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Abstract

Discards from commercial fisheries have been linked to detrimental effects on ecosystems and stocks of 
living marine resources. Understanding spatial and temporal patterns of discards may assist in devising 
regulatory practices and mitigation strategies and promote sustainable management policies. This study 
investigates data from bycatch monitoring programs using a machine learning approach. We used a 
gradient boosting classifier for describing catch and bycatch patterns in the U.S. Mid-Atlantic Black 
Seabass (Centropristis striata), Summer Flounder (Paralichthys dentatus), Scup (Stenotomus chrysops), 
and Longfin Squid (Doryteuthis pealeii) fisheries. We used oceanographic, biological, spatial, and 
fisheries data as explanatory model features. We found positive associations between target species 
volume and bycatch. Although we found that sea surface temperature and year were important model 
features, the direction of impact of those predictors was variable. From our findings, we conclude that 
machine learning approaches are promising in supplementing traditional methodologies, especially 
with the increase in data availability trends.
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Introduction

The discard of unwanted catch is a long-reported problem 
in many fisheries worldwide (Alverson et al., 1994; Davies 
et al., 2009; O’Keefe et al., 2014; Savoca et al., 2020). 
Kelleher (2005) estimated that the annual magnitude of 
worldwide discarded biomass averaged 7.3 million tons 
or around 8% of the total global catch. In that analysis, 
Kelleher (2005) reported that demersal finfish trawling had 
a relatively low discard rate but contributed substantially 
to the total amount of discards worldwide because of its 
ubiquity. The impacts of discards are both economic and 
ecological. 

Direct economic losses of bycatch occur to fishers in two 
ways. The first is the cost to fishers when they must handle 
and discard unwanted taxa in terms of fuel and manpower 
(Alverson et al., 1994). Indirect economic impacts on the 
fishers include the costs of onboard observers and efforts 
for quota monitoring for bycatch. The cost of global 
monitoring, assessment, and management is estimated at 
$4.5 billion a year, though it is unclear what proportion of 
this cost is attributable to bycatch monitoring (Alverson 

et al., 1994). In many fisheries, such as those managed 
under catch quota, bycatch magnitude is monitored, and 
the discarded, unmarketable living marine resources can 
be counted against the allowable quota (Dunn et al., 2014). 
Discard of unwanted bycatch is a primary issue in the trawl 
fisheries of the mid-Atlantic that target Summer Flounder 
(Paralichthys dentatus), Scup (Stenotomus chrysops), and 
Black Seabass (Centropristis striata). These fisheries are 
managed under a joint management plan that employs 
annual and seasonal quotas and trip possession limits for 
the commercial fishery (https://www.mafmc.org). Fishers 
are penalized when unwanted bycatch reduces the quota 
of marketable fish. 

In addition to financial costs, incidental bycatch has 
ecological impacts. Ecological and ecosystem effects of 
bycatch can include diminished biodiversity and altered 
community structure (Gilman et al., 2020). Alteration 
of the biological components of ecosystems can result 
in trophic cascades that deleteriously impact managed 
stocks (Scheffer et al., 2005; Baum and Worm, 2009). 
Alternatively, discards may be a source of food subsidy 
for seabirds, pelagic fishes, and benthic organisms (Heath 

https://www.mafmc.org
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et al., 2014). Thus, bycatch may have short-term benefits. 
Short-term benefits, however, may not translate into 
permanent ecological gains.

Incidental catches and discards can occur from a variety of 
causes. These include mandated or elective actions taken 
by fishers or because of the nature of the non-selective gear 
used to target the stock. Discard activity from regulatory 
conditions results from fish being below the minimum 
landing size or the fisher holding insufficient quota for the 
species (Bellido et al., 2011). In mixed fisheries, such as 
the mid-Atlantic trawl fisheries that are regulated through 
allocation, fishers may continue to fish when the quota 
for some stocks is met (Poos et al., 2010), resulting in 
discards. Differences in market conditions may lead to 
high-grading or the process of prioritizing (and keeping) 
living marine resources of greater value (Batsleer et 
al., 2015). Because of the nature of non-selective gear, 
discards can occur (Poos et al., 2010). 

Monitoring programs have been implemented in many 
fisheries to account for discards’ taxonomic richness and 
weight. Of these programs, at-sea observer programs are 
thought to produce the most accurate data (Suuronen 
and Gilman, 2020). Black Seabass, Summer Flounder, 
Scup, and Longfin Squid (Doryteuthis pealeii) fisheries 
are conducted using various configurations of trawl 
gear (Shepherd and Terceiro, 1994; Link et al., 2011). 
Onboard observers record the discards in these fisheries 
for a subset of fishing trips targeting these stocks, and the 
incidentally caught individuals are either kept or discarded 
overboard. One of the factors impacting management is 
the incidence of unwanted bycatch in these fisheries. Data 
from at-sea monitoring are used to produce independent 
information about bycatch temporal and spatial patterns 
by sector, harvesting gear, and stock area. Fisheries 
bycatch information, in turn, is used to support in-season 
monitoring, assessment of ecosystem impacts, and single-
species stock assessment.

