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ABSTRACT

In the era of Big Data, the ability to extract meaningful insights
from vast datasets while maintaining individual privacy has become
an increasingly complex challenge. Recent years have witnessed
the development of various locally differentially private data aggre-
gation schemes which allow an untrusted data collector to derive
meaningful statistics from user data while maintaining strong pri-
vacy guarantee for individual users. As a fundamental data type in
NoSQL databases, key-value data has two important statistics of
interest, the frequency of each key and the corresponding mean
value. Current locally differentially private key-value aggregation
schemes primarily rely on uniform sampling for mean estimation,
i.e., a single key-value pair is selected randomly from each user’s
key-value set. This approach, however, results in high mean esti-
mation accuracy for frequent keys and low accuracy for infrequent
ones. To tackle this problem, this paper presents the design and
evaluation of Adaptive, a novel locally differentially private and
fair key-value aggregation scheme that can deliver uniformly high
mean estimation accuracy across different keys. In the first phase,
we utilize a portion of the privacy budget to estimate the frequency
of each key. Subsequently, based on the key frequencies estimated
in the first phase, we employ non-uniform random sampling for
mean estimation, which enables higher probability sampling of
values associated with low-frequency keys. Comprehensive theo-
retical analysis and simulation studies confirm the superiority of
Adaptive over previous solutions.
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1 INTRODUCTION

In the era of Big Data when massive volumes of user-generated
information are continuously collected and analyzed, privacy con-
cerns become particularly acute. Differential Privacy (DP) [6, 9]
has become the de facto technique for private data release in large-
scale environments. This allows data collectors to gather extensive
datasets and publish statistics while preserving user privacy. How-
ever, one significant limitation arises: under DP, collectors still have
access to the raw, and often sensitive, data of users, leading to ampli-
fied privacy risks especially when the data collector is not entirely
trusted. To address this limitation, Local Differential Privacy (LDP)
[3, 4] has emerged as a solution for privacy-preserving data analyt-
ics without requiring a trusted data collector. In an LDP framework,
data owners individually perturb their raw data to shield their
privacy, enabling the data collector to perform statistical analysis
on this anonymized dataset. This approach is especially relevant
for Big Data applications and has been widely adopted by major
technology companies. Notable instances include Google’s RAP-
POR used in Chrome browser for collecting usage information [10],
Apple’s LDP adoption in Safari for detecting popular emoji and
identifying high energy or memory usage [20, 21], and Microsoft’s
adoption for collecting telemetry data [2].

While LDP has been extensively utilized for data privacy pro-
tection, the majority of existing research focuses on fundamental
queries over simple data types. Examples include mean estimation
over numeric data [15, 23], frequency or heavy hitter estimation
over set-value data [10, 17, 25], marginal release over multidimen-
sional data [14, 30], and synthetic graph release over graph data
[18]. However, hybrid queries involving multiple data types remain
underexplored. For instance, key-value data, a vital data type in
burgeoning NoSQL databases, consists of a categorical key with
one or more numeric values. The two important queries involving
key-value data include estimating the frequency distribution of
key and the mean value estimation for the numeric values of each
distinct key. If we treat these two queries independently, the data
utility in terms of the query result accuracy would be significantly
reduced due to the intrinsic correlation between key and value.

Several studies have considered the inherent correlation between
key and value in order to enable locally differentially private key-
value data aggregation while enhancing data utility. Specifically,
PriKVM [28] samples a random key from the full key domain for
frequency estimation and uses a multi-round iteration process to en-
hance the accuracy of mean value estimation for each key. PriKVM
works well when the key domain is limited in size, but it suffers from
low estimation accuracy when dealing with larger key domains due
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to inadequate samples. To address this large-domain issue, PCKV
[12] was proposed, which adopts padding and sampling techniques
[17] where users randomly sample one key-value pair from their
owned pairs instead of from the full domain. Further research [19]
proposed more effective and stable locally differentially private
mechanisms for handling conditional analysis related to key-value
data. However, a common limitation across these solutions is the
uniform random sampling of one key-value pair from each user’s
set for value mean estimation. This method leads to high accuracy
for frequently occurring keys and low accuracy for infrequent keys
due to the variation in the number of samples. How to realize lo-
cally differentially private key-value aggregation with uniformly
high mean estimation accuracies across different keys of varying
frequencies remains an open challenge.

