
MirrorNet: A TEE-Friendly Framework for Secure
On-device DNN Inference

Ziyu Liu, Yukui Luo, Shijin Duan, Tong Zhou, and Xiaolin Xu
Northeastern University, Boston, MA, USA

{liu.ziyu4, luo.yuk, duan.s, zhou.tong1, x.xu}@northeastern.edu

Abstract—Deep neural network (DNN) models have become

prevalent in edge devices for real-time inference. However, they

are vulnerable to model extraction attacks and require protection.

Existing defense approaches either fail to fully safeguard model

confidentiality or result in significant latency issues. To overcome

these challenges, this paper presents MirrorNet, which leverages

Trusted Execution Environment (TEE) to enable secure on-device

DNN inference. It generates a TEE-friendly implementation

for any given DNN model to protect the model confidentiality,

while meeting the stringent computation and storage constraints

of TEE. The framework consists of two key components: the

backbone model (BackboneNet), which is stored in the normal

world but achieves lower inference accuracy, and the Companion

Partial Monitor (CPM), a lightweight mirrored branch stored

in the secure world, preserving model confidentiality. During

inference, the CPM monitors the intermediate results from the

BackboneNet and rectifies the classification output to achieve

higher accuracy. To enhance flexibility, MirrorNet incorporates

two modules: the CPM Strategy Generator, which generates

various protection strategies, and the Performance Emulator,

which estimates the performance of each strategy and selects

the most optimal one. Extensive experiments demonstrate the

effectiveness of MirrorNet in providing security guarantees

while maintaining low computation latency, making MirrorNet

a practical and promising solution for secure on-device DNN

inference. For the evaluation, MirrorNet can achieve a 18.6%

accuracy gap between authenticated and illegal use, while only

introducing 0.99% hardware overhead.

Index Terms—Machine Learning, Security, Trusted Execution

Environment

I. INTRODUCTION

Deep neural networks (DNN) are designed to automatically
learn the complex pattern and feature representation of the
input data, which has been successfully used for various
applications, like facial recognition [1], autonomic driving [2],
and health care monitoring [3]. However, given concern about
the data privacy, many users of the DNN model prefer not
to share their private data with the online server. As a result,
there is a growing trend in implementing DNN models on
edge devices [4]. By deploying DNN models directly on edge
devices, such as smartphones, the model inference can be
performed locally to protect user privacy, since most sensitive
data remains in device. Moreover, DNN inference on edge can
achieve lower latency compared to cloud computing.

Despite its encouraging performance, deploying high-
performance DNN models on edge devices is vulnerable to
model extraction [5]. Specifically, attackers can extract the
model architecture and weights, then transplant it to the

TABLE I: The comparison with previous works

Privacy Latency Flexibility Accuracy
DarkneTZ [8]
eNNclave [9]
Confidential DL [10]
ShadowNet [11]
MirrorNet (ours)

Not covered; Covered; Partially covered

unauthorized device without claiming ownership or paying the
patent fee. However, training a high-performance DNN model
requires a large number of labeled data and substantial com-
putational resources [6]. Therefore, these high-performance
models are the intellectual property (IP) of the model owners
and should be well-protected [7].

Several methods have been proposed for model protection,
such as watermarking [12], non-transferable learning [13], and
obfuscation [14]. Among the existing methods, we believe
that Trusted Execution Environment (TEE)-based solutions
are particularly well-suited for safeguarding DNN models on
edge devices. TEE is commonly available in modern edge
devices, such as ARM processors, and refers to an area (secure
world) inside the main processor of the device that is separated
from the system’s main operating system (normal world). TEE
ensures the confidentiality and integrity of data processing,
making it a widely utilized technology for user authentication
and key management on edge devices [15]. However, fully
deploying DNN models inside TEE to achieve model protec-
tion is impractical, due to their increasing model size and the
limited computational resources and storage memory within
TEEs. For example, the Raspberry Pi 3B with ARM Cortex-
A chip offers a maximum of 16MB memory for the TEE [16],
which is incompatible with the state-of-the-art DNN models,
e.g., over 100MB for ResNet-101 [17].

Although several previous works employed TEE to secure
the DNN inference by uploading certain layers to TEE [8] or
introducing extra masking and linear transformation in TEE
between the execution of layers [11], these methods either
cannot fully protect the model or incur a large overhead, as
summarized in Tab.I and detailed in Sec. II-C. More impor-
tantly, all these existing methods fail to address a significant
vulnerability associated with layer-wise dependency in DNN
computation. For example, if the first layer is executed in the
secure world and the second in the normal world, the interme-
diate feature maps might be leaked during the communication,

20
23

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

om
pu

te
r A

id
ed

 D
es

ig
n

(IC
CA

D)
 |

 9
79

-8
-3

50
3-

22
25

-5
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IC

CA
D5

73
90

.2
02

3.
10

32
37

46

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:18:40 UTC from IEEE Xplore. Restrictions apply.

and the attacker could retrain the model with less effort. i.e.,
merely isolating a few layers within the secure world of TEE
does not provide sufficient protection for maintaining model
confidentiality (see results in Sec. III-A).

To overcome these design challenges, we propose a frame-
work, namely MirrorNet, which aims to protect the function-
ality of the input DNN model by generating a TEE-friendly
deployment for the given model. Additionally, it addresses
the vulnerability of model extraction attacks by limiting at-
tackers to only extract a poorly performing model. We take
the architecture of the input DNN model as a backbone
network, which is deployed in the normal world. Besides, we
develop a lightweight mirror network based on the backbone
network, namely Companion Partial Monitor (CPM), which is
connected with the backbone but stored in the secure world.
Through model training, we enable the entire model to achieve
high accuracy, while intentionally degrading the accuracy of
the backbone model in the normal world. For clarity and
conciseness, we refer to both our framework and the combined
model as MirrorNet. In summary, MirrorNet addresses the vul-
nerability of model extraction by safeguarding the lightweight
mirror network within secure world. This lightweight network
is designed to meet the computational and storage limitations
of the TEE. It serves as a crucial component of the entire
model, enabling authorized users to perform high-performance
inference in conjunction with the backbone network.

The contributions of this work are summarized as follows:
• We identify and validate a neglected vulnerability in the

existing DNN model protection methods, see Sec. III-A.
For the first time, we take the re-training vulnerability into
consideration in developing a TEE-friendly framework
MirrorNet, for secure DNN inference on edge devices.

