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Abstract—Location Based Services (LBSs) have become in-
creasingly popular in the past decade, allowing mobile users to
access location-dependent information and services. To protect
user privacy while using LBSs, various Location Privacy Protec-
tion Mechanisms (LPPMs) have been proposed that obfuscate
users’ true locations through random perturbation. However,
adversaries can still exploit the temporal correlation between
a user’s locations in multiple LBS queries to improve inference
accuracy. In this paper, we introduce a novel location inference
attack that strikes a good balance between inference accuracy
and computational complexity by effectively exploiting temporal
correlation. Simulation studies using synthetic and real datasets
confirm the advantages of our proposed attack.

Index Terms—Location privacy, inference attack, temporal
correlation

I. INTRODUCTION

In recent years, significant efforts have been made to-
wards developing Location Privacy-Preserving Mechanisms
(LPPMs) [1]-[4] that enable users to enjoy Location Based
Services (LBSs) while safeguarding their location privacy.
This is achieved by having users report an obfuscated location
to the Location-Based Service Providers (LBSP). Previous
studies on location privacy protection have typically consid-
ered two models: the sporadic model, where users access
LBSs infrequently, and the continuous model, where users
access LBSs periodically, and the real locations of the user
in adjacent LBS queries commonly exhibit a certain degree of
temporal correlation. This paper focuses on the continuous
model, which includes LBSs such as continuous location
sharing in social networks and periodically point-of-interest
recommendation.

Although various LPPMs have been developed to address
temporal correlation [5]-[9], the understanding of location
inference attacks under temporal correlation is still limited.
These attacks aim to uncover a user’s actual trace from
perturbed locations generated by an LPPM. While it is well-
known that an attacker can leverage the temporal correlation
among a user’s locations to enhance inference accuracy, it
is unclear how to fully exploit this correlation because the
computational complexity of inferring a user’s location trace
from multiple queries grows exponentially with the length of
location trace. Therefore, previous works [3], [4], [9], [10]
assume that the adversary performs snapshot location inference
attacks by independently estimating a user’s true location.
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Efficiently utilizing temporal correlation to improve inference
accuracy is still an open question.

This paper addresses the question of efficiently exploiting
the temporal correlation among a user’s adjacent LBS queries
to improve location inference accuracy. We propose a nov-
el generalized location inference attack based on three key
ideas. Firstly, we leverage a recurrent relationship between
inference results at two consecutive times to efficiently infer
the user’s location. Secondly, we only consider the user’s
recent perturbed locations within a fixed time window, reduc-
ing computational complexity. Thirdly, we limit our search
to a small subset of candidate traces that are most likely
to contain the user’s true location trace. Our contributions
include a significant reduction in computational complexity
from exponential to polynomial with only a slight decrease
in inference accuracy. Our contributions in this paper can be
summarized as follows.

o To the best of our knowledge, we are the first to study
efficient location inference under temporal correlations.

o We introduce a novel generalized inference attack for
efficiently exploiting the temporal correlation among a
user’s adjacent LBS queries to strike a good balance
between inference accuracy and computation cost.

e We conduct detailed simulation studies using synthetic
and real location trace datasets to confirm the efficacy
and efficiency of the proposed inference attack.

The rest of this paper is structured as follows. Section II intro-
duces the system and adversary models. Section III presents
the proposed generalized inference attack. Section IV reports
the simulation results. Section V discusses the related work.
We finally conclude this paper in Section VI.

II. PROBLEM FORMULATION

In this section, we introduce the system and adversary
models as well as our design goals.

A. System Model

We study an LBSP providing an LBS in a service area con-
sisting of n discrete locations X = x1,...,x,. User submit
LBS requests containing his/her current location to the LBSP
periodically at each discrete time ¢t = 1, 2,.... We denote the
user’s real location at time ¢ by r* € X and the real location
trace from time i to j by r%J = (rf,... 1) € X7
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We model the user’s mobility pattern as a memoryless
Markov chain with an initial probability distribution 7 and a
transition probability matrix M. The probability of the user’s
initial location being x; is given by 7; for all j = 1,...,n.
The transition matrix M is an nxn matrix where each element
m; j is a conditional probability p(r'*! = z;|r" = x;) that
the user moves to location x; at time ¢+ 1 given that they are
at location z; at time ¢. The probability of the user producing
a trace ' is given by p(rt) = 7(r!) - [['_, p(riJri=1).

