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Abstract

Discards from commercial fisheries have been linked to detrimental effects on ecosystems and stocks of
living marine resources. Understanding spatial and temporal patterns of discards may assist in devising
regulatory practices and mitigation strategies and promote sustainable management policies. This study
investigates data from bycatch monitoring programs using a machine learning approach. We used a
gradient boosting classifier for describing catch and bycatch patterns in the U.S. Mid-Atlantic Black
Seabass (Centropristis striata), Summer Flounder (Paralichthys dentatus), Scup (Stenotomus chrysops),
and Longfin Squid (Doryteuthis pealeii) fisheries. We used oceanographic, biological, spatial, and
fisheries data as explanatory model features. We found positive associations between target species
volume and bycatch. Although we found that sea surface temperature and year were important model
features, the direction of impact of those predictors was variable. From our findings, we conclude that
machine learning approaches are promising in supplementing traditional methodologies, especially
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with the increase in data availability trends.
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Introduction

The discard of unwanted catch is a long-reported problem
in many fisheries worldwide (Alverson et al., 1994; Davies
et al., 2009; O’Keefe ef al., 2014; Savoca et al., 2020).
Kelleher (2005) estimated that the annual magnitude of
worldwide discarded biomass averaged 7.3 million tons
or around 8% of the total global catch. In that analysis,
Kelleher (2005) reported that demersal finfish trawling had
arelatively low discard rate but contributed substantially
to the total amount of discards worldwide because of its
ubiquity. The impacts of discards are both economic and
ecological.

Direct economic losses of bycatch occur to fishers in two
ways. The first is the cost to fishers when they must handle
and discard unwanted taxa in terms of fuel and manpower
(Alverson et al., 1994). Indirect economic impacts on the
fishers include the costs of onboard observers and efforts
for quota monitoring for bycatch. The cost of global
monitoring, assessment, and management is estimated at
$4.5 billion a year, though it is unclear what proportion of
this cost is attributable to bycatch monitoring (Alverson

et al., 1994). In many fisheries, such as those managed
under catch quota, bycatch magnitude is monitored, and
the discarded, unmarketable living marine resources can
be counted against the allowable quota (Dunn et al., 2014).
Discard of unwanted bycatch is a primary issue in the trawl
fisheries of the mid-Atlantic that target Summer Flounder
(Paralichthys dentatus), Scup (Stenotomus chrysops), and
Black Seabass (Centropristis striata). These fisheries are
managed under a joint management plan that employs
annual and seasonal quotas and trip possession limits for
the commercial fishery (https://www.mafmc.org). Fishers
are penalized when unwanted bycatch reduces the quota
of marketable fish.

In addition to financial costs, incidental bycatch has
ecological impacts. Ecological and ecosystem effects of
bycatch can include diminished biodiversity and altered
community structure (Gilman et al., 2020). Alteration
of the biological components of ecosystems can result
in trophic cascades that deleteriously impact managed
stocks (Scheffer ef al., 2005; Baum and Worm, 2009).
Alternatively, discards may be a source of food subsidy
for seabirds, pelagic fishes, and benthic organisms (Heath
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etal., 2014). Thus, bycatch may have short-term benefits.
Short-term benefits, however, may not translate into
permanent ecological gains.

Incidental catches and discards can occur from a variety of
causes. These include mandated or elective actions taken
by fishers or because of the nature of the non-selective gear
used to target the stock. Discard activity from regulatory
conditions results from fish being below the minimum
landing size or the fisher holding insufficient quota for the
species (Bellido ef al., 2011). In mixed fisheries, such as
the mid-Atlantic trawl fisheries that are regulated through
allocation, fishers may continue to fish when the quota
for some stocks is met (Poos et al., 2010), resulting in
discards. Differences in market conditions may lead to
high-grading or the process of prioritizing (and keeping)
living marine resources of greater value (Batsleer et
al., 2015). Because of the nature of non-selective gear,
discards can occur (Poos et al., 2010).

Monitoring programs have been implemented in many
fisheries to account for discards’ taxonomic richness and
weight. Of these programs, at-sea observer programs are
thought to produce the most accurate data (Suuronen
and Gilman, 2020). Black Seabass, Summer Flounder,
Scup, and Longfin Squid (Doryteuthis pealeii) fisheries
are conducted using various configurations of trawl
gear (Shepherd and Terceiro, 1994; Link et al., 2011).
Onboard observers record the discards in these fisheries
for a subset of fishing trips targeting these stocks, and the
incidentally caught individuals are either kept or discarded
overboard. One of the factors impacting management is
the incidence of unwanted bycatch in these fisheries. Data
from at-sea monitoring are used to produce independent
information about bycatch temporal and spatial patterns
by sector, harvesting gear, and stock area. Fisheries
bycatch information, in turn, is used to support in-season
monitoring, assessment of ecosystem impacts, and single-
species stock assessment.

