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Deep convolutional neural networks (DCNNss) trained for face identification can rival
and even exceed human-level performance. The ways in which the internal face rep-
resentations in DCNNs relate to human cognitive representations and brain activity are
not well understood. Nearly all previous studies focused on static face image processing
with rapid display times and ignored the processing of naturalistic, dynamic information.
To address this gap, we developed the largest naturalistic dynamic face stimulus set in
human neuroimaging research (700+ naturalistic video clips of unfamiliar faces). We used
this naturalistic dataset to compare representational geometries estimated from DCNN,
behavioral responses, and brain responses. We found that DCNN representational geom-
etries were consistent across architectures, cognitive representational geometries were
consistent across raters in a behavioral arrangement task, and neural representational
geometries in face areas were consistent across brains. Representational geometries in
late, fully connected DCNN layers, which are optimized for individuation, were much
more weakly correlated with cognitive and neural geometries than were geometries in
late-intermediate layers. The late-intermediate face-DCNN layers successfully matched
cognitive representational geometries, as measured with a behavioral arrangement task
that primarily reflected categorical attributes, and correlated with neural representa-
tional geometries in known face-selective topographies. Our study suggests that current
DCNN:Gs successfully capture neural cognitive processes for categorical attributes of faces
but less accurately capture individuation and dynamic features.

artificial neural network | deep neural network | face identification | naturalistic stimuli |
hyperalignment

Deep convolutional neural networks (DCNNs) that are trained for face identification can
match or even exceed human-level performance (1-3). Do these models learn internal
representations of faces similar to human cognitive and neural representations? Attempts
to directly interpret the embedding spaces learned by DCNNs suggest that the models
may implicitly represent a variety of face features (4). Previous studies reported that rep-
resentations of objects and faces in deep layers of DCNNs show substantial similarity to
neural responses in the ventral temporal cortex of nonhuman primates (5-8). Recent
studies reported similar face representations in DCNNs and the human brain (9-13).
Nearly all prior studies, however, used static face images with short display times (hundreds
of milliseconds). One study so far (13) that used dynamic naturalistic video clips of faces
with longer presentation times (3 s) reported weak correlations between face representa-
tions in DCNNs and the brain.

Although face perception processes operate on both still images and videos, the quick
processing of static images with rapid display times and the more extended processing of
longer dynamic videos may engage different cognitive processes and brain responses. Early
processing of still images affords individuation of identity but is only a small part of more
extended face processing in naturalistic settings. Recognition of identity appears to be
achieved in under 400 ms, but people continue to watch faces intently long after identity
is established. The extended processing of naturalistic, dynamic faces may elaborate infor-
mation that relates inferences of state of mind to social cognitive and semantic context.
In support of this view, neural responses to dynamic videos reveal a richer information
space that is not evident in responses to static images (14-18). It is currently unclear
whether DCNN's capture these additional levels of information about faces.

To test the utility of DCNNs as models of human cognitive and neural representations
of dynamic, naturalistic faces, we developed a stimulus set comprising 707 naturalistic 4 s
video clips of unfamiliar faces (19). This face stimulus set, alongside the accompanying
fMRI data, is one of the largest currently available in the neuroimaging literature. Faces in
these video clips vary across a broad spectrum of perceived gender, age, ethnicity, head
orientations, and expressions, providing a rich sampling of the high-dimensional face space.
We analyzed this dynamic face stimulus set in terms of representational geometries produced
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Significance

Faces in real life convey
categorical attributes (e.g., age),
unique identities, and dynamic
information (e.g., expression,
attention). Deep convolutional
neural networks (DCNNSs) can be
trained to individuate faces, but
individuation may be only a small
part of naturalistic face
perception. Our study compared
representations of naturalistic,
dynamic faces in DCNNs,
cognitive tasks, and brain
responses measured with
functional magnetic resonance
imaging (fMRI). Our results show
that intermediate DCNN
representations capture
categorical attributes of faces
that match cognitive and neural
representations but later DCNN
representations that extract
view-invariant identity do not,
suggesting that DCNNs provide a
good model for early cognitive
and neural face processing of
categorical attributes but are a
poor model for individuation and
for extended processing of
dynamic features.
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by DCNN:G, by behavioral measures of perceived similarity and
categorical attributes, and by fMRI measures of neural responses.
To ensure that our results were not dependent on a specific DCNN
architecture, we repeated all analyses using three separate face-DCNNG.
In a behavioral arrangement task, raters placed thumbnails of face
videos in a two-dimensional field according to perceived similarity.
In a second behavioral task, raters judged categorical attributes of
the face images (gender, ethnicity, age, expression, and head ori-
entation). Instead of limiting our analysis to a few face-selective
regions as in previous studies (mainly the occipital and posterior
temporal cortices), we compared face representations between
DCNNs and cortical responses across the entire face-processing
network, including regions in the ventral, dorsal, and anterior core
system (20, 21).

Representational geometries derived from DCNN, behavioral,
and neural measures were all highly reliable, providing a strong
foundation and high noise ceilings for investigating their interre-
lationships. Correlations between representations in DCNNs and
the behavioral arrangement task were high, approaching the noise
ceiling. Further analysis with feature ratings showed that rep-
resentational geometries produced by both DCNNs and the
behavioral arrangement task were dominated by categorical face
attributes. Even though the final, fully connected layers of DCNNs
are optimized for view-invariant recognition of identity, their cor-
relations with behavioral and neural geometries were markedly
weaker than were correlations with late-intermediate layers, sug-
gesting that the human cognitive and neural processes for face
individuation are poorly modeled by DCNN processes for face
individuation. Correlations of neural representational geometries
with DCNN and behavioral representational geometries were
significant, albeit low, with a meaningful cortical distribution. The
highly reliable but unexplained variance in neural representational
geometries may reflect face information beyond categorical attrib-
utes, such as dynamic information that is not captured by the
behavioral tasks or by DCNNSs, or it may reflect face-identity
information that is used by the human brain but not by DCNNEs.
Opverall, our results show that current DCNNs successfully model
representations of categorical face attributes but support our
hypothesis that their utility for modeling human cognitive and
neural representations of dynamic, naturalistic faces may be lim-
ited to this early stage of processing and not extend to information
embedded in dynamic information and to human processes for
face individuation.