To protect the location privacy, every user employs an LPP-
M to obfuscate the true location at each time ¢. We assume that
the set of possible obfuscated locations is the same as X'. The
LPPM f; at time ¢ maps a real location ! to an obfuscated lo-
cation o' with probability f;(o?|rt) for all rt, o' € X. The ex-
pected loss in Quality of Service (QoS) caused by an LPPM is
measured by Q(f1) = e Yot 7(r) fi (ol r)d(rt, of),
where d(-,-) is a distance metric. We denote the obfuscated
location trace from time ¢ to j and from time 1 to j by
oh = (o',...,07) € X7~ and o/ = (0},...,07) € XY,
respectively. The probability of the user producing an obfus-
cated trace o' given the real trace 7' is given by p(of|rt) =

[Tizy fi(o'[r).
B. Adversary Model

We consider a passive adversary which may be either the
LBSP itself or an external eavesdropper who can observe the
obfuscated location in every LBS request from the target user.
We assume that the adversary knows the initial probability
distribution 7, the transition probability matrix M, and the
LPPM f; employed at time ¢ for all t = 1,2, .... The goal of
the adversary is to infer user’s location trace ! from received
ot. More specifically, the adversary carries out an inference
attack, which can be viewed as a deterministic function A(-)
that takes obfuscated location trace o', LPPMs f1, ..., f;, the
probability distribution of initial location 7, and the transition
probability matrix M as input and outputs an estimated loca-
tion trace 7t = (7#1,...,7!), i.e., h(0', f1,..., fi, ™, M) = PL.

C. Design Goals
We design the location inference attack to achieve the
following two goals.
o High inference accuracy: The inference attack should
infer user’s true location trace with high accuracy.
e High efficiency: The inference attack should incur low
computation cost.
We use the expected adversary error to measure the inference
accuracy. Let d(r?, #!) be a function that measures the distance
between the user’s true location 7 and the adversary’s estimate
7 = h(o'). The expected adversary error is defined as

Edr', 7)) = > > paplo'|xt)dr,#), (1)
xte Xt ote Xt

where

d(r',#') = _d(r', 7). )

ITIT. A GENERALIZED INFERENCE ATTACK

In this section, we first present an optimal inference attack
that can achieve the highest inference accuracy but incur high
computational complexity as our baseline. We then give an
overview of the proposed generalized inference attack and
present its detailed operations.

A. An Optimal Inference Attack

In the optimal inference attack, the adversary estimates
the user’s location trace as a whole from all the obfuscated
locations received so far at each time.

Specifically, at each time ¢ = 1,2, ..., the prior probability
distribution of the user’s location trace is given by

t

p(rt =y == [[ 'l - 3)

=2

where p(y'|yi~1) is given by the transition matrix M.
Given LPPMs fy,..., f;, the conditional probability of

producing an obfuscated location trace o' = (o', ..., 0") from
a true location trace r* = (r!,...,7?) is given by
t
b ot i,
po'|rt =y") =[] f:(e'ly") - )
i=1
Given the obfuscated location trace o' = (o',...,0"), the

adversary computes the posterior distribution of the user’s true
location trace as

po'|r' = y")p(r' =y")
ytext p(otrt = y')p(rt = y')

t Tt
p(r :y\O):E (5)
Next, the adversary infers user’s true location trace as the one
with the minimal expected error. Specifically, if the adversary
believes that the user’s trace is &' € X!, the expected error
between the estimated trace and the real trace is given

E(z'lo") = Y p(r' =y'lo")d(y", z") 6)

yteXt

The adversary estimates the user’s trace as the one with the

minimal expected error, which is given by
7! = argmin E(z'|o") (7)

xzte Xt

The optimal inference attack achieves the highest estimation
accuracy as the adversary leverages all the available informa-
tion to infer the user’s true location trace. However, it also
incurs the highest computational complexity. Specifically, the
computational complexity comes from four steps of computa-
tion. First, we need to compute prior probability p(rf = y?)
for each y' € X* according to Eq. (3). There are total n'
terms, and computing each term takes O(t) time, leading
to a computational complexity of O(tn'). Second, we need
to compute the conditional probability p(o'|r! = y') for
each y' € X'. There are total n' terms, each takes O(t)
time. This also requires O(¢n'). Third, we need to compute
posterior probability p(r! = y'|o’) for each y* € X*, which
requires O(n!). Finally, we need to compute F(x?) according
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to Eq. (6). There are n' possible y* and n' possible x?.

Both the multiplication and summation need O(¢). Thus, the
overall complexity is O(tn?!). In summary, the computational
complexity of the optimal inference attack is O(tn?!), which
is exponential to time ¢ and quickly becomes infeasible even
for moderate n and ¢.

B. Overview

We design a generalized inference attack to greatly reduce
the computational complexity of the optimal inference attack
based on three key ideas.