As the volume of observer bycatch data increases
alternative analytical approaches may be called for to
supplement traditional methodologies. The process we
offer in this paper is one approach, commonly referred to
as machine learning (ML). ML algorithms learn patterns
in data to arrive at predictions (Jordan and Mitchell, 2015).
In this work, using data from the federal observer program,
we investigate the ability of ML to analyze temporal and
spatial patterns in the catch of incidentally caught living
marine resources in a suite of mid-Atlantic fisheries. We
evaluate the observer data collected by NOAA Fisheries
in the federal waters of the northeastern and mid-Atlantic
regions. We describe fishery-specific bycatch patterns for

the Summer Flounder, Scup, Black Seabass, and Longfin
Squid fisheries. We then use these data to understand the
spatial and temporal characteristics that influence bycatch
weight and species richness using machine learning. Our
specific objectives are to (1) describe temporal and spatial
patterns of bycatch in the Scup, Black Sea Bass, Longfin
Squid, and Summer Flounder fisheries, and (2) to use
ML techniques to understand how gear, temporal, spatial,
and environmental characteristics can be used to describe
contrasts in bycatch magnitude and taxonomic richness.

Methods

We used data collected between 1994 and 2020 by
the Northeast Fisheries Science Center Observer-at-
Sea Monitoring Program (OSMP; Northeast Fisheries
Science Center, 2010). The OSMP collects information
from commercial fishing vessel trips of incidental finfish
and invertebrate taxa. These data allow federal stock
and ecosystem assessment personnel to understand the
magnitude of the impacts of a given fishery. Data from
OSMP were anonymized by NOAA Fisheries’ personnel
for confidentiality before distribution to the authors.
Confidentiality was maintained to avoid tracing discarded
data to individual vessels and fishers.

The data collected by OSMP are comprehensive. The
OSMP data relevant to this work include the NOAA
statistical areas designation, the quarter degree square
of the trip, year, quarter of year (January to March, April
to June, July to September, and October to December),
latitude (°N) and longitude (°E) where the first haul began,
bycatch disposition (kept or discarded), cod mesh size
(mm), gear type (one of four types of trawl gear), the
declared (primary, secondary, and tertiary) target stock
of the trip, a code for indicating whether the haul was
observed by the monitoring personnel, an indicator of
whether the species was dressed (processed on board) or
round, and the weight (kg) of each incidentally caught
taxa (Table 1). We worked with NOAA personnel to
anonymize the data to maximize the records available for
analysis. Thus, the data that we analyzed represented a
trade-off between the number of public records and their
spatial and temporal resolution. The resulting temporal
resolution of the data was a quarter of the year, and the
spatial resolution was 0.25° x 0.25° grid squares. The
spatial domain of the data was between latitudes 33.87°
and 43.05° N to longitude 61.04° W (Fig. 1).

We performed data processing on variables, which we term
“features” following ML terminology, and observations
(records) of the OSMP data (Fig. 2). Our initial quality
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control effort was made to remove unidentified, ambiguous
(e.g., scaweed), and inanimate (e.g., wood and rocks)
bycatch records. We then removed observations from
1994 t0 2002, due to suspected inconsistent data collection
protocols for those years, following our initial data
evaluation. We also removed candidate features “gear type”
and “cod mesh size”. We found that the representation of
these features in the data was predominately composed of
a single gear type and cod mesh size (Table 1). Records
with impossibly large weights and those with latitude
and longitude values outside of our spatial domain (e.g.,
those located on land) were also removed. We only used
records of taxa that were discarded and observed. Finally,
we extracted uninformative data columns, including row
identifiers, columns with little contrast, and features with
significant correlations to other features. We used linear
and rank correlations to identify features that exhibited
correlations of 0.90 or greater, keeping only one of the
features in the model.

Following the selection of informative features, we
performed feature engineering to produce additional

predictors (Table 1). All categorical features were one-
hot encoded for conversion into numerical features to
enable model runs (Yang et al., 2019). We defined six
zones corresponding to regions of interest to commercial
fishers in the region. Each zone comprised all OSMP
records from grid squares bounded by latitudinal bands
within the spatial domain of the study area. Latitudinal
zones were “South of the Delamar Peninsula,” “Between
the Delamar Peninsula and Cape May,” “Between Cape
May and Hudson Canyon,” “Between Hudson Canyon and
the southern tip of Long Island,” “Between the southern
tip of Long Island and Martha's Vineyard,” and “North of
Martha's Vineyard” (Fig. 1). We engineered a categorical
feature such that the quarter-degree grid squares were
designated as inshore if the square intersected with any
land and offshore otherwise. We developed quarterly
estimates of sea surface temperature (SST) at the spatial
resolution (0.25° x 0.25° grid squares) of the OSMP
data. Sea surface temperature estimates were obtained
from the ocean-color images available from Moderate
Resolution Imaging Spectroradiometer (MODIS) sensor
(https://modis.gsfc.nasa.gov/data/). Data from this sensor

Table 1. Description of the processed NOAA Northeast Fisheries Science Center Observer and At-Sea Monitoring Program data

analyzed in this work.

