
AutoReP: Automatic ReLU Replacement for Fast Private Network Inference

+Hongwu Peng1 +Shaoyi Huang1 +Tong Zhou2 Yukui Luo2 Chenghong Wang4

Zigeng Wang1* Jiahui Zhao1 Xi Xie1 Ang Li5 Tony Geng6 Kaleel Mahmood1

Wujie Wen3 Xiaolin Xu2 Caiwen Ding1

+
These authors contributed equally.

1University of Connecticut 2Northeastern University 3 North Carolina State University
4 Duke University 5 Pacific Northwest National Laboratory 6 University of Rochester

{hongwu.peng, shaoyi.huang, zigeng.wang, jiahui.zhao, xi.xie, kaleel.mahmood}@uconn.edu
{zhou.tong1, luo.yuk, x.xu}@northeastern.edu, cw374@duke.edu, ang.li@pnnl.gov

tgeng@ur.rochester.edu, wwen2@ncsu.edu, caiwen.ding@uconn.edu

Abstract

The growth of the Machine-Learning-As-A-Service

(MLaaS) market has highlighted clients’ data privacy and

security issues. Private inference (PI) techniques using

cryptographic primitives offer a solution but often have

high computation and communication costs, particularly

with non-linear operators like ReLU. Many attempts to re-

duce ReLU operations exist, but they may need heuristic

threshold selection or cause substantial accuracy loss. This

work introduces AutoReP, a gradient-based approach to

lessen non-linear operators and alleviate these issues. It

automates the selection of ReLU and polynomial functions

to speed up PI applications and introduces distribution-

aware polynomial approximation (DaPa) to maintain model

expressivity while accurately approximating ReLUs. Our

experimental results demonstrate significant accuracy im-

provements of 6.12% (94.31%, 12.9K ReLU budget, CIFAR-

10), 8.39% (74.92%, 12.9K ReLU budget, CIFAR-100), and

9.45% (63.69%, 55K ReLU budget, Tiny-ImageNet) over

current state-of-the-art methods, e.g., SNL. Morever, Au-

toReP is applied to EfficientNet-B2 on ImageNet dataset,

and achieved 75.55% accuracy with 176.1 ⇥ ReLU budget

reduction. The codes are shared on Github
1
.

1. Introduction

The MLaaS market has seen significant growth in recent
years, with many MLaaS platform providers eatablished,
e.g, AWS Sagmaker [22], Google AI Platform [3], Azure
ML [42]. However, most MLaaS solutions require clients
to share their private input, compromising data privacy and

*Z. Wang is now affiliated with Walmart Global Tech, Sunnyvale, CA.
1
https://github.com/HarveyP123/AutoReP

1×1 ConvBN1, 16

ReLU1, 16

3×3 ConvBN2, 16

ReLU2, 128

1×1 Conv3, 128

Add

ReLU3, 256

1×1 Conv4, 128

(a) (b)

10-3

10-2

10-1

ReLU1    ReLU2  ReLU3

La
te

nc
y 

(s
)

All ReLU baseline
All second order polynomial

15.5x

15.6x 15.6x

0.3 !"
17.0 #$
1.6 !"

136.1 #$
12.2 !"
1.2 !"

0.2 !"
136.1 #$

Figure 1: Network bandwidth: 1 GB/s. (a) Latency break-
down of Wide-ResNet 22-8 operators under 2PC PI setup.
(b) Latency reduction with polynomial replacement.

security. Private inference (PI) techniques, have emerged to
preserve data and model confidentiality, providing strong
security guarantees. The existing highly-secure PI solu-
tions usually use cryptographic primitives include multi-
party computation (MPC) [16, 4, 15] and homomorphic en-
cryption (HE) [23, 5, 11, 26]. Recently, MPC-based PI be-
comes popular as it supports large-scale networks by parti-
tioning the inference between clients and MLaaS providers.

The main challenge of applying cryptographic primitives
in PI comes from the non-linear operators (e.g., ReLU),
which introduces ultra-high computation and communica-
tion overhead. Fig. 1 (a) shows that ReLU dominates the PI
latency, i.e., up to 18.6 ⇥ than the combination of convolu-
tional (Conv) and batch normalization (BN) operations. Re-
ducing these ReLU operators could bring latency reduction,
as highlighted in Fig. 1 (b). Centered by this observation,
several approaches have been discussed, including replac-
ing ReLUs with linear functions (e.g., SNL [8], DeepRe-

1
5155

2023 IEEE/CVF International Conference on Computer Vision (ICCV)

2380-7504/23/$31.00 ©2023 IEEE
DOI 10.1109/ICCV51070.2023.00478

20
23

 IE
EE

/C
V

F 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
om

pu
te

r V
is

io
n 

(I
C

C
V

) |
 9

79
-8

-3
50

3-
07

18
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
C

V
51

07
0.

20
23

.0
04

78

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



duce [21]) or low degree polynomials (e.g., Delphi [34],
SAFENet [32]), designing neural architectures with fewer
ReLUs (e.g., CryptoNAS [14] and Sphynx [7]), and ultra-
low bit representations (TAPAS [39], XONN [38]). How-
ever, these techniques (i) require a heuristic threshold selec-
tion on ReLU counts, therefore can not effectively perform
design space exploration on ReLU reduction, resulting in
sub-optimal solutions, and (ii) result in a significant accu-
racy drop on large networks and datasets such as ImageNet,
hence are not scalable as the number of ReLUs or the num-
ber of bits decreases.

We argue that the root cause of the limitations is the dis-
jointedness of non-linear operator reduction and model ex-
pressivity in this emerging field. We aim to systematically
solve the efficient PI problem by answering two gradually
advancing questions: 1�Which non-linear operators should
be replaced, and 2� What to be replaced with to maintain a
high model accuracy and expressivity, especially for large
DNNs and datasets?

In this work, we introduce a gradient-based automatic

ReLU replacement (AutoReP) framework that incorpo-
rates joint fine-grained replacement policy (addressing 1�)

and polynomial approximation (addressing 2�). Our frame-
work could simultaneously reduce the non-linear operators
and maintain high model accuracy and expressivity. In sum-
mary, our contributions are as follows:

1. We introduce a parameterized discrete indicator

function, co-trained with model weights until conver-
gence. Our approach allows for fine-grained selection
of ReLU and polynomial functions at the pixel level,
resulting in a more optimized and efficient model.

2. We present a hysteresis loop update function to en-
hance the stability of the binarized ReLU replacement
training process, which enables a recoverable and sta-
ble replacement and leads to better convergence and
higher accuracy.

3. Our proposed method, distribution-aware polyno-

mial approximation (DaPa), offers a novel solution
to the problem of accurately approximating ReLUs us-
ing polynomial functions under specific feature distri-
butions. By minimizing the structural difference be-
tween the original and replaced networks and main-
taining high model expressivity.