• We leverage the layer-wise and channel-wise dependency
of DNN models to generate a mirrored network architec-
ture named Companion Partial Monitor (CPM) for a given
victim DNN model. As a lightweight network, CPM
can be deployed in the limited secure memory of TEE
but determines the performance of the overall inference.
MirrorNet can be optimized with arbitrary strategies and
can even be integrated with other purpose training.

• We explore numbers of potential mirrored model archi-
tectures and equip the MirrorNet framework with two
components, namely CPM Strategy Generator and Per-
formance Emulator, to selectively generate the optimal
protection scheme.

• By deploying MirrorNet on a Raspberry Pi 3 Model B
board, we validate its performance with input networks
including LeNet-5 [18] and VGG networks [19]. We also
train models on three datasets for inference, including
MNIST [20], FashionMNIST [21], and CIFAR-10 [22],
to evaluate the security level of our method. Experimental
results demonstrate that our proposed MirrorNet frame-
work achieves comparable accuracy to the input networks
with low hardware overhead, e.g., 0.99% for VGG-7. On
the other hand, illegal model extraction from the normal
world can only obtain a compromised model, with an

Model provider Model
extraction

Attack

Attacker

Fig. 1: The illustration of our threat model.

accuracy gap as high as 18.6%.

II. BACKGROUND AND RELATED WORK

A. Threat Model
In our thread model, as shown in Fig. 1, we focus on real-

time scenarios when executing security-sensitive applications,
such as a self-driving system or an AI system used for face
recognition. We assume a “knowledgeable” attacker whose
object is to extract a well-performed model. The attacker
can directly acquire sensitive information like the model
architecture and weights of a DNN model in the normal world,
or correctly infer them from some approaches, such as side-
channels [23]. Besides, we assume the secure world, i.e., the
TEE, is isolated and remains as a black box for the attackers,
who are not able to infer the computation performed inside
the secure world. Yet, the attacker can figure out when the
secure world computation is invoked and monitor the data
communication between the secure world and the normal
world through the shared buffers. Since we focus on the model
confidentiality issue during the usage of the TEE-friendly
secured model, we assume our MirrorNet framework is trained
offline and the normal world + secure world implementation
is only conducted for the model inference procedure.

B. Trusted Execution Environment (TEE)
TEE is a secure area within a processor that provides a

secure environment for executing code and processing data,
guaranteeing confidentiality and integrity inside [24]. It helps
isolate sensitive operations from the rest of the device and
protect it from potential attackers or malware. Taking the ARM
TrustZone as an example, it creates two virtual environments,
namely Normal World and Secure World. The normal world
is the normal operating environment for most applications.
Differently, the secure world has its own isolated memory
and peripherals, and provides an environment for running
trusted applications with the help of security mechanisms.
Although there are some security issues challenging the TEE
execution, such as TrustZone [25], it is still the cornerstone of
modern secure applications. Moreover, researchers have been
dedicated to implementing DNN with the TEE because of its
protection of confidentiality and integrity in recent years [10].

C. Related Works on DNN Protection
The DNN model execution on CPU has been proven vulner-

able to information leakages, such as training data and model
parameters [26]. In this context, one prominent concern is the
model extraction attack, in which the attacker aims to duplicate
or “steal” the DNN model through different approaches, such

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:18:40 UTC from IEEE Xplore. Restrictions apply.

as shadow training [27], constructing meta-models [28], and
exploiting memory and timing side-channels [29].

Recent efforts have attempted to utilize TEE for securing
DNN inference. However, the limited computation resources
and memory in TEE make the implementation rather chal-
lenging. DarknetZ [8] partitions the model and put the last
few dense layers inside TEE. However, the convolution layers
of the victim model are still running in the normal world
in plaintext format, presenting a vulnerability. Similarly, an-
other work eNNclave [9] uses a few pre-trained and publicly
available convolution layers as the feature extractor in the
normal world and a followed user-defined dense layer as
the classifier in TEE. However, it suffers from performance
loss since the parameters of the feature extractor are fixed
during retraining. Another approach is to protect the whole
model with sequential executions. For instance, one work
divides the model into partitions and executes each separately
inside TEE [10], which causes an extremely long execution
time. ShadowNet obfuscates the weights by masking them
with linear transformations [11]. However, the transformation
is insecure against “strong” attacker who can monitor the
memory access pattern and extract the pattern of weights [30].

III. CHALLENGES OF DNN PROTECTION WITH TEE
A. Inadequate Confidentiality Protection Against Retraining

In previous works like DarknetZ [8] and eNNclave [9],
although the last few dense layers are protected inside the TEE,
the architecture, and parameters of the previous convolution
layers are exposed to the attacker in plaintext format. In this
situation, an experienced attacker can easily retrain the model
with high accuracy and break the protection schemes. To be
more specific, the attacker can freeze the previous convolution
layers which are exactly part of the high-accuracy model,
and randomly initializes or customizes a dense layer that is
unknown to the attacker. The retraining process will take
less effort since the intermediate result after the convolution
layers are totally correct. A few more computations are needed
to obtain the final prediction result. In order to verify this
vulnerability, we trained a LeNet-5 model on the CIAFR-10
dataset for image classification and remove the final dense
layer. The result shows that even with random initialization for
weights parameter inside the final dense layer, the extracted
model was able to be recovered to its original accuracy within
just 20 epochs using 1% of the dataset.

B. Large Hardware Overhead for TEE-assisted Protection
The DNN model typically consists of multiple layers and

they are arranged in a sequential manner. During inference,
the input data is passed through the model layer by layer and
the model forward propagates the result until the final output
layer. Previous methods try to split the whole architecture into
different parts and run some of them inside TEE. However,
computation resources are limited inside the TEE and the
operation in the TEE runs orders of magnitude slower than in
the normal world [31]. For the example in ShadowNet [11],
the TEE-assisted model inference time for one image can be

ranging from tens to thousands of milliseconds, in terms of
different models, and the memory requirement in TEE ranges
from several to tens of MegaBytes. This is highly inefficient
for resource-limited edge devices.

