Causal Deep Operator Networks for Data-Driven
Modeling of Dynamical Systems

Truong X. Nghiem!, Thang Nguyen?, Binh T. Nguyen?, Linh Nguyen®
L School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
2 Department of Engineering, Texas A&M University—Corpus Christi, Corpus Christi, TX, USA
3 Institute of Innovation, Science and Sustainability, Federation University Australia, Churchill, VIC, Australia

Abstract—The deep operator network (DeepONet) architecture
is a promising approach for learning functional operators,
that can represent dynamical systems described by ordinary
or partial differential equations. However, it has two major
limitations, namely its failures to account for initial conditions
and to guarantee the temporal causality — a fundamental
property of dynamical systems. This paper proposes a novel
causal deep operator network (Causal-DeepONet) architecture for
incorporating both the initial condition and the temporal causality
into data-driven learning of dynamical systems, overcoming the
limitations of the original DeepONet approach. This is achieved by
adding an independent root network for the initial condition and
independent branch networks conditioned, or switched on/off, by
time-shifted step functions or sigmoid functions for expressing the
temporal causality. The proposed architecture was evaluated and
compared with two baseline deep neural network methods and
the original DeepONet method on learning the thermal dynamics
of a room in a building using real data. It was shown to not only
achieve the best overall prediction accuracy but also enhance
substantially the accuracy consistency in multistep predictions,
which is crucial for predictive control.

Index Terms—Data-driven modeling, causality, neural networks,
deep operator networks, multistep predictions.

I. INTRODUCTION

Neural networks (NNs) are known to be universal approxima-
tors of continuous functions, with many applications, such as
in computer vision [1], energy systems [2], and dynamical
systems modeling [3]. In recent years, there has been a
growing interest in applying deep learning to learn functional
operators, which map input functions into output functions. As
these operators can implicitly represent solutions of ordinary
differential equations (ODEs) and partial differential equations
(PDEs), often used to describe dynamical systems, the ability
to learn (or discover) the operators of complex dynamical
systems from data has important implications in data-driven
nonlinear dynamics and controls. Different NN architectures
have been employed in the literature for learning dynamical
system models [4], e.g., recurrent neural networks (RNNs) and
neural ODEs, although many are focused on predicting the
state evolution of autonomous systems without external inputs.

Learning the operator of a dynamical system for predicting
its behavior under unseen input signals is crucial for control

This material is based upon work supported by the National Science
Foundation under Grant No. 2138388 and Grant No. 2238296.

The authors would like to thank Tung Nguyen at Northern Arizona University
for his help in a part of the experiment.

applications. A promising approach is the deep operator
network (DeepONet) architecture, proposed recently by Lu
et al. [5]. It has been applied for learning operators in various
applications, such as predicting linear instability waves in high-
speed boundary layers [6], predicting the power grid’s post-
fault trajectories [7], learning nonlinear operators in oscillatory
function spaces for building seismic wave responses [8], and
modeling inelastic scattering probabilities in air mixtures [9].

The original DeepONet architecture, however, has two major
limitations when used to model dynamical systems represented
by ODE:s. Firstly, it does not directly account for the initial
conditions of the system, instead often assuming zero initial
conditions. This drawback restricts its use in predictive control
applications, where the dynamical system model is used to
predict the future system behavior starting from varying initial
states. Secondly, it does not enforce the temporal causality of
the dynamical system, which refers to the property that the
state and output of the system at any given time depend on
its input only up to that time, and not on any future input.
By not guaranteeing the causality, a learned DeepONet model
might be temporally acausal, defying the physics of the system
and potentially causing inaccuracy and physical inconsistency
of the model, which are crucial in some applications such as
controls. Some recent works have attempted to address these
limitations. For instance, Tan et al. in [10] proposed a modified
DeepONet approach that incorporates an independent branch
network to account for the initial condition. Nonetheless, their
evaluation of the proposed architecture was limited to a small
set of regular PDEs and did not consider the case where the
initial condition changes. In [11], Causality-DeepONet was
proposed to capture the temporal causality of a dynamical
system. However, the approach is limited to linear systems
and, instead of designing a new architecture, it replaces the
input signals of the branch network by a zero-padding signals
with a shifting window to express the causality.