Experimental results show that our AutoReP (ResNet-
18) achieves 74.92% accuracy with 12.9K ReLU budget,
8.39% higher than SNL [8], with 1.7x latency reduction, on
CIFAR-100. For 73.79% accuracy, AutoReP requires only
6K ReLUs, an 8.2x reduction in ReLU budget vs. SNL [8].
When applied to the larger EfficientNet-B2 on the ImageNet
dataset, AutoReP achieved an accuracy of 75.55% with a
significant reduction of 176.1 ⇥ in ReLU budget.

2PC-Conv2D

2 -4

-1 1
2 0Not 

safe!

Model 
Vender

Client

Secret Sharing (Q
=6)𝜔

𝐶𝑜𝑛𝑣2𝐷 𝑢,𝜔

𝑢

-6
4

23 -28
3 10

𝑢଴

-24 29
-1 -8

𝑢ଵ

-28 -8 𝜔଴

30 4 𝜔ଵ 𝑎ଵ 14
𝑏ଵ 3
𝑧ଵ 26

𝑎଴ -8
𝑏଴ 4
𝑧଴ 16

-7 -5
-4 -6

-5 -11

𝐸

𝐹

-19
1

𝑟ଵ ൌ െE⊗𝐹
൅𝑢ଵ⊗𝐹

൅𝜔ଵ⊗E+𝑧ଵ

𝑟଴ ൌ 𝑢଴⊗𝐹
൅𝜔଴⊗E+𝑧଴

13
3

Safe!

Plaintext Domain Ciphertext Domain

Figure 2: Plaintext vs. ciphertext evaluation (4 bits).

2. Background and Related Work

2.1. Threat Model and Cryptographic Primitives

2PC setup. In this paper, we explore a two-party se-
cure computing (2PC) protocol for MLaaS, leveraging prior
work [12, 24]. The protocol lets the client outsource con-
fidential inputs to two servers, who use a 2PC protocol to
compute a function securely without revealing intermediate
information or results. This approach can scale to enable
secure computation for multiple clients with confidential in-
puts, as demonstrated in [12].
Threat model. Here, we focus on an admissible adver-
sary [35] who can compromise one server at a time, which
aligns with the non-colluding server assumption in MPC.
Our security model assumes semi-honest behavior [36, 9,
20, 46], where the adversary follows the protocol but may
perform side calculations to breach security. While not the
strongest assumption, this model fits real-world scenarios
where trust is established before computation initiation.
Secret Sharing Basics. As the most critical operation in
multi-party computation, secret sharing bridges the com-
munication between parties while still keeping one’s infor-
mation secure without the risk of being reasoned by other
parties. Specifically, in this work, we adopt the commonly
used secret sharing scheme described in CrypTen [27]. An
example is given in Fig. 2. As a symbolic representation,
JxK  (xS0 , xS1) denotes the two secret shares, where
xSi , i 2 {0, 1}, is the share distributed to server i. The
share generation and the share recovering adopted in our
work are shown below:

• Share Generation shr(x): A random value r in Zm is
sampled, and shares are generated as JxK (r, x�r).

• Share Recovering rec(JxK): Given JxK  (xS0 , xS1),
it computes x xS0 + xS1 to recover x.

As most operators used in DNNs can be implemented
through scaling, addition, multiplication, and comparison,
here we provide an overview of these basic operations.
Scaling and Addition. We denote secret shared matrices as
JXK and JY K. The encrypted evaluation is given in Eq. 1,

5156

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



Model 
vendor

ConvBN
1

ConvBN1

ReLU1

ConvBN2

ReLU2

Conv3

1. Trainable indicator

0.2 0.3 -0.6
0.4 0.1 -0.1
-0.8 -1.5 1.8

Original 
ReLU input

0.2 0.3 0
0.6 0.1 0
0 0 1.8

0.5 0.5 0.9
-0.1 0.7 0.4
0.5 0.2 0.6

Aux. para.

Forward
Backward

DaPa
(Ours)

ReLU

AutoReP Framwork

ConvBN1

ReLU/
DaPa1

ConvBN2

ReLU/
DaPa2

Conv3

Conv4

ReLU/
DaPa3

Add

Private Input

Evaluation 
result: fish

Inference model4. Training

... ...

Iter. 1

Iter. 2

Iter. n

Forward
STE 
grad

2. Hysteresis & STE

m

1 to 0

-2                    0                   2

2

1

0

Wm  

0 to 1

3. DaPa activation

-2.5          0          2.5

g(Z)

p(Z)

Z

2.5
0

-2.5

MPC-friendly model

0.2
0.1

Se
cr

et
 sh

ar
e

C
ry

pT
en

M
PC

-E
ng

in
e

M
PC

-E
ng

in
e

Client

Encrypt

Decrypt

ReLU3

Add

Conv4

Pretrained 
model

Figure 3: Overview of AutoReP framework for 2PC DNN based private inference setup.

where a is the scaling factor.

JaX + Y K (aXS0 + YS0 , aXS1 + YS1) (1)

Multiplication. In our work, we consider the use of ma-
trix multiplicative operations in the secret-sharing pattern,
specifically JRK JXK⌦ JY K, where ⌦ is a general multi-
plication such as Hadamard product, matrix multiplication,
and convolution. To generate the required Beaver triples [2]
JZK = JAK⌦JBK, we utilize an oblivious transfer (OT) [25]
based approach, with A and B being randomly initialized. It
is important to ensure that the shapes of JZK, JAK, and JBK
match those of JRK, JXK, and JY K, respectively, in order to
align the matrix computation. Next, each party computes
two intermediate matrices, ESi = XSi � ASi and FSi =
YSi � BSi , separately. The intermediate shares are then
jointly recovered, with E  rec(JEK) and F  rec(JF K).
Finally, each server Si calculates the secret-shared RSi lo-
cally to get the result:

RSi = �i · E ⌦ F +XSi ⌦ F + E ⌦ YSi + ZSi (2)

Secure 2PC Comparison. In the context of secure MPC,
the 2PC comparison protocol, also known as the million-
aires’ protocol, is designed to determine which of two par-
ties holds a larger value, without revealing the actual value
to each other. We uses the same protocol as CrypTen [27] to
conduct comparison (JX < 0K) through 1� arithmetic share
JXK to binary share hXi conversion, 2� right shift to extract
the sign bit hbi = hXi >> (L� 1) (L is the bit width), and
3� binary share hbi to arithmetic share JbK conversion for

final evaluation result.
Ciphertext Square Operator. Considering the element-
wise square operator presented in Eq. 3, where ⌦ denotes
the Hadamard product, it is necessary to generate a Beaver
pair, JZK and JAK, such that JZK = JAK ⌦ JAK. The pair
JAK is randomly initialized and shared among distinct par-
ties through the use of oblivious transfer.