First, we discover a recurrent relationship that can be
exploited to reduce the computational complexity at each time
t. Specifically, since

p(rt =y', o)

p(rt = ytlot) - p(Ot)

)

we can rewrite Eq. (7) as

xzteXt ylext
p(rt = ytaot) ) d(y , L )
= argmin Z p(oh) ®)
zTEX ytext
—argmin »  p(r' =y’ 0")-d(y',z")
xzteX ylext

where the last equation holds because p(o') is the same for
all ' € X' Let E(x') = 3 i p(r' = y',0") - d(y", 2")
for all ' € X*. We can further simplify Eq. (8) as

7! = argmin E(z"). 9)
zteXxt

We now show how to compute E(zx!) efficiently by ex-
ploiting a recurrent relationship. Since y! can be viewed
as the concatenation of y*~! and yf, we can write it as
y' = (y'~ 1, y'). We then have

Z p(’l"t _ yt70t) -d(’yt,wt)

ytEXt

E(z') =

S Y oy ) 0O
YleEX yt—lcxt—1
' d(<yt_1a yt>a wt) :
Let us define
E(:Et7yt) _ Z p(,,,tfl _ ytflvrt _ yt,Ot)
yt-lext—1 (11D
d((y' Ly, 2")
for all z* € X" and y* € X. It follows that
E@') =) B('y"). (12)

ytex

Since d(yt, z!) = d(y*~ !, x'~1) + d(y', z"), we can rewrite
Eq. (11) as

E(x'y")
_ Z p(,r,t—l _ yt—17rt _ yt’ot)d«yt—l’yt%mt)
yt—lext—l
= p(rt_l = yt_lart = ytv Ot) : d(yt_la xt_l)
ytflextfl
STt =yt =yt 0l -yt at)
,ytflethl
(13)
Moreover, since
p(r' ™t =yt =y o)
=p(r' =y o) p(of,rf =yt =y (14
=p(r'™t =y o) fild'ly') - p(y'lyT)

we can rewrite the first term of Eq. (13) as

dSoprtTt =yt =yl o) d(y' et
yt—lext—l
= 3 prt =y Lot Y ) ey
ytflextfl
. d(yt_l,wt_l)
= [y D pyh
yt71€X
Z p(rt72 _ yt727rt71 _ ytfl’ Otfl)
yt72€Xt72
d(y' et
= A0 Y pWyTY BTy
yt71€X

(15)
Let us further define

F(t—1y") = =yt =y 0") (16)

yt—lext—1

for all 4* € X and t = 2,... Therefore, the second term in
Eq. (13) can be written as

a7

Furthermore, since p(rt~! = y'~1 rt = ¢yt o') = p(ri=1 =

1
y' 1o h) - fi(o'ly') - p(y'ly' ") according to Eq. (14), we
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have
Fit—1,y)= > pr'' =y =y 0"
ytflextfl
= > po Yyt =y ot
yt—leXt—l
= > L@y
yt—lex
Z p(Tt_Q — yt—2 rt—l — yt—l Ot—l)
yt72ext72
= £y > ply T Ft -2,
yt71€X

(18)
Finally, substituting Eq. (15) and (17) into Eq. (13), we get

ft(0t|yt) Z tfl)E(xtflvytfl)
yt—lex (19)

+ d(ytvgjt) : F(t - 17yt) .

E(x',y") = p(y'ly

The recurrent relationship between F(t — 1,y') and F(t —
2,y'~1) shown in Eq. (18) and the recurrent relationship
between E(x!,y") and E(x'~!, y'~1) shown in Eq. (19) allow
us to design a dynamic programmlng algorithm to compute
{E(z!,y")|z" € X', y" € X} efficiently.

Second, we can further reduce the computational complex-
ity of the optimal inference attack by limiting the number
of past locations being considered. Intuitively, the temporal
correlation between the user’s two locations at different times
decreases as more time has elapsed from the earlier location.
It is thus reasonable to only consider up to a limited number
of most recent obfuscated locations when inferring r°’.

Moreover, instead of examining every x! € X't in Eq. (8)
to find the trace 7' with the smallest expected error, we
find that many traces with larger errors can be ruled out
early. Therefore, we maintain a set of top k& most likely
candidate traces at every time for some positive constant k
and only consider the candidate traces extended from the top
k candidate traces obtained from the previous time.

Built upon the above three ideas, the general inference
attack can achieve high inference accuracy with significantly
lower computational complexity.

C. Detailed Procedures

We now introduce the detailed operations of the proposed
inference attack at each time ¢t = 1,2,.... Let w > 1 be a
system parameter for the window size, i.e., only up to w most
recent obfuscated locations will be used to infer user’s current
location.

1) At Time t = 1.: On receiving the obfuscated location o
from the user, the adversary infers the user’s true location as
in the optimal inference attack.

