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Abstract

Imputation and propensity score weighting are two popular techniques for han-
dling missing data. We address these problems using the regularized M-estimation
techniques in the reproducing kernel Hilbert space. Specifically, we first use the ker-
nel ridge regression to develop imputation for handling item nonresponse. While this
nonparametric approach is potentially promising for imputation, its statistical prop-
erties are not investigated in the literature. Under some conditions on the order of
the tuning parameter, we first establish the root-n consistency of the kernel ridge
regression imputation estimator and show that it achieves the lower bound of the
semiparametric asymptotic variance. A nonparametric propensity score estimator
using the reproducing kernel Hilbert space is also developed by a novel application
of the maximum entropy method for the density ratio function estimation. We show
that the resulting propensity score estimator is asymptotically equivalent to the ker-
nel ridge regression imputation estimator. Results from a limited simulation study
are also presented to confirm our theory. The proposed method is applied to analyze
the air pollution data measured in Beijing, China.
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1 Introduction

Missing data is a universal problem in statistics. Ignoring the cases with missing values

can lead to misleading results (Kim and Shao, 2013; Little and Rubin, 2019). Two popular

approaches for handling missing data are imputation and propensity score weighting. Both

approaches are based on some assumptions about the data structure and the response

mechanism. To avoid potential biases due to model misspecification, instead of using

strong parametric model assumptions, nonparametric approaches are preferred as they do

not depend on explicit model assumptions.

In principle, any prediction techniques can be used to impute for missing values using

the responding units as a training sample. However, statistical inference with imputed

estimator is not straightforward. Treating imputed data as if observed and applying the

standard estimation procedure may result in misleading inference, leading to underestima-

tion of the variance of imputed point estimators. How to incorporate the uncertainty of

the estimated parameters in the final inference is challenging especially for nonparametric

imputation because the model parameter is implicitly defined.

For nonparametric imputation, Cheng (1994) used the kernel-based nonparametric re-

gression for imputation and established the root-n consistency of the imputed estimator.

Chen and Shao (2001) considered nearest neighbor imputation and discuss its variance

estimation. Wang and Chen (2009) employed the kernel smoothing approach to do empir-

ical likelihood inference with missing values. Yang and Kim (2020) considered predictive

mean matching imputation and established its asymptotic properties. Kim et al. (2014)

proposed Bayesian multiple imputation using the Dirichlet process mixture. Sang et al.

(2020) proposed semiparametric fractional imputation using Gaussian mixtures.

For nonparametric propensity score estimation, Hainmueller (2012) proposed so-called
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the entropy balancing method to find the propensity score weights using the Kullback-

Leibler information criterion with finite-dimensional basis function. Chen et al. (2013)

established the root-n consistency of the kernel-based nonparametric propensity score esti-

mator. Chan et al. (2016) generalized the entropy balancing method of Hainmueller (2012)

further to develop a general calibration weighting method that satisfies the covariance bal-

ancing property with increasing dimensions of the control variables. They further showed

the global efficiency of the proposed calibration weighting estimator. Zhao (2019) general-

ized the idea further and developed a unified approach of covariate balancing propensity

score method using tailored loss functions. Tan (2020) developed regularized calibrated

estimation of propensity scores with high dimensional covariates. While nonparametric

kernel regression can be used to construct nonparametric propensity score estimation, as

in Chen et al. (2013), it is not clear how to generalize it to a wider function space to obtain

nonparametric propensity score estimation.

In this paper, we consider regularized M-estimation as a tool for nonparametric function

estimation for imputation and propensity score estimation. Kernel ridge regression (Fried-

man et al., 2001; Shawe-Taylor et al., 2004) is an example of the regularized M-estimation

for a modern regression technique. By using a regularized M-estimator in reproducing ker-

nel Hilbert space (RKHS), kernel ridge regression can estimate the regression mean function

with complex reproducing kernel Hilbert space while a regularized term makes the origi-

nal infinite dimensional estimation problem viable (Wahba, 1990). Due to its flexibility in

the choice of kernel functions, kernel ridge regression is very popular in machine learning.

van de Geer (2000); Mendelson (2002); Zhang (2005); Koltchinskii et al. (2006); Steinwart

et al. (2009) studied the error bounds for the estimates of kernel ridge regression method.