JRK JXK⌦ JXK (3)

Subsequently, the parties compute JEK = JXK�JAK and
collaboratively reconstruct E using the recovery operation,
E  rec(JEK). The outcome, R, can be derived through
the application of Eq. 4.

RSi = ZSi + 2E ⌦ASi + E ⌦ E (4)

2.2. Prior Arts Towards PI Acceleration.

TAPAS [39] and XONN [38] compressed the model into
binary neural network format which has reduced number of
bits, and the method can effectively reduce the size of Gar-
bled circuit for MPC comparison protocol implementation.
CryptoNAS [14], Sphynx [6] and SafeNet [32] are typical
NAS directed works which define searched spaces with re-
duced count of ReLU find the suitable architecture. Del-
phi [34] focuses on partially replacing ReLU function with
low order polynomial function to achieve speedup in MPC
based PI. SNL [8] and DeepReduce [21] developed frame-
works to replace ReLUs with linear function. DeepRe-
duce [21] involves manual design of neural architecture
while SNL [8] automates ReLU reduction process. Both
prior works follow setting similar to Delphi [34], and ex-
hibit higher 2PC comparison overhead than CrypTen [27]
framework which is adopted in our research.

3. The AutoReP Framework

As depicted in Fig. 3, we present AutoReP, an automatic
replacement approach for accelerating DNN on PI while
minimizing the inference accuracy drop. Our approach ad-
dresses the challenge of replacing the communication ex-
pensive non-linear activation function (i.e., ReLU) with PI-
friendly low-order polynomial functions from pre-trained
DNNs with less accuracy drop.

5157

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



We formulate ReLU replacement as a fine-grained
feature-level optimization problem. Our solution involves
a discrete indicator parameter that determines which ReLU
operations should be replaced by polynomial functions to
achieve minimal accuracy drop, which will be updated ac-
cording to a hysteresis function [33]. Our approach im-
proves upon SNL [8] by training a discrete indicator param-
eter until both indicator and model weight converge, leading
to superior convergence accuracy, as opposed to training a
continuous slope parameter and fine-tuning the model after
fixing the ReLU-polynomial selection in SNL [8].

We propose an approach (DaPa) to determine the suit-
able polynomial activation functions to replace ReLU,
based on the channel-wise feature map distribution. The
combination of these techniques enables automatic and ef-
ficient acceleration of DNNs for PI for more than 10 times
speedup.

3.1. Problem Formulation

Our approach is generalizable to the replacement of
ReLU activation functions in any L-layer differentiable
neural networks fW parameterized by W := {Wi}L�1

i=0 ,
where the input X0 2 Rm⇥n is mapped to the target
Y 2 Rd. Our goal is to replace the ReLU (denoted as gr)
with the polynomial function (denoted as gp), with the aim
of achieving an overall N remaining ReLUs with minimal
accuracy drop.

We utilize an indicator parameter m to indicate the re-
placement position on feature map-level: mi k = 0 (kth
element of ith layer), gr is replaced by gp; mi k = 1, use
gr. The proposed element-wise discrete indicator parameter
mi k gives the expression of the ith layer with partially re-
placed ReLU as Xi k = mi k�gr(Z(i�1) k)+(1�mi k)�
gp(Z(i�1) k), where Zi�1 is the ith layer output. The prob-
lem of ReLU replacement can be formulated as follows:

argmin
W

(L(fW (X0), Y ) + µ ·max(
L�1X

i=1

||mi||0 �N), 0)) (5)

Where L denotes the loss function. However, the sec-
ond term of Eq. 5 is non-differentiable due to the zero
norm regularization applied on discrete indicator param-
eter mi, making the problem intractable using traditional
gradient-based optimization methods. To circumvent the
non-differentiable behavior of the discrete indicator param-
eter, we introduce the utilization of a trainable auxiliary pa-
rameter mW to parameterize the discrete indicator parame-
ter, as represented by Eq. 6. However, Eq. 6 is still a step
function and is non-differentiable. To approximate the gra-
dient of Eq. 6, we adopt straight-through estimator (STE)
method which will be discussed in Sec. 3.2.

mi k = mW,i k > 0 (6)

20-2
Wm

(b) Hysteresis softplus 
STE

th-th

: 1 to 0
: 0 to 1

2-2 0
Wm

(a) Softplus STE

0

1

2

m

:Forward
:Backward

Figure 4: Hysteresis indicator parameter update.

To analyze Eq. 5, we decompose the gradient of auxiliary
parameters from Eq. 5 into two parts: accuracy gradient (
Eq. 7) from accuracy loss Lacc and ReLU count regulariza-
tion gradient (Eq. 8) from ReLU count penalty LN . Eq. 8
penalizes the auxiliary parameters based on the difference
between gr(Z) and gp(Z), the term provides recoverabil-
ity as it allows both gradient directions. Eq. 8 penalizes the
ReLU count and ensures the target number of ReLUs is met.

@Lacc

@mW,i k
=

@Lacc

@Xi k
(gr(Zi�1)� gp(Zi�1))

@mi k

@mW,i k
(7)

@LN

@mW,i k
=

(
µ @mi k

@mW,i k
, ||mi||0 �N > 0

0, otherwise
(8)

3.2. Update Rule of Indicator Parameter

Indicator Parameter Gradient. There are various STE
functions for estimating the discrete function’s gradient.
While linear STE has been used in previous work [40], re-
cent studies suggest that ReLU-like STE has superior con-
vergence [44]. However, ReLU STE may cause gradient
freezing problem [43]. To address this issue, we adopt the
softplus function (f(x) = log(1+ex)) based STE proposed
in [43], which is shown in Fig. 4(a), to estimate the indica-
tor parameter gradient @mi:k

@Wm,i:k
.

Stability of Indicator Parameter Update. During each
training iteration, the auxiliary parameter and indicator pa-
rameter updates are performed in accordance with Eq. 9
with softplus STE. However, there is a potential for indi-
cator parameter instability issues to arise during forward
binarization step as the training converges. This instabil-
ity can occur when some of the Wm,i k values are close to
zero. Any small perturbation of these values during the up-
date process may result in a flip of the indicator mi k, thus
affecting the training performance.

mW,i k += ⌘
@L2

@mW,i k
,mij = mW,i k > 0 (9)

We propose the use of a hysteresis indicator parameter
update to enhance the stability of the indicator parameter
mij during the forward binarization process with Eq. 9.