We propose a causal deep operator network (Causal-
DeepONet) architecture for data-driven learning of dynam-
ical systems. Causal-DeepONet overcomes the limitations
of the original DeepONet by directly accounting for the
initial condition and flexibly enforcing the temporal causality
through a novel network architecture design, which is our
main contribution and is illustrated later in Fig. 2. The
architecture incorporates an independent root network for the
initial condition and independent branch networks conditioned,

b o |
b by
u Branch Net u —]
20 —> Dynamical)
/\/ u(t) —» system /f\/ by b,
G(u)(t) g Gu)(t
(O G)()
g1 g1
92 92
)y *0] Oventor | Tt | J
u(t)
- 9p 9p
u(to) N

(a) Operator for a dynamical system.

(b) Unstacked DeepONet architecture.

(c) Stacked DeepONet architecture.

Fig. 1. The deep operator network (DeepONet) approach: (a) A dynamical system is an operator that maps an input function (discretized in the case of
DeepONet) to an output function; (b) and (c) are the unstacked and stacked DeepONet architectures.

or switched on/off, by time-shifted step functions or sigmoid
functions to express the temporal causality. We evaluated
the effectiveness and demonstrated the benefits of Causal-
DeepONet, compared with two baseline NN methods and the
original DeepONet method, in learning the thermal dynamics
of a room in a real-life building, using real data. It was
shown to not only achieve the best overall prediction accuracy
but also enhance substantially the accuracy consistency in
multistep predictions, which is crucial for predictive control.
Our approach belongs to the class of physics-informed machine
learning (PIML) methods, that seamlessly integrate known
physical properties of a system (the temporal causality in our
case) into data-driven modeling of the system for enhancing the
model’s fidelity, data efficiency, interpretability, robustness, and
reliability [12]. PIML has been demonstrated in the literature
to improve significantly data-driven modeling of complex
dynamical systems, including heating, ventilation, and air
conditioning (HVAC) systems [13], [14].

The rest of the paper is organized as follows. Section II
briefly reviews the original DeepONet architecture. Section III
describes in detail our proposed Causal-DeepONet architecture.
Section IV presents and discusses our experiments for evaluat-
ing and demonstrating the effectiveness of Causal-DeepONet.
Finally, Section V summarizes the conclusions of this work
and outlines potential future work.

II. DEEP OPERATOR NETWORKS (DEEPONETS)

This section provides a brief overview of deep operator
networks (DeepONets), an approach for operator learning using
deep neural networks (DNNs). While the DeepONet approach
is broadly applicable to learning any nonlinear operators, we
will focus on learning dynamical systems from data. More
details can be found in [5].

Consider a dynamical system represented by the ODE

&(t) = f(z(t),u(t)),
y(t) = g(z(t), u(t))
with independent time variable ¢ > ¢, input variable u € R,

state variable x € R"=, and output variable y € R"v. Here,

%(t) denotes the time derivative of x(¢), i.e., z(t) = dfiit).

I(to) = T

ey

Given an initial state zo and an input function (or signal) u(t),
the dynamical system (1) produces an output response function
(or signal) y(¢) that satisfies the above ODE. Therefore, the
dynamical system defines a nonlinear operator G that maps an
input function w(¢) to an output function y(t), given an initial
state xg, i.e., G : (xo,u(t)) — y(t).

The dynamical system (1) exhibits two important properties.
Firstly, its behavior depends on the initial state zy. Secondly,
there is an inherent femporal causality from its input to its
output, which refers to the property that the state and output of
the system at any given time depend on its input only up to that
time, and not on any future input. Mathematically, x(t) and
y(t) at any time ¢t > to depend on xg and u(7) for 7 € [to, t]
but not for 7 > ¢.

The operator G can be learned from data by a machine
learning (ML) model. In [5], Lu et al. proposed a DNN
architecture called DeepONet for learning nonlinear operators
like G. A DeepONet will learn the dynamical system (1) as
an operator G that maps an input function «(¢) to an output
function G(u)(¢) in a time duration o < ¢t < T, for a finite
horizon T'. Note that the initial state x(¢g) is not explicitly
taken into account by the DeepONet operator (G, unlike the
dynamical system operator G. Because a DNN cannot directly
take a continuous-time function as an input, the input function
u(t) is discretized at a finite set of m+ 1 discrete time instants
to <t < --- <ty =T (these time instants are referred to
as “sensors” in [5]). Thus, the function u(t) is represented
by a finite number of inputs to the DeepONet model as
u(to), w(t1), ..., u(tm), where each u(t;) is the system input
vector at time ¢;. This core idea is illustrated in Figure 1a. The
DeepONet takes another input ¢ and produces the predicted
system output at time ¢ as §(t) = G(u)(¢), where ¥ is the
predicted value. For simplicity, it is assumed that the system
output is scalar, i.e., n, = 1, although the DeepONet approach
can be extended to a vector system output.