In this paper, we tackle this challenge by introducing Adaptive,
a novel LDP and fair key-value aggregation scheme. We note that
the mean estimation accuracy for a key hinges on the number of
associated key-value pairs sampled: the more pairs sampled, the
higher the accuracy, and vice versa. With uniformly random sam-
pling, values linked with infrequent keys have a lower likelihood
of selection, necessitating the adoption of non-uniform sampling to
elevate the sampling probability for such keys and thus balance the
sample count across different keys. Our proposed Adaptive scheme
operates in two phases based on these observations. In the first
phase, we estimate the frequency of each key with an LDP guar-
antee, using a portion of the privacy budget. In the second phase,
we estimate the mean value for each key through non-uniform
sampling, where the sampling probability for each key pair is es-
tablished based on the key frequency estimated in the initial phase.
This method enables Adaptive to guarantee LDP while also achiev-
ing uniformly high mean estimation accuracy across different keys.
The main contributions of this paper can be summarized as follows.

o To the best of our knowledge, we are the first to study locally
differentially private and fair aggregation for key-value data.

e We introduce Adaptive, a novel locally differentially private
and fair key-value aggregation scheme that can guarantee
local differential privacy and achieve uniformly high mean
estimation accuracy across different keys.

o Detailed theoretical analysis and simulation studies confirm
the advantages of our proposed scheme over prior solutions.

The rest of this paper is structured as follows. Section 2 discusses
the related work. Section 3 introduces some preliminaries and for-
mulates the problem. Section 4 presents the design of Adaptive.
Section 5 analyzes the privacy guarantee of Adaptive. We report
the simulation results in Section 6 and finally conclude this paper
in Section 7.

2 RELATED WORK

As one of the fundamental statistics, frequency estimation has been
extensively studied under the LDP framework. Erlingsson et al.
[10] introduced RAPPOR as a mean to collect browsing data in
Chrome. This approach involves encoding original sensitive data
into a binary vector using a Bloom filter and applying the random-
ized response mechanism to perturb each bit. Subsequent work,
RAPPOR-unknown [11], extended this method by enabling the
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identification of frequency items without requiring an explicit dic-
tionary. Bassily et al. [1] introduced Bitstogram and TreeHist to
address the high communication cost associated with RAPPOR.
Moreover, Wang et al. proposed PEM [26] and PrivTrie [22] to iden-
tify heavy hitters’ by scanning a binary prefix tree. Qin et al. were
the first to consider frequency estimation over set-valued data by
proposing a two-phase method called LDP-Miner [17]. Building
upon this, Wang et al. introduced SVIM [25], which has been proved
to be more efficient in estimating frequent items or itemsets. Fur-
thermore, they introduced a framework for choosing the optimal
parameter to enhance accuracy and considered consistency issues
in the estimation process [24].

Mean estimation represents another well-researched statistic.
The most straightforward approach to address this problem is to
apply the Laplace mechanism [8]. However, this method introduces
unbounded noise to the true value, which often results in unsatisfac-
tory estimation. Duchi et al. [5] was the first to investigate this issue
and proposed MeanEst [5], which involves transforming numeric
data into binary data, followed by the application of the randomized
response mechanism. Nonetheless, this solution suffers from high
space complexity and communication costs. Nguyen et al. further
proposed Harmony [16] with reduced computation complexity and
higher estimation accuracy. Moreover, Wang et al. introduced the
Piecewise Mechanism [23], which restricts the original numeric
value to a small domain and enables the perturbed value to remain
close to the original with high probability. More recently, Li et al. et
al. proposed the Square Wave mechanism [15], which leverages the
numerical ordered nature of the domain to achieve a better balance
between privacy and utility.

In contrast to the above two research directions, the aggregation
of key-value data has only begun to garner attention recently. Ye et
al. proposed PrivKVM [28], a mechanism that adaptively combines
a randomized response for frequency estimation and the Harmony
mechanism for mean estimation, while preserving the correlation
between keys and values. This approach also utilizes a multi-round
iteration to improve the accuracy of mean estimation. Subsequently,
Sun et al. [19] proposed a conditional estimator for frequency and
mean based on PrivKVM. Gu et al. introduced PCKV [12] to address
performance issues in large key domains by employing padding
and sampling techniques to select one key-value pair from each
user’s dataset, instead of from the entire key domain. Ye et al. [29]
also addressed the same issue with a two-phase framework which
identifies frequent keys in the first phase and improves the estimate
in the second phase through adaptive sampling. However, none of
these studies addressed the non-uniform mean estimation accuracy
across different keys that results from varying key frequencies.