The proposed hysteresis indicator parameter update is
depicted in Fig. 4(b). To reduce the possibility of the indi-
cator flip, the hysteresis indicator parameter update utilizes

5158

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



the threshold th as a hyperparameter and iteratively evalu-
ates the old indicator values mi k and the updated auxiliary
parameter mW,i k values to determine the new indicator val-
ues mi k, as outlined in Eq. 10. The hysteresis indicator
parameter mi k reaches convergence when all auxiliary pa-
rameters mW,i k no longer fluctuate across the adjustable
threshold ±th.

mi k,t+1 =

8
>><

>>:

1, mi k,t = 1 and mW,i k > �th
0, mi k,t = 1 and mW,i k  �th
0, mi k,t = 0 and mW,i k  th
1, mi k,t = 0 and mW,i k > th

(10)

0 100

1.0

0.0

0
1

0
1

0
1

0
1

:Auxiliary weight

:No hysteresis
:Hysteresis with th=0.01
:Hysteresis with th=0.02
:Hysteresis with th=0.03

Iterations

W
ei

gh
t

In
di

ca
to

r p
ar

a.
 

Figure 5: Balance the recoverability and stability through
tuning hysteresis threshold

Recoverability and Stability. The proposed update rule
for the indicator parameter improves the recoverability and
stability of the automatic ReLU replacement process. Dur-
ing the replacement, the ReLU will be replaced according
to the difference between gr(Z) and gp(Z). The less differ-
ence between gr(Z) and gp(Z) on a feature map location,
the more likely gr(Z) will be replaced by gp(Z). However,
important non-linear features gr(Z) may be replaced due
to the ReLU count penalty. Without recoverability, the re-
placement process will be more likely to be trapped in local
optima (will be shown in experiment). The recoverability in
this process is achieved through the use of the accuracy loss
gradient in Eq. 7 combined with the softplus STE function.
This automatic recovery process increases the accuracy of
the ReLU replacement process without the need for an ad-
ditional hard threshold, unlike in previous methods such as
[8, 17]. However, unlike weight pruning, the non-linearity
replacement process can also be unstable as training con-
verges. To address this issue, we use the hysteresis indicator
parameter update to improve the replacement stability.

An example is demonstrated in Fig. 5, the balance be-
tween recoverability and stability in the system can be con-
trolled by tuning the hyperparameter th. A higher thresh-
old results in decreased recoverability but increased stabil-
ity, whereas a lower threshold results in the opposite effect.
The optimal threshold selection, as shown in the example,
lies within the range of 0.01 to 0.02. With the combination

of learning rate decay and the hysteresis indicator parame-
ter, the replacement process is able to balance exploration
and exploitation throughout the training process, thus lead-
ing to a higher accuracy.

3.3. Polynomial Approximations of ReLU

Low-order polynomial functions, such as first-order and
second-order polynomials, can significantly reduce latency
and communication volume in DNN PI applications by
more than 20 times [34]. However, first-order polynomial
function (linear) does not provide non-linearity, so it could
lead to significant model expressivity reduction and lower
accuracy under a high reduction ratio when used as ReLU
replacement. In contrast, the second-order polynomial pro-
vides a certain degree of non-linearity and might be a better
replacement for ReLU. However, prior works[34, 32, 1, 13]
have yet to find an effective method for determining the
coefficient of the second-order polynomial functions for
ReLU replacement. To improve the performance and train-
ing stability of ReLU replacement, we propose a feature
map distribution-aware polynomial approximation (DaPa)
for our AutoReP framework.

Distribution-aware approximation. The intuition be-
hind the distribution-aware approximation is that minimiz-
ing the discrepancy between the output before and after
ReLU replacement would lead to a smaller decrease in ac-
curacy. This can be achieved by minimizing the minimum
square error (MSE) between gr(Z) and gp(Z):

min
w

L(gp) = min
gp

X
(gr(Z)� gp(Z))2 (11)

Previous approaches [8, 1, 34, 13] adopt a fixed poly-
nomial function for all layers without taking feature map
distribution into account, and leads to worse accuracy and
training stability. In contrast to those approaches, we pro-
pose a distribution-aware approximation method to dynam-
ically adjust the parameters of the polynomial function.
Specifically, for a polynomial function of degree s (s > 0),
denoted as gp,s(Z, c) =

Ps
i=0 ciZ

i, where Z and ci are in-
put and polynomial coefficient, the optimization problem in
Eq. 11 can be solve by getting the input probability distri-
bution p(Z), and reformulated the problem as follows:

min
c

L(c) = min
c

Z
(gr(Z)� gp,s(Z, c))

2p(Z)dZ (12)

Eq. 12 can be solved numerically through the Monte
Carlo integration and sampling. Here we present an analyti-
cal expression of the approximation of the ReLU activation
function using second-order polynomial functions. The in-
put Z is assumed to be drawn from a normal distribution
with mean µ and variance �2, i.e., Z ⇠ N(µ,�2). The an-
alytical solution that minimizes Eq. 12 is shown in Eq. 13.

5159

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



0

2.5

-2.5

2.50-2.5
0.1
0.2

0
0.05

0
5

2.50-2.5
0.1
0.2

0

10

0

100

2.50-2.5
0.1
0.2

2.50-2.5
0.1
0.2

0

100
0

10

Z Z Z Z

:DaPa-2rd (Ours)
:ReLU :ReLU

:Approx. -2rd
:ReLU

:Quad
:ReLU

0

2.5

-2.5 :Identity-1rd

g(Z)

L(Z)

p(Z)

(a) (b) (c) (d)

0

2.5

-2.5

2.50-2.5
0.1
0.2

0
0.05

0
5

2.50-2.5
0.1
0.2

0

10

0

100

2.50-2.5
0.1
0.2

2.50-2.5
0.1
0.2

0

100
0

10

Z Z Z Z

:DaPa-2rd (Ours)
:ReLU :ReLU

:Approx. -2rd
:ReLU

:Quad
:ReLU

0

2.5

-2.5 :Identity-1rd

g(Z)

L(Z)

p(Z)

(a) (b) (c) (d)

0

2.5

-2.5

2.50-2.5
0.1
0.2

0
0.05

0
5

2.50-2.5
0.1
0.2

0

10

0

100

2.50-2.5
0.1
0.2

2.50-2.5
0.1
0.2

0

100
0

10

Z Z Z Z

:DaPa-2rd (Ours)
:ReLU :ReLU

:Approx. -2rd
:ReLU

:Quad
:ReLU

0

2.5

-2.5 :Identity-1rd

g(Z)

L(Z)

p(Z)

(a) (b) (c) (d)