C. Other Challenges

The layer-wise feature of a DNN model determines that
when leveraging TEE to protect some intermediate layers,
the communication between the normal world and the secure
world is bidirectional, i.e., the input to the layer in the TEE will
return the output to the normal world for further computation.
Thus, the intermediate result will be exposed to the attacker
who can monitor everything in the normal world, favoring
an attacker to infer the function inside the TEE. Accordingly,
ShadowNet [11] adds a mask and linear transformation before
sending the intermediate result back to the normal world,
which however, increases the computation complexity and
data transmission overhead. More severely, the lightweight
encryption and masking are prone to be broken [32].

Regarding the limitations of previous works, a good frame-
work should comprehensively protect the model confiden-
tiality so that the attacker can not extract and transplant
the model for unauthorized usage. At the same time, the
model protection scheme in the network should not sacrifice
the model performance for the legitimate user. The latency
overhead should be low for a real-time system and provide
a good user experience. Furthermore, the network needs to
be generalization which means that it can provide protection
for different kinds of model architecture. In this work, we
overcome these challenges by proposing MirrorNet framework
that can adequately address the aforementioned limitations.

IV. PROPOSED METHOD: MIRRORNET

This section presents MirrorNet, which transforms an input
DNN model (e.g., in Fig. 2) into its TEE-friendly counterpart.
Specifically, MirrorNet can achieve a comparable or even
better performance, while protecting model’s confidentiality.

A. Preliminaries of DNN Model Architecture

A representative DNN model is composed of multiple
interconnected layers, in which the convolutional layer and
dense layer are the two most common layers. Taking the
2D convolution layer as an example, it is defined by input
channels (IC), output channels (OC), kernel size (K), input
feature size (FI), and output feature size (FO). For ease
of clarification, we assume the feature maps are square-
shaped, i.e., the input/output feature map is (FI ⇥ FI) /
(FO ⇥ FO), while other shapes such as rectangular are free
to be extended to. Specifically, we define a Conv2D layer as
[IC,OC,K, FI, FO]. Similarly, the dense layer is defined as
[IC,OC], indicating its input and output feature dimensions.

B. MirrorNet: Overview

We demonstrate the entire workflow of our MirrorNet
framework on an edge device in Fig. 2. First of all, the
user (e.g., model provider) selects or possesses an input

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:18:40 UTC from IEEE Xplore. Restrictions apply.

Input Network

Model
Provider

Training Process

Deployment

Training
𝑝%

MirrorNet Framework

Hyperparameter
extraction

IC OC K FI FO

3 16 3 32 16

16 32 3 16 8

32 32 3 8 4

512 128

128 10

e.g.

Companion Partial Monitor (CPM)

IC OC K FI FO

𝐶 𝐶 3 32 16

𝐶 𝐶 3 16 8

𝐶 𝐶 3 8 4

𝐶𝑙 𝐶𝑙
𝐶𝑙 10

Construct the MirrorNet

𝑝%
∆𝑝

CPM strategy generator:
𝑪 and 𝑪𝒍are configurable

Performance Emulator:
Depending on pre-profiling

data and security level.

Normal World

Secure World

Fig. 2: The overview of MirrorNet. The model provider selects an input network for the BackboneNet architecture and generates
the corresponding CPM. CPM has the same layer type as BackboneNet but with a smaller size. MirrorNet is the integration
of BackboneNet and CPM. CPM design is generated by a Strategy Generator and evaluated by a Performance Emulator to
help the model provider decide if the current design is appropriate for inference performance and hardware deployment. The
trained MirrorNet is deployed on hardware where BackboneNet is in the normal world and CPM is in the secure world.

network that needs to be protected, so MirrorNet generates a
BackboneNet with the same architecture as the input network.
Then, MirrorNet builds a mirrored model architecture called
Companion Partial Monitor (CPM). Here, the “companion
partial” denotes that each layer inside the CPM has the same
layer type as the corresponding layer in the BackboneNet, but
with fewer parameters. For example, for a Conv2D layer in
BackboneNet with size [3, 64, 5, 32, 28], its CPM counterpart
can be a Conv2D layer with size [1, 1, 5, 32, 28]. In other
words, the CPM is a scaled-down version (especially channel-
wise) of the BackboneNet, and its lightweight property well
fits the memory constraints inside the TEE. We denote the
integration of BackboneNet and CPM as MirrorNet, as il-
lustrated in Fig. 2. Subsequently, MirrorNet will be trained
from scratch. Rather than initializing the BackboneNet with
pre-trained parameters (if publicly any), randomly initializing
the BackboneNet is supposed to emphasize the importance of
CPM more during the MirrorNet training.

With a well-trained MirrorNet, the model owner will decide
if the current CPM design satisfies design requirements, from
both performance (e.g., inference latency, model size, etc.) and
security (i.e., accuracy gap between BackboneNet and Mirror-
Net, �p as illustrated in Fig. 2). Since there are numerous
possible CPM configurations for a BackboneNet, it is less
feasible for the user to train them all and find the optimal
one. To mitigate this concern, we develop two components
for the framework, namely “CPM Strategy Generator” and
“Performance Emulator”. As indicated by their names, these
two components can estimate the security of a MirrorNet and
its hardware overhead without practical deployment.

C. Construction of MirrorNet

MirrorNet combines BackboneNet and CPM to execute
inference, in which we take BackboneNet as the mainstay and
CPM as the auxiliary, and design a feedforward route. Each
layer’s output of BackboneNet will go into the next layers of
both BackboneNet and CPM, while the layer output of CPM
will only be fed into the next CPM layer, i.e., there is no
feedback from CPM to BackboneNet. Taking the first layer as
an example, the input enters BackboneNet, after which part of
the output is sent to the first layer in CPM as the input. Note
that there is no layer in CPM corresponding to the first layer of

Note:
Conv2D [IC, OC, K, IF, OF]
FC[IC, OC]

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5 10 15 20

TEELeNet5_v1
LeNet5

Conv2D
[6, 16, 5, 12, 4]

ReLU
MaxPool

Reshape
[4*4*16 = 256]

FC
[256, 120]

ReLU

FC
[120, 84]

ReLU

FC
[84, 10]

ReLU

Conv2D
[2, 2, 5, 12, 4]

ReLU
MaxPool

Reshape
[4*4*2 = 32]

FC
[32, 32]

ReLU

FC
[32, 32]

ReLU

FC
[32, 10]

ReLU

MirrorNet
output

BackboneNet
output

Conv2D
[1, 6, 5, 28, 12]

ReLU
MaxPool

𝐶 = 2

𝐶 = 2

𝐶𝑙 = 32

𝐶𝑙 = 32

𝐶𝑙 = 10

MirrorNet

BackboneNet

∆𝑝 ≈ 30%

Secure WorldNormal World

Training
Epoch

Ac
cu

ra
cy

Fig. 3: MirrorNet example for LeNet-5.