As the volume of observer bycatch data increases 
alternative analytical approaches may be called for to 
supplement traditional methodologies. The process we 
offer in this paper is one approach, commonly referred to 
as machine learning (ML). ML algorithms learn patterns 
in data to arrive at predictions (Jordan and Mitchell, 2015). 
In this work, using data from the federal observer program, 
we investigate the ability of ML to analyze temporal and 
spatial patterns in the catch of incidentally caught living 
marine resources in a suite of mid-Atlantic fisheries. We 
evaluate the observer data collected by NOAA Fisheries 
in the federal waters of the northeastern and mid-Atlantic 
regions. We describe fishery-specific bycatch patterns for 

the Summer Flounder, Scup, Black Seabass, and Longfin 
Squid fisheries. We then use these data to understand the 
spatial and temporal characteristics that influence bycatch 
weight and species richness using machine learning. Our 
specific objectives are to (1) describe temporal and spatial 
patterns of bycatch in the Scup, Black Sea Bass, Longfin 
Squid, and Summer Flounder fisheries, and (2) to use 
ML techniques to understand how gear, temporal, spatial, 
and environmental characteristics can be used to describe 
contrasts in bycatch magnitude and taxonomic richness.

Methods

We used data collected between 1994 and 2020 by 
the Northeast Fisheries Science Center Observer-at-
Sea Monitoring Program (OSMP; Northeast Fisheries 
Science Center, 2010). The OSMP collects information 
from commercial fishing vessel trips of incidental finfish 
and invertebrate taxa. These data allow federal stock 
and ecosystem assessment personnel to understand the 
magnitude of the impacts of a given fishery. Data from 
OSMP were anonymized by NOAA Fisheries’ personnel 
for confidentiality before distribution to the authors. 
Confidentiality was maintained to avoid tracing discarded 
data to individual vessels and fishers.

The data collected by OSMP are comprehensive. The 
OSMP data relevant to this work include the NOAA 
statistical areas designation, the quarter degree square 
of the trip, year, quarter of year (January to March, April 
to June, July to September, and October to December), 
latitude (°N) and longitude (°E) where the first haul began, 
bycatch disposition (kept or discarded), cod mesh size 
(mm), gear type (one of four types of trawl gear), the 
declared (primary, secondary, and tertiary) target stock 
of the trip, a code for indicating whether the haul was 
observed by the monitoring personnel, an indicator of 
whether the species was dressed (processed on board) or 
round, and the weight (kg) of each incidentally caught 
taxa (Table 1). We worked with NOAA personnel to 
anonymize the data to maximize the records available for 
analysis. Thus, the data that we analyzed represented a 
trade-off between the number of public records and their 
spatial and temporal resolution. The resulting temporal 
resolution of the data was a quarter of the year, and the 
spatial resolution was 0.25°  ×  0.25° grid squares. The 
spatial domain of the data was between latitudes 33.87° 
and 43.05° N to longitude 61.04° W (Fig. 1). 

We performed data processing on variables, which we term 
“features” following ML terminology, and observations 
(records) of the OSMP data (Fig. 2). Our initial quality 
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control effort was made to remove unidentified, ambiguous 
(e.g., seaweed), and inanimate (e.g., wood and rocks) 
bycatch records. We then removed observations from 
1994 to 2002, due to suspected inconsistent data collection 
protocols for those years, following our initial data 
evaluation. We also removed candidate features “gear type” 
and “cod mesh size”. We found that the representation of 
these features in the data was predominately composed of 
a single gear type and cod mesh size (Table 1). Records 
with impossibly large weights and those with latitude 
and longitude values outside of our spatial domain (e.g., 
those located on land) were also removed. We only used 
records of taxa that were discarded and observed. Finally, 
we extracted uninformative data columns, including row 
identifiers, columns with little contrast, and features with 
significant correlations to other features. We used linear 
and rank correlations to identify features that exhibited 
correlations of 0.90 or greater, keeping only one of the 
features in the model. 

Following the selection of informative features, we 
performed feature engineering to produce additional 

predictors (Table 1). All categorical features were one-
hot encoded for conversion into numerical features to 
enable model runs (Yang et al., 2019). We defined six 
zones corresponding to regions of interest to commercial 
fishers in the region. Each zone comprised all OSMP 
records from grid squares bounded by latitudinal bands 
within the spatial domain of the study area. Latitudinal 
zones were “South of the Delamar Peninsula,” “Between 
the Delamar Peninsula and Cape May,” “Between Cape 
May and Hudson Canyon,” “Between Hudson Canyon and 
the southern tip of Long Island,” “Between the southern 
tip of Long Island and Martha's Vineyard,” and “North of 
Martha's Vineyard” (Fig. 1). We engineered a categorical 
feature such that the quarter-degree grid squares were 
designated as inshore if the square intersected with any 
land and offshore otherwise. We developed quarterly 
estimates of sea surface temperature (SST) at the spatial 
resolution (0.25° × 0.25° grid squares) of the OSMP 
data. Sea surface temperature estimates were obtained 
from the ocean-color images available from Moderate 
Resolution Imaging Spectroradiometer (MODIS) sensor 
(https://modis.gsfc.nasa.gov/data/). Data from this sensor 

Table 1.  Description of the processed NOAA Northeast Fisheries Science Center Observer and At-Sea Monitoring Program data 
analyzed in this work.