3 PRELIMINARIES

In this section, we first present the definition of Local Differential
Privacy and our problem formulation. We then introduce two mech-
anisms, Randomized Response and Piecewise Mechanism, which
will serve as the building blocks of our proposed scheme.

3.1 Local Differential Privacy

Local Differential Privacy [3, 4] is a privacy framework in data
analysis wherein individual data contributors apply a randomized
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mechanism to their data locally before submitting them to a un-
trusted data collector. This mechanism ensures that the statistical
properties of the original data remain preserved, while obscuring
individual data and preventing unauthorized disclosure of sensitive
information. Formally, e-Local Differential Privacy is a rigorous
notion for characterizing the privacy guarantee offered by a ran-
domized mechanism, which is defined below.

DEFINITION 1. (e-Local Differential Privacy). A randomized mech-
anism M satisfies e-Local Differential Privacy if and only if

PM0) =yl _
M) =yl = W

for any two possible input x and x’ and any output y, where € > 0.

The parameter € is commonly referred to as the privacy budget.
The smaller € is, the more indistinguishable of the two probability
distributions induced by any two input values, the more difficult for
the adversary to distinguish two input values from the perturbed
value, the stronger privacy guarantee for individual users, and vice
versa.

3.2 Problem Formulation

We consider a system with a data collector and n users. Each user i
possesses a set of key-value pairs denoted by S;. Without loss of
generality, assume that the key domain is K = {1, 2,...,d} and that
every key has a value domain V' = [-1, 1]. Each key-value pair has
a form of (k,v), where k € K and v € V. The value distribution of
different keys may or may not be the same. We assume all users have
the same number of key-value pairs, i.e. |S;| =l forall 1 <i < n,
for some known parameter [. We leave the extension of our work
to support varying number of key-value pairs across different users
as our future work.

The data collector intends to learn two statistics about the users’
data, including the frequency and corresponding value mean for
each key k € K defined below.

o Key frequency: the frequency of a key k is the ratio of users
who possess k which is defined as

5 (il < i < n,3(k,0) € S;}]
k n .

@

Let ng be the number of users who possess key k for all
1 < k < d. We have f; = ng/n. Therefore, estimating fj is
equivalent to estimating ny.

e Value mean: the value mean of a key k is the average of all
the values associated with key k across all users who possess
it which is defined as

Z?:l,(k,u)esi v
me=———— ®)
Nk

We assume that the data collector is honest but curious. While
the collector is trusted to carry out all system operations faithfully,
it is interested in inferring users’ true data value from the reported
information. We assume the data collector knows the mechanism
being deployed as well as all system parameters.

We seek to develop a locally differentially private and fair key-
value aggregation scheme that can satisfy e-LDP while ensuring
uniformly high estimation accuracies across different keys with
diverse frequencies.
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3.3 Randomized Response

Randomized Response (RR) [27] is a classical surveying technique
developed by Warner in the 1960s for collecting binary data about
sensitive topic that respondents might be reluctant to answer unless
their privacy can be protected. Specifically, given a question with
binary answer "Yes" or "No", the respondent will respond truthful
with probability p, and respond the opposite answer with probabil-
ity ¢ = 1—p. In order to satisfy e-LDP, p needs to be set to eﬁ%. As
its name suggested, the Generalized Randomized Response (GRR)
generalizes the RR to allow the collection of categorical data with
domain D = {1,2,...,d}. Specifically, a user with a value v € D
reports a perturbed value v’ generated according to the following
probability distribution

e€ ool —
Pr(v’|v) = €€+1d—1’ %fu, o
rd=1’ ifo’ € D \ {U} .

It has been proved that the GRR satisfies e-LDP.

3.4 Piecewise Mechanism

Piecewise Mechanism (PM) is a locally differentially private scheme
[23] proposed for perturbing numerical value. Let C = :://Tzill
where € is the privacy budget. Given a true value v € [-1,1],
the PM returns a perturbed o™ € [—C, C] according to the following

probability density function

a1 P ifv* € [I(v), r(v)],
fllel = skg ife" €[-ClE) U (r(@),Cl,
where
_ exp(e) — exp(€/2)
T 2exp(e/2)+2

Besides satisfying e-LDP, an important property of PM is that
E[v*] =ovforallo € [-1,1] [23].

4 DESIGN OF ADAPTIVE

In this section, we first give an overview of the proposed Adaptive
scheme and then detail its design.