While the kernel ridge regression is a promising tool for handling missing data, its
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statistical inference is not investigated in the literature. We aim to fill in this important

research gap in the missing data literature by establishing the statistical properties of the

KRR imputation estimator. Specifically, we obtain root-n consistency of the KRR im-

putation estimator under some popular functional Hilbert spaces. Because the KRR is a

general tool for nonparametric regression with flexible assumptions, the proposed impu-

tation method can be used widely to handle missing data without employing parameteric

model assumptions. Variance estimation after the kernel ridge regression imputation is a

challenging but important problem. To the best of our knowledge, this is the first paper

which considers kernel ridge regression technique for imputation and discusses its variance

estimation rigorously.

The regularized M-estimation technique in RKHS is also used to obtain nonparametric

propensity score weights for handling missing data. To do this, we use a novel application of

density ratio function estimation in the same reproducing kernel Hilbert space. Maximum

entropy method of Nguyen et al. (2010) for density ratio estimation is adopted to get the

nonparametric propensity score estimators. We further show the asymptotic equivalence of

the resulting propensity score estimator with the kernel ridge regression-based imputation

estimator. These theoretical findings can be used to make valid statistical inferences with

the propensity score estimator.

The paper is organized as follows. In Section 2, the basic setup and the KRR method

is introduced. In Section 3, the root-n consistency of the KRR imputation estimator is

established. In Section 4, we introduce a novel nonparametric propensity score estimator

using the regularized M-estimation technique in the RKHS. Results from a limited simu-

lation study are presented in Section 5. An illustration of the proposed method to a real

data example is presented in Section 6. Some concluding remarks are made in Section 7.
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2 Basic setup

Consider the problem of estimating θ = E(Y ) from an independent and identically dis-

tributed sample {(xi, yi), i = 1, · · · , n} of random vector (X, Y ). Instead of always observ-

ing yi, suppose that we observe yi only if δi = 1, where δi is the response indicator function

of unit i taking values on {0, 1}. The auxiliary variable xi are always observed. We assume

that the response mechanism is missing at random (MAR) in the sense of Rubin (1976).

Under MAR, we can develop a nonparametric estimator m̂(x) of m(x) = E(Y | x) and

construct the following imputation estimator:

θ̂I =
1

n

n∑
i=1

{δiyi + (1− δi)m̂(xi)} . (1)

If m̂(x) is constructed by the kernel-based nonparametric regression method, we can express

m̂(x) =

∑n
i=1 δiKh(xi,x)yi∑n
i=1 δiKh(xi,x)

(2)

where Kh(·) is the kernel function with bandwidth h. Under some suitable choice of the

bandwidth h, Cheng (1994) first established the root-n consistency of the imputation esti-

mator (1) with nonparametric function in (2). However, the kernel-based regression impu-

tation in (2) is applicable only when the dimension of x is small.

In this paper, we extend the work of Cheng (1994) by considering a more general type of

the nonparametric imputation, called kernel ridge regression imputation. The kernel ridge

regression (KRR) can be understood using the reproducing kernel Hilbert space theory

(Aronszajn, 1950) and can be described as

m̂ = arg min
m∈H

[
n∑
i=1

δi {yi −m(xi)}2 + λ ‖m‖2H

]
, (3)
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where ‖m‖2H is the norm of m in the reproducing kernel Hilbert space H and λ(> 0) is a

tuning parameter for regularization. Here, the inner product 〈·, ·〉H is induced by such a

kernel function, i.e.,

〈f,K(·,x)〉H = f(x),

for any x ∈ X , f ∈ H, namely, the reproducing property of H. Naturally, this reproducing

property implies the H norm of f : ‖f‖H = 〈f, f〉1/2H . Scholkopf and Smola (2002) provides

a comprehensive overview of the machine learning techniques using the reproducing kernel

functions.

One canonical example of such a functional Hilbert space is the Sobolev space. Specifi-

cally, assuming that the domain of such functional space is [0, 1], the Sobolev space of order

` can be denoted as

W`
2 =

{
f : [0, 1]→ R | f, f (1), . . . , f (`−1) ⊂ C[0, 1], f (`) ∈ L2[0, 1]

}
,

where C[0, 1] denotes the absolutely continuous function on [0, 1]. One possible norm for

this space can be

‖f‖2W`
2

=
`−1∑
q=0

{∫ 1

0

f (q)(t)dt

}2

+

∫ 1

0

{
f (`)(t)

}2
dt.