BackboneNet, but the first layer in CPM aligns with the second
layer in BackboneNet. In the separate use of BackboneNet,
its output, namely logits, will be passed through the argmax
function to derive the predicted label for the current input
query. In MirrorNet, the logits of BackboneNet are also
transferred to TEE and combined with the logits of CPM;
and the combination is passed through the argmax function,
so that only the predicted label from CPM is transferred back
to the normal world indicating the final result.

To clearly illustrate the workflow, we depict one MirrorNet
architecture using LeNet-5 [33] as the BackboneNet in Fig. 3.
The model architecture on the left part stands for the Back-
boneNet, and the right part is the CPM. The layer inside the
MirrorNet is represented in rectangles with the name (upper
part) and the parameter (lower part). ReLU and MaxPooling
are represented in a strip shape. The communication between
the normal world and the secure world is unidirectional, and
the C in between stands for the number of channels in the
intermediate result that is transmitted to the secure world. The
line graph on the right-hand side of Fig. 3 shows the com-

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:18:40 UTC from IEEE Xplore. Restrictions apply.

parison of inference accuracy between running BackboneNet
only and MirrorNet as a whole. The result shows that the
accuracy gap can be up to 30%, which is a significant drop
when attackers only acquire the BackboneNet.

D. MirrorNet: CPM Strategy Generator
For a specific BackboneNet, there exist many possible CPM

configurations. To generate the configurations satisfying the
constraint TEE resource, our MirrorNet framework embeds
a CPM Strategy Generator, as shown in Fig. 2. It ensures
the layer alignment between BackboneNet and CPM, i.e., the
kernel size (K), input feature size (FI), and output feature
size (FO that is related to padding and stride configuration)
of CPM convolution layers must stay the same as Back-
boneNet. For other parameters like input channel (IC) and
output channel (OC), the generator selects a small number to
achieve lightweight hardware overhead, denoted as C, which
is empirically from 1 to 4 (see Sec. V-C). For the dense layer,
we determine a small dimension denoted as Cl. Note that Cl

is not manually selected, but determined by the OC and FO

of the last convolution layer:

Cl = C ⇥ FO
2 (1)

The Cl should not be smaller than the number of classes, i.e.,
10 in Fig. 2, to ensure well-behaved dense layers. While in
practice, this condition is typically met.

E. MirrorNet: Performance Emulator
In addition to security, performance overhead is another

critical factor in developing TEE-based DNN solutions. Since
the performance overhead (i.e., latency) of MirrorNet depends
on its deployment, similarly, it is infeasible to measure the
practical overheads for each possible CPM strategy. Therefore,
we build a Performance Emulator to help with the latency
estimation. Taking the Cortex-A53 processor used in our
experiments as an example, we profile various workloads
(e.g., convolutional layers, dense layers, etc.) for the possible
configurations of CPM. We collect the hardware latency of
these workloads (see Sec. V-C) and run a regression analysis
to derive the Performance Emulator. Consequently, with an
arbitrary input network (Fig. 2), the Performance Emulator can
estimate the hardware latency for a specific platform, without
actually deploying the entire MirrorNet. This will extremely
reduce the design efforts when deciding an appropriate Mir-
rorNet candidate for a targeted edge device.

By applying the latency profiling results, the CPM Perfor-
mance Emulator can predict a number of MirrorNet candidates
satisfying the design requirements, such as latency overhead.
Then, MirrorNet can evaluates the accuracy difference p%
between the BackboneNet and the MirrorNet and select the
best option according to the privacy requirement.

F. Superiority of MirrorNet Performance and Privacy
1) Inference performance: As a theoretical analysis, we

indicate that the accuracy of the BackboneNet serves as a
lower bound for the accuracy of its corresponding MirrorNet.

We provide a concise and straightforward proof by setting all
the weights in CPM to 0, so the output of MirrorNet is exactly
equal to the output of its BackboneNet. Actually, since CPM
has a similar structure to the BackboneNet, the combination
of them (i.e., the MirrorNet) can be treated as a specially-
shaped ensemble model [34] of the BackboneNet. Hence, the
MirrorNet performance is even potentially improved over its
BackboneNet part. However, since the BackboneNet and CPM
are jointly trained, the performance of BackboneNet alone will
be very poor, as shown in the evaluation in Sec.V.

2) Privacy: An attacker has no information from the secure
world since TEE is physically isolated and well-protected for
secure computation. Besides, our feedforward design for the
MirrorNet guarantees that TEE never transmits data to the nor-
mal world, except for the final prediction result. Because the
CPM computation is between every layer and those protected
layers are performed in a cascaded manner in TEE, the attacker
can neither infer the intermediate results from the predicted
label nor freeze specific layers to retrain the partial model [35].
Therefore, s/he can only retrain the extracted BackboneNet
from scratch. We regard one model extraction attack as failed
if the attacker still needs to train the model from scratch.

3) Lightweight hardware overhead: One important char-
acteristic of MirrorNet is that the CPM inside TEE is only
a mirrored version of the BackboneNet with a small size.
Therefore, the computation of CPM will not induce such a
long execution time as the BackboneNet in the normal world,
mitigating the limited resource issue in TEE for NN inference.
The second characteristic is that the computation result of
CPM will not be transferred back to the normal world like
previous works [11] but stored in the secure memory. Thus,
CPM only needs to send a return signal to the normal world,
indicating the forward propagation to continue for the followed
BackboneNet layer1. As the latency between switching worlds
can be heavy, our feedforward strategy presents an efficient
way, i.e., there is no data communication from secure world to
normal world, which greatly reduces the communication over-
head during inference; thanks to the already-ensured privacy,
no encryption/decryption is needed anymore which further
lowers the execution time and the complexity.