Predictor Feature Type Model Usage Description
Spatial Habitat zones One-hot encoded Model predictor Six bands bound by latitude
Inshore True/False Model predictor The grid square of the record
is adjacent to land
NOAA Statistical Area  One-hot encoded Model predictor Five values
Quarter Degree Square  Integer Not used; correlated 120 values
with statistical area
Latitude Decimal Model predictor
Longitude Decimal Model predictor
Temporal Year Integer Model predictor 2003 to 2020
Quarter Integer Model predictor Winter, Fall, Summer, and
Spring
Biological
Bycatch Categorical Not used; only Kept or discarded
disposition disposition ‘discarded’

considered

Fisheries-Related

Declared target species

Cod mesh size

Gear type

One-hot encoded

Decimal

One-hot encoded

Model predictor

Not used; low contrast

Not used, majority of
records belonged to one

gear type

Up to three targets speci-
fied; eight combinations

56, 120, 133, or 151 mm

Fish, Ruhle, Scallop, or
Twin

Oceanographic

Sea Surface Temperature

Decimal

Model predictor

NASA MODIS sensor
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Fig. 1. Spatial domain of study region with quarter degree squares and latitudinal zones (n = 6). The six latitudinal zones are

marked and are “so” (south of the Delamar Peninsula), “dm” (between the Delamar Peninsula and Cape May, New
Jersey), “mh” (Between Cape May and Hudson Canyon), “hl” (between Hudson Canyon and the southern tip of Long
Island), “lm” (between the southern tip of Long Island and Martha's Vineyard), and “no” (north of Martha's Vineyard).

provided an uninterrupted time series of ocean color
images for the duration of the OSMP data. We used
level-3 processed data at 9 km and monthly spatial and
temporal resolutions. These data were used to develop
monthly grid-square (0.25° x 0.25° grid squares) values
of mean SST. Finally, we engineered a feature to represent
the trip's declared target(s). The record included primary,
secondary, and tertiary target species in other trips. The
reported target for the trip was the combination of the
stated target species. In some cases, only a single species
was the declared target.

We developed two features as the responses for analysis.
The first was a binary categorical feature that indicated
if the weight of the bycatch taxa for that trip was greater
than or less than the median of the weight of that bycaught
taxa for all trips. We removed taxa found in a percentage
of records less than 0.5% to develop this feature. We then
log-transformed the weight of each record. The taxonomic
group-specific median of the log-transformed weight was

determined to produce the binary categorical feature. A
one was assigned if the value of the group was greater
or equal to the value of the taxa-specific median, and a
zero otherwise. The full data set was then partitioned by
the declared primary target of the fishing trip: Summer
Flounder, Scup, Black Seabass, or Longfin Squid
(Table 2). The partitioning resulted in four groups of data
for analysis of bycatch weight. The second analysis was
a binary categorical feature that indicated if the richness
(number of taxa) of bycatch for that trip was greater than
or less than the median of the richness for all trips. The
taxonomic group-specific median number of species was
determined, and a one was assigned if the value of the
group was greater or equal to the value of the taxa-specific
median value and a zero otherwise.

We used a gradient-boosting ensemble machine learning
algorithm to classify the categorical outcome features
for bycatch weight and taxonomic richness. Gradient
boosting was used because it captures complex non-linear
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dependencies at a low computational cost, especially for
data with a low signal-to-noise ratio (Friedman, 2001).
Gradient boosting was also used for transparency and ease
of the interpretability of results (Arrieta ez al., 2020). For
model training, a random subset of 70% of data records
was used as a training set, and the remainder was used
for model testing. The best number of boosting trees and
their depths were determined using cross-validation.
The Adaboost loss function was used for the model
optimizer, decision tree stumps were the base learner,
and subsampling was the regularization method. Model
performance evaluation metrics were classification
accuracy, recall, precision, and F1 scores (Natekin and
Knoll, 2013). We evaluated accuracy using a confusion
matrix and provided information to understand how the
frequency of the predicted classification compares to the
frequencies observed in the data. The recall is the ratio of
the frequency of the true positive to the sum of the true
positive’s frequency and the false negative’s frequency.
Recall indicates the proportion of the actual positives the
model correctly identified. Similarly, precision is the ratio
of the frequency of the true positive to the sum of the true
positive’s frequency and the false positive’s frequency.