Results

Reliable Face Representations in DCNNs, Human Behavior,
and the Brain. To investigate shared information in DCNNgs,
human behavior, and the human brain, we characterized the
representations of 707 naturalistic face video clips with multiple
high-performing DCNNs, a behavioral arrangement task of
perceived similarity, and fMRI data.

To derive DCNN face representations, we first used InsightFace,
a state-of-the-art deep face recognition package (hetps://github.
com/deepinsight/insightface). This package includes face detection
(RetinaFace), face alignment, and face recognition (ArcFace) steps
(Fig. 14) and is currently the industry standard for face identifi-
cation. We compared these representations to those in two other
face-trained DCNNs (AlexNetand VGG16) and two object-trained
DCNNs with the same architecture (AlexNet and VGG16) (22).

In the behavioral arrangement task, workers on Mechanical Turk
(MTurk, https://www.mturk.com/) arranged videos according to
perceived face similarities. The stimuli used in single scanning runs
(58 or 59 faces) were positioned outside of a circle at the beginning
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of the task, and MTurk workers were asked to arrange the stimuli
inside the circle based on the similarity of facial appearance
(Fig. 1C). To retain the dynamic aspect of the stimuli, each stim-
ulus would expand when the cursor hovered over its thumbnail
and play the 4 s video. The video automatically played once when
the cursor hovered the first time, and participants could rewatch
the video at any time if they right-clicked the thumbnail.

In the fMRI experiment, human participants underwent scan-
ning while viewing a sequence of 4 s dynamic, naturalistic video
stimuli (Fig. 1D). Current state-of-the-art fMRI localizers for
defining functional face category selectivity use similar dynamic
videos of faces in naturalistic settings (23, 24). Brain data from
all participants were functionally aligned using hyperalignment
based on participants’ brain activity (S/ Appendix, Fig. S1) meas-
ured while watching a commercial movie, the Grand Budapest
Hotel (25). Hyperalignment aligns brain response patterns in a
common high-dimensional information space to capture shared
information encoded in idiosyncratic topographies and greatly
increases intersubject correlation of local representational geom-
etry (16, 26-30).

Representational dissimilarity matrices (RDMs) were con-
structed for DCNNs, behavioral similarity arrangements, and
neural responses using similar methodologies to characterize pair-
wise distances between face video clips (see Materials and Methods
for details). We first assessed the reliability of the information
content in the RDMs.

We compared RDMs of different DCNN architectures by cal-
culating correlations between layers within each of the three
face-DCNNs (Fig. 1B). Although the three face-DCNNs had dif-
ferent architectures, they shared highly similar representational
geometries for faces in our stimulus set, especially in the middle
layers (Pearson’s » > 0.7). Similar correlations between face- and
object-DCNN's were found for intermediate layers, but fully con-
nected layers from face-DCNNs were mostly uncorrelated with
object-DCNNTs (81 Appendix, Fig. S3). These cross-similarities were
layer specific, which extended previous results showing layer-specific
DCNN representational geometries for objects using object-trained
DCNN:s (31, 32). Correlations between ArcFace and the other two
face-DCNNs in the last few layers and fully connected layers also
were significant (Pearson’s 7 > 0.3. Correlations between the final
layers of ArcFace and AlexNet, ArcFace and VGG16, and between
AlexNet and VGG16 were 0.46, 0.35, and 0.66, respectively.) but
lower than in the middle layers. We found similarly reliable RDMs
for the two object-DCNNGs (87 Appendix, Fig. S3A).

Next, we calculated the noise ceiling for the behavioral arrange-
ment task. Since each behavioral trial showed only face videos from
one scanning run (~60 faces), this task measured RDM similarity
across workers for stimuli within scanning runs. The noise ceiling
was calculated using Cronbach’s alpha (33), which was computed
first across participants within each run and then averaged across
runs. A high Cronbach’s alpha means that RDMs from different
participants are similar to each other and that the average RDM
has a high signal-to-noise ratio. The mean Cronbach’s alpha value
was 0.74, indicating highly similar behavioral arrangements across
participants.

We then measured the reliability of neural RDMs across subjects.
Noise ceilings were high with maximum values exceeding 0.8 in
early visual and 0.7 in posterior face-selective regions (Fig. 1D and
SI Appendix, Fig. S12G). Noise ceilings in the anterior face regions
were around 0.1 to 0.4. To further demonstrate that identity infor-
mation was reliably encoded in the neural representations, we con-
ducted between-subject decoding analyses. For this analysis, we split
participants into training and test groups with two different strat-
egies: split-half (dividing participants into two equally sized training
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Fig. 1. Schematicillustration of representational dissimilarity matrices (RDMs) and reliabilities of DCNNs, behavioral performances, and human neural responses.
(A) The DCNN face recognition process comprised three steps. First, the face and its five key landmarks were automatically detected in each frame, and these
landmarks were used to create the image of the aligned and cropped face. The cropped face image was then fed into the DCNN as input and passed through
convolutional layers, residual units, and fully connected layers. The final output was a 512-dimensional embedding vector. Each video clip comprised 120
frames, and the corresponding 120 vectors were averaged to obtain an average embedding vector for each clip. We computed the dissimilarities between the
embedding vectors of the 707 face clips to build a 707 x 707 RDM. Note that DCNNs and human subjects were presented with the same naturalistic face videos,
and this illustrative example was based on the fully connected layer of ArcFace. (B) Correlations in each pair of layers within each of the three face-DCNN pairs.
(C) In the behavioral arrangement task, MTurk workers organized face stimuli based on facial appearance, and behavioral RDMs were constructed based on the
distances between stimulus pairs. Note that this figure is illustrative and not based on real data in the experiment. Mean Cronbach’s alpha across participants
was high (0.74). (D) Human participants watched face video clips in the fMRI scanner, and their brain responses were recorded. For each brain region (searchlight),
responses of multiple vertices in the region formed a spatial pattern, and the resulting pattern vector was considered the neural representation of the face clip
for that brain region. For each brain region, we computed the dissimilarities between the pattern vectors of the 707 face clips, which formed a 707 x 707 RDM.
The surface plot depicts Cronbach’s alphas (noise ceilings) of brain RDMs across all cortical searchlights.

and test groups) and leave-one-out (iteratively holding out one
participant at a time as the test participant). Specifically, we exam-
ined whether the activation pattern for each stimulus face was more
similar to the pattern for that face in other participants’ brains than
to the patterns for other faces. Results with both methods generated
high identity decoding accuracies, especially in face-selective areas
(over 80% accuracy in posterior face areas, SI Appendix, Fig. S4),
suggesting reliable encoding of identity information in the neural
data across participants. Furthermore, similarities of neural RDMs
between areas of the face processing system replicated previous find-
ings describing how face representations change from region to
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region (20, 34) (ST Appendix, Fig. S5). Overall, these results showed
that meaningful information for faces was reliably encoded in local
patterns of fMRI responses in cortical face processing areas.