G. MirrorNet: Hardware Implementation

This section presents the hardware implementation of Mir-
rorNet. We illustrate this procedure by taking a simple con-
volutional neural network (CNN) as an example, as shown in
Fig. 5. This CNN is a BackboneNet that only has two Conv2D
layers and one dense layer, and the CPM is composed of one
down-scaled Conv2D and one dense layer. The execution order
is interpreted as running on a single-thread CPU equipped with
TEE. For other platforms, such as multi-thread CPU or TEE-
embedded GPU2 [36], the secure world and normal world can

1This done signal is an indicator for the completeness of one layer in CPM,
which favors the normal world computing schedule if MirrorNet is deployed
on a multi-thread CPU or a parallel-computing platform.

2One example for its commercial product is Nvidia H100 GPU.

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:18:40 UTC from IEEE Xplore. Restrictions apply.

1 #include <tee_client_api.h>

2 TEEC_InitializeContext ();

3 TEEC_OpenSession ();

4
5 float* input_image = malloc (..);

6 float* conv1_kernel;

7 float* output1;

8 output1 = Conv2D_1(input_image , conv1_kernel);

9 MaxPool_ReLU(output1);

10 Operation.buffer = LightWeight(output1);

11 TEEC_InvokeCommand(Operation , CMD1);

12
13
14 TEEC_InvokeCommand(Operation , CMD2);

15
16
17 int predicted_label;

18 predicted_label = TEEC_InvokeCommand(Operation , CMD3);

19 TEEC_FinalizeContext ();

20 TEEC_CloseSession ();

(a) Pseudocode in Normal World

1 #include <tee_internal_api.h>

2 TA_CreateEntryPoint ();

3 TA OpenSessionEntryPoint ();

4 float* conv2_kernel;

5 TEE_Result(Operation , CMD1);

6 float* tmp_input = Operation.buffer;

7 float* tmp_output = Conv2D_2(tmp_input , conv2_kernel);

8 MaxPool_ReLU(tmp_output);

9 float* data_memory_conv2 = TEE_Malloc(sizeof(tmp_output));

10 TEE_MemMove(data_memory_conv2 , tmp_output);

11
12 TEE_Result(Operation , CMD2);

13
14 TEE_Result(Operation , CMD3);

15 float* logits = Operation.buffer;

16 logits += data_memory_dense;

17 int res = argmax(logits);

18 Operation.value = res;

19 TA_CloseSessionEntryPoint ();

20 TA_DestroyEntryPoint ();

(b) Pseudocode in Secure World

&ƌŽŵ
�Et

�ƚŽ�^
t

^t�ƚŽ�Et

�E
t
�ƚŽ
�^t

&ƌŽŵ�Et�ƚŽ�^t

͘͘͘
͘͘͘

͘͘͘
͘͘͘

Fig. 4: C-based pseudocode for MirrorNet implementation, with data transmission between normal world and secure world.

Secure World

𝐶𝑜𝑛𝑣2𝐷2 Store ...𝐷𝑒𝑛𝑠𝑒1 Store Store

Normal World

𝐶𝑜𝑛𝑣2𝐷1Input 𝐶𝑜𝑛𝑣2𝐷3 𝐷𝑒𝑛𝑠𝑒2 ... Result

Fig. 5: Hardware implementation of MirrorNet. ReLU and
MaxPooling are omitted for clarity.

execute their components in parallel and for batched queries
as long as satisfying the dependency.

The execution flow of MirrorNet can be summarized as
follow: 1 The input query is provided to the normal world
that runs the first convolution layer Conv2D1. 2 The normal
world sends certain output channels of the feature map from
Conv2D1 to the secure world, which is a small part of the
output. 3 The secure world receives the down-scaled feature
map and executes the designed small convolution Conv2D2

for feature extraction. The results are then stored in the secure
memory in the secure world, i.e., the TEE3. Steps 4 and
5 execute the same procedure as the previous one that runs
Conv2D3 and transfers partial results to the secure world. In
step 6 , the received feature map from Conv2D3 is added
with the stored result of Conv2D2 in TEE, as the amended
input feature map for the followed Dense1 layer. To ensure the
results from Conv2D2 and Conv2D3 are added, MirrorNet
requires the output channel of Conv2D2 equal to the number
of transferred channels. Further, Conv2D2 and Conv2D3

should have the same configurations on convolution, such that
they can produce a feature map with the same size. We omit
the description of steps 7 , 8 , and 9 , since they have similar
operations except for the dense layer computation. In step 10,
the result from Dense1 and Dense2 are summed up, followed
by the argmax function to determine the inferred label for the
input query, which is then sent back to the normal world.

In addition to the coarse-grained scheduling for MirrorNet
execution, we further take the open-source OP-TEE [37] as

3Note that for parallel computing or multi-thread cases, a done signal should
be returned to the normal world to indicate the end of secure world execution.

an example, to illustrate the fine-grained operations with a C
program pseudocode, as shown in Fig. 4. For the BackboneNet
execution, the memory allocation and variable initialization
are all done in the normal world. The followed computations
(i.e., Conv2D1) are executed sequentially while the output
is partially copied to an Operation structure, which is
uploaded to secure world together with the operation command
CMD1. Other layers in the normal world follow the same
schedule, while the last command will return a result of the
entire MirrorNet, as the predicted_label. In the secure
world, corresponding commands upon receiving operations
from the normal world will be executed (i.e., Conv2D2).
The memory allocation inside TEE, as shown in Line 9
and 10, utilizes TEE_Malloc or TEE_MemMove function.
Thus, the data are stored in secure world without leaking any
information to the normal world. In each layer, the input buffer
copies data from Operation.buffer that is transferred
from the normal world and cooperates with the stored data
from the output of previous layer. Note that all the operations,
e.g., Conv2D, are defined separately in the normal world and
secure world, ensuring the isolation between them except for
necessary data transmission.

V. EXPERIMENTAL VALIDATION

A. Experimental Setup

1) Architectures and Datasets: Since this work focuses
on developing a TEE-friendly framework for secure DNN
inference, our targeted scenarios are lightweight applications
rather than complicated tasks like ILSVRC image classifi-
cation [38]. Moreover, our proposed framework offers fine-
grained model protection at the layer-wise level. This makes
it versatile to be generally applied to any DNN model To
demonstrate its practicality, in our experiment, we use popular
benchmarks on resource-limited edge devices, as the proof-of-
concept. Specifically, we start from an easy task, MNIST [39],
and then extend to more practical and complicated tasks like
FashionMNIST [40] and CIFAR-10 [41]. For the architecture,
we evaluate MirrorNet based on LeNet-5 [18] and VGG [19].