The precision measurement’s value indicates the model’s
correctness level for those predicted to be positive. The
F1 value is a function combining precision and recall:

_ Precision x Recall
Fl =2 (Precision +Recall /+

The F1 score balances the precision and recall estimates,
correcting for the uneven distribution of observed classes.

Because an ensemble of trees was used as the underlying
algorithm for each model, result transparency can be a
challenge (Du et al., 2019). Two techniques were used
to interpret and understand the classification outcome as
a function of spatial, temporal, and biological features.
We first calculated the feature importance metric.
Measures of feature importance allow an understanding
of how much of the variability in a model is ascribed to
a specific candidate feature. Only features contributing
to predictions in at least 2% of cases were considered.
We used gain to estimate feature importance metric.
This estimates how effective each feature is at improving
accuracy in the prediction. The second approach used in

Fig. 2.
outcome.

[ Filter records (years, Feature engineering \
under-represented (one-hot encode
Raw OSMP data set % species and gears, % categorical columns, define
record with errors, and latitudinal zones, declared
g’ correlated columns) target, and SST)
‘»
3 Add bycatch outcome
8 variable (above or below
i Partition data according / med|ansfo(re;:Sa;rvested
< to bycatch disposition P
©
[a) Add species richness
outcome variable (above '
or below median for a
harvested species)

- J
=
e )
3
g Machine learning
<} L—Jp| classifier of bycatch
b= magnitude \
2 Feature directionality
= evaluation
—
8 Machine learning
= —» classifier of bycatch
?:’ species richness
£
8
N Y,

Model development pipeline from raw OSMP (NOAA Observer and At Sea Monitoring Program) to model final



36 J. Northw. Atl. Fish. Sci., Vol. 54, 2023

Table 2. Incidentally caught species (the percent of total records and the number of records) from the NOAA
Northeast Fisheries Science Center Observer and At Sea Monitoring Program for 2003 to 2020. Only

incidentally caught species that comprise frequencies greater than 5% are shown.

Incidentally Caught Species Vernacular Percent of records  Number
Paralichthys dentatus Summer Flounder 9.58 61435
Doeyteuthis pealeii Longfin Squid 8.00 51348
Stenotomus chrysops Scup 6.65 42 637
Peprilus triacanthus Butterfish 5.68 36 456
Centropristis striata Black Sea Bass 537 34 440
Lophius piscatorius Common Monkfish 5.26 33715
Merluccius bilinearis Silver Hake 4.96 31,836
Hippoglossina oblonga American Fourspot Flounder 3.74 23 967
Squalus acanthias Spiny Dogfish 3.71 23773
Prionotus carolinus Northern Searobin 3.45 22119
Beringraja binoculata Big Skate 331 21225
Urophycis regia Spotted Hake 3.28 21042
Scophthalmus aquosus Windowpane Flounder 2.89 18 551
Prionotus evolans Striped Searobin 2.67 17 143
Mustelus canis Dusky Smooth-hound 2.55 16 337
1llex Illecerosa Northern Shortfin Squid 1.96 12 571
Raja eglanteria Clearnose Skate 1.95 12 481
Pseudopleuronectes americanus Winter Flounder 1.89 12 144
Pomatonus saltatrix Bluefish 1.80 11 560
Homarus americanus American Lobster 1.67 10 684
Urophycis chuss Red Hake 1.59 10 193
Dipturus laevis Barndoor Skate 1.52 9758
Scomber scombrus Atlantic Mackerel 1.16 7421
Libinia emarginata Portly Spider Crab 1.10 7 055
Limulus polyphemus Atlantic Horseshoe Crab 1.02 6531
Results

this study to understand classification outcomes was the
shapley additive explanation method (termed SHAP).
This metric is a theoretic approach to model explainability
(Lundberg and Lee, 2017). We calculated SHAP values
to understand the directionality of feature importance. A
visualization for SHAP values was used as a qualitative
tool to assess feature importance and associated data
influence on model performance. The approach allowed
visualiztion of whether an observation of a feature on
model prediction was high or low (horizontal position
on graph) and the magnitude of that same observation (a
grayscale value for the observation point).