Strong Correlations between DCNN and Human Behavioral
Representations. We applied representational similarity analysis
(RSA) to investigate relationships between RDMs based on
DCNN features in different layers and on human behavioral
representations (see the section above for an overview of the
behavioral experiment). Correlations between face-DCNN
RDMs (ArcFace, face-AlexNet, face-VGG16) and behavioral

https://doi.org/10.1073/pnas.2304085120 3 of 11


http://www.pnas.org/lookup/doi/10.1073/pnas.2304085120#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2304085120#supplementary-materials

Downloaded from https://www.pnas.org by 73.100.32.249 on October 23, 2023 from IP address 73.100.32.249.

4 0of 11

RDMs peaked in late-intermediate layers, and the highest
correlations were close to the noise ceiling (Fig. 2A4). These
high correlation values demonstrate that face-DCNN feature
spaces for our face video stimuli capture information in human
cognitive representations. By contrast, correlations between
object-DCNN RDMs and behavioral RDMs were low across all
layers (SI Appendix, Fig. S3B). Taken together, these results show
that the type of the DCNNs and the image statistics of training
datasets (face-DCNNGs vs. object-DCNNG) have a stronger effect
than the specific DCNN architecture when modeling human
behavioral representations (35).

To further compare face- and object-DCNNs, we conducted
a variance partitioning analysis that quantified how much variance
in behavioral representational geometries could be accounted for
by face- and object-DCNNGs. Results showed that the layers of the
face- and object-DCNNss with the strongest correlations (“best
layers”) explained 27.5% of the total variance of the behavioral
RDMs, due primarily to face-DCNNs (27.2% of the total
explained variance). By contrast, the final, fully connected layers
accounted for only 5.4% of the total variance of the behavioral
RDM:s, which was primarily due to object-DCNNs (4.1% of the
total explained variance) (SI Appendix, Fig. S13).
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Fig.2. Correlations between DCNN and behavioral RDMs and between neural and behavioral RDMs. (A) Mean correlations across participants and runs between
the behavioral and DCNN RDMs in each layer in all three face-DCNNs. The star marks the layer that has the highest correlation with the behavioral task in each
DCNN. The red horizontal line in each subplot represents the mean noise ceiling of the behavioral arrangement task across runs. (B) Example MDS plots using
RDMs of the same run in the behavioral arrangement task, the “best” layer that showed the highest correlation with the behavioral RDM (_plus45) in ArcFace,
and the final layer in ArcFace. Each dot is a stimulus. Orange and blue dots indicate perceived females and males, respectively. Behavioral and neural RDMs in
this analysis were mean RDMs across participants. (C) Difference in the between- and within-group distance of perceived gender (red), age (orange), ethnicity
(green), expression (blue), and head orientation (purple) in representational geometries of the behavioral arrangement task, and each layer of the three face-
trained DCNNs (ArcFace, AlexNet, VGG16). These differences were calculated within each run and then averaged across runs. Shaded layers show significant
differences in the between- vs. within-group test (P < 0.05, permutation test, one-tail). Error bars indicate the SEM estimated by bootstrap resampling the stimuli
(the error bars are too small to be visible in some cases). **P <0.01 and ***P < 0.001.
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We investigated the nature of the face information that is shared
across DCNN and behavioral arrangement RDMs by examining
the role of categorical face attributes—perceived gender, age, eth-
nicity, expression, and head orientation—in face-DCNN and
behavioral arrangement RDMs. The contribution of each face fea-
ture to the representational geometries was quantified by comput-
ing z-scored spatial distances within and between feature groups.
Fig. 2B shows an example that highlights the rationale of this anal-
ysis using multidimensional scaling (MDS) plots. A larger differ-
ence of between-group vs. within-group distances corresponds to
a clearer division between the feature clusters (e.g., female/male).

Behavioral arrangement RDMs were largely driven by perceived
gender, followed by age and ethnicity of faces (Fig. 2C). Expression
played only a minor role in similarity arrangements, and head
orientation played no role. Gender, age, and ethnicity were most
strongly reflected in the late-intermediate layers of face-DCNNs
(Fig. 2C) but only weakly reflected in object-DCNNTs (S7 Appendix,
Fig. S3D). Head orientation, by contrast, was more strongly
reflected in early intermediate layers of face-DCNNS. Thus, the
reliable representational geometries in late-intermediate layers of
face-DCNNs carry information about cognitive representations
that reflect major face categorical attributes. Importantly, rep-
resentations of these categorical attributes strongly contribute to
the similarities between face-DCNN’s and the behavioral cluster-
ing of perceived similarity.

Correlations of Neural Representations with DCNN and
Cognitive Representations. We analyzed relationships between
neural representational and DCNN geometries, on the one hand,
and between neural representational and cognitive geometries, on
the other hand. We first correlated neural RDM:s in all cortical
searchlights with the ArcFace RDMs in each layer. Results showed
that representational geometries were more similar in regions
extending from the early visual cortex to other regions in the
occipital lobe, in the ventral temporal cortex, along the superior
temporal sulcus, and in higher-level regions in the frontal lobe
for all ArcFace layers (see example maps of the late-intermediate
layer _plus45 and the fully connected layer fcl in Fig. 3 4 and B).
These regions largely correspond to the previously reported human
face processing system consisting of multiple face-selective regions
(20, 21, 33, 36, 37).