Predictor Feature Type Model Usage Description
Spatial Habitat zones One-hot encoded Model predictor Six bands bound by latitude

Inshore True/False Model predictor The grid square of the record 
is adjacent to land

NOAA Statistical Area One-hot encoded Model predictor Five values
Quarter Degree Square Integer Not used; correlated  

with statistical area
120 values

Latitude Decimal Model predictor
Longitude Decimal Model predictor

Temporal Year Integer Model predictor 2003 to 2020
Quarter Integer Model predictor Winter, Fall, Summer, and 

Spring
Biological
Bycatch  
disposition

Categorical Not used; only  
disposition ‘discarded’ 
considered

Kept or discarded

Fisheries-Related Declared target species One-hot encoded Model predictor Up to three targets speci-
fied; eight combinations

Cod mesh size Decimal Not used; low contrast 56, 120, 133, or 151 mm
Gear type One-hot encoded Not used, majority of 

records belonged to one 
gear type

Fish, Ruhle, Scallop, or 
Twin

Oceanographic Sea Surface Temperature Decimal Model predictor NASA MODIS sensor

https://modis.gsfc.nasa.gov/data/
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provided an uninterrupted time series of ocean color 
images for the duration of the OSMP data. We used 
level-3 processed data at 9 km and monthly spatial and 
temporal resolutions. These data were used to develop 
monthly grid-square (0.25° × 0.25° grid squares) values 
of mean SST. Finally, we engineered a feature to represent 
the trip's declared target(s). The record included primary, 
secondary, and tertiary target species in other trips. The 
reported target for the trip was the combination of the 
stated target species. In some cases, only a single species 
was the declared target.

We developed two features as the responses for analysis. 
The first was a binary categorical feature that indicated 
if the weight of the bycatch taxa for that trip was greater 
than or less than the median of the weight of that bycaught 
taxa for all trips. We removed taxa found in a percentage 
of records less than 0.5% to develop this feature. We then 
log-transformed the weight of each record. The taxonomic 
group-specific median of the log-transformed weight was 

determined to produce the binary categorical feature. A 
one was assigned if the value of the group was greater 
or equal to the value of the taxa-specific median, and a 
zero otherwise. The full data set was then partitioned by 
the declared primary target of the fishing trip: Summer 
Flounder, Scup, Black Seabass, or Longfin Squid 
(Table 2). The partitioning resulted in four groups of data 
for analysis of bycatch weight. The second analysis was 
a binary categorical feature that indicated if the richness 
(number of taxa) of bycatch for that trip was greater than 
or less than the median of the richness for all trips. The 
taxonomic group-specific median number of species was 
determined, and a one was assigned if the value of the 
group was greater or equal to the value of the taxa-specific 
median value and a zero otherwise.

We used a gradient-boosting ensemble machine learning 
algorithm to classify the categorical outcome features 
for bycatch weight and taxonomic richness. Gradient 
boosting was used because it captures complex non-linear 
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Fig. 1. Spatial domain of study region with quarter degree squares and latitudinal zones (n = 6). The six latitudinal zones are 
marked and are “so” (south of the Delamar Peninsula), “dm” (between the Delamar Peninsula and Cape May, New 
Jersey), “mh” (Between Cape May and Hudson Canyon), “hl” (between Hudson Canyon and the southern tip of Long 
Island), “lm” (between the southern tip of Long Island and Martha's Vineyard), and “no” (north of Martha's Vineyard).
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dependencies at a low computational cost, especially for 
data with a low signal-to-noise ratio (Friedman, 2001). 
Gradient boosting was also used for transparency and ease 
of the interpretability of results (Arrieta et al., 2020). For 
model training, a random subset of 70% of data records 
was used as a training set, and the remainder was used 
for model testing. The best number of boosting trees and 
their depths were determined using cross-validation. 
The Adaboost loss function was used for the model 
optimizer, decision tree stumps were the base learner, 
and subsampling was the regularization method. Model 
performance evaluation metrics were classification 
accuracy, recall, precision, and F1 scores (Natekin and 
Knoll, 2013). We evaluated accuracy using a confusion 
matrix and provided information to understand how the 
frequency of the predicted classification compares to the 
frequencies observed in the data. The recall is the ratio of 
the frequency of the true positive to the sum of the true 
positive’s frequency and the false negative’s frequency. 
Recall indicates the proportion of the actual positives the 
model correctly identified. Similarly, precision is the ratio 
of the frequency of the true positive to the sum of the true 
positive’s frequency and the false positive’s frequency. 