4.1 Overview

We find that the key to achieve uniformly high mean estimation
accuracy across different keys with varying frequencies is to en-
sure adequate samples for key-value pairs associated with low
frequency keys. Therefore, it is necessary to increase the sampling
probabilities of the key-value pairs associated with infrequent keys
while reducing the sampling probabilities of those associated with
frequent keys. However, the key frequencies are one of the two
statistics that we need to estimate and are not known in advance. As
a result, we decouple key frequency estimation and key value mean
estimation into two phases. The first phase focuses on the estima-
tion of key frequencies. The second phase explores non-uniform
random sampling to adjust the number of key-value pairs sampled
for each key to achieve a more uniform estimation accuracy of the
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mean value across different keys. In what follows, we detail the
two phases of the Adaptive scheme.

4.2 Phase 1: Key Frequency Estimation via
Generalized Randomized Response

In the first phase, each user i samples one key-value pair uniformly
at random, and then perturbs the sampled key using the GRR mech-
anism [27] with a privacy budget of €;. Suppose that the sampled
key pair is (k;, v;). User i perturbs key k; into k; according to the
following probability distribution

p1, ifk; = ki,

.y )
q. ifk] € K\ {ki},

Prikilki] = {
where p; = #2_1 and q1 = m. Each user i then submits
his perturbed key k; to the data collector.

On receiving the perturbed keys k, . . ., k}, from n users, the col-
lector estimates the frequency of each key. Let fk’ be the frequency
of received perturbed key for each k € K. The data collector esti-
mates the frequency of original key k as

f _fk:_ql
k Pl_(Il’

which is an unbiased estimator of f;. [27].

(©)

4.3 Phase 2: Mean Estimation via Non-uniform
Sampling and Joint Perturbation

In the second phase, the data collector first announces the estimated
frequency of each key (fi, ..., f;) obtained in the first phase to all
users.

Each user then samples one key-value pair from his set via non-
uniform random sampling. Let 8 > 0 be a system parameter. Each
user i samples one pair (k;j,v;) from his set S; according to the
following probability distribution

i’
2i(k,0)eS; fk_e
for all (k,v) € S;. We can see that this sampling procedure is a
generalization of the uniform random sampling. In particular, the
sampling procedure is equivalent to uniform random sampling
when 6 = 0. When 6 > 0, keys with lower estimated frequencies
are sampled with higher probabilities than those with higher fre-
quencies. When § — oo, the key with the lowest frequency in
each S; is sampled with probability one. Therefore, the parameter 6
controls the degree of the non-uniformity of the random sampling
procedure. We will evaluate the impact of € in Section 6.

Next, each user i jointly perturbs the sampled key k; and cor-
responding value v; to preserve their correlation and allow the
collector to estimate the value mean for each key. Specifically, each
user i first perturbs the sampled key k; into ki using GRR with a
privacy budget of €2 according to the following probability distri-
bution.

Pr[(ki,0i) = (k,v)] = (6)

- . ifki = ki,
Prlkilie] = {72 2T )
q2, 1fki € 7(\ {k,} s
where py = % and q2 = m. User i then perturbs the

sampled value v; into 9; via the Piecewise Mechanism using a
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Algorithm 1: Joint Key-Value Perturbation

:(ki, vj), €2 and €3 N
Output:Perturbed key-value pair (k;, 9;)
1 Perturb key k; into k; according to p.d.f.

Input

€2

e ~
. —, ifk; =k,
Prikilk;] = { €% +d =1 .
m, Vkl € 7(\ {kl}

2 Perturb value v; into 9; as follows.
. |oi=PM(vi,e3),  ifki = ki,
Vi =
! 0; = PM(0, e3), otherwise.

return (I;i, 0i);

privacy budget of e3 depending on the perturbed key k;. There are
two cases. First, if the perturbed key remains the same as the original
key, ie., l;i = k;, then the value v; after perturbation can provide
useful information for the data collector to estimate the value mean
for key k;. In this case, user i perturbs v; into 0; via the Piecewise
Mechanism using a privacy budget of €3 as 0; = PM(v;, €3). Second,
if the perturbed key is different from the original key, i.e., ki # ki,
then value v; itself cannot provide any useful information to the
data collector to estimate the value mean for key k;. To prevent the
perturbed value 9; from negatively affecting the estimation of the
value mean for key ki, user i replaces v; by 0 and perturbs 0 into
0; via the Piecewise Mechanism as 9; = PM(0, €3). We summarize
the perturbation of (k;,v;) into (I;i, ;) in Alg. 1. Each user i then
submits the perturbed key-value pair (ki, 5;) to the data collector.