We independently defined face-selective regions using a
dynamic face localizer (face vs. objects; SI Appendix, Fig. S6)
(24, 33) and calculated the mean correlations for face-selective
and non-face-selective regions in each layer. We found that neural
RDM:s in face-selective regions were best modeled by the late-
intermediate ArcFace layers. Correlations dropped drastically after
layer _plus45 and reached their lowest values in the final fully
connected layers (Fig. 3C). Although correlations in the face-selective
regions were significantly higher than the non-face-selective regions
in both the peak intermediate layer and the final fully connected layer,
correlations with the peak intermediate layer were more than five
times stronger than with the final fully connected layer across
face-selective regions, and similarly for other category-selective visual
areas (e.g., body-selective areas. ST Appendix, Fig. S16).

Next, we tested whether a specific DCNN architecture had a
significant effect on the similarities between DCNN and human
neural representations, we performed a similar analysis using two
other face-DCNNSs (AlexNet and VGG16) and found similar
results across layers (Fig. 3D). Following the same analysis we used
for face-DCNNs, we calculated correlations between RDMs in
each layer of the two object-DCNNSs and neural representations
in each searchlight across the cortical sheet. Similarly, mean cor-
relation coefficients were calculated for the face-selective and
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non-face-selective areas. Correlating object-DCNN and neural
RDMs generated comparable correlations to those between
face-DCNN and neural RDMs (87 Appendix, Fig. S3C), indicat-
ing that DCNN-neural RDM correlations were not influenced
by the type of the DCNNs (face-DCNNs vs. object-DCNNEs).

For all DCNNE, intermediate layers provided a markedly better
model for the neural representations than final fully connected lay-
ers. This finding is consistent with previous work examining face
representation in the brainand DCNNss (5, 10, 38, 39). Interestingly,
however, for all DCNNg, correlations between any layer and neural
representations accounted for only a fraction of the meaningful
variance (all Pearson’s 7 < 0.1). The correlation values were especially
low compared to the reliable noise ceilings of neural representations
(SI Appendix, Figs. S7 and S8, the noise ceiling was ~0.4 on average
for face-selective areas, with some areas exceeding 0.7, and the
DCNN-neural correlations were always <0.1). Additionally, no
meaningful mapping was evident between the layer structure of
face-DCNNs and the sequence of face-selective areas in the human
neural system for face representations (S/ Appendix, Fig. S12), sug-
gesting that the sequence of representational geometries in the
face-DCNN layers differs from the progression of representational
geometries along the neural face pathways (20, 34, 40, 41). The
DCNN-neural correlations in each individual face-selective ROI
for each layer in both face- and object-DCNNGs also showed that
none of the ROIs had correlations that approached the noise ceiling
(Pearson’s 7 < 0.1 in all cases). An additional variance partitioning
analysis revealed that the variance in neural RDMs is minimally
explained by DCNN, behavioral models, or by a combination of
the two (SI Appendix, Fig. S13).

We conducted an additional analysis to investigate whether the
low correlations were due to RSA’s inherent assumption of equal
weights or scales for all features comprising the two RDMs (42—
45) (see Materials and Methods for details). This additional analysis
generated similar results as using classic RSA, excluding the pos-
sibility that the low correlations are due to the particular assump-
tion of RSA (8] Appendix, Fig. S9). To examine whether more
distributed brain activity patterns might lead to a better match
between the DCNN and neural representations, we repeated this
analysis with larger searchlight sizes (15 mm and 20 mm radius).
Larger searchlight sizes only slightly improved the correlations,
and the overall results remained weak (less than 2% variance
explained, SI Appendix, Figs. S10 and S11).

Correlations between the behavioral arrangement and neural
representations in the searchlight analysis consistently showed
face-selective areas had significantly higher correlations than other
areas (Fig. 3F, permutation test, P < 0.001). However, the actual
correlation values remained small (7 < 0.1), suggesting that a major
difference existed between clustering according to facial similarity
and the extended processing of dynamic faces.

'The strength of categorical face attributes in neural representa-
tional geometries showed a distribution across face-selective ROls
(Fig. 3G) that was consistent with known specialization. Face ROIs
in the right hemisphere represented these features more promi-
nently than did face ROlIs in the left hemisphere. Identity-related
invariant categorical face features, such as perceived gender and
age, were significantly represented in bilateral face areas in the
ventral temporal cortex [OFA (occipital face area), pFFA, aFFA
(posterior and anterior fusiform face areas)], as well as in the pSTS
(posterior superior temporal sulcus) and right IFG (inferior frontal
face areas) (Fig. 3 F and G). Expression was significantly repre-
sented in face areas in the OFA, pSTS, aSTS (posterior and ante-
rior superior temporal sulcus), and right IFG, but not the FFA.
Head orientation was significantly represented in the OFA, right
pFFA and mFFA, and the pSTS. Although neural representations
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Fig. 3. Correlations between DCNN and neural RDMs. (A and B) The DCNN-neural correlations across all cortical searchlights using RDMs in layer _plus45
(output of the last stage 3 residual unit) and fc1 (the last fully connected layer). Both layers are highlighted in panel C. Correlations in the visual cortex, ventral
temporal cortex, STS, and frontal regions were statistically significant for both layers (controlling FDR at P < .005, permutation test). (C) Average correlations for
face-selective regions (defined by a dynamic localizer, faces vs. objects, t > 5) and non-face-selective regions (t <= 5) are plotted as red and gray bars respectively
for each layer. The error bar length stands for one SEM estimated by bootstrap resampling of stimuli. The significance of the difference between the two bars
was assessed via a permutation test randomizing stimulus labels. Layer _plus45 had the largest correlation with neural RDMs among all layers. (D) Average
correlations for face-selective regions and non-face-selective regions for each layer in the two face-DCNNs. Regions, significance, and the color code were
defined the same as in panel C. Stars indicate the layers that had the largest correlations. (F) The neural-behavioral correlation values in the cortex and the mean
behavioral-neural correlations in face-selective (red) and non-face-selective (gray) areas. The error bars indicate the SEM estimated by bootstrap resampling the
stimuli. The significance of the difference between the two bars was estimated using a permutation test randomizing the stimulus labels. (F) Example MDS plots
using RDMs for the same run in the right aFFA. Each dot is a stimulus. Orange and blue dots indicate perceived females and males, respectively, the same as
Fig. 2B. Neural RDMs in this analysis were mean RDMs across participants. (G) Difference in the between- and within-group distance of perceived gender (red),
age (orange), ethnicity (green), expression (blue), and head orientation (purple) in representational geometries of each face-selective regions of interest (ROI,
bilateral OFA, pFFA, aFFA, ATL, pSTS, aSTS, sIFG, mIFG, and iIFG). These differences were calculated within each run and then averaged across runs. Shaded ROIs
show significant differences in the between- vs. within-group test (P < 0.05, permutation test, one-tail). The significance of the difference was estimated based
on a random permutation test randomizing the stimulus labels. Error bars represent one SEM estimated by bootstrap resampling stimuli. Left triangles are nine
face-selective ROIs in the left hemisphere, and right squares are face-selective ROIs in the right hemisphere. ***P < 0.001.