0

2.5

-2.5

2.50-2.5
0.1
0.2

0
0.05

0
5

2.50-2.5
0.1
0.2

0

10

0

100

2.50-2.5
0.1
0.2

2.50-2.5
0.1
0.2

0

100
0

10

Z Z Z Z

:DaPa-2rd (Ours)
:ReLU :ReLU

:Approx. -2rd
:ReLU

:Quad
:ReLU

0

2.5

-2.5 :Identity-1rd

g(Z)

L(Z)

p(Z)

(a) (b) (c) (d)

Figure 6: ReLU replacement comparison with N(0, 2) normal distribution. L(Z) donates square error of approximation.
(a) Proposed second order approximation: g = 0.14Z2 + 0.5Z + 0.28. (b) Identity [8]: g = Z. (c) Second order [1]:
g = Z2 + Z. (d) Second order [34, 1, 13]: g = Z2.

c0 =

p
2µ2e�

µ2

2�2

4
p
⇡�

+

p
2�e�

µ2

2�2

4
p
⇡

, c2 =

p
2e�

µ2

2�2

4
p
⇡�

,

c1 = �
p
2µe�

µ2

2�2

2
p
⇡�

�
erfc(

p
2µ

2� )

2
+ 1

(13)

The minimum approximation loss is given in Eq. 14.

min
c

L = �
µ2 erfc2

⇣p
2µ

2�

⌘

4
+

µ2 erfc
⇣p

2µ
2�

⌘

2
+

p
2µ�e�

µ2

2�2 erfc
⇣p

2µ
2�

⌘

2
p
⇡

�
p
2µ�e�

µ2

2�2

2
p
⇡

�

�2 erfc2
⇣p

2µ
2�

⌘

4
+

�2 erfc
⇣p

2µ
2�

⌘

2
� 3�2e�

�2

�2

4⇡

(14)

We illustrate the effectiveness of our proposed approxi-
mation method with a second-order approximation of ReLU
function for inputs drawn from a normal distribution Z ⇠
N(0, 2). It is important to note that the feature map dis-
tribution may vary, and this is just an illustrative example.
These results are illustrated in Fig. 6. It can be observed
that the proposed second-order approximation results in the
lowest error to approximate ReLU function.

Channel-wise approximation. For most CNNs, the dis-
tribution of intermediate feature map follows a channel-
wise manner due to the batch normalization module. In-
spired by this fact, we propose a more fine-grained and ac-
curate ReLU replacement method by adopting channel-wise
polynomial approximation. Unlikely prior works which ap-
proximate the ReLU function using identical polynomial
function across entire CNNs [8, 34, 1, 1, 13], the proposed
channel-wise approximation gives a smaller accuracy loss.

4. Experiments

4.1. Experimental Setup

PI system setup. Our platform comprises two servers
equipped with RTX6000, which are connected to a router

with a bandwidth of 1 GB/s via a local area network (LAN).
To implement secure computation for PI, we utilize the
CrypTen [27] framework with the admissible adversary as-
sumption [35] (refer to Sec. 2).
Architectures and datasets To enable cross-work compar-
ison with state-of-the-art approaches, we evaluate AutoReP
using second-order polynomial replacement on ResNet-
18 [18] and WideResNet-22-8 [45] architectures on CIFAR-
10/CIFAR-100 [28] and Tiny-ImageNet [10] datasets. To
ensure a fair comparison with previous works [21, 8], we
remove ReLU layers from the first convolutional layer. For
scalability evaluation, we apply AutoReP to EfficientNet-
B2 [41] with ReLU activation function on ImageNet [29].
See Table 2 for more dataset information.
Baselines. For ResNet-18 and WideResNet-22-8 on
CIFAR-10/100 and Tiny-ImageNet datasets, we pre-train
the models using SGD with an initial learning rate (LR) of
0.1 and momentum of 0.9 for 400 epochs. The LR is sched-
uled using a standard cosine annealing LR scheduler. In the
case of EfficientNet-B2 trained on ImageNet, we utilize the
PyTorch pre-trained weights [37]. As the EfficientNet-B2
model uses SiLU as the default non-linear activation func-
tion, we replace the SiLU activation with ReLU and fine-
tuned the model using SGD with a LR of 0.01, momentum
of 0.9, and cosine annealing LR scheduler. See Table 1 for
the accuracy and number of ReLUs for the baseline models.
AutoReP algorithm settings We employ the AutoReP al-
gorithm with a second-order polynomial replacement on the
aforementioned pre-trained models. For the indicator pa-
rameter update, we use the Adam optimizer with a LR of
0.001, while for the model weight, we use the Adam op-
timizer with a LR of 0.0001. The LR for both parameters
are scheduled to decay based on the cosine annealing de-
cay function. We conduct the majority of the replacement
experiments using 150 replacement epochs. To balance re-
coverability and stability, we set the hysteresis threshold
to th = 0.003. The details of hysteresis threshold selec-
tion are in the ablation study (Section 4.3). As described in
Section 3.3, we capture the channel-wise running mean and

5160

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



Table 1: Baselines accuracy, ReLU counts, and latency

Datasets CIFAR-10 CIFAR-100 Tiny-ImageNet ImageNet
Models ResNet-18 WideResNet-22-8 ResNet-18 WideResNet-22-8 ResNet-18 WideResNet-22-8 EfficientNet-B2

Accuracy (%) 95.55 96.29 77.8 80.2 65.48 66.77 78.158
ReLUs (K) 491.52 1359.87 491.52 1359.87 1966.08 5439.488 8804.162
Latency (s) 1.234 3.219 1.242 3.230 3.219 7.978 11.276

Table 2: Image classification datasets

Dataset Image size Class Training Samples
per class

Test Samples
per class

CIFAR-10 [28] 32 × 32 10 5000 1000
CIFAR-100 [28] 32 × 32 100 500 100

Tiny-ImageNet [10] 64 × 64 200 500 50
ImageNet [29] 224 × 224 1000 ⇠1282 50

Table 3: Cross-work comparison on CIFAR-100

Dataset CIFAR-100

Methods #ReLUs
(K)

Test Acc.
(%)

Latency
(s) Acc./ReLU

ReLU  100 K
CryptoNAS 100.0 68.5 2.3 0.685

Sphynx 51.2 69.57 1.335 1.359
Sphynx 25.6 66.13 0.727 2.583

DeepReduce 49.2 69.5 1.19 1.413
DeepReduce 12.3 64.97 0.45 5.283

SNL+ 49.9 73.75 1.066 1.478
SNL+ 12.9 66.53 0.291 5.517

AutoReP (Ours)
+ 50 75.48 0.252 1.510

AutoReP (Ours)
+ 12.9 74.92 0.170 5.808

AutoReP (Ours)
+ 6 73.79 0.155 12.298

ReLU >100 K
CryptoNAS 344.0 76.0 7.50 0.221

Sphynx 230.0 74.93 5.12 0.326
DeepReduce 229.4 76.22 4.61 0.332
DeepReduce 197.0 75.51 3.94 0.383

SNL* 180.0 77.65 4.054 0.431
SNL* 120.0 76.35 2.802 0.636

AutoReP (Ours)
* 180 78.23 0.679 0.435

AutoReP (Ours)
* 150 78.38 0.614 0.523

AutoReP (Ours)
* 120 77.56 0.550 0.646

+: starts with ResNet-18. *: starts with WideResNet-22-8.

variance and determine the polynomial function’s parame-
ter based on Eq. 13.