In this section, we employ the Sobolev space of second order as the approximation function

space. For Sobolev space of order `, we have the kernel function

K(x, y) =
`−1∑
q=0

kq(x)kq(y) + k`(x)k`(y) + (−1)`k2`(|x− y|),

where kq(x) = (q!)−1Bq(x) and Bq(·) is the Bernoulli polynomial of order q. Smoothing

spline method is a special case of the kernel ridge regression method.
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By the representer theorem for reproducing kernel Hilbert space (Wahba, 1990), the

estimate in (3) lies in the linear span of {K(·,xi), i = 1, . . . , n}. Specifically, we have

m̂(·) =
n∑
i=1

α̂i,λK(·,xi), (4)

where

α̂λ = (∆nK + λIn)−1 ∆ny,

∆n = diag(δ1, . . . , δn), K = (K(xi,xj))ij, y = (y1, . . . , yn)T and In is the n × n identity

matrix.

The tuning parameter λ is selected via generalized cross-validation in kernel ridge reger-

ession, where the criterion for λ is

GCV(λ) =
n−1 ‖{∆n −A(λ)}y‖22
n−1tr(∆n −A(λ))

, (5)

and A(λ) = ∆nK(∆nK + λIn)−1∆n. The value of λ minimizing the criterion (5) is used

for the selected tuning parameter.

Using the kernel ridge regression (KRR) imputation in (3), we can obtain the imputed

estimator in (1). Because m̂(x) in (4) is a nonparametric regression estimator of m(x) =

E(Y | x), we can expect that this imputation estimator in (1) is consistent for θ = E(Y )

under missing at random, as long as m̂(x) is a consistent estimator of m(x). Surprisingly,

it turns out that the consistency of θ̂I to θ is of order Op(n
−1/2), while the point-wise

convergence rate for m̂(x) to m(x) is slower. This is consistent with the theory of Cheng

(1994) for kernel-based nonparametric regression imputation.

We aim to establish two goals: (i) find the sufficient conditions for the root-n consistency

of the KRR imputation estimator and give a formal proof; (ii) find a linearization variance
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formula for the KRR imputation estimator. The first part is formally presented in Theorem

1 in Section 3. For the second part, we employ the density ratio estimation method of

Nguyen et al. (2010) to get a consistent estimator of ω(x) = {π(x)}−1 in the linearized

version of θ̂I . Estimation of ω(x) will be presented in Section 4.

3 Main Theory

Before we develop our main theory, we first introduce Mercer’s theorem.

Lemma 1 (Mercer’s theorem) Given a continuous, symmetric, positive definite kernel

function K : X × X 7→ R. For x, z ∈ X , under some regularity conditions, Mercer’s

theorem characterizes K by the following expansion

K(x, z) =
∞∑
j=1

λjψj(x)ψj(z),

where λ1 ≥ λ2 ≥ . . . ≥ 0 are a non-negative sequence of eigenvalues, {ψj}∞j=1 is an or-

thonormal basis for L2(P) and P is the given distribution of X on X .

Furthermore, we make the following assumptions.

[A1] For some k ≥ 2, there is a constant ρ <∞ such that E[ψj(X)2k] ≤ ρ2k for all j ∈ N,

where {ψj}∞j=1 are orthonormal basis by expansion from Mercer’s theorem.

[A2] The function m ∈ H, and for x ∈ X , we have E[{Y −m(x)}2 | x] ≤ σ2, for some

σ2 <∞.

[A3] The response mechanism is missing at random. Furthermore, the propensity score

π(x) = P (δ = 1 | x) is uniformly bounded away from zero. In particular, there exists

a positive constant c > 0 such that π(xi) ≥ c, for i = 1, . . . , n.
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The first assumption is a technical assumption which controls the tail behavior of

{ψj}∞j=1. Assumption 3 indicates that the noises have bounded variance. Assumption

3 and Assumption 3 together aim to control the error bound of the kernel ridge regression

estimate m̂. Furthermore, Assumption 3 means that the support for the respondents should

be the same as the original sample support. Assumption 3 is a standard assumption for

missing data analysis.

We further introduce the following lemma. Let Sλ = (In + λK−1)−1 be the linear

smoother for the KRR method. That is, m̂ = Sλy be the vector of regression predictor of

y using the kernel ridge regression method. We now present the following lemma without

proof which is modified from Lemma 7 in Zhang et al. (2013).