Two DeepONet architectures are proposed in [5]. The
unstacked architecture, shown in Figure 1b, uses a sin-
gle NN called the branch network to transform the inputs
u(to), w(t1), ..., u(ty) into a vector b € RP, which captures
the effect of the input function u(¢) on the output. Another

NN called the trunk network takes the scalar time value ¢t € R
to generate a vector g € RP. The predicted output at time ¢ is
then calculated by merging the two vectors as

Gu)(t) = y(t) = kz:lbk(U(to)W(h% o ultm)) g5(8).

branch trunk

The stacked architecture, shown in Figure Ic, is a variation
of the unstacked architecture, where p independent branch
networks generate the p elements of b. The branch and trunk
networks can be any types of NNs, such as fully connected
neural networks and convolutional neural networks. It was
proved in [5] that the proposed DeepONets are universal
approximators of operators by the Generalized Universal
Approximation Theorem for Operator.

While the DeepONet approach has been demonstrated to
be a powerful and promising tool for data-driven scientific
discovery and for modeling complex systems as operators, it
has two major limitations when used to model dynamical
systems such as (1). Firstly, it does not directly take the initial
state zo of the system into account, whereas the evolution of
system (1) depends on xy. More importantly, the DeepONet
architecture does not guarantee the temporal causality of the
dynamical system, causing a possibility that the learned model
might be temporally acausal, which defies the physics of the
system. This can be seen by noticing that the input u(¢;) at any
time instant ¢; can affect the vector b independently of the time
t, hence a future input value u(t;) at ¢; > t can potentially
affect the output y(t) at time ¢, violating the system’s temporal
causality. These limitations may affect the model accuracy and
physical consistency, which are crucial in some applications
such as control systems. To overcome these limitations, in the
next section, we propose a novel approach based on DeepONet
for learning dynamical systems from data.

III. CAUSAL DEEP OPERATOR NETWORKS
(CAUSAL-DEEPONETS)

We propose a novel causal deep operator network (Causal-
DeepONet) architecture for data-driven learning of dynamical
systems to address the two limitations of the vanilla DeepONet
approach. The architecture of the proposed Causal-DeepONet
is illustrated in Figure 2 and described in this section.

To account for the initial state xy, we introduce a new
network called the root network, which takes x as the input and
produces a vector h € R?. The values of h;(xg), i =1,...,p,
are used in the output expression to capture the effect of the
initial state on the operator’s output.

To enforce the temporal causality, the proposed Causal-
DeepONet architecture in Figure 2 employs two improvements.

« Firstly, we use individual branch networks Branch net
i, for i = 0,...,m, corresponding to each input u(t;),
to generate individual vectors ¢; € R? of dimension g,
so that each ¢; only depends on w(¢;). This is to ensure
that the vectors c¢; follow the same temporal order as the
discrete-time inputs u(t;). The concatenated vector ¢ of all

—»{ Branch Net 0

ﬂ Branch Net 1

ﬂ Branch Net m

[

{ t }H‘ Trunk Net }—» &

9p

Fig. 2. The proposed Causal-DeepONet architecture for modeling a dynamical
system. It takes into account the initial state zo by using the root network and
captures the temporal causality of the system by using independent branch
networks and time-shifted functions o; (¢).