The analysis of bycatch patterns in the Summer Flounder,
Scup, Black Seabass, and Longfin Squid fisheries
indicated that six species of living marine resources were
incidentally caught in more than 5% of the records (see
Table 2). These species were Summer Flounder, Longfin
Squid, Scup, Butterfish (Peprilus triacanthus), Black Sea
Bass, and Common Monkfish (Lophius piscatorius). An
additional 25 species were found in at least 1% of the
records. These were a diverse group of taxa, including
cartilaginous fishes (e.g., Spiny Dogfish, Big Skate,
Dusky Smooth-hound, and Clearnose Skate), crustaceans
(American Lobster and Portly Spider Crab), chelicerate
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arthropods (Atlantic Horseshoe Crab), and bony fishes.
Less than 1% of the taxa accounted for 22.0% of the total
number of records, including crabs, rays, flounders, and
scallops.

The most commonly occurring bycatch in terms of
frequency of records was the same as the declared primary
target of the trip each fishery. The exception was for the
Longfin Squid fishery, in this fishery Butterfish, Spotted
Hake, Windowpane Flounder, and Silver Hake were the
primary bycatch. For all years evaluated, the fisheries
targeting Summer Flounder had the largest discards
(1 539.1 MT), followed by fisheries for Longfin Squid
(1 189.7 MT), Scup (498.9 MT), and Black Sea Bass
(312.0 MT; Table 3). For all four fisheries, discards
followed a species-specific pattern. For the Summer
Flounder, Sea Bass, and Scup fisheries, spiny dogfish
(Squalus acanthias) comprised the majority of discards
and were present in each. Spotted Hake (Urophycis regia)
is a dominant bycatch species for the Longfin Squid
fishery. The greatest number of incidentally caught taxa
in greater than 5% of records were found in the Summer
Flounder fishery, with seven, and the smallest in the
Longfin Squid fishery, with four. The directed fisheries
for the Black Seabass and Scup fisheries exhibited six
taxa each in greater than 5% of the records. Species of
non-commercial interest commonly occurred in each
fishery examined included skates, sea robins, and flatfishes
(Table 3).

Model accuracies were generally consistent for each
fishery, and there were no discrepancies between accuracy
and the other performance metrics. Model classification
accuracy was greatest for the Summer Flounder fishery
(0.73), and recall was largest for the Longfin Squid fishery
(0.75) for the above median classification of bycatch
weight. The model performance metrics were consistently
greater for taxonomic richness classification than for
bycatch weight classification in each of the four fisheries
(Table 4). The number of model features was greatest for
Longfin Squid (n = 269), followed by Summer Flounder
(n = 263) for the bycatch classification model. The data
set for the classification model of taxonomic richness had
the fewest number of records (10 084) and the fewest
number of features (n = 82).

Different spatial, temporal, biological, and fishery
features were identified as important in classifying the
magnitude of taxa-specific bycatch in the four fisheries
examined. Across all models, the oceanographic feature
sea surface temperature and the temporal feature year
were the most important factors in classifying the
median weight of bycatch (Figs. 3 to 6). Among the

spatial features, longitude was ranked among the top
four important features in all models, while latitude
was present but ranked lower in importance. The spatial
features “inshore” and “Area Southern Massachusetts”
were only significant in predicting the median weight
of bycatch for the Longfin Squid fishery model (Fig. 6).
The biological features important in classifying bycatch
magnitude in the Summer Flounder fishery included
the presence or absence of cartilaginous fishes such as
Clearnose Skate, Barndoor Skate, and Winter Skate as well
as Spiny Dogfish (Fig. 3 to 6). The presence or absence of
Spiny Dogfish was also important in classifying bycatch
in the Black Seabass and Scup models (Figs. 4 and 5).
In the Black Seabass classification model, three fishery
features reflecting the absence of a secondary declared
target species (ranked sixth), a declared secondary target
of Southern Flounder (ranked eighth), and a declared
secondary target of Scup (ranked ninth) were found to be
important (Fig. 4A).

The SHAP analysis was informative for some features but
less informative for others. Although we observed that
the feature sea surface temperature consistently ranked
as the most important feature in all classification models,
our SHAP analysis did not indicate a clear pattern in its
direction of influence on the model outcome. High and low
sea surface temperature values had positive and negative
impacts on the predicted outcome. Conversely, the
biological features representing specific bycatch species
negatively influenced the model outcome, implying a
tendency for the model to predict below median bycatch
weight if these taxa were also present on the trip. We
observed that only a few high observations exerted a
highly positive influence. For each fishery’s bycatch
classification model, the SHAP values for the temporal
feature year indicated that more recent years positively
impacted the model outcome (Figs. 3 to 6 and 8). For
Black Seabass and Scup bycatch classification models,
records with more recent years were classified as having
greater than median bycatch. We found that the feature
quarter of the year negatively influenced the predicted
outcome, where greater than median bycatch weights were
observed early in the year. Among the spatial features, the
SHAP values for the feature longitude indicated a negative
impact on the model outcome for feature values, with
greater bycatch magnitudes occurring in the eastern parts
of'the geographic domain. For the feature longitude, SHAP
values indicated that more easterly values tended to have
positive impacts (greater than median bycatch weight)
on the model outcome for Black Seabass and Scup. Scup
and Longfin Squid’s feature longitude indicated that the
geographic domain’s eastern regions had reduced bycatch.
Features reflecting inshore fishing locations and fishing
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in Southern Massachusetts negatively impacted bycatch
in the Longfin Squid classification model. Scup was the
only model in which the presence of its species (Scup)
was an important biological feature representing bycatch
(Figs. 4 to 6).