6 of 11  https://doi.org/10.1073/pnas.2304085120 pnas.org



Downloaded from https://www .pnas.org by 73.100.32.249 on October 23, 2023 from IP address 73.100.32.249.

contained significant information for all categorical attributes, this
categorical information was more weakly represented than in
behavioral and DCNN representations in intermediate layers.

Discussion

State-of-the-art DCNNS trained to perform face identification
tasks have drawn considerable attention from researchers investi-
gating face processing in humans and nonhuman primates. These
artificial networks can identify faces at levels of accuracy that
match or exceed human performance. Previous neuroscientific
studies mainly focused on face representations that are produced
by rapid processing of still images. One previous study (13) inves-
tigated the representations produced by more extended processing
of naturalistic, dynamic faces. Here, we investigated the extent to
which DCNN’s can model real-world face processing by compar-
ing representational geometries produced by DCNNs to rep-
resentational geometries produced by brain and behavioral
responses to a large, varied set of naturalistic face videos.

Our results showed that DCNN, behavioral, and neural rep-
resentational geometries were stable and information-rich. Face-
DCNN5s and behavioral representations of perceived similarities
captured shared information about face categorical attributes. This
face categorical knowledge was strongly represented in late-intermediate
layers of face-DCNNS. By contrast, the final fully connected layers,
which are optimized for face identification, did not carry much
categorical information. Brain responses to the face videos had rep-
resentational geometries that were highly reliable across participants,
and reliabilities were highest in face-selective cortical areas. Infor-
mation in the neural representational geometries was significantly
correlated with the information in DCNN and behavioral geom-
etries, albeit weakly. The DCNN-neural correlations had a mean-
ingful cortical distribution, following the full distributed face system
in occipital, temporal, and frontal cortices, and were much stronger
for late-intermediate layers than for the final fully connected layers.
Correlations between DCNN representational geometries and the
other two (cognitive and neural) geometries were much stronger
for late-intermediate layers too, suggesting that the optimization in
the final fully connected DCNN layers for recognition of identity
is a poor model for how human cognitive and neural systems indi-
viduate faces. Although the identification ability of face DCNNs
successfully generalizes across stimulus sets (S/ Appendix, Fig. S2),
the representations of the final fully connected layers may nonetheless
be biased toward specific training datasets. The idiosyncratic image
statistics of these training datasets clearly diverge from the statistical
structure learned (in evolution or development) by humans, contrib-
uting to the discrepancies observed between humans and DCNNG.

The maximal local correlations between face-DCNN and neural
representations show that at most only 3% of the meaningful
variance (as defined by the noise ceiling) is shared. It is unclear
what information in the highly reliable neural representational
geometries is unaccounted for by the face-DCNNs. We focus here
on two domains of information in dynamic videos that may play
a large role in the variance that remains to be explained: informa-
tion in facial movement and information derived from other cog-
nitive processes that enrich face representations, such as social
inferences, memory, and attention.

In comparison to the rapid processing of briefly presented static
stimuli, extended processing of dynamic stimuli dramatically alters
the neural response to faces both in terms of tuning profiles and
representational geometry. Response tuning to static, well-controlled
stimuli in face patches is dominated by the presence or absence of
faces or their static structural features (40), but tuning for dynamic
face stimuli is dominated by biological motion (14, 18, 46-48).

PNAS 2023 Vol.120 No.44 e2304085120

In addition, dynamic faces are superior to static faces for the local-
ization of face-selective areas (23, 24, 33, 49), indicating that they
better or more fully engage face-related neural processes. In a similar
vein, representational geometry in the ventral temporal cortex for
static images of animals is dominated by animal category, but rep-
resentational geometry for videos of naturally behaving animals is
dominated by animal behavior. Although animal category plays a
significant role, it is dwarfed by the representation of behavior,
which accounts for 2.5 times more variance (16, 30). Further
research is needed to precisely characterize how these dynamics
change the geometry of face representation. While the processing
of static face stimuli may appear to be well-modeled by current
DCNN:g, extended processing of naturalistic stimuli may reveal
the deficiency of such models and help focus our attention on how
best to improve them.

Temporally extended face processing with dynamic videos may
recruit a variety of cognitive features. People automatically make
inferences about novel faces—trustworthiness, competence, and
attractiveness—that can distort representational geometry (50, 51).
Person knowledge plays a large role in the representation of familiar
faces (20, 21, 52-55). Familiarity is also known to distort face
representations (56, 57), and similarity of novel faces to familiar
faces may influence perception and attribution. Faces also play a
role in directing attention (37, 58-60), and attention has a large
effect on neural responses to faces (61-63) that can be influenced
by factors such as trait inferences, familiarity, and memory. Teasing
apart the roles played by these different social and cognitive factors
on human face representational geometry requires further research.
Similarly, developing machine vision systems that incorporate
dynamic and social features (expression, eye gaze, mouth move-
ments, etc.) may enhance their power and utility for human-machine
interaction.