On receiving the n perturbed key-value pairs (1;1, 1)y es (I;n, On),
the data collector estimates the key count and value mean for each
key k € K. Specifically, for each key k € K, the data collector does
the following.

First, the collector counts the number of received perturbed key-
value pairs with key k as fig = 31, I(k; = k), where I(-) denotes
the indicator function. The collector aims to estimate ng, which
represents the number of key-value pairs whose original key is k
and remains k after perturbation. To do this, the collector needs
to calibrate rig. This calibrated value accounts for two types of
key-value pairs: those that originally had a key of k and remain k
after perturbation, and those whose key changed to k as a result of
perturbation. Since each k; was perturbed into I;,- via GRR, nj can
be estimated as
_ A —ng2

: 8
2 a2 ®)

Ak
where py = % and g2 = m.

Next, the collector estimates the value mean for key k, which
can be computed as the ratio between the total sum of the values
associated with key k and ng. The reason is that for any key-value
pair whose original key was not k but became k after perturbation,

their perturbed value is generated as PM(0, €3) with a mean of 0. It

follows that
E[ Y #]=E|
{ilki=k}

©)

vi] .
{ilki=k}
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Therefore, the data collector estimates the value mean of key k as

2 itieegy Ui
Rk % (0
NP2
In summary, the estimated frequency fk and value mean . are
given in Eq. (5) and Eq. (10), respectively.

5 THEORETICAL ANALYSIS

In this section, we analyze the privacy guarantee of Adaptive. We
have the following theorem regarding the privacy guarantee of the
proposed scheme.

THEOREM 1. With privacy budget € = €1 + €3 + €3, the proposed
scheme satisfies e-LDP.

Proor. We first show that the sampling and perturbation carried
out in Phase 1 satisfies €;-LDP. Denote the conditional probability
of Phase 1 producing a perturbed key k’ given a key-value set S by
Pr[k’|S]. Consider any two possible key-value sets S; and Sy, re-
spectively. Suppose the sampled key are kj and k; correspondingly,
we have

Prik’|S1] _ Zkex PrlkilSi] - Prk’|kq]
Prk’|S2]  Zk,ex PrikzlSz] - Prk’|ke]
Yk ex Priki]S1] - p1
" Xkpex Prlka|S2] - q1 (11)
_ph
- q1
= e€l R

where we use the fact that g1 < Pr[k’|k] < p; forall kK, k' € K
under the GRR and that } ;4 Pr[k|S] = 1 for any S. Therefore, the
sampling and perturbation carried out in Phase 1 satisfies €;-LDP.

Next, we show that the joint key-value perturbation in Phase 2
satisfies €2 + e3-LDP. Similar to the analysis in Eq. (11), for any
two possible key-value sets S; and Sz and any perturbed key k
generated from key perturbation in Phase 2, we have

<e .

(12)

Moreover, under Piecewise Mechanism [23], for any two values
v1 and vp € [—1, 1] and any perturbed value o € [-C, C], we have

Pr[PM(v1, €3) = 3] P3
Pr[PM(vg,€3) =3] ~ p3/e

€
=e%,

(13)

exp(e3) —exp(es/2)
2exp(es3/2)+2

f(PM(v,e3) =0) < p3 foranyov € [-1,1] and any 3 € [-C,C].
Furthermore, considering any two key-value sets S; and S, any

perturbed key-value pair (k, 0). Suppose the sampled key value are

where p3 = and we use the fact that 5733 <
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(k1,v1) and (kg, v2) correspondingly, we have

Prl(k,8)IS1] Sk e PrikilKil - Priklki] - Pr[do]
Pr(k,5)[S2]  Zk,ex PrikalKa] - Prlklkz] - Pr[d]o;]
2k ex PrikilKi] - p2 - ps
T Ykex Prike|Kz] - q2 - g3
_ Zkex PrikilKi]
" Zkex Prika|Ke]

€2+€3

(14)

€2 €3

- e e

=e€

Therefore, the joint key-value perturbation in Phase 2 satisfies
€2 + €3-LDP.

Finally, the composition property of LDP [7] indicates that the
proposed scheme satisfies e-LDP, where € = €1 + €2 + €3. ]

6 SIMULATION RESULTS

In this section, we evaluate the performance of Adaptive via detailed
simulation studies.