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:18:40 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Apply LeNet-5 as the input network in MirrorNet with varying C settings (Fig.3 and Eq. 1) and different datasets.
The corresponding MirrorNet is trained to obtain �p and emulate the performance. The CPM latency emulation is on MNIST.

Channel
number

(C)

MNIST FashionMNIST CIFAR-10 CPM
performance

Emulator
(ms)

Input Network Test Acc.(%) 98.7 Input Network Test Acc.(%) 89.2 Input Network Test Acc.(%) 62.8
BackboneNet
Test Acc.(%)

MirrorNet
Test Acc.(%)

�p
(%)

BackboneNet
Test Acc.(%)

MirrorNet
Test Acc.(%)

�p
(%)

BackboneNet
Test Acc.(%)

MirrorNet
Test Acc.(%)

�p
(%)

1 62.2 98.4 36.2 57.1 88.8 31.7 39.6 62.7 23.1 3.05
2 54.4 98.3 43.9 55.1 88.2 33.1 37 62.5 25.5 3.2
3 53.5 98.6 45.1 53.3 88.1 34.8 36.7 62.8 26.1 3.36
4 40.5 98.2 57.7 51.5 89.2 37.7 35.8 63.1 27.3 3.42

Input size (KiB)
0 50 100 150 200 250

1.6
1.4
1.2
1.0
0.8
0.6
0.4

La
te

nc
y

(m
s)

(a) Data Transmission Profiling

La
te

nc
y

(m
s)

Workload

25

20

15

10

5

(c) Dense Layer Profiling

0 0.2 0.4 0.6 0.8 1.0 × 106

La
te

nc
y

(m
s)

Workload

× 106

60
50
40
30
20
10

0

(b) Conv2D Layer Profiling

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Sample
Fitted Curve

Sample
Fitted Curve

Sample
Fitted Curve

Fig. 6: The execution time of different components in MirrorNet.

2) Implementation: We implement MirrorNet in C lan-
guage on a Raspberry Pi 3 Model-B, which has a BCM2837
64bit ARM Cortex-A53 Quad Core Processor and 1GB RAM.
Without loss of generality, we leverage the Open Portable TEE
(OP-TEE) [37], an open-source TEE framework supported by
different boards equipped with Arm TrustZone [42]. OP-TEE
provides a secure area in a processor, Internal Core API for
Trusted Applications, and the TEE Client API to communicate
with TEE. Note that although we use the ARM TrustZone
as an example, our proposed MirrorNet framework can be
generally applied to other TEEs, e.g., Intel SGX [43], AMD
SEV [44], Sanctum [45], and Sanctuary [46].

B. Inference Performance
We first investigate the inference accuracy of MirrorNet.

Note that we do not specify training strategies of MirrorNet,
since it is capable of employing arbitrary strategies developed
in the deep learning regime. While we preserve the flexibility
of MirrorNet training, we evaluate MirrorNet with the basic
strategy, i.e., Adam [47] as the optimizer and Cross-Entropy
[48] as the loss function. We demonstrate our inference per-
formance results of MirrorNet and its BackboneNet in Tab.II,
using LeNet-5.

From Tab.II we can observe that for all datasets, the
inference accuracy of MirrorNet is very close to the input
network, which aligns with our expectations. Even with only
one channel (i.e., C = 1), the MirrorNet can achieve an
accuracy as good as the input network; as the channel number
increases, the MirrorNet accuracy gets improve as well. For
instance, the MirrorNet of C = 4 on CIFAR-10 even achieves
better accuracy than the input network. On the other hand, with
the help of CPM, the directly extracted BackboneNet performs
much worse than the MirrorNet. The accuracy gap is large
enough to make the BackboneNet useless if the attacker wants

to transplant it to another unauthorized device for direct use.
As the channel number increases, the accuracy gap between
BackboneNet and MirrorNet also increases.

Further, we provide a detailed case study for the evaluation
of the CPM Strategy Generator (Sec. IV-D). We apply various
input networks of different VGG configurations and also vary
the channel number C to investigate the accuracy changes,
in Tab.III. It is evident that the channel number increment
can increase the accuracy gap �p between MirrorNet and
BackboneNet. More importantly, as the complexity of the
input network gets larger, although the MirrorNet performance
becomes better, the accuracy gap actually decreases. From
VGG-6 to VGG-16, the MirrorNet accuracy increases from
86.1% to 94.7%, but the accuracy gap decreases from 22.8%
to 8.6%, when C = 4. This is a trade-off when the model
provider considers the CPM design and the input network
selection. While indeed a more complex input network can
lead to a better performance MirrorNet, it could harm security
by reducing the accuracy gap. If the model owner intends to
increase the channel number for better security, the hardware
overhead should be considered.

C. Latency Profiling for Performance Emulator
To use Performance Emulator (Sec. IV-E), we separately

measure the latency of different operations, such as the context
switch between the secure and normal worlds with data
communication, and the computation in the secure world.

1) Context switch: Due to the dependency between dif-
ferent model layers, the interaction (i.e., data exchange or
communication) between the normal world and the secure
world is inevitable, which is time-consuming while the latency
also depends on the transferred data buffer size. We first
measure the relationship between the input size and the context
switching latency, for which we send input data of different

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:18:40 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Example MirrorNet strategies for various input
networks on the CIFAR-10 dataset.

Input
Network

Test Acc.
(%)

Channel
(C)

BackboneNet
Test Acc. (%)

MirrorNet
Test Acc. (%)

�p
(%)

VGG-6 85

1 84.2 85.4 1.2
2 81.4 86.5 5.1
3 69.6 85.8 16.2
4 63.3 86.1 22.8

VGG-7 91.3

1 91.0 91.2 0.2
2 87.2 91.5 4.3
3 80.8 91.2 10.4
4 73.3 91.9 18.6

VGG-11 92.1

1 91.7 92.0 0.3
2 91.6 92.2 0.6
3 87.5 92.1 4.6
4 79.7 92.3 12.6

VGG-16 94.6

1 94.3 94.5 0.2
2 93.6 94.4 0.8
3 92.0 94.5 2.5
4 86.1 94.7 8.6

sizes to the operation buffer, invoking the CPM and making it
return immediately. We record the execution time as shown
in Fig. 6(a). With the increasing size of data, the latency
of context switching also increases accordingly. This result
highlights another advantage of MirrorNet, which does not
require CPM in the secure world to send data back to the
normal world after computation, leading to latency reduction.