Behavioral performance in the arrangement task was dominated
by major categorical face attributes of perceived gender, age, and
ethnicity. These categorical variables play little role in individuation
of face identity. In cognitive models of face perception, such cat-
egorical judgments precede processing for individuation (64).
Many patients with prosopagnosia, who have impaired recognition
of face identity, can still judge categorical attributes such as per-
ceived gender, age, expression, and gaze direction (65-67). Thus,
the categorical face information that is captured by late-intermediate
face-DCNN layers and is correlated with cognitive task perfor-
mance is weakly related to individuation. Processes for face indi-
viduation in late, fully connected layers are powerful but less
related to human cognitive and neural processes. We performed
an additional behavioral similarity rating experiment to measure
similarities between faces based on individuation attributes rather
than categorical attributes (see the Materials and Methods section
for details). Results showed that dissimilarity matrices based on
these ratings correlated very weakly with DCNN dissimilarity
matrices (SI Appendix, Figs. S14 and S15), unlike behavioral dis-
similarity matrices that included categorical differences (Fig. 24).
These results corroborate our finding that categorical information
was the primary driver of the correlations between the behavioral
arrangement task and face-DCNN representations.

To summarize the results, Fig. 4 illustrates our interpretation of
the different components that played a role in the correlations of
the DCNN, behavioral, and human neural RDMs. This figure pro-
poses that the high correlations between behavioral RDMs and the
RDMs of the intermediate layers of face-DCNNs were mainly
driven by the shared categorical information in both types of RDMs.
The low correlations with deep layers were due to little face indi-
viduation information in the behavioral RDMs as well as little cat-
egorical feature information in the RDMs of deep layers. On the
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Fig.4. Schematicillustration of hypothesized components of information in RDMs. In RDMs for the behavioral arrangement task and RDMs for the intermediate
layers of face-DCNNSs, categorical information (blue) played a major role. Most categorical information was factored out in the fully connected layers of face-
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categorical information as in the final fully connected layers. Successful individuation of faces may only rely on part of facial features, and the information
for face individuation in neural RDMs (red) may be different from that in face-DCNNs. Different from face-DCNNs, neural RDMs also contain dynamic (yellow)
and cognitive information (purple) that plays an essential role in human face processing. Note that an extra component existed in all RDMs that stood for the

unexplained variance and it was omitted for cleaner display.

other hand, the neural RDMs in the face-processing system con-
tained all four kinds of information—categorical information, face
individuation (e.g., SI Appendix, Fig. S4), dynamic information
(dynamic faces are superior to static faces for the localization of
face-selective areas), and information from other cognitive processes
(e.g., social inference, memory, attention). Because categorical infor-
mation was only one component in the neural RDMs, the shared
information between behavioral and neural RDMs was limited.
This low contribution of categorical information in neural RDMs
can also explain the low correlations between neural RDMs and
face-DCNNSs in intermediate layers. Similar magnitudes of corre-
lation were found between the representations of the behavioral
pairwise comparisons and the neural representations (SI Appendix,
Figs. S14 and S15). Behavioral similarity ratings may reflect the
influence of dynamic, individuation, and other attributes of faces
on human behavior. These types of information all contribute to
the complex neural representations of dynamic, naturalistic faces.
Finally, there is shared face identification information between
DCNN and the neural RDMs, but the type of information used
for face identification in the late, fully connected DCNN layers and
in the human face processing system could be quite different. When
we narrowed our focus to a smaller stimulus group, matched based
on their superordinate categorical information, we observed a
decrease in correlation between DCNN and neural representations
compared to using the full stimulus set, but the correlations were
still substantial, particularly in the later intermediate layers
(SI Appendix, Figs. S14 and S15). On the other hand, dynamic
information or information from other cognitive processes is essen-
tial for the human face processing system (23, 24, 50, 51), while
this type of information is largely ignored by the face-DCNNGs.
These differences likely contributed to the low correlations between
DCNN RDMs and neural RDMs.

The Fig. 4 suggests a framework for explaining the difference
between our results and the results from previous studies that
compared DCNN:Gs to brain responses in rapid static face process-
ing tasks. Because dynamic information plays a role in the geom-
etry of brain representations (16, 17, 48), static images could
generate higher correlation values between brain responses and
DCNNs that do not use motion information (10, 13, 68).
Similarly, studies that used stimuli spanning superordinate cate-
gories [e.g., with multiple visual categories (12, 45)] would bias
representations toward categorical information, reducing the

https://doi.org/10.1073/pnas.2304085120

contribution of information that is needed for within-class indi-
viduation such as face identification.

None of the existing behavioral tasks or computational models
that we tested resulted in a strong alignment with neural representa-
tions. There are several possible ways forward. First, future work
could examine whether subject-specific behavioral judgments better
account for variance in neural RDMs in the same subjects (69).
Here, for practical reasons, behavioral data were not collected in the
same subjects that participated in the fMRI experiment. Second,
arrangement tasks with different behavioral goals beyond simple
similarity in facial appearance could provide access to features in
the neural representational space that are currently inaccessible or
underexplored. Any behavioral judgment task necessarily reduces
complex, high-dimensional neural representations associated with
face stimuli into a low-dimensional (often unidimensional) behav-
ioral output. By definition, no single low-dimensional behavioral
task can explain high-dimensional neural representations that sup-
port many different tasks. However, these options are limited due
to practical considerations. The large number of stimuli in each trial
imposes a high cognitive load, making it challenging for participants
to use more nuanced information within a reasonable timeframe.

Although face-DCNN:Gs are trained on an exceptionally large set
of face images, face-DCNNSs are optimized to encode these faces
according to a very specific objective function: face identification.
Face identification, however, is only one aspect of face processing
in humans, which is flexible, highly contextualized, and ultimately
supports social interaction. Building a representation of the
uniqueness of the identity of a face takes a few hundred millisec-
onds (70), but is followed by sustained processing of a dynamic
face in naturalistic viewing for gleaning other information for social
cognition—changes of expression gaze, and head orientation;
speech-related mouth movements; inferences of intentions, social
rank, social affiliation, reliability, and more. The human system
for face perception is serving all of these goals during naturalistic
viewing, and processes for face identification, besides playing only
a small part that is finished quickly at the onset, may also be inte-
grated with other functions in such a way that identification cannot
be simply dissociated as a modular process. Perhaps in the future,
artificial neural networks trained with more ecological objective
functions (68, 71-73), requiring not just face recognition, but
extending to facial dynamics, attention, memory, social context,
and social judgments, will learn face representations that afford a
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more ecologically valid model that better captures the representa-
tions of the face processing system in humans.