6.1 Simulation Settings

We consider a system composed of n = 20, 000 users each with a set
of | = 5 key-value pairs. We set the key space as K = {1,2,...,20}.
To demonstrate the estimation accuracy across keys with differing
frequencies, we generate a synthetic dataset where the frequency
of each key is linearly dependent on its key ID. More specifically,
we express the key frequency ratio f; as a linear function of the key
id k, namely, fi — 1 = s(k — 1). Here, s > 0 represents the variance
in key frequency: the larger the s, the greater the discrepancy, and
the converse holds true. For s = 0, the frequencies of all keys are
identical.

We compare Adaptive with the state-of-art solution PCKV-GRR
[12]. As PCKV-GRR apportions the total privacy budget into two
parts, one for key perturbation and the other for value perturbation,
while Adaptive distributes the total privacy budget into three parts,
we equalize the privacy budget allocated for key perturbation in
both Adaptive and PCKV-GRR to ensure a fair comparison. Specif-
ically, given a total privacy budget of € we set €1 = €2 + €3 = €/2.
Furthermore, unless otherwise specified, we set e; = €3 = €/4,s = 1,
and 0 = 2.

We use averaged Mean Square Error (MSE) to measure the es-
timation accuracy for both key frequency and value mean across
different keys. Specifically, we first define the variance of the esti-
mated frequency for key k € K as

SN - £

Var[fi] = N

(15)

where f]: is the true frequency of key k, fkj is the estimated fre-
quency of key k in the jth simulation run, and N = 100 is the total
number of simulation runs. The averaged MSE of the estimated
frequencies across all keys is then defined as

Zkex Var[fi] .

MSE(f) = =K<

(16)
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Figure 1: MSE and Fairness versus e.

Similarly, we define the variance of the estimated value mean for
key k € K as

N "
Zj:l(m;; - mk)z

Var[my] = N , (17)

where m? is the true value mean and rﬁfc is the estimated value
mean of key k in the jth simulation run. The averaged MSE of the

estimated value mean across all keys is then defined as

2Zkex Var[my]
1K1
Moreover, we borrow Jain’s fairness index [13] to evaluate the
fairness of mean estimation accuracy across different keys, which
is defined as

MSE(m) = (18)

(Xkex Var[mg])?
K] - Tkex(Var[my])?

The fairness value ranges from ﬁ to 1. The larger the fairness

Fairness =

(19)

value, the more uniform the mean estimation accuracy across dif-
ferent keys, and vice versa.

6.2 Simulation Results

We now report our simulation results.

6.2.1 Impact of €. Fig. 1 shows the accuracy and fairness of the
Adaptive compared to PCKV-GRR, as the total privacy budget €
increases from 2 to 16 under s = 1. Fig. 1(a) shows a comparison
between the average MSE of frequency estimation under PCKV-
GRR and our Adaptive scheme across different 6 values. All these
methods share an identical MSE(f), as they all employ the GRR
with half the total privacy budget dedicated to key perturbation.
As anticipated, MSE(f) declines as privacy budget € increases, i.e.,
the larger the privacy budget, the higher the probability of users
reporting the original true key, thereby reducing the error.

The average MSE and Fairness of the mean estimations are
shown in Figs. 1(b) and 1(c). As we can see, the MSE(m) for all
methods decrease as € increases. This can be attributed to the fact
that with a larger €, users are more likely to report the accurate
value (i.e., less privacy protection), thereby enabling the collector
to infer the mean value with greater precision. Additionally, al-
though PCKV-GRR assigns €/2 to value perturbation as opposed
to Adaptive’s €/4, Adaptive (for example, 0 = 1, 2) still maintains
a comparable MSE(m) to that of PCKV-GRR. This is primarily be-
cause Adaptive significantly enhances the estimation accuracy for
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infrequent keys while still delivering relatively high accuracy for
frequent keys. Furthermore, Adaptive surpasses PCKV-GRR for
larger € values, e.g., € > 12. At this point, the number of samples
becomes the primary factor influencing the estimation accuracy,
given that users are nearly always reporting their true key-values
with such an ample privacy budget. By contrast, Adaptive, at 0 = 0,
records the highest MSE;,. This is because 6 = 0 signifies uniform
sampling, which doesn’t benefit from varying the number of sam-
ples but instead depletes the privacy budget for key perturbation in
the second phase. As such, it has the lowest accuracy, even when
compared to PCKV-GRR.