4.2. Experimental Results

AutoReP is evaluated and compared with SOTA works
[8, 21, 7, 14, 32, 30, 34, 31, 19], and results are presented
in Fig. 7. Our proposed framework achieves significantly
better results than the other approaches on the CIFAR-10,
CIFAR-100, and Tiny-ImageNet datasets.

4.2.1 Pareto Frontier and Cross-work comparison

Table 3 and Table 4 provide detailed information on the ac-
curacy and latency trade-offs for different ReLU budgets

on the CIFAR-100 and Tiny-ImageNet, respectively. It is
worth noting that previous works [14, 7, 21, 8] use DEL-
PHI [34] as the PI framework, which employs a garbled
circuit implementation that is more computationally and
communicationally expensive than the CrypTen [27] used
in our evaluation. As a result, their reported latencies may
be higher than those presented in our study.

On the CIFAR-100 dataset using ResNet-18, AutoReP
achieves 74.92% accuracy with 12.9K ReLU budget, which
is 8.39% higher than SNL [8], with the same ReLU budget,
while reducing the inference latency by 1.7 times. Our ex-
periments demonstrate that AutoReP has less accuracy drop
for ReLU replacement compared to SNL [8]. To achieve
a similar accuracy level of 73.79%, AutoReP requires only
6K ReLUs, resulting in an 8.2 times reduction in ReLU bud-
get when compared to SNL [8]. For higher ReLU budgets,
AutoReP on WideResNet-22-8 achieves an accuracy im-
provement of 0.7% to 1.2% compared to SNL [8] on 120K
to 180K ReLU counts, while also outperforming DeepRe-
duce [21] with fewer ReLU budgets.

Our AutoReP achieves stronger performance than prior
SOTA methods on the Tiny-ImageNet dataset. Starting
from ResNet-18 with a ReLU budget of 55K, our AutoReP
achieves 63.69% accuracy, outperforming SNL [8] with a
59.1K ReLU budget by 9.45%, while reducing the ReLU
budget by a factor of 3.6 compared to SNL with a similar ac-
curacy of 63.39% on a ReLU budget of 198.1K. Moreover,
AutoReP achieves a 3.39⇥ latency reduction with a similar
55K ReLU budget, demonstrating that second-order poly-
nomial replacement does not result in higher latency. For
higher ReLU budgets, AutoReP starting from WideResNet-
22-8 achieves more than 2.5% average accuracy improve-
ment compared to SNL [8] and DeepReduce [21].

4.2.2 AutoReP with Linear Replacement

As discussed in Section 3, AutoReP outperforms previous
works in two key aspects: (1) fine-grained replacement pol-
icy using discrete indicator parameter and (2) DaPa acti-
vation function. To evaluate the contribution of each as-
pect, we conduct experiments using a first-order polyno-
mial function and compare it with AutoReP using a second-
order DaPa function and SNL [8]. The evaluation results
on CIFAR-10 and CIFAR-100 datasets are given in Fig. 8.
Note that AutoReP and SNL use a similar DNN setting.

Our experiments on CIFAR-10 demonstrate that Au-

5161

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



CIFAR-10 CIFAR-100 Tiny-ImageNet

6.12% 8.39%
9.��%

Figure 7: AutoRep achieves Pareto frontiers of ReLU counts vs. test accuracy on CIFAR-10, CIFAR-100, and Tiny-
ImageNet. AutoRep outperforms the state-of-the-art methods (SNL [8], DeepReDuce [21], Sphynx [7], CryptoNAS [14],
SAFENet [32], SNIP [30], DELPHI [34], L1 filter pruning [31] and LFPC [19]) in all range of ReLU counts on all datasets.

Table 4: Cross-work comparison on Tiny-ImageNet

Dataset Tiny-ImageNet

Methods #ReLUs
(K)

Test Acc.
(%)

Latency
(s) Acc./ReLU

ReLU  100 K
Sphynx 102.4 48.44 2.35 0.473

DeepReduce 57.35 53.75 1.85 0.937
SNL+ 99.6 58.94 2.117 0.592
SNL+ 59.1 54.24 1.265 0.918

AutoReP (Ours)
+ 55 63.69 0.373 1.158

AutoReP (Ours)
+ 30 62.77 0.335 2.092

100 K <ReLU  300 K
Sphynx 204.8 53.51 4.401 0.261

DeepReduce 196.6 57.51 4.61 0.293
SNL+ 393.2 61.65 7.77 0.157
SNL+ 204.8 53.51 4.401 0.261

AutoReP (Ours)
+ 290 64.74 0.723 0.223

AutoReP (Ours)
+ 190 64.32 0.574 0.338

300 K <ReLU  1000 K
Sphynx 614.4 60.76 12.548 0.099

DeepReduce 917.5 64.66 17.16 0.070
SNL* 488.8 64.42 10.281 0.132

AutoReP (Ours)
* 300 67.04 1.094 0.223

+: starts with ResNet-18. *: starts with WideResNet-22-8.

toReP with first-order polynomial replacement achieves
a 90.05% accuracy with 12.9K ReLU budgets, which is
1.86% higher than SNL [8], but 4.3% lower than AutoReP
with second-order DaPa replacement. On average, Au-
toReP with first-order replacement yields 1.8% higher ac-
curacy than SNL [8] under the same ReLU budgets across
most of the range and achieves a 2.2 ⇥ reduction in ReLU
budgets in extreme cases (6K vs. 12.9K).

For CIFAR-100, AutoReP with first-order polynomial
replacement achieves 67.75% accuracy under 12.9K ReLU
budgets, which is 1.2% higher than SNL [8] under the same
ReLU budgets, and 0.4% higher than SNL [8] with 15K
ReLU budgets. However, the accuracy drop of AutoReP

(a) (b)

2.2x

5.5% 

1.9% 
11.6% 

8.2x

1.2% 

Figure 8: AutoReP w. Dapa-2nd, AutoReP w. Dapa-1st,
and SNL comparisons on (a) CIFAR-10 (b) CIFAR-100

with first-order polynomial replacement is substantial com-
pared to AutoReP with DaPa-2nd polynomial replacement,
exhibiting an 11.6% accuracy drop under the extreme case
of low ReLU budgets (6K).