Following the results in Fig. 6, we figure out the linear
relationship between the context switching latency and the data
size, in Eq. 2. Note that the latency is in microseconds (⇥10�6

sec) and the input size is in kilobytes.

Context Switching Latency ⇡ 4.888⇥ InputSize+ 345.9 (2)

2) Workload latency inside TEE: As the computing re-
source of TEE is limited and fixed, the execution workload (#
of required operations) of certain components dominates the
latency of each layer. Specifically, we investigate two critical
layers in TEE, the Conv2D layer and the Dense layer. Other
layers like ReLU consumes much shorter time than these two
modules, thus we focus on the most time-consuming parts
during TEE computations. The workload of convolution stands
for the number of operations required for a Conv2D layer,
including matrix multiplication and addition that process the
input with kernels and generate the output. It is measured in
terms of floating-point operations. The workload depends on
the specific layer architecture. We provide a general formula to
calculate the workload for a typical convolution layer. Recall
the notation of a Conv2D layer as [IC,OC,K, FI, FO], the
workload can be calculated with Eq. 3.

Workload ⇡ K
2 · IC ·OC · FO

2 (3)

We define one multiplication and one addition as a workload
unit for Conv2D. Similarly, we define the dense layer workload
as the multiplication-addition counts, i.e., Workload ⇡ IC ⇥
OC for a dense layer. With the layer-wise latency profiling,
we measure the latency (microseconds) as

Conv2D Latency ⇡ 0.03938⇥Workload+ 504.3 (4)

Dense Latency ⇡ 0.02666⇥Workload+ 465.6 (5)

TABLE IV: MirrorNet Performance Emulator prediction vs.
measurement for different architectures, where C = 4.

Inpute
Network

Measured
latency (ms)

MirrorNet
Measured

latency (ms)

Performance
Overhead

(%)

CPM
Emulator

Predicted (ms)

Emulation
Error
(%)

LeNet-5 8.26 10.98 32.93 3.42 25.76
VGG-7 716.559 723.719 0.99 6.960 2.80
VGG-11 1246.138 1255.06 0.72 8.495 4.78
VGG-16 4530.198 4552.154 0.48 22.061 0.48

Interestingly, the experimental results in Fig. 6 indicate the
linear relationship between different workloads/operations and
their latency. Therefore, we can simply apply the formulation
in Eq. 2, 4, and 5 to configure the Performance Emulator and
estimate the performance of a specific CPM strategy (Sec.
IV-D), as well as make a trade-off between latency and privacy.

D. End-to-end Performance Evaluation
We evaluate the performance of different input models pro-

tected by MirrorNet by measuring their practical end-to-end
execution time, the results as shown in Tab. IV. We first mea-
sure the execution time of the input network, i.e., without any
protection. Then we measure the total execution time of the
model inference using MirrorNet and calculate the overhead.
After that, we predict the execution time of the CPM using the
Performance Emulator. From these experiments, we observe
substantial memory movement and allocation associated with
the convolution computations, which are challenging to quan-
tify. To facilitate the performance emulation, we empirically
applied a scaling factor 1.6 (following experimental results
in VGG-7), to refine the latency estimation. We apply this
scaling factor on other models for validation. The experimental
results demonstrate that our Performance Emulator achieves
high prediction accuracy. Note that the emulation error in
LeNet-5 architecture appears larger, due to its original lower
latency overhead, i.e., even a minor estimation error (e.g.,
2.72 ms) can magnify in percentage terms. In practice, our
emulator just needs to provide a coarse-grained prediction for
the latency to determine a few optimal CPM strategies.

VI. CONCLUSION

This paper presents MirrorNet for secure DNN inference
on edge devices. As a Trusted Execution Environment (TEE)
friendly framework, MirrorNet constructively converts an in-
put DNN model into two parts: a BackboneNet and a com-
panion partial monitor (CPM). Specifically, the BackboneNet
part is stored in the normal world and only retains poor perfor-
mance, which is rectified to high performance by the CPM. To
make MirrorNet more flexible for any input, we propose two
components, CPM Strategy Generator and Performance Emu-
lator. Experimental results on a Raspberry Pi demonstrate the
good performance and practical applicability of the proposed
framework and its complementary components.

ACKNOWLEDGEMENT

This work is supported in part by the U.S. National Science
Foundation under Grants OAC-2319962, CNS-2239672, CNS-
2153690, CNS-2326597, and CNS-2247892.

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:18:40 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Kortli, M. Jridi, A. Al Falou, and M. Atri, “Face recognition systems:
A survey,” Sensors, vol. 20, no. 2, p. 342, 2020.

[2] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep
learning applications to autonomous vehicle control,” IEEE Transactions
on Intelligent Transportation Systems, vol. 22, no. 2, pp. 712–733, 2020.

[3] M. B. Alazzam, F. Alassery, and A. Almulihi, “A novel smart healthcare
monitoring system using machine learning and the internet of things,”
Wireless Communications and Mobile Computing, vol. 2021, pp. 1–7,
2021.

[4] M. Xu, J. Liu, Y. Liu, F. X. Lin, Y. Liu, and X. Liu, “A first look at
deep learning apps on smartphones,” in The World Wide Web Conference,
2019, pp. 2125–2136.

[5] Z. Sun, R. Sun, L. Lu, and A. Mislove, “Mind your weight (s): A
large-scale study on insufficient machine learning model protection in
mobile apps,” in 30th USENIX Security Symposium (USENIX Security
21), 2021, pp. 1955–1972.

[6] C. Ying, A. Klein, E. Christiansen, E. Real, K. Murphy, and F. Hutter,
“Nas-bench-101: Towards reproducible neural architecture search,” in
International Conference on Machine Learning. PMLR, 2019, pp.
7105–7114.