The precision measurement’s value indicates the model’s 
correctness level for those predicted to be positive. The 
F1 value is a function combining precision and recall:

​F1  =  2 ​(​Precision × Recall _ Precision +Recall ​)​​.

The F1 score balances the precision and recall estimates, 
correcting for the uneven distribution of observed classes.

Because an ensemble of trees was used as the underlying 
algorithm for each model, result transparency can be a 
challenge (Du et al., 2019). Two techniques were used 
to interpret and understand the classification outcome as 
a function of spatial, temporal, and biological features. 
We first calculated the feature importance metric. 
Measures of feature importance allow an understanding 
of how much of the variability in a model is ascribed to 
a specific candidate feature. Only features contributing 
to predictions in at least 2% of cases were considered. 
We used gain to estimate feature importance metric. 
This estimates how effective each feature is at improving 
accuracy in the prediction. The second approach used in 
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record with errors, and 
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Fig. 2. Model development pipeline from raw OSMP (NOAA Observer and At Sea Monitoring Program) to model final 
outcome.
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this study to understand classification outcomes was the 
shapley additive explanation method (termed SHAP). 
This metric is a theoretic approach to model explainability 
(Lundberg and Lee, 2017). We calculated SHAP values 
to understand the directionality of feature importance. A 
visualization for SHAP values was used as a qualitative 
tool to assess feature importance and associated data 
influence on model performance. The approach allowed 
visualiztion of whether an observation of a feature on 
model prediction was high or low (horizontal position 
on graph) and the magnitude of that same observation (a 
grayscale value for the observation point).

Results

The analysis of bycatch patterns in the Summer Flounder, 
Scup, Black Seabass, and Longfin Squid fisheries 
indicated that six species of living marine resources were 
incidentally caught in more than 5% of the records (see 
Table 2). These species were Summer Flounder, Longfin 
Squid, Scup, Butterfish (Peprilus triacanthus), Black Sea 
Bass, and Common Monkfish (Lophius piscatorius). An 
additional 25 species were found in at least 1% of the 
records. These were a diverse group of taxa, including 
cartilaginous fishes (e.g., Spiny Dogfish, Big Skate, 
Dusky Smooth-hound, and Clearnose Skate), crustaceans 
(American Lobster and Portly Spider Crab), chelicerate 

Table 2.  Incidentally caught species (the percent of total records and the number of records) from the NOAA 
Northeast Fisheries Science Center Observer and At Sea Monitoring Program for 2003 to 2020. Only 
incidentally caught species that comprise frequencies greater than 5% are shown.

Incidentally Caught Species Vernacular Percent of records Number

Paralichthys dentatus Summer Flounder 9.58 61 435

Doeyteuthis pealeii Longfin Squid 8.00 51 348

Stenotomus chrysops Scup 6.65 42 637

Peprilus triacanthus Butterfish 5.68 36 456

Centropristis striata Black Sea Bass 5.37 34 440

Lophius piscatorius Common Monkfish 5.26 33 715

Merluccius bilinearis Silver Hake 4.96 31,836

Hippoglossina oblonga American Fourspot Flounder 3.74 23 967

Squalus acanthias Spiny Dogfish 3.71 23 773

Prionotus carolinus Northern Searobin 3.45 22 119

Beringraja binoculata Big Skate 3.31 21 225

Urophycis regia Spotted Hake 3.28 21 042

Scophthalmus aquosus Windowpane Flounder 2.89 18 551

Prionotus evolans Striped Searobin 2.67 17 143

Mustelus canis Dusky Smooth-hound 2.55 16 337

Illex Illecerosa Northern Shortfin Squid 1.96 12 571

Raja eglanteria Clearnose Skate 1.95 12 481

Pseudopleuronectes americanus Winter Flounder 1.89 12 144

Pomatonus saltatrix Bluefish 1.80 11 560

Homarus americanus American Lobster 1.67 10 684

Urophycis chuss Red Hake 1.59 10 193

Dipturus laevis Barndoor Skate 1.52 9 758

Scomber scombrus Atlantic Mackerel 1.16 7 421

Libinia emarginata Portly Spider Crab 1.10 7 055
Limulus polyphemus Atlantic Horseshoe Crab 1.02 6 531
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arthropods (Atlantic Horseshoe Crab), and bony fishes. 
Less than 1% of the taxa accounted for 22.0% of the total 
number of records, including crabs, rays, flounders, and 
scallops.