The relationship between the number of records from
a square grid location and taxonomic richness showed

a positive, non-linear trend (Fig. 7A). The maximum
taxonomic richness observed was 192 taxa, with a median
of 75 and a minimum of 5 taxa. The highest richness was
found in quarter-degree grid squares located offshore in
the southern part of the study area, ranging from 37 to
41° N and -76 to 70° W (Fig. 7B). Conversely, the lowest
richness was observed north and south of this region. For
the model predicting taxonomic richness, sea surface

Table 3. Fishery-specific patterns of bycatch in the northeastern and mid-Atlantic finfish fisheries from the NOAA Northeast Fisher-
ies Science Center Observer and At Sea Monitoring Program for 2003 to 2020. Percent of records is the number of trips
five percent or greater of positive occurences of the species. Discards are the sum of biomass in metric tons of incidentally

caught species.

Primary target of Percent of
the trip Incidentally Caught Species Common Name Records Discarded
Black Seabass Centropristis striata Black Sea Bass 10.98 56.8
Prionotus evolans Striped Sea Robin 9.17 41.5
Squalus acanthias Spiny Dogfish 9.12 95.8
Prionotus carolinus Northern Sea Robin 8.4 41.8
Stenotomus chrysops Scup 8.37 355
Paralichthys dentatus Summer Flounder 6.81 26.6
Lophius piscatorius Common Monkfish 5.19 14
Total 58.04 312.0
Summer Flounder Paralichthys dentatus Summer Flounder 8.08 159.9
Prionotus carolinus Northern Sea Robin 6.61 212.9
Beringraja binoculata Fourspot Flounder 6.13 99.6
Raja eglanteria Windowpane Flounder 5.89 130.7
Prionotus evolans Striped Sea Robin 5.65 123.3
Squalus acanthias Spiny Dogfish 5.5 327.7
Lophius piscatorius Common Monkfish 543 166.9
Dipturus laevis Clearnose Skate 5.36 318.1
Total 48.65 1539.1
Scup Stenotomus chrysops Scup 10.48 135.5
Centropristis striata Black Sea Bass 8.17 69.8
Paralichthys dentatus Summer Flounder 7.26 58.0
Squalus acanthias Spiny Dogfish 7.03 137.3
Prionotus carolinus Northern Sea Robin 6.02 48.6
Prionotus evolans Striped Sea Robin 5.5 29.4
Hippoglossina oblonga Fourspot Flounder 5.03 20.3
Total 49.49 498.9
Longfin Squid Peprilus triacanthus Butterfish 8.01 3353
Urophycis regia Spotted Hake 591 404.8
Hippoglossina oblonga Windowpane Flounder 5.71 155.8
Merluccius bilinearis Silver Hake 5.54 293.8
Total 25.17 1189.7
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Table 4. Model performance metrics showing precision, recall, and F1-ratio for the label above/below the mediar
bycatch weight classification models (the primary targets of the trip) in the northeast and mid-Atlantic tr
last row in the table presents the performance metrics of the machine learning model to classify taxonc

The primary target of = Number of Number of

the trip records features Accuracy Precision Recall
Black Sea Bass 18 643 123 0.70 0.69/0.70 0.65/0.74
Summer Flounder 141 300 263 0.73 0.72/0.74 0.72/0.74
Scup 35871 200 0.68 0.66/0.71 0.66/0.70
Longfin Squid 203 809 269 0.71 0.71/0.71 0.75/0.67
Taxonomic richness 10 084 82 0.78 0.78/0.78 0.77/0.79

temperature and year were consistently the most important
features, indicating a trend of increasing richness in recent
years (Fig. 8A). Longitude and latitude also played a role
in the model, with richness increasing to the east and
north (Fig. 8B). Additionally, the Longfin Squid bycatch
feature had a positive influence on the model outcome,
with increasing values of this feature leading to higher
median richness.

