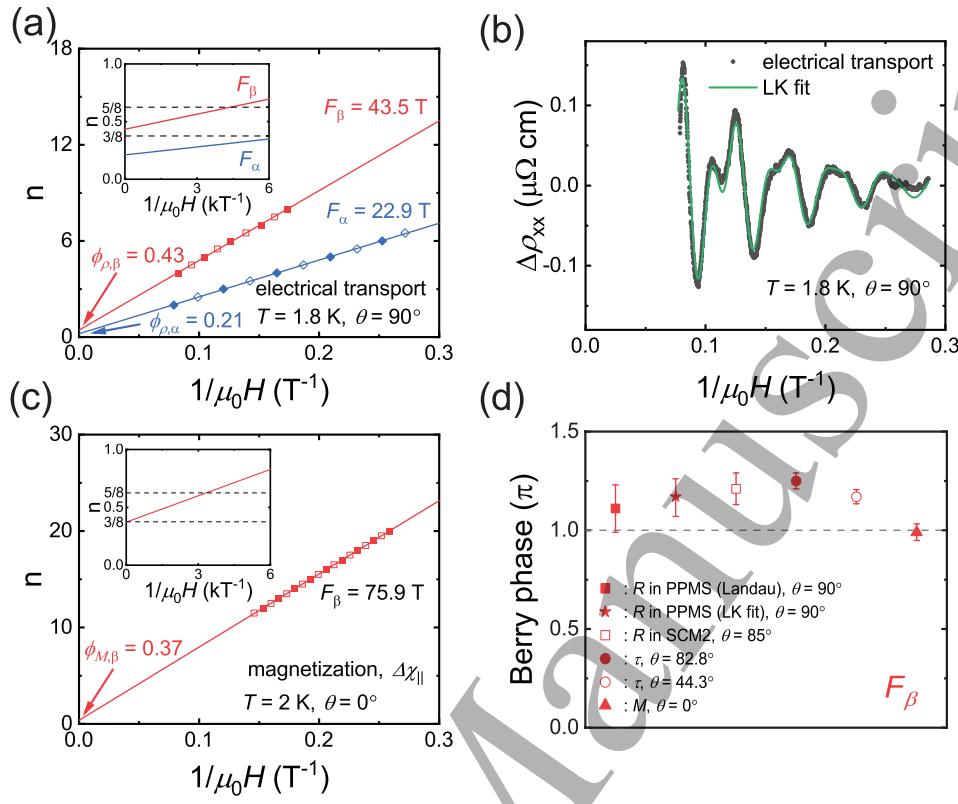

1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 9
3

4
5 [39] C. Guo et al., *Nature Communications* 12, 6213 (2021).
6 [40] J. Xiong, Y. Luo, Y. Khoo, S. Jia, R. J. Cava, and N. P. Ong, *Physical Review B* 86, 045314 (2012).
7 [41] H. Tan and B. Yan, *Physical Review Letters* 130, 266402 (2023).
8 [42] S.-H. Kang et al., *arXiv preprint arXiv:2302.14041* (2023).
9 [43] Y. H. Kwan, P. Reiss, Y. Han, M. Bristow, D. Prabhakaran, D. Graf, A. McCollam, S. A. Parameswaran,
10 and A. I. Coldea, *Physical Review Research* 2, 012055 (2020).
11 [44] C. Yi, X. Feng, P. Yanda, S. Roychowdhury, C. Felser, and C. Shekhar, *arXiv preprint arXiv:2305.04683*
12 (2023).
13 [45] K. Shrestha, B. Regmi, G. Pokharel, S.-G. Kim, S. D. Wilson, D. E. Graf, B. A. Magar, C. Phillips, and T.
14 Nguyen, *arXiv preprint arXiv:2310.00751* (2023).
15 [46] Supplementary material for "Quantum Oscillations Evidence for Topological Bands in Kagome Metal
16 ScV_6Sn_6 ".
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 10
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