The most commonly occurring bycatch in terms of 
frequency of records was the same as the declared primary 
target of the trip each fishery. The exception was for the 
Longfin Squid fishery, in this fishery Butterfish, Spotted 
Hake, Windowpane Flounder, and Silver Hake were the 
primary bycatch. For all years evaluated, the fisheries 
targeting Summer Flounder had the largest discards 
(1 539.1 MT), followed by fisheries for Longfin Squid 
(1 189.7 MT), Scup (498.9 MT), and Black Sea Bass 
(312.0 MT; Table 3). For all four fisheries, discards 
followed a species-specific pattern. For the Summer 
Flounder, Sea Bass, and Scup fisheries, spiny dogfish 
(Squalus acanthias) comprised the majority of discards 
and were present in each. Spotted Hake (Urophycis regia) 
is a dominant bycatch species for the Longfin Squid 
fishery. The greatest number of incidentally caught taxa 
in greater than 5% of records were found in the Summer 
Flounder fishery, with seven, and the smallest in the 
Longfin Squid fishery, with four. The directed fisheries 
for the Black Seabass and Scup fisheries exhibited six 
taxa each in greater than 5% of the records. Species of 
non-commercial interest commonly occurred in each 
fishery examined included skates, sea robins, and flatfishes 
(Table 3). 

Model accuracies were generally consistent for each 
fishery, and there were no discrepancies between accuracy 
and the other performance metrics. Model classification 
accuracy was greatest for the Summer Flounder fishery 
(0.73), and recall was largest for the Longfin Squid fishery 
(0.75) for the above median classification of bycatch 
weight. The model performance metrics were consistently 
greater for taxonomic richness classification than for 
bycatch weight classification in each of the four fisheries 
(Table 4). The number of model features was greatest for 
Longfin Squid (n = 269), followed by Summer Flounder 
(n = 263) for the bycatch classification model. The data 
set for the classification model of taxonomic richness had 
the fewest number of records (10 084) and the fewest 
number of features (n = 82). 

Different spatial, temporal, biological, and fishery 
features were identified as important in classifying the 
magnitude of taxa-specific bycatch in the four fisheries 
examined. Across all models, the oceanographic feature 
sea surface temperature and the temporal feature year 
were the most important factors in classifying the 
median weight of bycatch (Figs. 3 to 6). Among the 

spatial features, longitude was ranked among the top 
four important features in all models, while latitude 
was present but ranked lower in importance. The spatial 
features “inshore” and “Area Southern Massachusetts” 
were only significant in predicting the median weight 
of bycatch for the Longfin Squid fishery model (Fig. 6). 
The biological features important in classifying bycatch 
magnitude in the Summer Flounder fishery included 
the presence or absence of cartilaginous fishes such as 
Clearnose Skate, Barndoor Skate, and Winter Skate as well 
as Spiny Dogfish (Fig. 3 to 6). The presence or absence of 
Spiny Dogfish was also important in classifying bycatch 
in the Black Seabass and Scup models (Figs. 4 and 5). 
In the Black Seabass classification model, three fishery 
features reflecting the absence of a secondary declared 
target species (ranked sixth), a declared secondary target 
of Southern Flounder (ranked eighth), and a declared 
secondary target of Scup (ranked ninth) were found to be 
important (Fig. 4A).

The SHAP analysis was informative for some features but 
less informative for others. Although we observed that 
the feature sea surface temperature consistently ranked 
as the most important feature in all classification models, 
our SHAP analysis did not indicate a clear pattern in its 
direction of influence on the model outcome. High and low 
sea surface temperature values had positive and negative 
impacts on the predicted outcome. Conversely, the 
biological features representing specific bycatch species 
negatively influenced the model outcome, implying a 
tendency for the model to predict below median bycatch 
weight if these taxa were also present on the trip. We 
observed that only a few high observations exerted a 
highly positive influence. For each fishery’s bycatch 
classification model, the SHAP values for the temporal 
feature year indicated that more recent years positively 
impacted the model outcome (Figs. 3 to 6 and 8). For 
Black Seabass and Scup bycatch classification models, 
records with more recent years were classified as having 
greater than median bycatch. We found that the feature 
quarter of the year negatively influenced the predicted 
outcome, where greater than median bycatch weights were 
observed early in the year. Among the spatial features, the 
SHAP values for the feature longitude indicated a negative 
impact on the model outcome for feature values, with 
greater bycatch magnitudes occurring in the eastern parts 
of the geographic domain. For the feature longitude, SHAP 
values indicated that more easterly values tended to have 
positive impacts (greater than median bycatch weight) 
on the model outcome for Black Seabass and Scup. Scup 
and Longfin Squid’s feature longitude indicated that the 
geographic domain’s eastern regions had reduced bycatch. 
Features reflecting inshore fishing locations and fishing 
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in Southern Massachusetts negatively impacted bycatch 
in the Longfin Squid classification model. Scup was the 
only model in which the presence of its species (Scup) 
was an important biological feature representing bycatch 
(Figs. 4 to 6).