First, for each yl € X, the adversary computes

=p(o'|r' =y )p(r' =y")
= fi(o' |y ('),

1

1 _ 1 1
p(r =y, 0) 20)

where 7" = 7 denotes the initial prior distribution of user at
each location.
Second, for each 2!, y! € X, the adversary computes

F(Ly") =p(r' =y, 01)
E(aﬁ1 Y=p(rt =y' 0" -dy' ")

Third, for each z! € X, the adversary computes the
corresponding average adversary error as

21

xl) = Z E(xl (22)
ylex
and estimates the user’s location as
7 = argmin E(2!) . (23)

zleXx

In addition, the adversary computes the posterior distribu-
tion of user’s location after observing o' as

L= lol) = plo 1|’”1 )p(’rlzy )
p(r=ylo’) = D seaD (ol|rT = y)p(rt = y1) o
filolyh)m (v

1 (
Syrex frlotly)m ()

for all y; € X. Denote such posterior distribution as 7", the
updated prior probability can be calculated as

Ty, =7 M. (25)
Finally, the adversary finds the set of &' = min(k,n)
locations in X that have the smallest average adversary error,
denoted by P!, and records {(y!, F(1,y%))|y* € X}, and
{{zt,yt, E(xt,yt)) |2t € PLL gyt € X} to facilitate infer-
ence at subsequent times, where k is a system parameter.

2) AtTimet =2,...,w—1.: Ateachtimet=2,...,w—1,
the adversary carries out ¢ concurrent and overlapping infer-
ence attacks. For each j € [1,t], the jth inference attack
extends the inference attack from time j to t — 1 to infer
77t based on P7t~! and newly observed of, and initiates the
tth inference attack to infer 7 based on 7, and o’.

Consider the jth inference attack as an example, where 1 <
j < t. The adversary first constructs a candidate trace set C7!
from trace set P!~ stored at time t — 1 as

Crt = {(a7 a2l ) e Pit at e XY
(26)
Since [P/t~ =k’ = min(k,n'"7) and |X| = n, we have

|

Second, for each x/' € (7!, the adversary computes
E(x?) from {(y""L, F(t —j — 1,y"")|y!"! € X} and
(@, i1 B(at= gt )) @it € Pit=1 i1 e X}
based on the recurrent relationship. Specifically, for each
yt € X, it computes F(t — j,y") according to Eq. (18) as

= [0y D pOyT Ft—i—1,4"Y)

yt—leXx
(27

F(t_jayt)
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For every pair of /' € C% and y' € X, it further computes
E(x?! y') according to Eq. (19).

£y > p( Ny - E(@ Tyt
yi*lEX

+d(y', a")F(t —j,y")

B, y') =

(28)
Moreover, for every x’t € C7!, the adversary computes

E(a™) =) E(@y"). (29)
ytex
Third, the adversary finds the set of k' = min(k,|C7¢|)

location traces in 7 with the smallest average adversary error
and stores them as P7*. The adversary also stores {(y*, F'(t —
y )yt € X} and {{2,y", E(z?',y"))|a)" € PPyt €
X'} to facilitate the inference attack at time ¢ + 1.
After performing the ¢ inference attacks, the adversary ob-
tains ¢ sets of most likely traces P1t, ... Pt The adversary
uses P17 to estimate the user’s trace as

7! = argmin E(z"") .
rtepl.t

(30)

Let 7t = {f!,...,
estimated as 7. Note that P2, ...,
infer locations #**1, ..., 7w+ at times t¥T1, ...,
respectively.

In addition, the adversary can update the prior distribution
by computing the posterior probability as

plo'lrt =y )p(r' = y')
D oyrex POt =y )p(rt = y*)
fe(o'|rt = y")my (v")
Syrex fr(otlrt = yh)m (yt)

Denote such posterior distribution as ;", the updated prior
probability can be calculated as

7'}. The user’s location at time ¢ is

Pt will be used to
t’w—i—t—l

t

p(r' =y'o") =

€Y

T =m M. (32)

3) At Time t > w.: At each time ¢ > w, the adversary
carries out w concurrent and overlapping inference attacks in
a similar way to time 1 < t < w. For each j € [1,w], the
jth inference attack extends the inference attack from time
t—w+jtot—1 toinfer »~*+5* based on Pr—wtit-1
and newly observed obfuscated location o' and initiates the
jth inference attack to infer r* based on 7, and o'.

Consider the jth inference attack as an example, where 1 <
J < w. The adversary first constructs a candidate trace set
Ct=wtit from trace set P!~w+Jt~1 stored at time ¢t — 1 as

Ct—w-l—j,t _ {(xt—w+j7 o 7$t—17xt)|(xt—w+j, o ’xt—l)

e plrwtit=l gt e x} .
(33)

Since |Pt=w+it=1| = k' = min(k,n*~7) and |X| = n, we
have |Ct=*T7t < kn.