Discussion

In this study, we examined the bycatch composition in
four commercial fisheries in the northeastern U.S. We
employed machine learning classification models to gain
insights into the spatial, temporal, biological, and fishery
characteristics that describe contrasts in fishery-specific
bycatch magnitude and the richness of bycatch. Our
primary findings indicate that six species each accounted
for at least 5% of the records, including each targeted
species. The observed bycatch magnitude for the four
fisheries ranged from 312 to 1 539 mt over the 17-year
data duration. We found that the binary classification
accuracies of the models were only moderate, never
exceeding 80% classification accuracy. All classification
models consistently showed that the oceanographic feature
sea surface temperature and the temporal feature year are
important in determining model performance. Feature
importance, however, does not provide an indication of
the direction of the response. The SHAP analysis indicated
little consistent pattern in the value of the response. The
findings of this study show the promise and challenges of
using ML approaches for describing contrasts in bycatch
abundance and taxonomic richness for mobile gear
fisheries in the mid-Atlantic. The benefits of using an ML
approach in this case is that we do not need to rely on a
priori models to describe the phenomena to be studied.
ML approaches are “model agnostic”.

The contrast in the features that detect the importance of
bycatch magnitude reflects differences in the nature of
each of the fish stocks. The feature importance analysis
for the Scup model indicated that the presence of Scup was
an important biological feature that predicts bycatch. This
finding implies that Scup catch has a very large component
of discarded Scup. This is a well-documented concern
in the mid-Atlantic and has necessitated management
intervention. Indeed, gear restrictions and time-area
closures have been implemented in the mid-Atlantic to
reduce discarding Scup below the minimum legal size
limit (Powell et al., 2004). In addition, for the classification
of bycatch in the Scup fishery, the SHAP values of the
category shark (a multi-taxa feature that includes all
elasmobranchs) showed a positive impact, and Longfin
Squid, a negative association with the above-median
bycatch weight class. A co-occurrence of sharks and Scup,
together with distinct habitat segregation with Longfin
Squid, might be expected for Scup. The classification
model of discard bycatch for the Black Seabass fishery
was positively associated with the shark and sea robin
species categories and negatively with the Longfin Squid
category. Records of Black Seabass discard weight greater
than the median were associated with bycatch of species
from the shark, sea robin, and Longfin Squid categories,
potentially reflecting Black Seabass co-occurrence with
the latter two fish species. The co-occurrence of Black
Sea Bass and sharks may be trophically related. The
Northeast Fisheries Science Center (NEFSC) food habits
database lists spiny dogfish (Squalus acanthias), Atlantic
angel shark (Squatina dumeril), and a variety of skates
as predators of Black Sea Bass (Steimle et al., 1999).
Greater biomass of discarded Summer Flounder as bycatch
was accompanied by lower catches of Longfin Squid,
hakes, and Scup. A possible explanation for the negative
association is interactions between gear selectivity
and seasonal changes in species distribution leading to
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separation in the distribution of demersal fish (Shepherd
and Terceiro, 1994; Gabriel, 1996; Link et al., 2002).
Small-scale changes in habitat use within an area and
season have been reported for Scup and Summer Flounder,
where one species inhabits sandy bottoms and the other
occupies complex hard bottom habitats (Shepherd and
Terceiro, 1994). Such patterns of occurrence and habitat
preferences may account for the observed associations
in the Summer Flounder observations. In the analysis of
bycatch in the Longfin Squid fishery, only the category
Longfin Squid was negatively associated with the above-

median bycatch class. Discards of Longfin Squid in that
fishery indicate that the harvest of small or unmarketable
Longfin Squid is responsible for this pattern. We note that
of the fishery-related predictors, only the declared target
species (or combination of species) if a secondary and or
tertiary species were reported. Due to the constraints of the
data available to the authors, it was not possible to analyze
the impacts of cod mesh size and gear type.

We found some patterns in species richness observed
from the bycatch analysis. Primarily, we saw an increase
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Summer Flounder.
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in richness from 2018 onwards. Alternatively, low species
richness was associated with longitude toward the western
areas and offshore habitats in the spatial domain of the
study. This latter was expected, as offshore habitats
may offer less habitat complexity and species richness
than habitats closest to shore. Features reflecting spatial
distribution were not always intuitive. For the species
richness classification model, an increase in richness is
predicted easterly, and north in the study domain was
counter-intuitive. One explanation for this result might

be that interactions between gear selectivity and seasonal
changes in species distribution lead to the segregation of
species-specific populations of demersal fish (Shepherd
and Terceiro, 1994; Gabriel, 1996; Link et al., 2002).