The relationship between the number of records from 
a square grid location and taxonomic richness showed 

a positive, non-linear trend (Fig. 7A). The maximum 
taxonomic richness observed was 192 taxa, with a median 
of 75 and a minimum of 5 taxa. The highest richness was 
found in quarter-degree grid squares located offshore in 
the southern part of the study area, ranging from 37 to 
41° N and -76 to 70° W (Fig. 7B). Conversely, the lowest 
richness was observed north and south of this region. For 
the model predicting taxonomic richness, sea surface 

3

Table 3.  Fishery-specific patterns of bycatch in the northeastern and mid-Atlantic finfish fisheries from the NOAA Northeast Fisher-
ies Science Center Observer and At Sea Monitoring Program for 2003 to 2020. Percent of records is the number of trips 
five percent or greater of positive occurences of the species. Discards are the sum of biomass in metric tons of incidentally 
caught species. 

Primary target of 
the trip Incidentally Caught Species Common Name

Percent of 
Records Discarded

Black Seabass Centropristis striata Black Sea Bass 10.98 56.8

Prionotus evolans Striped Sea Robin 9.17 41.5

Squalus acanthias Spiny Dogfish 9.12 95.8

Prionotus carolinus Northern Sea Robin 8.4 41.8

Stenotomus chrysops Scup 8.37 35.5

Paralichthys dentatus Summer Flounder 6.81 26.6

Lophius piscatorius Common Monkfish 5.19 14
Total 58.04 312.0
Summer Flounder Paralichthys dentatus Summer Flounder 8.08 159.9

Prionotus carolinus Northern Sea Robin 6.61 212.9

Beringraja binoculata Fourspot Flounder 6.13 99.6

Raja eglanteria Windowpane Flounder 5.89 130.7

Prionotus evolans Striped Sea Robin 5.65 123.3

Squalus acanthias Spiny Dogfish 5.5 327.7

Lophius piscatorius Common Monkfish 5.43 166.9

Dipturus laevis Clearnose Skate 5.36 318.1
Total 48.65 1 539.1
Scup Stenotomus chrysops Scup 10.48 135.5

Centropristis striata Black Sea Bass 8.17 69.8

Paralichthys dentatus Summer Flounder 7.26 58.0

Squalus acanthias Spiny Dogfish 7.03 137.3

Prionotus carolinus Northern Sea Robin 6.02 48.6

Prionotus evolans Striped Sea Robin 5.5 29.4

Hippoglossina oblonga Fourspot Flounder 5.03 20.3

Total 49.49 498.9

Longfin Squid Peprilus triacanthus Butterfish 8.01 335.3

Urophycis regia Spotted Hake 5.91 404.8

Hippoglossina oblonga Windowpane Flounder 5.71 155.8

Merluccius bilinearis Silver Hake 5.54 293.8

Total 25.17 1 189.7
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Table 4.  Model performance metrics showing precision, recall, and F1-ratio for the label above/below the median value of the four 
bycatch weight classification models (the primary targets of the trip) in the northeast and mid-Atlantic trawl fisheries. The 
last row in the table presents the performance metrics of the machine learning model to classify taxonomic richness.

The primary target of 
the trip

Number of 
records

Number of 
features Accuracy Precision Recall F1-Ratio 

Black Sea Bass 18 643 123 0.70 0.69/0.70 0.65/0.74 0.67/0.72
Summer Flounder 141 300 263 0.73 0.72/0.74 0.72/0.74 0.72/0.74

Scup 35 871 200 0.68 0.66/0.71 0.66/0.70 0.66/0.71

Longfin Squid 203 809 269 0.71 0.71/0.71 0.75/0.67 0.73/0.69

Taxonomic richness 10 084 82 0.78 0.78/0.78 0.77/0.79 0.78/0.79

temperature and year were consistently the most important 
features, indicating a trend of increasing richness in recent 
years (Fig. 8A). Longitude and latitude also played a role 
in the model, with richness increasing to the east and 
north (Fig. 8B). Additionally, the Longfin Squid bycatch 
feature had a positive influence on the model outcome, 
with increasing values of this feature leading to higher 
median richness.

Discussion

In this study, we examined the bycatch composition in 
four commercial fisheries in the northeastern U.S. We 
employed machine learning classification models to gain 
insights into the spatial, temporal, biological, and fishery 
characteristics that describe contrasts in fishery-specific 
bycatch magnitude and the richness of bycatch. Our 
primary findings indicate that six species each accounted 
for at least 5% of the records, including each targeted 
species. The observed bycatch magnitude for the four 
fisheries ranged from 312 to 1 539 mt over the 17-year 
data duration. We found that the binary classification 
accuracies of the models were only moderate, never 
exceeding 80% classification accuracy. All classification 
models consistently showed that the oceanographic feature 
sea surface temperature and the temporal feature year are 
important in determining model performance. Feature 
importance, however, does not provide an indication of 
the direction of the response. The SHAP analysis indicated 
little consistent pattern in the value of the response. The 
findings of this study show the promise and challenges of 
using ML approaches for describing contrasts in bycatch 
abundance and taxonomic richness for mobile gear 
fisheries in the mid-Atlantic. The benefits of using an ML 
approach in this case is that we do not need to rely on a 
priori models to describe the phenomena to be studied. 
ML approaches are “model agnostic”. 