Second, for each candidate trace
Cl—w+it  the  adversary  computes

pt—wtit c
E(wt—w+j,t)

from {(y'~ 1F( - J - ))\ € X} and
{<wt—w+3t 1 E( +]f 1 y )>|wt w7,t—1 c
Pt_“’*j*t_l,yt lex } based on the recurrent relationship.
Specifically, for each y' € X, it computes F(w — j,4")
according to Eq. (18) as

F(w=j,y") = fu(o'ly") Y

yt—leX

1)'F(w_j_17yt_1)

(34)
For every pair of /' € C!=w*tit and y! € X, it further
computes E(xt~w*3:t y!) according to Eq. (19).

fi(0'ly") Z

yt—leXx
+d(yt, 2" F(w

p(y'ly'~

Ev(:l:t—w-',-j,t7 yt) —_

g
)

(35)
Moreover, for every x!~wtit ¢ (Cl=wtil the adversary
computes

E(mt—w—i-j,t) — Z E(wt—lu—&-j,t’yt) . (36)

yteX

Third, for each j € [1,w], the adversary finds the set of
k' = min(k, |Ct=“T7:t|) location traces in C!~%*5! with the
smallest average adversary errors and store them as P!~ +75t,

After performing the w inference attacks, the adversary
obtains w sets of most likely traces P!—w+L:t . Pht The
adversary uses P!~ **1t to estimate the user’s trace as

~t—w-+1,t E(mt7w+1,t) .

T b= argmin
pt—wtlopt—w+lt

(37
Let pi=v+! = {At wtl ., 7'}, The user’s location at time ¢
is estimated as 7. Note that P—w+2t  Pbt will be used
to infer locations #t+1, ... #tT*~1 at times t+1, ..., t+w—1,
respectively.

Finally, the adversary updates the prior distribution by
computing the posterior probability according to Eq. (31) and
computes the updated prior probability according to Eq. (32).

D. computational complexity

We now analyze the computational complexity of the pro-
posed generalized inference attack. 1) At time ¢ = 1, there
are n possible z' and y!, thus computing FE(z') requires
O(n?) complexity. 2) At each time ¢ > 2, there are at most w
concurrent and overlapping attack. For each attack j, we need
to first construct candidate trace set C, which requires O(n)
time. Second, we compute F'(w— j,y*), which requires O(n?)
complexity as there are n possible y° and y’~!'. Then, we
need to compute E(x!~**J y). Since there are at most kn
possible ! and n possible y?, each combination takes O(n)
time, this process requires O(kn?) time. Finally, we compute
E(xt~w*3t), which requires O(kn?) time. In summary, the
computational complexity for each inference attack is O(kn?).
Since there are at most w inference attack, the complexity at
each time is O(kwn?®). Compared with the optimal attack, the
computational complexity of generalized inference attack is
greatly reduced.
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TABLE I: Default Settings

Parameter | Value | Description
n 100 # of locations
10 The length of the user’s location trace
w 3 The size of sliding window
k 10
o 0.2 The normalized entropy rate of M
o 0.4 The privacy parameter of LH
€ 1 The privacy parameter of Exp
Ny 10 # of real traces
No 40 # of obfuscated traces

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the pro-
posed location attacks via extensive simulation studies using
both synthetic and real datasets. All simulations are done in
MATLAB on a PC with 2.90 GHz Intel i5 CPU and 8 GB
memory.

A. Datasets

1) Synthetic Dataset: We generate several synthetic dataset-
s with n = 100 locations and uniform prior distributions but
different Markov transition matrices that represent different
temporal correlations among the user’s locations at different
times. Specifically, since the Markov transition matrix charac-
terizes the mobility pattern of users, i.e., how a user moves
from one location to another between different times, the
temporal correlation of the mobility pattern can be measured
by the entropy rate [11] of the Markov chain defined by
the transition matrix M, which is a well known metric. In
particular, the entropy rate of a Markov chain is defined by

H(M) == iy mijlog(mi;) , (38)

i J
where m;; is the probability of a user moves from loca-
tion x; to x;, p; is the stationary distribution satisfying
M = Y_jpjmyj;, and S m; = 1. We further adopt a
normalization process to enforce the entropy rate in the range
of [0,1]. The normalized entropy rate is calculated as
H(M) = H(M)/log,(n) . (3

The smaller the normalized entropy rate of the transition
matrix, the larger the temporal correlation among the user’s
different locations, and vice versa. For example, if m; ; = %
for all 1 < 7,5 < n, then the normalized entropy rate of
M is 1, which indicates that there is no temporal correlation
between any two locations of a user. As another example, if for
every row i € [1,n], there exist i; € [1,n] such that m;;; =1
and m;; = 0 for all j # 4;, then the normalized entropy
rate of M is 0, which indicates the location at the next time is
completely determined by the current one. For a given entropy
rate, we generate the transition matrix M using the algorithm
in [12].