Materials and Methods

Participants. Twenty-one participants (mean age 27.3 y, range 22 to 31, 11
reported female) participated in the fMRI study. All participants had normal
hearing and normal or corrected-to-normal vision and no known history of neu-
rological illness. The study was approved by the Dartmouth Committee for the
Protection of Human Subjects. All participants provided written informed consent.

Experimental Design. The Grand Budapest Hotel and localizer data were also
used in prior work by Jiahui and colleagues (33). The MRI data acquisition param-
eters, preprocessing, and data analysis methods involving these two datasets are
the same as in the previous publication.

The Grand Budapest hotel. The full-length Grand Budapest Hotel movie was
divided into six parts. Parts were divided at scene changes to keep the narrative
of the movie intact. Participants watched the first part of the movie (~45 min)
outside the scanner. Immediately thereafter, participants watched the remaining
five parts of the movie in the scanner (~50 min, each part lasting 9 to 13 min) with
audio. These data were curated and made publicly available for research use (25).
Hyperface. Video clips (707 clips, 4 s each) of individuals behaving naturally were
created. The video clips were downloaded from YouTube and mostly comprised
different people talking in interviews. Individuals in the clips varied widely in their
identity, age, ethnicity, perceived gender, and head orientation. Audio channels
were removed from the clips, and the clips were cropped to remove unrelated
text. The video clips were divided into 12 blocks (~59 clips per block) to match
the 12 scanning runs and block order was counterbalanced across participants.
In each run, participants were asked to watch the video clips (without fixation),
shown continuously. After all clips in a run were shown, participants were tested
with a brief four-trial memory check where they were asked to report whether a
test clip was novel or was presented in the current run. Feedback was provided at
the end of each run. Data from the memory test were removed from all analyses.
Dynamic localizer. Participants watched 3 s dynamic clips of faces, bodies, scenes,
objects, and scrambled objects (24). The clips were presented continuously in
18 s blocks of each category, without blank periods between blocks. The blocks
followed this order: an 18 s fixation period, five blocks of different categories (each
lasting 18's)in random order, an 18 s fixation period, five blocks of the categories
in reversed order, and a final 18 s fixation period. Participants were required to
press a button whenever they saw a repetition of a clip (five total in each run, one
for each category). Four 234 s runs were collected for a total duration of 15:44.
Behavioral arrangement task. An independent group of 39 Amazon MTurk
workers performed this task. Stimuli in a scanning run (59 stimuli for run 1 to
11 and 58 stimuli for run 12) were displayed as thumbnails outside a white
circle on a gray background. When a trial began, the stimuli were arranged in
randomized equidistant positions around the circumference of the circle. The
first mouse hover triggered a larger and dynamic display of the video clip of that
stimulus, and MTurk workers were able to rewatch the video by right-clicking the
mouse button. MTurk workers were instructed to arrange the thumbnails within
the circle based on the similarity of the face appearance. To ensure a reasonable
time for each participant to complete the experiment, we asked each of them to
perform three trials randomly selected from the total 12 trials. At least 10 different
individuals completed each trial.

Behavioral rating task. Another independent group of 121 Amazon MTurk work-
ers participated in the behavioral rating task. In each trial of the task, participants
watched the video clip of a stimulus and rated the stimulus on five features:
perceived gender (M/F), age (0to 10, 11t0 20,21 t0 30, 31t0 40,41t0 50,51 to
60,611070,and 70+), ethnicity (White, Black or African American, Asian, Indian,
Hispanic or Latino, and Other), expression (Neutral, Happiness, Surprise, Anger,
Disqust, Sadness, and Fear), and overall head orientation (Mostly Left, Mostly
Center,and Mostly Right). All 707 stimuli clips were divided into 15 independent
experiment sessions (about 47 clips in each session), and each participant was
assigned to one session to ensure the experiment could be completed in a reason-
able amount of time. At least eight different individuals performed each session,
and the final rating of each clip was the one that the most workers agreed on.
Behavioral pairwise comparison task. We designed a behavioral pairwise compar-
ison task to limit the use of categorical features and prioritize dynamic, individuation
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features. Four additional independent groups of online workers (25 workers in each
group, total = 100) on Prolific (https://www.prolific.co/) completed this task. Stimuli
inthe four groups were selected to minimize within-group differences in categorical
information (white females, age 21 to 30, happy, facing right: 18 clips; black males,
age 210 30, neutral expression, facing right: 15 clips; black females, age 21 to 40,
happy or neutral faces, facing right: 16 clips; white males, age 21 to 30, neutral faces,
facing right: 20 clips). Dynamic stimuli were presented side-by-side on the screen.
After the video clips played once, a slider bar (range 1 to 10) below the two clips
could be dragged to indicate the similarity of the two faces. The videos were replayed
on loop until the "Next" button was hit to move to the next trial. Each pair of faces
was displayed twice with counterbalanced left and right positions on the screen.

MRI Data Acquisition. All data were acquired using a 3T Siemens Magnetom
Prisma MRI scanner with a 32-channel head coil at the Dartmouth Brain Imaging
Center. CaseForge headcases were used to minimize head motion. BOLD images
were acquired in an interleaved fashion using gradient-echo echo-planar imag-
ing with prescan normalization, fat suppression, multiband (i.e., simultaneous
multislice) acceleration factor of 4 (using blipped CAIPIRINHA), and no in-plane
acceleration (i.e., GRAPPA acceleration factor of one): TR/TE = 1,000/33 ms, flip
angle = 59°, resolution = 2.5 mm’ isotropic voxels, matrix size = 96 x 96, FoV =
240 x 240 mm, 52 axial slices with full brain coverage and no gap, anterior-pos-
terior phase encoding. See Sl for details on the MRI data acquisition parameters.

DCNN Models. We used five DCNN models in our analysis: three DCNNss trained
for face recognition and two DCNNSs trained for object recognition. These DCNNs
cover a wide range of commonly used “classic” and state-of-the-art DCNN
architectures, including AlexNet (74), VGG16 (75), and ResNet100 (76). See
Sl Appendix for details on training of the DCNN.