¢; is a vector of dimension p as in the original DeepONet,
hence p and ¢ must be selected so that p = (m + 1)q.

o Secondly, to ensure the temporal causality of the effect
of the vectors c¢;(u(t;)) on the output, we design the
Causal-DeepONet to “turn off” all ¢; for ¢; in the future
of the time ¢. This is achieved by multiplying each c;
with a function o;(t) € [0, 1], which has the property that
oi(t) = 0 when t < t; and o;(t) = 1 when ¢t > ¢t;. In
other words, o;(t) is a step function shifted by the time
duration ¢;. With this definition, the product ¢; (u(t;))o;(t)
satisfies

0 ift <t;
ci(u(ty)) ift>t;

The products ¢;(u(t;))o;(t) are concatenated to produce a
vector b € RP of the same dimension p as the vectors h and

g. The sum of the elements of the element-wise products of £,
b, and g is the predicted output §(t) = G(u)(¢):

ci(u(ts))oi(t) = {

p
30 = 3 haao)bu(t, ulto), u(t), ... ult))gr(). (@)
k=1

It is important to note here that because the term
bi(t,u(to),u(t1),...,u(ty)), by construction, adheres to the
temporal causality of the dynamical system, the predicted
output of the Causal-DeepONet given by (2) also satisfies the
temporal causality property.

Choosing the time-shifted step functions for o;(t), as
described above, can represent strictly the temporal causality
from the input to the output. However, if smooth functions are
preferred for o;(t), the requirement of o,(¢) can be relaxed as
0;(t) ~ 0 when t < ¢; and o;(t) ~ 1 when ¢ > ¢;, and time-
shifted sigmoid functions defined below can be used instead

o;(t) = sigmoid(a(t — t;)) 3)

where « is a positive constant. The larger « is, the more strictly
0;(t) enforces the temporal causality.

A Causal-DeepONet model can be trained from time-series
data of a dynamical system, obtained from experiments or
simulations of the system. The learned model can be used to
predict the output signal of the system at multiple future time
instants at once from a known initial state oy and an input
signal given by discrete-time values u(to), u(t1),. .., u(tm).
The multistep prediction capability of Causal-DeepONet is
particularly useful for control techniques such as the receding
horizon control (RHC) scheme for model predictive control
(MPC) [15]. This scheme requires making predictions of the
state or output of a dynamical system over multiple future time
steps from the current (measured or observed) state.

IV. EXPERIMENTS AND DISCUSSION

To evaluate the proposed Causal-DeepONet approach and
demonstrate its benefits in learning dynamical systems from
data, we conducted experiments on a real-world heating,
ventilation, and air conditioning (HVAC) system. This section
will detail the experiments and discuss the results.

A. Experimental System and Data

We used actual data from the HVAC system of the building
of the School of Informatics, Computing, and Cyber Systems at
Northern Arizona University. Data from a laboratory room were
collected during the heating season in November 2022 for the
study. This room is at a corner of the building’s first floor, with
two large adjacent walls and windows to the outside, hence the
outside weather can directly impact the room’s environment.

The goal of the experiment was to develop a data-driven
model of the room’s temperature dynamics from the HVAC data.
Following the convention of modeling HVAC systems [16], we
assume that the room’s air is fully mixed and define 7T as the
room’s air temperature. Let mg, and Ty, be respectively the
mass flow rate and temperature of the supply air into the room,
and T,, be the outside air temperature, which is a disturbance
to the room’s thermal dynamics. This laboratory often has low
occupancy and low usage, thus the internal heat disturbance has
negligible impact on the room’s temperature. The dynamical
model of the room’s temperature can be expressed as Z(t) =
f(z(t),u(t)) and y(t) = x(t), with state = T, and input
U = [Msq, Tsa, Toa] T . The function f(z,u) can be developed
using the physical principles of the thermal dynamics of the
room [16] or learned directly from data using ML techniques.
Our study was focused on the latter approach using NNs.

To obtain data for model training and validation, an experi-
ment was conducted for 11 days by uniformly and randomly
changing the thermostat set-point of the room between 68 °F to
74 °F every 30 minutes. The set-points were changed program-
matically using Python and a BACnet (building automation
and control network) interface. The acquired dataset for each
room was a set of time-series data, which included the room
temperature T, supply air temperature T,, supply airflow
rate Mg, and outside temperature 7,,, measured at 5-minute
intervals. Each dataset contained 3121 data points of the

form {T%(tx), Tsa(tr), msa(tr), Toa(tr) 312 at consecutive

sampling time steps tj.