Lemma 2 Under [A1]-[A2], for a random vector z = E(z) + σε, we have

Sλz = E(z | x) + an,

where an = (a1, . . . , an)T and

ai = Op
(
λ1/2 + {γ(λ)}1/2n−1/2

)
, (6)

for i = 1, . . . , n, as long as E(‖zi‖H) and σ2 is bounded from above, for i = 1, . . . , n, where

ε = (ε1, · · · , εn)T are noise vector with mean zero and bounded variance and

γ(λ) =
∞∑
j=1

µj
µj + λ

,

is the effective dimension and {µj}∞j=1 are the eigenvalues of kernel K used in m̂(x).

The first term in (6) denotes the order of bias term and the second term denotes the square

root of the variance term. Specifically, we have the asymptotic mean square error for m̂,

AMSE(m̂) = O(1)×
{
λ ‖m‖2H + n−1γ(λ)

}
. (7)
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For the `-th order of Sobolev space, we have µj ≤ Cj−2` and

γ(λ) =
∞∑
j=1

(1 + j2`λ)−1 ≤ O
(
λ−1/(2`)

)
. (8)

Note that (7) is minimized when λ � γ(λ)/n, which is equivalent to λ � n−2`/(2`+1) under

(8). The optimal rate λ � n−2`/(2`+1) leads to

AMSE(m̂) = O(n−2`/(2`+1)) (9)

which is the optimal rate in Sobolev space, as discussed by Stone (1982).

To investigate the asymptotic properties of the kernel ridge regression imputation esti-

mator, we express

θ̂I =
1

n

n∑
i=1

{δiyi + (1− δi)m̂(xi)}

=
1

n

n∑
i=1

m(xi)︸ ︷︷ ︸
Rn

+
1

n

n∑
i=1

δi {yi −m(xi)}︸ ︷︷ ︸
Sn

+
1

n

n∑
i=1

(1− δi) {m̂(xi)−m(xi)}︸ ︷︷ ︸
Tn

.

Therefore, as long as we show

Tn =
1

n

n∑
i=1

δi

{
1

π(xi)
− 1

}
{yi −m(xi)}+ op(n

−1/2), (10)

then we can establish the root-n consistency. The following theorem formally states the

theoretical result. A proof of Theorem 1 is presented in the supplementary material.

Theorem 1 Suppose Assumption 3-3 hold for a Sobolev kernel of order `, as long as

nλ→ 0, nλ1/2` →∞, (11)
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we have

n1/2
(
θ̂I − θ

)
→N(0, σ2),

where

σ2 = Var{E(Y | x)}+ E{Var(Y | x)/π(x)} = Var(η)

with

η = m(x) + δ
1

π(x)
{y −m(x)} . (12)

Remark 1 Note that the optimal rate λ � n−2`/(2`+1) does not satisfy the first part of (11).

To control the bias part, we need a smaller λ such as λ = n−κ with κ > 1. Similar conditions

are used for bandwidth selection for nonparametric kernel regression with bandwidth h:

nh→∞ and n1/2h2 → 0

for dim(x) = 1. See Wang and Chen (2009) for details.

Remark 2 Theorem 1 is presented for a Sololev kernel, and any kernel whose eigenvalues

have the same tail behavior as Sobolev of order ` also has the result as Theorem 1. For

sub-Gaussian kernel whose eigenvalues satisfy that

µj ≤ c1 exp(−c2j2),

where c1, c2 are positive constants, we can establish similar results. To see this, note that

γ(λ) =
∞∑
j=1

µj
µj + λ

≤ c
−1/2
2 {− log(λ)}1/2 +

1

λ

∫
c
−1/2
2 {− log(λ)}1/2

exp(−c2z2)dz

≤ c
−1/2
2 {− log(λ)}1/2 +O(1),
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where the second term in the last equation can be obtained by the Gaussian tail bound

inequality. Therefore, as long as nλ → 0 and n{− log(λ)}−1/2 → ∞, we have n−11T
na =

op(n
−1/2) and the root-n consistency can be established.

Note that the asymptotic variance of the imputation estimator is equal to n−1σ2, which

is the lower bound of the semiparametric asymptotic variance discussed in Robins et al.

(1994). Thus, the kernel ridge regression imputation is asymptotically optimal. The main

term (12) in the linearization in Theorem 1 is called the influence function (Hampel, 1974).