Data Analysis.

Preprocessing. MR data were preprocessed using fMRIPrep version 1.4.1 (77).
The following confound variables were regressed out of the signal in each run: six
motion parameters and their derivatives, global signal, framewise displacement
(78), 6 principal components from a combined cerebrospinal fluid and white
matter mask (aCompCor) (79), and up to second-order polynomial trends. See
Sl Appendix for details on the preprocessing steps.

Searchlight hyperalignment. All three imaging datasets were hyperaligned
(26-29) based on responses to the Grand Budapest Hotel (S/ Appendix, Fig. S1).
See Sl Appendix for details on the steps for hyperalignment.

Searchlight RSA. We performed a searchlight RSAto quantify the similarity between
DCNN and neural representational geometries. Embeddings derived from the final
fully connected layer and the intermediate layers were used to build the RDM of
the DCNN networks. In detail, the stimulus face and its five key landmarks were
automatically detected in each frame to create the aligned and cropped face image.
The cropped face image was then fed into the DCNN as input and passed through
the layers. Each video clip comprised 120 frames, and the corresponding 120 vec-
tors were averaged to obtain an average embedding vector for each clip. Neural
responses to each stimulus of the video clip were averaged over the duration of
4 s in each cortical vertex after adjusting for a 5 s hemodynamic delay, and the
RDM was built using pattern similarity across clips for each 10 mm searchlight in
each participant. The Hyperface stimulus set included 707 stimuli. This resulted
in 707 x 707 RDMs for the DCNN layers and for each searchlight per participant,
with each element of the RDM reflecting the correlation distance (1 - Pearson’s )
between the response patterns elicited by the two stimuliin a pair (Fig. 1). The neural
RDMs were first averaged across participants in each searchlight, and Pearson’s r
values were calculated to measure the similarity between the model and neural
RDM:s across all surface searchlights to generate the whole-brain correlation map.
To assess the statistical significance of whole-brain correlation maps, we performed
a permutation test by shuffling the labels of the 707 stimuli prior to recomputing
the RDMs 1,000 times for each intermediate layerand 5,000 times for the final fully
connected layer.The false discovery rate (FDR) was controlled at P < 0.005 to obtain
whole-brain FDR corrected maps. For run-by-run analysis, RSA was performed for
each individual scanning run, and the correlation maps were averaged across runs.
Correlations in the category-selective ROIs and the noise ceiling. The face-
selectivity map was estimated using hyperaligned localizer data. We calculated
the univariate contrast map of faces vs. objects for each participant using the
hyperaligned localizer data in the common model information space, averaged
these to get the group face-selective map (S/ Appendix, Fig. S6), and applied
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a conservative threshold of t > 5 to obtain the face-selective regions. Other
category-selective ROIs were localized following the same steps based on the
contrasts of bodies, scenes, and objects vs. all the other categories, respectively.
Individual face-selective ROIs including the OFA, the aFFA and pFFA, the anterior
temporal face area (ATL), the posterior and anterior superior temporal sulcus (pSTS
and aSTS), and three IFG (superior, middle, and inferior: sIFG, mIFG, and ilFG)
bilaterally were localized by drawing a disc of radius = 10 mm centered on the
peak face-selective response (see also analysis with radius = 15 mmand 20 mm
in S Appendix, Figs. S10and S11). Mean correlation coefficients were calculated
for searchlights with centers within face-selective areas and non-face-selective
areas for each layer of DCNNs. The correlation coefficient of each face-selective ROI
was the value for the searchlight centered on the peak of face-selective response.
SEM were calculated by bootstrapping the stimuli 1,000 times for each intermedi-
ate layerand 5,000 times for the final fully connected layer. Statistical significance
was assessed by permutation tests randomizing the stimulus labels 1,000 times
for each intermediate layer and 5,000 times for the fully connected layer.

The noise ceiling provides an estimate of the maximum possible correlation with
the neural RDM predicted by the unknown true model (80). Because we averaged
individuals' RDMs before RSA analysis, the noise ceiling was estimated by calculat-
ing Cronbach's alpha using neural RDMs across participants (81). Cronbach’s alpha
was used to describe the reliability of the neural RDMs across participants in each
searchlight.To obtain noise ceilings for the face-selective areas, non-face-selective
areas, and across the whole brain, mean alphas were calculated by averaging across
vertices (corresponding to searchlight centers)in these regions. For the run-by-run
analysis, the noise ceiling was estimated for each individual scanning run first and
was averaged across runs to get the estimation of the overall noise ceiling.
Reweighting features prior to RSA. RSA has the strong assumption that all
features contribute equally to generate an RDM (e.g., all cortical vertices in a
searchlight are equally important when computing pattern similarity between
two conditions) (43, 44). We tested whether relaxing this assumption might yield
larger DCNN-neural correlations. See Sl for detailed reweighting steps.
Cross-subject identity decoding. The cross-subject identity decoding analysis
was done as a binary classification task with a simple one-nearest-neighbor clas-
sifier across all searchlights (10 mm radius). See S/ Appendix for details on the
steps for the decoding analysis.

Behavioral arrangement task RDMs and noise ceilings. Coordinates at
the center point of the thumbnails were used to build behavioral RDMs for
stimuli in each scan run for each participant. Each element of the behavioral
RDMs reflected the Euclidean distance between the placements for a given
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pair of stimuli. Individual behavioral arrangement task RDMs were averaged
across participants before further analysis. Because we averaged individual
behavioral RDMs in each run before further analysis, the noise ceiling for each
run was estimated using Cronbach's alpha across participants and averaged
across runs.

Behavioral pairwise comparison task RDMs and noise ceilings. Behavioral
pairwise RDMs were constructed based on the slider bar ratings for each par-
ticipant in each stimulus group. Each element of the behavioral pairwise RDMs
reflected the perceived similarity rating between a given pair of stimuli. Individual
behavioral pairwise comparison task RDMs were averaged across participants
before further analysis. RSA results were averaged across the four stimuli groups
as well as the noise ceilings that were estimated based on Cronbach’s alpha across
participants in each group.

Variance partitioning analysis. \ariance partitioning analysis based on multiple
linear regression was used to quantify the unique contributions of each model
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