SHAP values for each feature are presented to elucidate the
relationship between feature magnitude and directionality
on the outcome of regression tree models (Lundberg
and Lee, 2017). Although important features in most
models, sea surface temperature and year were suggestive
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of uncertain influence on directionality. This was an
unexpected result. The feature engineering that we
performed, to include sea surface temperature was
done because we hypothesized that contrasts in bycatch
magnitude could be described by this feature. That the
SHAP analsyis indicated no consistency in the direction
of this feature means that the feature was represented
many times in the classification tree but that the predicted
effect was contingent not on high and low values of sea
surface temperatures. Instead, small increments in sea

Feature importance (A) and SHAP values (B) for the classification of taxa-specific weight categories for primary target

surface temperature lead to predictions of higher and lower
than the median of bycatch weight. Similarly, the feature
year may be considered a proxy for various interactive
biological and abiotic processes. Like sea surface
temperature, individual year values lead to processes that
both increase or decrease taxa-specific bycatch magnitude.
Conversely, although not as important for classification,
biological features did indicate some direction of response.
For example, features reflecting bycatch species were
largely positive in their directionality, implying an
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expectation of a positive relationship between the targeted
species’ weight and the weight of associated bycatch. The
challenge is to make these associations actionable in a
management context. Evaluation of bycatch composition
of observer data in a multivariate framework could lead
to insights into patterns of community composition of
bycatch. That the spatial features “inshore” and “Area
Southern Massachusetts” were a significant feature in
predicting the median weight of bycatch for the Longfin
Squid fishery model is more actionable.

The findings of this study point to the promise of using
ML approaches for describing contrasts in bycatch data
for fisheries in the mid-Atlantic using abundance and
taxonomic richness metrics. The results of this study
indicate that ML alternatives may successfully supplement
traditional analytical approaches to fisheries research.
Results from ML model runs captured generally expected
patterns in the harvest according to target species. Given
the inherent uncertainty associated with fisheries data,
these results encourage adopting ML techniques to the
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field. However, adopting ML into the fisheries field must
be done carefully, always with the analytical objective
in mind. Adopting ML techniques blindly, without
consideration of method explainability, may be a fruitful
approach if classification is the only goal. ML techniques
are best used in conjunction with traditional statistical
analyses. These hypothesis-driven approaches allow
model explanations.

Even with the encouraging results from the gradient-
boosting ML approach used in this study, suggestions

for further improvements may be offered. Fine-grained
vessel positioning may aid fisheries management
decisions by better classifying movement patterns
into activities associated with fishing and non-fishing
practices. A limitation of this study rests on the high level
of data aggregation provided by the onboard observation
program. With less aggregation, data at trip levels, for
example, more fine-grained, robust results would be
possible, and better estimates of the effects of biological
features could have been provided. Another limitation of
complex resolution is observer coverage. Due to the high
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costs associated with observer programs, the spatial and
temporal range may be insufficient to detect fine-grained
results necessary for optimal fisheries management.
Model quality of machine learning is contingent on data
availability.

Additional benefits from this study may be achieved
from an undertaking aimed at the automation of bycatch
estimates, especially concerning the limitations above of
observer coverage. With the advent of affordable, off-the-
shelf global positioning devices, detailed information on
the spatial dynamics of fishing efforts may be accurately
estimated with classifiers as used in this study for small-
and large-scale fisheries worldwide. Moreover, equipping
vessels with cameras may also assist in assessing bycatch
amounts. Camera images may be readily analyzed with
computer vision approaches, such as deep learning
algorithms (LeCun ef al., 2015), to automate data
collection, allowing for widespread coverage of bycatch
data (Khokher et al., 2021). Computer vision has been
successfully used in fish identification (Ditria et al., 2020),
estimation of fish abundance (Tseng and Kuo, 2020), and
length distributions (White ef al., 2006), often surpassing
the accuracy of human experts.

Machine learning approaches to analyzing fisheries data
will likely not replace traditional modeling methods.
In combination, formal modeling and ML may capture
enough of the complexities and dynamics of ecological
processes determining catch abundances to provide robust
advice for sustainable harvest. A trend in augmenting
the performance of traditional fisheries stock assessment
and estimation models using ML has been observed
recently (Pérez-Ortiz ef al., 2013; Syed and Weber, 2018;
Kaemingk et al., 2020; Yang et al., 2020; Chan and Pan,
2021), attesting to the applicability of ML algorithms to
fisheries data. With the increasing prospect of automation
in fisheries data collection, ML techniques may be the
only feasible approach for data processing and analysis
as datasets become more complex. Automation, however,
comes with the cost of transparency, primarily when deep
learning techniques are used for classification. Because
decisions based on such analysis most likely will have
significant ecological, economic, and social impacts,
explaining the results of ML techniques clearly and
understandably is a must. Many ML techniques are defined
as opaque, whereby how results are obtained is not clearly
understood. Using mechanisms for explaining the results
of an analysis, as done in this study, must accompany
any opaque ML technique if the benefits of this new and
ever-growing analytical alternative are to be fully realized.
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