The experimental results indicate that our proposed Au-
toReP outperforms SNL [8] in both first and second-order
replacements, providing evidence to support the two main
claims of our framework: 1� better replacement policy,
which leads to better convergence, and 2� improved model
expressivity through the deployment of second-order DaPa
polynomial function.

4.2.3 ImageNet Evaluation

To showcase the effectiveness of AutoReP on larger models
and datasets, we conduct experiments on EfficientNet-B2
with ImageNet using DaPa-2nd replacement. We run the
replacement policy for 20 epochs with the same LR setting
as previously. Results are shown in Table 5. Compared to
the baseline model’s 78.158% accuracy, AutoReP achieves
a 17.6⇥ reduction in ReLU budget with only 1.592% accu-

5162

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



racy drop for the 500K ReLU case. Moreover, we achieve
a 5.8 ⇥ speedup for private inference in this case. In the
case of an extremely low ReLU budget of 50K, our Au-
toReP achieves a 176.1 ⇥ reduction in ReLU budget and
a 7.8% ⇥ speedup compared to the baseline model, with
only a 2.61% accuracy drop. The results demonstrate that
our AutoReP with DaPa-2nd achieves a significant reduc-
tion in ReLU budget and inference speedup while preserv-
ing good model accuracy, even for relatively larger models
and datasets.

Table 5: AutoReP for ImageNet

Dataset ImageNet

Methods #ReLUs
(K)

Test Acc.
(%)

Latency
(s) Acc./ReLU

AutoReP 500 76.566 1.945 0.153
AutoReP 400 76.368 1.832 0.191
AutoReP 300 76.216 1.72 0.254
AutoReP 200 76.176 1.608 0.381
AutoReP 100 75.766 1.495 0.758
AutoReP 50 75.548 1.439 1.511

All start from EfficientNet-B2

4.3. Ablation Study

Threshold sensitivity. To investigate the impact of hy-
perparameters on the proposed AutoReP, we conduct ex-
periments on ResNet-18 architecture trained on CIFAR-100
dataset while varying the hysteresis threshold th. Specifi-
cally, we compare the accuracy performance under different
th settings while keeping other hyperparameters fixed. The

Figure 9: AutoReP for ResNet-18 on CIFAR-100 dataset
under different hysteresis thresholds setting.

results are presented in Fig. 9. A lower hysteresis thresh-
old may cause the binarized indicator parameter to flip fre-
quently during convergence, leading to a decrease in accu-
racy. A hysteresis threshold of 0 cause a decrease in ac-
curacy of 0.45% compared to a threshold of 0.003 under
6K ReLU budgets. Our experiments show that th = 0.003
strikes a good balance between the stability of the binarized
indicator parameter and recoverable training, resulting in

higher overall accuracy under most cases. Therefore, we
adopt th = 0.003 for other experiments.

Parameter sensitivity. To substantiate the assertion that
the training of the proposed AutoReP is robust to varia-
tions in the ReLU count penalty parameter µ, as stated in
the primary problem formulation of the paper, we conduct
a parameter sensitivity analysis. The results are depicted in
Fig. 10, where µ is normalized by multiplying it with the
original number of ReLUs. Our findings reveal that, under
the same training setup, the overall accuracy exhibits only
minor fluctuations across different values of µ. This implies
that careful tuning of the µ parameter is not necessary for
the AutoReP framework to achieve good performance.

Figure 10: AutoReP for Wide-ResNet-22-8 on Tiny-
ImageNet dataset with different penalty µ.

5. Conclusion

We propose the AutoReP framework, designed to be
seamlessly integrated into MPC-based PI systems for
MLaaS provider, and compatible with pre-trained CNN
models on datasets of varying scales. The framework’s
fine-grained ReLU replacement policy and the distribution-
aware polynomial approximation (DaPa) activation func-
tion enable it to achieve a 74.92% accuracy on the CIFAR-
100 dataset with 12.9K ReLU budget, outperforming the
SOTA SNL [8] framework by 8.39%. AutoReP achieves
75.55% accuracy when applied to EfficientNet-B2 on Ima-
geNet and achieve a 176.1 ⇥ ReLU reduction.

Acknowledgement

This work was in part supported by the NSF
CNS-2247891, 2247892, 2247893, CNS-2153690, CNS-
2239672, US DOE Office of Science and Office of Ad-
vanced Scientific Computing Research under award 66150:
”CENATE - Center for Advanced Architecture Evaluation”.
The Pacific Northwest National Laboratory is operated by
Battelle for the U.S. Department of Energy under Con-
tract DE-AC05-76RL01830. Any opinions, findings, con-
clusions, or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the funding agencies.

5163

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



References

[1] Ramy E Ali, Jinhyun So, and A Salman Avestimehr. On
polynomial approximations for privacy-preserving and ver-
ifiable relu networks. arXiv preprint arXiv:2011.05530,
2020.

[2] Donald Beaver. Efficient multiparty protocols using circuit
randomization. In Annual International Cryptology Confer-

ence, pages 420–432. Springer, 1991.
[3] Ekaba Bisong. An overview of google cloud platform ser-

vices. Building Machine Learning and Deep Learning Mod-

els on Google Cloud Platform, pages 7–10, 2019.
[4] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio

Marcedone, H Brendan McMahan, Sarvar Patel, Daniel Ra-
mage, Aaron Segal, and Karn Seth. Practical secure aggre-
gation for privacy-preserving machine learning. In Proceed-

ings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 1175–1191, 2017.
[5] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. Low

latency privacy preserving inference. In International Con-

ference on Machine Learning, pages 812–821. PMLR, 2019.
[6] Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg,

and Chinmay Hegde. Sphynx: Relu-efficient network de-
sign for private inference. arXiv preprint arXiv:2106.11755,
2021.

[7] Minsu Cho, Zahra Ghodsi, Brandon Reagen, Siddharth Garg,
and Chinmay Hegde. Sphynx: A deep neural network design
for private inference. IEEE Security & Privacy, 20(5):22–34,
2022.

[8] Minsu Cho, Ameya Joshi, Brandon Reagen, Siddharth Garg,
and Chinmay Hegde. Selective network linearization for ef-
ficient private inference. In International Conference on Ma-

chine Learning, pages 3947–3961. PMLR, 2022.
[9] Joseph I Choi, Dave Tian, Grant Hernandez, Christopher Pat-

ton, Benjamin Mood, Thomas Shrimpton, Kevin RB But-
ler, and Patrick Traynor. A hybrid approach to secure func-
tion evaluation using sgx. In Proceedings of the 2019 ACM

Asia Conference on Computer and Communications Secu-

rity, pages 100–113, 2019.
[10] Patryk Chrabaszcz, Ilya Loshchilov, and Frank Hutter. A

downsampled variant of imagenet as an alternative to the ci-
far datasets. arXiv preprint arXiv:1707.08819, 2017.