B. Modeling Methods

For comparison purposes, several NN-based methods were
used to learn data-driven models of the room’s temperature dy-
namics, in addition to the proposed Causal-DeepONet method.
Inspired by our interest to predict the room’s temperature over
several future time steps, e.g., to be used in MPC, each model
was developed to give a prediction function of the general form

T(thsr) = M(@(tk), ultr), u(te+1), - - - u(tetm), thtr)

for any 7 € {1,...,m}. Here, t;4; is the i-th sampling time
instant after ty, i.e., tyy; = tx + 07, for a given sampling
time step 6 (6 = 5 minutes in our study). Given the measured
temperature x(tj) (i.e., the initial state) and the sequence of
current and future inputs {u(tg), w(trr1), ... w(term)} (e,
the discretized input signal over the duration [ty, tx1.m]), the
function M can predict the temperature x(tx+,) at any future
time instant tg, within that duration.

Our study evaluated two baseline NN methods, the origi-
nal DeepONet method, and our proposed Causal-DeepONet
method on the same modeling task, as described below.

o Multi-output DNN (baseline, non-causal): This
method uses a conventional DNN that takes
{z(tr), u(ty), u(txs1), .. - u(tgrm)} as its inputs

and produces m outputs, which are the predictions
{z(tgs1), ... 2(tk+m)} at all the future sampling time
instants in one forward computation pass. The model is
temporally non-causal because it has no mechanism to
enforce the temporal causality from the input values to
the outputs at different times. DNN models were trained
with various numbers of hidden layers (from 1 to 3) and
different numbers of neurons (4, 8, 12, or 16 neurons for
each hidden layer), and the most accurate model on the
test dataset was selected.

e Recurrent neural network (RNN) (baseline, causal):
This method trains a RNN that takes the current state
x(t;) and input u(t;) to predict the next state x(t;41),
recursively rolled out over m sampling time steps. At
the current time step ¢y, the model uses z(tx) and wu(ty)
to predict z(tgy1). At tx11, it uses the predicted state
x(tr+1) and the input u(tx41) to predict x(tx42). This
continues until the predicted (k) is obtained. The
model is temporally causal because, by construction, the
predicted output at a time step is not affected by future
inputs. It is expected that the prediction accuracy of a
RNN model will deteriorate further into the future due to
the propagation of prediction uncertainty. RNN models
were trained with various numbers of hidden layers (from
1 to 3) and different numbers of neurons (4, 8, 12, or
16 neurons for each hidden layer), and the most accurate
model on the test dataset was selected.

o DeepONet (non-causal): The original DeepONet method,
as proposed in [5], was used to train DeepONet models
that take {u(tx), u(tr+1), ... w(tk+m),t} to produce the

TABLE I
R? SCORES FOR EACH MODEL AT 4 FUTURE TIME STEPS.

RY R3 R} R}

Multi-output DNN 0.948 0944 0940 0.941

RNN 0974 0946 0913 0.893

DeepONet 0969 0.966 0947 0.942

Causal-DeepONet 0992 0.987 0982 0.978
TABLE II

MSES FOR EACH MODEL AT 4 FUTURE TIME STEPS.

MSE; MSE2 MSE3 MSE4
Multi-output DNN 0.161 0.175 0.189 0.181
RNN 0.081 0.169 0.271 0.332
DeepONet 0.097 0.102 0.158 0.183
Causal-DeepONet 0.021 0.039 0.056 0.069

predicted state x(t), for tp < t < tgy,,. It is important
to note that the original DeepONet architectures do not
take the initial state x({) into account. The model is
temporally non-causal, as explained in Section II. Multiple
DeepONet models were trained, whose numbers of hidden
layers and neurons per hidden layer for the branch and
trunk networks were varied similarly to the multi-output
DNN and RNN methods. The most accurate DeepONet
model on the test dataset was selected.

o Causal-DeepONet (causal): The proposed Causal-
DeepONet method was used to train models that take
{z(ty), u(ty), u(tgr1), - . - u(tgrm), t} (note the inclusion
of the initial state z(tx)) to produce the predicted state
x(t), for t, <t < tgim. The model is temporally causal
by design. Again, multiple Causal-DeepONet models
were trained with varying hyperparameters, and the most
accurate model on the test dataset was selected.