2) Real Dataset: Gowalla [13] is a location-based social
networking website where users share their locations by
checking-in. We take the data covering most of San Fran-
cisco region with latitude (37.5500, 37.8010) and longitude
(-122.5153, -122.3789). For simplicity, we further split the

area into 15 x 10 cells and choose the centers of these cells as
the set of locations. We count the number of transitions from
x; to z; for any two locations in the dataset and normalize
it to compute the m;; for the Markov transition matrix. The
normalized entropy rate of the transition matrix for this dataset
is 0.1365. For the prior distribution 7, we count the number
of user’s check-ins at each cell and normalize the resulting
histogram.

B. Simulation Settings

We evaluate the performance of the proposed location
inference attacks on two LPPM instantiations.

e Local Hashing (LH) [9]: For a user at location x;, the
user reports the true location » = x; with probability
« or one of the eight neighboring locations of x; with
probability (1 — «)/8.

o Exponential LPPM (FExp) [14]: For a user at location
x;, he reports an obfuscated location o with probability
proportional to exp(—d(x;,0) - €), where € the privacy
budget indicating the level of privacy protection. We
also consider the same domain of original locations
and obfuscated locations and 8-connected neighboring
locations as in LH.

Given a dataset with prior distribution 7 and transition
matrix M, we first randomly generate n,, = 10 real traces.
For each real trace r‘, we randomly generate n, = 40
obfuscated traces using LH or Exp. Given an obfuscated trace
o, the attack infers the real trace using a specific inference
mechanism, h(-), i.e., 7' = h(o'). Table 1 summarizes the
default setting unless mentioned otherwise.

We compare the performance of the proposed inference
attack with three other inference attacks.

o Optimal inference attack (Optimal): As mentioned in
Sec. III-A, the optimal inference attack considers all
received obfuscated locations to infer the user’s true lo-
cation trace as a whole. The inference accuracy achieved
by Optimal can be viewed as the upper bound of any
inference attacks.

o Sliding window artack (Sliding): It considers w most
recent obfuscated locations for inference without limiting
the search space at each time, which is a special case of
the proposed inference attack with k — co.

o Snapshot attack (Snapshot): It is another special case of
the proposed inference attack with window size w = 1.

We use two metrics to evaluate the performance of attacks:
average adversary error (AE) and average running time
(ART). We define AE as the average distance between a real
trace and the estimated trace, which is given by

tnrlno Z Z dtr', o)

rt h(ot)

AE =

(40)

Moreover, we measure the computation cost of an inference
attack by ART, which is defined as the average execution
time needed to infer the user’s location trace from a reported
obfuscated trace.
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Fig. 3: AE and ART vs. w under LH.

C. Simulation Results on Synthetic Datasets

We first report the results on synethic datasets.

1) Impact of t: Fig. 1(a) compares four location inference
attacks, namely Optimal, Sliding, Snapshot, and Ours, against
LH as the trace length ¢ increases from 1 to 10. All attack
mechanisms exhibit a decrease in the adversary error (AE)
as the trace length increases because longer traces provide
more information for the adversary to infer the user’s moving
behavior accurately. Among the four attacks, Snapshot has
the highest AF since it disregards the temporal correlation
between the locations in a trace and infers each location
independently based on the corresponding obfuscated location.
In contrast, Optimal estimates the entire user’s location trace
from all the obfuscated locations received so far at each time,
resulting in the smallest AE. Our proposed Ours outperforms
Snapshot by utilizing the temporal correlation among the
most recent w obfuscated locations to estimate each location
in the trace, resulting in a much smaller AF close to the
one under Optimal, especially for short traces. The inference
accuracy of Ours is slightly lower than that of Optimal because
considering only the most recent w obfuscated locations to
infer each location may not capture the temporal correlation
between locations beyond the w time slots. Additionally, the
AFE of Ours is slightly higher than that of Sliding since Ours
only considers the %k location traces with the smallest AFE's
during the most recent w time slots.

Fig. 1(b) illustrates the impact of trace length on compu-
tation cost, measured by ART's, for four location inference
attacks against LH. The ART of Snapshot is independent of
trace length, remaining at approximately 0.003s. However, the
ART's of the other three attacks increase with trace length,
as expected, since longer traces require more time to infer all
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Fig. 4: AE and ART vs. w under Exp.

locations. The ART of Optimal grows exponentially due to
the exponentially increasing search space, whereas the ART's
of Sliding and Ours increase linearly with ¢. However, Ours
has a significantly lower ART than Sliding since it has a much
smaller search space.

Overall, compared with Optimal and Sliding, Ours can
significantly reduce computation cost while sacrificing a slight
amount of inference accuracy. In comparison with Snapshot,
Ours can greatly improve inference accuracy, resulting in
a much smaller AF, with a slight increase in computation
cost. These results demonstrate that Ours can achieve a better
balance between inference accuracy and computation cost than
other attack mechanisms. Fig. 2 shows the AEs and ART's
under Snapshot, Optimal, Sliding, and Ours against the Exp
mechanism, confirming the cost-effectiveness of the proposed
attack against various LPPMs.