[7] M. Pawlicki, R. Kozik, and M. Choraś, “A survey on neural networks
for (cyber-) security and (cyber-) security of neural networks,” Neuro-
computing, vol. 500, pp. 1075–1087, 2022.

[8] F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis,
A. Cavallaro, and H. Haddadi, “Darknetz: towards model privacy at the
edge using trusted execution environments,” in Proceedings of the 18th
International Conference on Mobile Systems, Applications, and Services,
2020, pp. 161–174.

[9] A. Schlögl and R. Böhme, “ennclave: offline inference with model
confidentiality,” in Proceedings of the 13th ACM Workshop on Artificial
Intelligence and Security, 2020, pp. 93–104.

[10] P. M. VanNostrand, I. Kyriazis, M. Cheng, T. Guo, and R. J. Walls,
“Confidential deep learning: Executing proprietary models on untrusted
devices,” arXiv preprint arXiv:1908.10730, 2019.

[11] Z. Sun, R. Sun, C. Liu, A. R. Chowdhury, S. Jha, and L. Lu, “Shadownet:
A secure and efficient system for on-device model inference,” arXiv
preprint arXiv:2011.05905, 2020.

[12] Y. Li, H. Wang, and M. Barni, “A survey of deep neural network
watermarking techniques,” Neurocomputing, vol. 461, pp. 171–193,
2021.

[13] L. Wang, S. Xu, R. Xu, X. Wang, and Q. Zhu, “Non-transferable learn-
ing: A new approach for model ownership verification and applicability
authorization,” arXiv preprint arXiv:2106.06916, 2021.

[14] T. Zhou, S. Ren, and X. Xu, “Obfunas: A neural architecture search-
based dnn obfuscation approach,” in Proceedings of the 41st IEEE/ACM
International Conference on Computer-Aided Design, 2022, pp. 1–9.

[15] S. Yandamuri, I. Abraham, K. Nayak, and M. K. Reiter,
“Communication-efficient bft protocols using small trusted hardware to
tolerate minority corruption,” Cryptology ePrint Archive, 2021.

[16] R. Pi, “Raspberry pi 3 model b,” online].(https://www. raspberrypi. org,
2015.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.

[18] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[20] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[21] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[22] A. Krizhevsky and G. Hinton, “Convolutional deep belief networks on
cifar-10,” Unpublished manuscript, vol. 40, no. 7, pp. 1–9, 2010.

[23] C. Su and Q. Zeng, “Survey of cpu cache-based side-channel attacks:
systematic analysis, security models, and countermeasures,” Security and
Communication Networks, vol. 2021, pp. 1–15, 2021.

[24] P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Trusted execution envi-
ronments: properties, applications, and challenges,” IEEE Security &
Privacy, vol. 18, no. 2, pp. 56–60, 2020.

[25] S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive
survey,” ACM computing surveys (CSUR), vol. 51, no. 6, pp. 1–36, 2019.

[26] B. Liu, M. Ding, S. Shaham, W. Rahayu, F. Farokhi, and Z. Lin,
“When machine learning meets privacy: A survey and outlook,” ACM
Computing Surveys (CSUR), vol. 54, no. 2, pp. 1–36, 2021.

[27] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis.” in USENIX security
symposium, vol. 16, 2016, pp. 601–618.

[28] S. J. Oh, B. Schiele, and M. Fritz, “Towards reverse-engineering black-
box neural networks,” Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning, pp. 121–144, 2019.

[29] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” in 2018 IEEE symposium on security and privacy (SP). IEEE,
2018, pp. 36–52.

[30] Z. Zhang, L. K. Ng, B. Liu, Y. Cai, D. Li, Y. Guo, and X. Chen,
“Teeslice: slicing dnn models for secure and efficient deployment,” in
Proceedings of the 2nd ACM International Workshop on AI and Software
Testing/Analysis, 2022, pp. 1–8.

[31] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private ex-
ecution of neural networks in trusted hardware,” arXiv preprint
arXiv:1806.03287, 2018.

[32] B. Lapid and A. Wool, “Cache-attacks on the arm trustzone implemen-
tations of aes-256 and aes-256-gcm via gpu-based analysis,” in Selected
Areas in Cryptography–SAC 2018: 25th International Conference, Cal-
gary, AB, Canada, August 15–17, 2018, Revised Selected Papers 25.
Springer, 2019, pp. 235–256.

[33] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann. lecun. com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[34] O. Sagi and L. Rokach, “Ensemble learning: A survey,” Wiley Interdisci-
plinary Reviews: Data Mining and Knowledge Discovery, vol. 8, no. 4,
p. e1249, 2018.

[35] R. Kolcun, D. A. Popescu, V. Safronov, P. Yadav, A. M. Mandalari,
Y. Xie, R. Mortier, and H. Haddadi, “The case for retraining of
ml models for iot device identification at the edge,” arXiv preprint
arXiv:2011.08605, 2020.

[36] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on gpus.” in OSDI, 2018, pp. 681–696.

[37] L. Limited, “Open portable trusted execution environment,” 2019.
[Online]. Available: https://www.op-tee.org

[38] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International journal of computer
vision, vol. 115, pp. 211–252, 2015.

[39] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[40] H. Xiao, K. Rasul, and R. Vollgraf. (2017) Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms.

[41] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[42] “ARM Security Technology Building a Secure System using Trust-
Zone Technology ,” 2009, https://developer.arm.com/documentation/
PRD29-GENC-009492/c/?lang=en.

[43] V. Costan and S. Devadas, “Intel sgx explained,” Cryptology ePrint
Archive, 2016.

[44] A. Sev-Snp, “Strengthening vm isolation with integrity protection and
more,” White Paper, January, p. 8, 2020.

[45] V. Costan, I. A. Lebedev, and S. Devadas, “Sanctum: Minimal hardware
extensions for strong software isolation.” in USENIX Security Sympo-
sium, 2016, pp. 857–874.

[46] F. Brasser, D. Gens, P. Jauernig, A.-R. Sadeghi, and E. Stapf, “Sanctuary:
Arming trustzone with user-space enclaves.” in NDSS, 2019.

[47] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[48] P.-T. De Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein, “A tutorial
on the cross-entropy method,” Annals of operations research, vol. 134,
pp. 19–67, 2005.

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:18:40 UTC from IEEE Xplore. Restrictions apply.