We remark that, while the two baseline methods can predict
the output at only discrete sampling time steps ¢y, the two
operator-based methods, in principle, can predict the output at
any continuous time ¢ in the horizon [ty, t;+.,]. However, in
this study, we evaluated all the models at only the sampling
time steps tg41,-- - thtm-

C. Results and Discussion

In this study, the horizon length m was set to 4, i.e., the
models predict 4 time steps into the future. Each data sample
for training the models, therefore, consists of m+-1 consecutive
state and input values in addition to the initial state, that is
{z(tr), ®(trt1)s - (Ehtm)s w(tr), w(tre1)s -« oy w(tpim) -
To demonstrate the data efficiency and effectiveness of
different modeling methods, we chose a relatively small
training dataset of 128 samples from the beginning of the
experimental dataset and the test dataset of the remaining
samples. All models were trained and evaluated on the same
training and test datasets. To evaluate the performance of a

le— i ‘
?;tg\j_ I
2 0.95 o g
1]
w2
~ —— Multi-output DNN
& 09| —a RNN =
—— DeepONet
—B— Causal-DeepONet
0.85 : .
1 2 3 4

Future time step ¢

Fig. 3. Change of R? score over future steps for each model. Higher is better.

0.4 \
5 —#— Multi-output DNN
E o3l RNN -+
g : —— DeepONet
o —B— Causal-DeepONet
g 02 “
o k|
5]
=
s 0.1¢ 4
2 E/B//E/_/E
[| |

1 2 3 4
Future time step ¢

Fig. 4. Change of MSE over future steps for each model. Lower is better.

model, the coefficient of determination (R? score) and the
mean squared error (MSE) were calculated for each prediction
of z(tgy;), with 7 ranging from 1 to m. The step 7 is indicated
by the subscript of each metric value, e.g., R and MSE; are
the R? score and MSE of z(tj1).

The results of the best model for each method are presented
in Table I and Table II, which compare the R? scores and
MSEs, respectively, of the different modeling methods. The
best accuracy results are emphasized in bold. Figures 3 and
4 illustrate the changes of the R? scores and MSEs for each
model over the future time steps tx;.

The following observations can be made of the results.

o The baseline multi-output DNN (dark green lines) expect-
edly achieved relatively consistent prediction accuracy
over the future time steps, due to its ability to learn and
predict all the future outputs in one forward computation
pass. However, it is the least accurate model in the first
two time steps and the second least accurate model in
the last two time steps. This can be explained by its lack
of temporal causality and its low data efficiency, which
is impacted by the number of outputs (requiring a larger
network size) and the small training dataset.

o The baseline RNN (red lines) achieved high accuracy at
the first time step, but its accuracy deteriorated quickly
over time, becoming the least accurate model in the
last two time steps. This is expected due to prediction
uncertainty propagation, which was explained above.

TABLE III
RELATIVE QUALITIES OF THE METHODS.

Overall Accuracy Accuracy Consistency

Multi-output DNN Low High
RNN Medium Low
DeepONet Medium Medium
Causal-DeepONet High High

o The original DeepONet (black lines) achieved good pre-
diction accuracy at all time steps and was the second most
accurate model overall. Its accuracy, however, decayed
relatively quickly over time; for example, while it started
out noticeably more accurate than the multi-output DNN
model (0.969 versus 0.948 in R? score), it became just as
accurate as that model at the last time step (0.942 versus
0.941 in R? score).

e The proposed Causal-DeepONet (blue lines) achieved the
best accuracy at every time step and was substantially
more accurate than all the other models. It also maintained
its accuracy consistently over time; in fact, its accuracy at
the last time step (R? = 0.978) was still better than the
best accuracy at the first time step of all the other models
(R? = 0.974).

It is evident from the results that our proposed Causal-
DeepONet method outperformed the baseline methods
and the original DeepONet method for modeling dynamical
systems from data by a large margin. Its superior performance
can be explained by its integration of the initial state and
especially the temporal causality of the system. Table III
summarizes the relative qualities of the methods in terms of
the overall accuracy and the consistency of accuracy over time.

V. CONCLUSION

We proposed a novel deep operator network (DeepONet)
architecture for learning data-driven models of dynamical
systems. The method, called Causal-DeepONet, improves upon
the original DeepONet architecture by taking into account
the initial state and enforcing the temporal causality of the
system. Our method was evaluated against a baseline multi-
output DNN method, a baseline RNN method, and the original
DeepONet method on learning the thermal dynamics of a room
in a building using real HVAC data. The experimental results
showed that the proposed Causal-DeepONet method not only
improves model accuracy significantly but also achieves highly
consistent accuracy in multi-step prediction tasks. The latter
quality will enable the use of Causal-DeepONet in applications
that require accurate predictions in multiple future time steps,
such as predictive control of complex dynamical systems. By
incorporating the inherent temporal causality property, our
method provides a foundation for the development of more
accurate and robust data-driven models of dynamical systems.