[11] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine,
Kristin Lauter, Saeed Maleki, Madanlal Musuvathi, and
Todd Mytkowicz. Chet: an optimizing compiler for fully-
homomorphic neural-network inferencing. In Proceedings of

the 40th ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 142–156, 2019.
[12] Daniel Demmler, Thomas Schneider, and Michael Zohner.

Aby-a framework for efficient mixed-protocol secure two-
party computation. In NDSS, 2015.

[13] Karthik Garimella, Nandan Kumar Jha, and Brandon
Reagen. Sisyphus: A cautionary tale of using low-degree
polynomial activations in privacy-preserving deep learning.
arXiv preprint arXiv:2107.12342, 2021.

[14] Zahra Ghodsi, Akshaj Kumar Veldanda, Brandon Reagen,
and Siddharth Garg. Cryptonas: Private inference on a relu

budget. Advances in Neural Information Processing Systems,
33:16961–16971, 2020.

[15] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin
Lauter, Michael Naehrig, and John Wernsing. Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In International conference on ma-

chine learning, pages 201–210. PMLR, 2016.
[16] Oded Goldreich. Secure multi-party computation.

Manuscript. Preliminary version, 78:110, 1998.
[17] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-

work surgery for efficient dnns. Advances in neural informa-

tion processing systems, 29, 2016.
[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.
[19] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang

Zhang, and Yi Yang. Learning filter pruning criteria for deep
convolutional neural networks acceleration. In Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition, pages 2009–2018, 2020.
[20] Nathaniel Husted, Steven Myers, Abhi Shelat, and Paul

Grubbs. Gpu and cpu parallelization of honest-but-curious
secure two-party computation. In Proceedings of the 29th

Annual Computer Security Applications Conference, pages
169–178, 2013.

[21] Nandan Kumar Jha, Zahra Ghodsi, Siddharth Garg, and
Brandon Reagen. Deepreduce: Relu reduction for fast pri-
vate inference. In International Conference on Machine

Learning, pages 4839–4849. PMLR, 2021.
[22] Ameet V Joshi. Amazon’s machine learning toolkit: Sage-

maker. In Machine Learning and Artificial Intelligence,
pages 233–243. Springer, 2020.

[23] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chan-
drakasan. {GAZELLE}: A low latency framework for se-
cure neural network inference. In 27th USENIX Security

Symposium (USENIX Security 18), pages 1651–1669, 2018.
[24] Seny Kamara, Payman Mohassel, and Mariana Raykova.

Outsourcing multi-party computation. IACR Cryptology

ePrint Archive, 2011:272, 2011.
[25] Joe Kilian. Founding crytpography on oblivious transfer.

In Proceedings of the twentieth annual ACM symposium on

Theory of computing, pages 20–31, 1988.
[26] Miran Kim, Xiaoqian Jiang, Kristin Lauter, Elkhan Ismay-

ilzada, and Shayan Shams. Secure human action recognition
by encrypted neural network inference. Nature communica-

tions, 13(1):1–13, 2022.
[27] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho

Sengupta, Mark Ibrahim, and Laurens van der Maaten.
Crypten: Secure multi-party computation meets machine
learning. Advances in Neural Information Processing Sys-

tems, 34:4961–4973, 2021.
[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009.
[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-

tems, pages 1097–1105, 2012.

5164

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 



[30] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. Snip: Single-shot network pruning based on connec-
tion sensitivity. arXiv preprint arXiv:1810.02340, 2018.

[31] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016.
[32] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. Safenet:

A secure, accurate and fast neural network inference. In In-

ternational Conference on Learning Representations, 2020.
[33] Xiangming Meng, Roman Bachmann, and Moham-

mad Emtiyaz Khan. Training binary neural networks using
the bayesian learning rule. In International conference on

machine learning, pages 6852–6861. PMLR, 2020.
[34] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan,

Wenting Zheng, and Raluca Ada Popa. Delphi: A cryp-
tographic inference service for neural networks. In 29th

USENIX Security Symposium (USENIX Security 20), pages
2505–2522, 2020.

[35] Payman Mohassel and Yupeng Zhang. Secureml: A system
for scalable privacy-preserving machine learning. In 2017

IEEE Symposium on Security and Privacy (SP), pages 19–
38. IEEE, 2017.

[36] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein
Yalame. {ABY2. 0}: Improved {Mixed-Protocol} secure
{Two-Party} computation. In 30th USENIX Security Sym-

posium (USENIX Security 21), pages 2165–2182, 2021.
[37] Pytorch. Models and pre-trained weights. Re-

trived from https://pytorch.org/vision/main/

models.html. Accessed: 2022, Feb. 20th.
[38] M Sadegh Riazi, Mohammad Samragh, Hao Chen,

Kim Laine, Kristin Lauter, and Farinaz Koushanfar.
{XONN}:{XNOR-based} oblivious deep neural network in-

ference. In 28th USENIX Security Symposium (USENIX Se-

curity 19), pages 1501–1518, 2019.
[39] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun

Kanade. Tapas: Tricks to accelerate (encrypted) prediction
as a service. In International Conference on Machine Learn-

ing, pages 4490–4499. PMLR, 2018.
[40] Suraj Srinivas, Akshayvarun Subramanya, and R

Venkatesh Babu. Training sparse neural networks. In
Proceedings of the IEEE conference on computer vision and

pattern recognition workshops, pages 138–145, 2017.
[41] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In International

conference on machine learning, pages 6105–6114. PMLR,
2019.

[42] AzureML Team. Azureml: Anatomy of a machine learning
service. In Conference on Predictive APIs and Apps, pages
1–13. PMLR, 2016.

[43] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. Au-
toprune: Automatic network pruning by regularizing auxil-
iary parameters. Advances in neural information processing

systems, 32, 2019.
[44] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher,

Yingyong Qi, and Jack Xin. Understanding straight-through
estimator in training activation quantized neural nets. arXiv

preprint arXiv:1903.05662, 2019.
[45] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. arXiv preprint arXiv:1605.07146, 2016.
[46] Yihua Zhang, Aaron Steele, and Marina Blanton. Picco:

a general-purpose compiler for private distributed computa-
tion. In Proceedings of the 2013 ACM SIGSAC conference

on Computer & communications security, pages 813–826,
2013.

5165

Authorized licensed use limited to: Northeastern University. Downloaded on February 20,2024 at 21:30:48 UTC from IEEE Xplore.  Restrictions apply. 