2) Impact of w: Fig.3 compares the AEs and ART's of
different attack mechanisms against LH mechanism with
sliding window size w varying from 1 to 10. The AEs and
ART's of Snapshot and Optimal are not affected by w and
are plotted for reference only. From Fig.3(a), we observe that
the AFEs of Sliding and Ours first decrease sharply and then
gradually decrease until approaching that of Optimal. Initially,
using more reported locations for each location estimation
allows the adversary to leverage the temporal correlations
among more locations for improved inference accuracy, i.e.,
a smaller AE. As w increases further, the additional past
locations used for inference have limited effect on improving
the inference accuracy, resulting in a slightly decreased or
stable AE. Although Ours has a slightly higher AE than
Sliding due to the limited search space, it outperforms Sliding
in terms of ART by a large margin, especially when w is
large, as shown in Fig. 3(b).
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These results indicate that a relatively small sliding window
size is good enough to have a high inference accuracy while
maintaining a small computation cost. For example, when
w = 3, the AE of Ours is about 0.02 higher than the one
under Optimal, but the computation cost of Ours is only about
4s, which is much smaller than 28s introduced by Optimal
and quite affordable in practice. Fig. 4 shows the impact of
the sliding window size under the four attack mechanisms
against the Ezp mechanism. The performances of the four
attack mechanisms are almost the same as the ones in Fig. 3,
which confirm that Ours can not only achieve a better trade-
off between inference accuracy and computation cost but also
be practical in reality.

3) Impact of k: Fig. 5 and Fig. 6 compare the AEs and
ART's under Snapshot, Optimal, Sliding, and Ours with k
increasing from 2 to 20, when the LPPM is LH and Exp,
respectively. The AE and ART of Snapshot, Optimal, and
Sliding are not affected by k and plotted as reference only.
As we can see from Fig. 5(a) and Fig. 6(a), the AE of Ours
initially decreases fast as k increases from 2 to 10 and then
becomes stable or decreases slightly as the k increases from
10 to 20. The reason for the initial decrease is that when k
is larger, the more candidate traces with the smallest AFEs are
considered, the more likely that the candidates contain user’s
true location, resulting in a smaller AFE. As k further increases,
it is very likely that the current candidate traces already include
the user’s true trace, which results in a lower chance to further
decrease the AFE by considering more candidate traces and
thus have a slightly decreased or stable AE. From Fig. 5(b)
and Fig. 6(b), we can see that the ART of Ours increases
linearly as k increases, which is expected as the computational
complexity O(kwn?) is linear to k. Moreover, considering
Figs. 5(a) and 5(b) together, we can see that when k is large
enough, e.g., k = 8, the AE of Ours is 0.276, which is almost
the same with 0.258 under Sliding, but Ours can reduce the
ART of Sliding by about 70%. These results demonstrate
that Ours can dramatically reduce the computation cost while
maintaining high inference accuracy by limiting the search
within a small subset of candidate traces.

4) Impact of H: Fig. 7(a) compares the AFE's of four attack
mechanisms with the normalized entropy rate varying from 0
to 1. As we can see, the AF increases as H increases for
all attack mechanisms, which is anticipated as the larger the
H of the Markov transition matrix, the weaker the temporal
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Fig. 6: AE and ART vs. k under Exp.

correlation between two adjacent locations, the more difficult
to predict the next location based on the previous locations
he observes, resulting in an increased AFE. Moreover, Ours
outperforms Snapshot with smaller AE, especially when H
is very small, e.g., H = 0.2, which indicates that Ours can
take advantage of the temporal correlations among the user’s
locations to improve the inference accuracy. In particular, the
four attack mechanisms have the same AFEs when H = 1,
which is also anticipated. The reason is that when H = 1,
the user moves totally at random, and there is no temporal
correlation between the users two locations. Thus considering
a large window size or even all observed locations cannot
improve the inference accuracy resulting in the same AFE.
From Fig. 7(b), we can see that the ART's of the four attack
mechanisms are not affected by H, which is also anticipated
as the user’s behavior does not affect the inference procedures.
We can also see that Ours has a very low ART, which is very
close to the ideal one achieved by Snapshot but outperforms
Optimal and Sliding with a large margin. From Fig. 8, we can
see that the four attack mechanisms have similar performance
with the one in Fig. 7, which indicates that Ours can achieve
a better trade-off between inference accuracy and computation
cost against different LPPMs.

These results indicate that the user’s moving behavior has
a great impact on the adversary’s inference accuracy. The
smaller the normalized entropy rate, the stronger the tem-
poral correlations among the locations in a trace, the higher
inference accuracy can be achieved by the advanced attack
considering temporal correlation, and vice versa.