Fig. 1(c) shows a comparison of the fairness of mean estimation
under various methods, with € ranging from 2 to 16. As depicted,
the fairness of all methods initially decreases and subsequently
increases as € increases. When € is small, these methods have uni-
formly low estimation accuracy across all keys, leading to relatively
high fairness. However, with a moderate privacy budget, for in-
stance, € € [4, 6], keys with higher frequency exhibit superior esti-
mation accuracy, while keys with lower frequency have markedly
low accuracy, resulting in diminished fairness. As € continues to
rise, these methods achieve similar high estimation accuracy for all
keys, reducing the accuracy differential among keys and enhancing
fairness. In general, the fairness of Adaptive methods with 6 = 1, 2
exceeds that of PCKV-GRR. This can be attributed to the fact that
the proposed Adaptive scheme secures more samples for infrequent
keys and ample samples for frequent keys, ensuring fair estima-
tion across different keys. Conversely, PCKV-GRR exhibits reduced
accuracy for infrequent keys due to limited samples, resulting in
lower fairness despite high estimation accuracy for frequent keys.
The inferior fairness of Adaptive with 6 = 0 is owed to the squan-
dering of the privacy budget on key perturbation in the second
phase without reaping the benefits of adaptive sampling.

Fig. 1(d) exhibits the number of samples for different keys in
the second phase. The sampled distributions of PCKV-GRR and
Adaptive 6 = 0 mirror the original key frequency distribution, as
expected with uniform sampling. More significantly, Adaptive 6 =
1, 2 gathers more samples for infrequent keys and fewer samples for
highly frequent keys when juxtaposed with uniform sampling. This
illustrates the merit of the proposed Adaptive method, obtaining
a fair estimation for different keys by balancing the number of
samples.

In summary, Fig. 1 underscores that the proposed Adaptive
method with 8 = 1 or § = 2 surpasses the PCKV-GRR method



Locally Differentially Private and Fair Key-Value Aggregation

1
—O— Adaptive § = 2

MSE(m)

22 2 20 2t 22 2% 2% 2% 2 ot 0 ol 22
e/es

25 g4 o3
e/e

(a) MSE(m) vs. €3/ €3 (b) Fairness vs. €,/ €3

Figure 2: MSE and Fairness under budget allocation.

- Average
Minimal
| —%—Maximal

(a) MSE(m) vs. 6 (b) Fairness vs. 6

Figure 3: MSE and Fairness versus 0.

in terms of both accuracy and fairness for mean estimation. The
Adaptive method mitigates the issue of low accuracy for infrequent
keys by adjusting the sampling probabilities for different keys, sug-
gesting that the Adaptive method is better suited for scenarios
where the key frequency distribution is skewed.

6.2.2 Impact of Privacy Budget Allocation. The averaged MSE and
fairness of mean estimation under different budget allocations, i.e.,
€2/ €3, are depicted in Fig. 2. As we can see from Fig. 2(a), the MSE
first decreases and subsequently increases as the €, /€3 elevates from
273 to 22. The accuracy of mean estimation in the second phase
is dependent on both key and value. A smaller €;/e3 implies a re-
duced €3, which correlates with a low probability of users reporting
their actual sampled keys in the second phase, thereby yielding low
frequency estimate accuracy. Conversely, a larger €2/e3 suggests
a smaller €3, in which case users tend to report perturbed values
with considerable noise. Both scenarios result in a high MSE for
mean estimation. Fig. 2(b) shows the fairness of mean estimation
with varying ez /e3. We can see that the fairness initially decreases
at a slow rate before plummeting sharply post €2/€3 = 1 and nearly
bottoming out at 0. This implies that there exists a €2/e3, for in-
stance, €3/€3 = 1, under which both high fairness and low estimate
error on mean estimation can be achieved.

6.2.3 Impact of 0. In the second phase of our proposed Adaptive
scheme, we introduced the parameter 6 to control the degree of
non-uniformity of random sampling. Fig. 3(a) shows the variation
in mean squared error (MSE(m)) as 6 increases from 0 to 12. We can
see that both the average and maximum MSE(m) initially decrease
and subsequently increase with rising 8. With small values of 6 such
as 0 = 0, the sample size for infrequent keys is minimal, leading to a
high estimation error. On the other hand, for moderate values of 6,
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specifically, 6 € [1, 4], the sample size for infrequent keys increases
while maintaining a relatively high sample size for frequent keys,
thus reducing the estimation error. Beyond a certain point (e.g., 6 >
6), the sample size for frequent keys decreases, thereby increasing
the estimation error. The minimal MSE(m) remains fairly constant
as it is contingent upon the key with the most samples, which
remains largely unaltered across different 0 values.