The contrast in the features that detect the importance of 
bycatch magnitude reflects differences in the nature of 
each of the fish stocks. The feature importance analysis 
for the Scup model indicated that the presence of Scup was 
an important biological feature that predicts bycatch. This 
finding implies that Scup catch has a very large component 
of discarded Scup. This is a well-documented concern 
in the mid-Atlantic and has necessitated management 
intervention. Indeed, gear restrictions and time-area 
closures have been implemented in the mid-Atlantic to 
reduce discarding Scup below the minimum legal size 
limit (Powell et al., 2004). In addition, for the classification 
of bycatch in the Scup fishery, the SHAP values of the 
category shark (a multi-taxa feature that includes all 
elasmobranchs) showed a positive impact, and Longfin 
Squid, a negative association with the above-median 
bycatch weight class. A co-occurrence of sharks and Scup, 
together with distinct habitat segregation with Longfin 
Squid, might be expected for Scup. The classification 
model of discard bycatch for the Black Seabass fishery 
was positively associated with the shark and sea robin 
species categories and negatively with the Longfin Squid 
category. Records of Black Seabass discard weight greater 
than the median were associated with bycatch of species 
from the shark, sea robin, and Longfin Squid categories, 
potentially reflecting Black Seabass co-occurrence with 
the latter two fish species. The co-occurrence of Black 
Sea Bass and sharks may be trophically related. The 
Northeast Fisheries Science Center (NEFSC) food habits 
database lists spiny dogfish (Squalus acanthias), Atlantic 
angel shark (Squatina dumeril), and a variety of skates 
as predators of Black Sea Bass (Steimle et al., 1999). 
Greater biomass of discarded Summer Flounder as bycatch 
was accompanied by lower catches of Longfin Squid, 
hakes, and Scup. A possible explanation for the negative 
association is interactions between gear selectivity 
and seasonal changes in species distribution leading to 
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separation in the distribution of demersal fish (Shepherd 
and Terceiro, 1994; Gabriel, 1996; Link et al., 2002). 
Small-scale changes in habitat use within an area and 
season have been reported for Scup and Summer Flounder, 
where one species inhabits sandy bottoms and the other 
occupies complex hard bottom habitats (Shepherd and 
Terceiro, 1994). Such patterns of occurrence and habitat 
preferences may account for the observed associations 
in the Summer Flounder observations. In the analysis of 
bycatch in the Longfin Squid fishery, only the category 
Longfin Squid was negatively associated with the above-

median bycatch class. Discards of Longfin Squid in that 
fishery indicate that the harvest of small or unmarketable 
Longfin Squid is responsible for this pattern. We note that 
of the fishery-related predictors, only the declared target 
species (or combination of species) if a secondary and or 
tertiary species were reported. Due to the constraints of the 
data available to the authors, it was not possible to analyze 
the impacts of cod mesh size and gear type.

We found some patterns in species richness observed 
from the bycatch analysis. Primarily, we saw an increase 
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Fig. 3. Feature importance (A) and SHAP values (B) for the classification of taxa-specific weight categories for primary target 
Summer Flounder. 
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Fig. 4. Feature importance (A) and SHAP values (B) for the classification of taxa-specific weight categories for primary target 
Black Seabass.
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in richness from 2018 onwards. Alternatively, low species 
richness was associated with longitude toward the western 
areas and offshore habitats in the spatial domain of the 
study. This latter was expected, as offshore habitats 
may offer less habitat complexity and species richness 
than habitats closest to shore. Features reflecting spatial 
distribution were not always intuitive. For the species 
richness classification model, an increase in richness is 
predicted easterly, and north in the study domain was 
counter-intuitive. One explanation for this result might 

be that interactions between gear selectivity and seasonal 
changes in species distribution lead to the segregation of 
species-specific populations of demersal fish (Shepherd 
and Terceiro, 1994; Gabriel, 1996; Link et al., 2002). 

SHAP values for each feature are presented to elucidate the 
relationship between feature magnitude and directionality 
on the outcome of regression tree models (Lundberg 
and Lee, 2017). Although important features in most 
models, sea surface temperature and year were suggestive 
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of uncertain influence on directionality. This was an 
unexpected result. The feature engineering that we 
performed, to include sea surface temperature was 
done because we hypothesized that contrasts in bycatch 
magnitude could be described by this feature. That the 
SHAP analsyis indicated no consistency in the direction 
of this feature means that the feature was represented 
many times in the classification tree but that the predicted 
effect was contingent not on high and low values of sea 
surface temperatures. Instead, small increments in sea 

surface temperature lead to predictions of higher and lower 
than the median of bycatch weight. Similarly, the feature 
year may be considered a proxy for various interactive 
biological and abiotic processes. Like sea surface 
temperature, individual year values lead to processes that 
both increase or decrease taxa-specific bycatch magnitude. 
Conversely, although not as important for classification, 
biological features did indicate some direction of response. 
For example, features reflecting bycatch species were 
largely positive in their directionality, implying an 