Figure 1. Electrical transport properties of ScV_6Sn_6 . The current I is applied in the crystalline ab plane. (a) Temperature T dependence of longitudinal resistivity ρ_{xx} . (b) The magnetoresistance of ρ_{xx} when the field H is in the ab plane under different T . The inset shows the Hall resistivity ρ_{xy} measured at $T = 1.8 \text{ K}$, with H along the c -axis. (c) The subtracted oscillatory patterns from (b) as a function of $1/(\mu_0 H)$ under different temperatures. (d) FFT amplitude of the SdH oscillations. The inset shows the temperature dependence of the FFT amplitude of F_α (red dots) and F_β (blue dots) with LK fits to find the effective masses.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6


Figure 2. Magnetic property measurements in ScV_6Sn_6 . (a) The H -dependence of magnetization at 2 K with H along the c axis. The inset shows the FFT spectra of magnetization oscillations after background subtraction. (b) The H -dependence of torque τ at $\theta = 87.4^\circ$ under different T . The curves have a 0.06 offset for clarity. The inset shows the cantilever torque magnetometry setup and definition of θ . (c) The subtracted oscillatory patterns from (b) as a function of $1/\mu_0 H$ under different T . Inset: quantum oscillations at 39.0° which only contain β orbit. (d) The T dependence of FFT amplitude of F_α (red dots) and F_β (blue dots) at $\theta = 87.4^\circ$. The effective masses are found by LK fits.

1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 12
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 3. Angular dependence of oscillation frequencies in ScV_6Sn_6 . (a) Angular dependence of the FFT amplitudes of the SdH oscillation (up) and the dHvA oscillations (down). The spectra were shifted so that the right axis marks the tilt angle. The blue, red, and green dash curves are the guidelines to track the peak shift of F_α , F_β and F_γ , respectively. The FFT amplitudes in the SdH data between $|\theta| < 40^\circ$ are multiplied by 3 for clarity. (b) Angular dependence of F_α , F_β , and F_γ are compared with our DFT calculations in the LT phase. Solid lines are calculated frequencies from bands 519 (red) and 521 (blue) from the DFT calculation shown in figure 4. Closed and open stars indicate F_α measured from SdH and dHvA oscillations. Closed and open squares denote F_β measured from the SdH and dHvA oscillations. Closed diamonds mean F_γ observed in the SdH data.

1
2 *Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6* 13
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Figure 4. Electronic structure calculation in the LT phase. (a) Calculated unfolded band structure of ScV_6Sn_6 along high symmetry paths using the 50 K prime cell crystal structure. Two bands across the Fermi energy are labeled as 519 (red) and 521 (blue). The left panel is the zoom-in region around orbits and Dirac nodes. The red circle around K_1 indicates the β orbit centered at K_1 and the blue circle means the α orbit is also centered at K_1 but from a different band. The black arrow points to the Dirac nodes along $K_1 - M_1$ in the LT phase. (b) Visualization of the BZ with labeled high symmetry points. (c) FSs of band 519. The β orbit comes from the ellipsoid Fermi pockets located at K_1 point which is along the $\Gamma - T$ path. (d) FSs of band 521. The α orbit can be associated with the ellipsoid shape Fermi pockets located at K_1 as well. γ orbit is located at M_1 point with a dumbbell shape FS.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Quantum Oscillations Evidence for Topological Bands in Kagome Metal ScV_6Sn_6

Figure 5. Berry phase identification via different methods. (a) Landau index n as a function of $1/(\mu_0 H)$ for F_α (blue squares) and F_β (red squares) at $\theta = 90^\circ$, derived from the ρ_{xx} data. The linear lines are fit to the landau index. Inset is the zoom-in view around the intercept. (b) The oscillatory patterns in ρ_{xx} at 1.8 K when θ is 90° . The green curve is the fit using the two-frequency LK formula. (c) Landau plot of index n derived from magnetization for F_β , with the inset a zoom-in view near the intercept. (d) π Berry phase of β orbit resolved from both the SdH and dHvA signals in different angles. The error bars originate from the Landau index fitting or two-component LK fitting error.