Fig. 3(b) shows the estimation fairness in relation to 6. The fair-
ness initially increases as the number of samples for infrequent
keys rises, while the sample size for frequent keys remains high,
yielding a fairly similar and high estimation accuracy across all
keys. However, as 0 continues to increase, the sample size for fre-
quent keys diminishes and that of infrequent keys escalates, leading
to a decline in fairness. Furthermore, the sampling probabilities
do not significantly fluctuate under larger 6 values, resulting in a
consistent and reduced fairness.

6.2.4
estimates under different datasets, distinguished by different key fre-
quencies’ discrepancy, s, ranging from 0.01 to 10. Notably, Fig. 4(a)
shows an increase in the estimation error as s increases. This can
be attributed to the fact that a larger s implies a greater disparity
in key frequencies between high-frequency and infrequent keys.
Given that the total number of key-value pairs remains fixed, this
suggests that more users possess the high-frequency keys, thus
yielding smaller estimation errors, while fewer users possess the
infrequent keys, leading to larger estimation errors. However, the
accuracy boost provided by the high-frequency keys is insufficient
to offset this increase, resulting in a higher overall MSE(m).

Furthermore, we can see that the estimation error under the
PCKV-GRR is lower than that under the proposed Adaptive method
when s < 1. This is anticipated, as the Adaptive method is explicitly
designed to address imbalances in estimation accuracy among keys
with significantly different frequencies. Therefore, it does not offer
a substantial advantage when the key frequencies are similar, espe-
cially at smaller s values. However, the proposed method achieves
a comparable estimation accuracy to the PCKV-GRR method when
s > 1. On the other hand, Adaptive 6 = 0 results in the highest
MSE(m) because it relies on uniform sampling in the second phase
without taking advantage of adaptive sampling.

Fig. 4(b) shows the fairness of the mean estimate with respect
to varying s values. Initially, fairness starts close to 1, gradually
decreases, and eventually stabilizes near 0. The initial high fair-
ness results from the similar key frequencies at lower s values.

Impact of s. Fig. 4 shows the accuracy and fairness of mean
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As s increases, the discrepancy between the frequencies of high-
frequency and infrequent keys widens, resulting in reduced fair-
ness. As s increases further (e.g., s > 5), estimating infrequent keys
becomes virtually impossible, while the estimation accuracy for
high-frequency keys remains high, yielding the lowest fairness. Im-
portantly, the proposed Adaptive method exhibits greater fairness
than the PCKV-GRR method for reasons previously discussed. By
considering both Figs. 4(a) and 4(b), we can conclude that the pro-
posed method not only achieves estimation accuracy comparable
to the PCKV-GRR method but also enhances fairness across a broad
spectrum of datasets with varying key frequency distributions.

6.3 Summary of Simulation Results

We summarize the simulation results as follows.

e Compared with PCKV-GRR, Adaptive achieves the same fre-
quency estimation accuracy, superior accuracy and fairness
for mean estimation under different privacy budgets.

e With an appropriate privacy budget allocation setting, e.g.,
€2/€3 = 1, Adaptive can achieve both high fairness and low
estimation error on mean estimation.

e With a moderate value of 0, e.g., 6 € [1,4], Adaptive can
ensure more samples for infrequent keys while maintain-
ing sufficient samples for frequent keys, resulting in a high
accuracy and fairness of mean estimation.

e Adaptive outperforms PCKV-GRR for datasets with imbal-
ance key frequency, specifically when s > 1.

7 CONCLUSIONS

In this paper, we have presented the design and evaluation of Adap-
tive, a novel locally differentially private and fair key-value ag-
gregation scheme. By decoupling frequency estimation and mean
estimation into two phases, Adaptive utilizes non-uniform random
sampling to adjusting the sampling probabilities associated with
different keys based on their estimated frequencies that ensures a
greater number of samples for infrequent keys and fewer samples
for those more frequently appearing. As a result, Adaptive achieves
a consistently high level of accuracy in estimating the value mean
across all keys. The efficacy of Adaptive has been substantiated
through detailed theoretical analysis and simulation studies utiliz-
ing synthetic datasets.
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