The findings of our study have important implications for
future research that we plan to pursue, including investigating
the application of Causal-DeepONet to other complex physical

systems and exploring the use of Causal-DeepONet models in
predictive control applications.

REFERENCES

[11 A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification

with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems, F. Pereira, C. Burges, L. Bottou, and

K. Weinberger, Eds., vol. 25. Curran Associates, Inc., 2012.

Z. Wang, T. Hong, and M. A. Piette, “Building thermal load prediction

through shallow machine learning and deep learning,” Applied Energy,

vol. 263, p. 114683, Apr. 2020.

[3] F. Djeumou, C. Neary, E. Goubault, S. Putot, and U. Topcu, “Neural

Networks with Physics-Informed Architectures and Constraints for

Dynamical Systems Modeling,” in Proceedings of The 4th Annual

Learning for Dynamics and Control Conference. PMLR, May 2022,

pp. 263-277.

C. Legaard, T. Schranz, G. Schweiger, J. Drgona, B. Falay, C. Gomes,

A. Tosifidis, M. Abkar, and P. Larsen, “Constructing Neural Network

Based Models for Simulating Dynamical Systems,” ACM Computing

Surveys, vol. 55, no. 11, pp. 236:1-236:34, Feb. 2023.

[5] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, “Learning
nonlinear operators via DeepONet based on the universal approximation
theorem of operators,” Nature Machine Intelligence, vol. 3, no. 3, pp.
218-229, Mar. 2021.

[6] P. C. D. Leoni, L. Lu, C. Meneveau, G. E. Karniadakis, and T. A. Zaki,
“Neural operator prediction of linear instability waves in high-speed
boundary layers,” Journal of Computational Physics, vol. 474, p. 111793,
Feb. 2023.

[7]1 C. Yue, K. Zhang, D. Wang, C. Kang, X. Ma, Y. Yu, and R. Wang,

“Deeponet-grid-uq: A trustworthy deep operator framework for predicting

the power grid’s post-fault trajectories,” IEEE Transactions on Power

Systems, vol. 36, no. 5, pp. 3615-3628, 2021.

X. Zhao, C. Kang, X. Li, and X. Ma, “Multiscale deeponet for nonlinear

operators in oscillatory function spaces for building seismic wave

responses,” IEEE Transactions on Neural Networks and Learning Systems,

vol. 32, no. 9, pp. 3589-3600, 2021.

[9]1 M. S. Priyadarshini, S. Venturi, and M. Panesi, “Application of DeepOnet

to model inelastic scattering probabilities in air mixtures,” in AIAA

AVIATION 2021 FORUM. American Institute of Aeronautics and

Astronautics, July 2021.

X. Yin, X. Li, C. Kang, and X. Ma, “Enhanced deeponet for modeling

partial differential operators considering multiple input functions,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 32, no. 10,

pp. 4248-4259, 2021.

L. Liu, K. Nath, and W. Cai, “A Causality-DeepONet for Causal

Responses of Linear Dynamical Systems,” Sept. 2022.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and

L. Yang, “Physics-informed machine learning,” Nature Reviews Physics,

vol. 3, no. 6, pp. 422440, May 2021.

J. Drgona, A. R. Tuor, V. Chandan, and D. L. Vrabie, “Physics-constrained

deep learning of multi-zone building thermal dynamics,” Energy and

Buildings, vol. 243, July 2021.

T. L. Nguyen and T. X. Nghiem, “A Comparative Study of Physics-

Informed Machine Learning Methods for Modeling HVAC Systems,”

in Under review at IEEE Conference on Control Technology and

Applications (CCTA) 2023, 2023.

J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive Control:

Theory, Computation, and Design, 2nd ed. Madison, Wisconsin: Nob

Hill Publishing, LLC, Oct. 2017.

Z. Afroz, GM. Shafiullah, T. Urmee, and G. Higgins, “Modeling

techniques used in building HVAC control systems: A review,” Renewable

and Sustainable Energy Reviews, vol. 83, pp. 64-84, Mar. 2018.

[2

—

[4

=

[8

=

[10]

(11]

[12]

[13]

[14]

[15]

[16]