5) Impact of o and e: ' We now study the performance of the
attacks under different LPPMs. Fig. 9(a) compares the AFE's
and ART's of the four attack mechanisms against LH's with
« varying from O to 1. As we can see, the AFEs of all attack
mechanisms decrease as « increases. The reason is that under
a L H with large «, the user would report the real location with
a higher probability, i.e., a lower level of privacy protection,
and thus the adversary can infer the true location with higher
accuracy. In particular, when o = 1, the user would directly
report his/her true location without any privacy protection,
and the adversary could infer the true location completely
accurately, i.e., AE = 0. In addition, even when « is small,
e.g., & = 0.2, the AE of Ours is still small. From Fig. 10(a),
we can see that the AE's of four attack mechanisms decrease
as e increases, which is expected as the higher the ¢, the lower
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Fig. 11: AE and ART vs. t under LH over Gowalla dataset.

privacy protection provided by Exp, the higher the inference
accuracy. More importantly, the AE of Ours is always close
to the ideal one achieved by Optimal, which confirms the
effectiveness of Ours again. Fig. 9(b) and Fig. 10(b) show that
the ART's of different attack mechanisms are not affected by
specific LPPM, which is anticipated. These results indicate that
Ours could infer the user’s true locations with high accuracy
but low computation cost under different LPPMs.

D. Simulation Results on Real Dataset

Figs. 11 and 12 compare the AEs and ART's of Snapshot,
Sliding, Optimal, and Ours over the real dataset with trace
length, ¢, varying from 1 to 10. We can see that as ¢
increases, the AFE's of four attack mechanisms all decrease but
their ART's increase, which is consistent with what we have
observed from the synthetic datasets due to the same reason.
Moreover, the AE of Ours is very close to that of Optimal,
and the ART of Ours is only slightly higher than that under
the Snapshot. The results on the real Gowalla dataset confirm
the advantage of Ours over the other three attack mechanisms
in achieving a better trade-off between inference accuracy and
computation cost.
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V. RELATED WORK

Our work is most related to location inference attacks.
Several inference attacks have been proposed in the literature.
Shorkri et al. [15] introduced a Bayesian inference attack on
an LPPM that estimates user’s true location with the highest
posterior probability. They also introduced another inference
attack based on expected adversary error with respect to a
distance function [3], [4]. Following their works, Theodor-
akopoulos et al. [16] and Yang et al. [17] studied a Stackelberg
game between a user’s defense and an adversary’s inference
attack which allows the adversary to obtain the optimal attack
strategy. Niu et al. [18] introduced a long-term observation
attack, which inferred user’s location with all the received
obfuscated locations generated from the same location to
improve the inference accuracy. However, these attacks do not
consider the temporal correlation among user’s location, which
could result in a low inference accuracy.

There are several inference attacks that consider the tem-
poral correlation between the user’s two adjacent locations.
Shorkri et al. [15] modelled the user’s mobility and moving
behavior using a hidden Markov model and introduced a
tracking attack to compute the distribution of user’s trace based
on the obfuscated trace. Oya et al. [9] also leveraged such
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correlation to infer user’s location by minimizing expected
adversary error. Gambs et al. [19] predicted the next location
of a user with the temporal correlation and the observed
locations. Instead of using the Markov model, Ma et al
[20] leveraged the Conditional Random Fields to describe
the temporal correlations. While they achieve higher inference
accuracy, they incur high computation costs that grow expo-
nentially as the number of obfuscated locations increases.

Since location inference attacks pose a serious threat to
users’ location privacy, many LPPMs [2]-[4], [20]-[24] have
been proposed under the assumption that the adversary infers
a user’s location based on a single obfuscated location one
at a time. Common to existing LPPMs is to perturb a user’s
true location to a noisy location used for LBS requests. For
example, some LPPMs [1], [2], [21] perturbed a user’s location
to ensure geo-indistinguishability. As another example, several
LPPMs [3], [4], [22] intended to maximize the adversary’s
estimation error under the Bayesian inference attack. In the
continuous model, user frequently accesses an LBS [25], [26]
and the reported locations usually exhibit temporal correlation,
which can be exploited by the adversary to improve its
inference accuracy [19], [27]. To defend such attacks, some
works proposed new notion of location privacy [5], [6], [20],
[23], [24], [28], [29] or adapted existing solutions designed
for the sporadic model [7]-[9], [16], [30]. All these works are
orthogonal to our work in this paper.

VI. CONCLUSIONS

In this paper, we have introduced a novel generalized infer-
ence attack for efficiently exploiting the temporal correlation
among a user’s adjacent location queries, which can strike a
good balance between inference accuracy and computational
complexity. Our simulation studies using both synthetic and
real datasets have confirmed the advantages of the proposed
attack over exiting attacks.
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