SST

Year

Longitude

No secondary target declared

Scup Bycatch

Spiny Dogfish Bycatch

Latitude

Fe
at

ur
es

Fig. 5. Feature importance (A) and SHAP values (B) for the classification of taxa-specific weight categories for primary target 
Scup.
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expectation of a positive relationship between the targeted 
species’ weight and the weight of associated bycatch. The 
challenge is to make these associations actionable in a 
management context. Evaluation of bycatch composition 
of observer data in a multivariate framework could lead 
to insights into patterns of community composition of 
bycatch. That the spatial features “inshore” and “Area 
Southern Massachusetts” were a significant feature in 
predicting the median weight of bycatch for the Longfin 
Squid fishery model is more actionable.
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Fig. 6.  Feature importance (A) and SHAP values (B) for the classification of taxa-specific weight categories for primary target 
Longfin Squid.
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The findings of this study point to the promise of using 
ML approaches for describing contrasts in bycatch data 
for fisheries in the mid-Atlantic using abundance and 
taxonomic richness metrics. The results of this study 
indicate that ML alternatives may successfully supplement 
traditional analytical approaches to fisheries research. 
Results from ML model runs captured generally expected 
patterns in the harvest according to target species. Given 
the inherent uncertainty associated with fisheries data, 
these results encourage adopting ML techniques to the 
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B

Fig. 7.  A: Rarefaction curve of the number taxonomic richness in relationship aggregated for quarter degree square, quarter of the 
year, and year; B: NOAA Northeast Fisheries Science Center Observer and At Sea Monitoring Program are of coverage.
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field. However, adopting ML into the fisheries field must 
be done carefully, always with the analytical objective 
in mind. Adopting ML techniques blindly, without 
consideration of method explainability, may be a fruitful 
approach if classification is the only goal. ML techniques 
are best used in conjunction with traditional statistical 
analyses. These hypothesis-driven approaches allow 
model explanations.

Even with the encouraging results from the gradient-
boosting ML approach used in this study, suggestions 

for further improvements may be offered. Fine-grained 
vessel positioning may aid fisheries management 
decisions by better classifying movement patterns 
into activities associated with fishing and non-fishing 
practices. A limitation of this study rests on the high level 
of data aggregation provided by the onboard observation 
program. With less aggregation, data at trip levels, for 
example, more fine-grained, robust results would be 
possible, and better estimates of the effects of biological 
features could have been provided. Another limitation of 
complex resolution is observer coverage. Due to the high 
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costs associated with observer programs, the spatial and 
temporal range may be insufficient to detect fine-grained 
results necessary for optimal fisheries management. 
Model quality of machine learning is contingent on data 
availability. 

Additional benefits from this study may be achieved 
from an undertaking aimed at the automation of bycatch 
estimates, especially concerning the limitations above of 
observer coverage. With the advent of affordable, off-the-
shelf global positioning devices, detailed information on 
the spatial dynamics of fishing efforts may be accurately 
estimated with classifiers as used in this study for small- 
and large-scale fisheries worldwide. Moreover, equipping 
vessels with cameras may also assist in assessing bycatch 
amounts. Camera images may be readily analyzed with 
computer vision approaches, such as deep learning 
algorithms (LeCun et al., 2015), to automate data 
collection, allowing for widespread coverage of bycatch 
data (Khokher et al., 2021). Computer vision has been 
successfully used in fish identification (Ditria et al., 2020), 
estimation of fish abundance (Tseng and Kuo, 2020), and 
length distributions (White et al., 2006), often surpassing 
the accuracy of human experts. 

Machine learning approaches to analyzing fisheries data 
will likely not replace traditional modeling methods. 
In combination, formal modeling and ML may capture 
enough of the complexities and dynamics of ecological 
processes determining catch abundances to provide robust 
advice for sustainable harvest. A trend in augmenting 
the performance of traditional fisheries stock assessment 
and estimation models using ML has been observed 
recently (Pérez-Ortiz et al., 2013; Syed and Weber, 2018; 
Kaemingk et al., 2020; Yang et al., 2020; Chan and Pan, 
2021), attesting to the applicability of ML algorithms to 
fisheries data. With the increasing prospect of automation 
in fisheries data collection, ML techniques may be the 
only feasible approach for data processing and analysis 
as datasets become more complex. Automation, however, 
comes with the cost of transparency, primarily when deep 
learning techniques are used for classification. Because 
decisions based on such analysis most likely will have 
significant ecological, economic, and social impacts, 
explaining the results of ML techniques clearly and 
understandably is a must. Many ML techniques are defined 
as opaque, whereby how results are obtained is not clearly 
understood. Using mechanisms for explaining the results 
of an analysis, as done in this study, must accompany 
any opaque ML technique if the benefits of this new and 
ever-growing analytical alternative are to be fully realized.
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