The term influence function is motivated by the fact that to the first order ηi = m(xi) +

δi{π(xi)}−1 {yi −m(xi)} is the influence of a single observation on the estimator θ̂I .

The influence function in (12) can be used for variance estimation of the KRR im-

putation estimator θ̂I . The idea is to estimate the influence function ηi = m(xi) +

δi{π(xi)}−1 {yi −m(xi)} and apply the standard variance estimator using η̂i. To esti-

mate ηi, we need an estimator of π(x). In the next section, we will consider a version of

kernel ridge regression to estimate ω(x) = {π(x)}−1 directly. Once ω̂i(x) is obtained, we

can use

V̂ =
1

n

1

n− 1

n∑
i=1

(η̂i − η̄n)2

as a variance estimator of θ̂I in (1), where

η̂i = m̂(xi) + δiω̂i(xi) {yi − m̂(xi)}

and η̄n = n−1
∑n

i=1 η̂i.
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4 Propensity score estimation

We now consider estimation of the propensity weight function ω(x) = {π(x)}−1 using

kernel ridge regression. In order to estimate ω(x) = {π(x)}−1, we wish to develop a

nonparametric method of estimating ω(x) using the same RKHS theory. To do this, we

use the density ratio function estimation approach to propensity score function estimation

proposed by Wang and Kim (2021). To introduce the idea, we first define the following

density ratio function

g(x) =
f(x | δ = 0)

f(x | δ = 1)
, (13)

and, by Bayes theorem, we have

ω(x) =
1

π(x)
= 1 + c · g(x)

where c = P (δ = 0)/P (δ = 1). Thus, to estimate ω(x), we have only to estimate the

density ration function g(x) in (13). Now, to estimate g(x), we use the maximum entropy

method (Nguyen et al., 2010) for density ratio function estimation. Kanamori et al. (2012)

also considered the M-estimator of the density ratio function with the Kullback-Leibler

divergence.

For convenience, let fk(x) = f(x | δ = k), for k = 0, 1. To explain the M-estimation of

g(x), note that g(x) can be understood as the maximizer of the objective function on the

right-hand-side of (14) which is upper bounded by the Kullback-Leibler divergence between
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f0 and f1, i.e.,

DKL(f0, f1) = max
g>0

Q(g) + 1

= max
g>0

∫
log {g(x)} f0(x)dµ(x)−

∫
g(x)f1(x)dµ(x) + 1

= max
g>0

∫
g(x)[log {g(x)} − 1]f1(x)dµ(x) + 1. (14)

That is, by (14), a sample version of Q(g) can be written as

Q̂(g) =
1

n1

n∑
i=1

δig(xi)[log{g(xi)} − 1],

where n1 =
∑n

i=1 δi.

Since g(x) is unknown, we want to impose constraints to formulate an M-estimation

problem for g(x). Given m̂(·), using the idea of model calibration (Wu and Sitter, 2001),

we would like to use

1

n1

n∑
i=1

δig(xi)m̂(xi) =
1

n0

n∑
i=1

(1− δi)m̂(xi)

as a constraint for density ratio estimation, where n0 = n−n1. Note that it is algebraically

equivalent to
1

n

n∑
i=1

δi

{
1 +

n0

n1

· g(xi)

}
m̂(xi) =

1

n

n∑
i=1

m̂(xi).

Now, as we have m ∈ H, and by the representer theorem in kernel ridge regression, we

know that m̂ ∈ span{K(·,x1), . . . , K(·,xn)}. Thus, the calibration constraint is

1

n1

n∑
i=1

δig(xi)(K(·,x1), . . . , K(·,xn))T =
1

n0

n∑
i=1

(1− δi)(K(·,x1), . . . , K(·,xn))T. (15)

This calibration property is also called covariate-balancing property (Imai and Ratkovic,

2014). Further, we want to incorporate with the normalization constraint
∑n

i=1 δiω(xi) = n,
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i.e.,

1

n1

n∑
i=1

δig(xi) =
1

n0

n∑
i=1

(1− δi). (16)

Minimizing Q̂(g) subject to (15) and (16) is called the maximum entropy method. Using

Lagrangian multiplier method, the solution to this optimization problem can be written as

log{g(x)} ≡ log{g(x;φ)} = φ0 +
n∑
i=1

φiK(x,xi) (17)

for some φ = (φ0, . . . , φn)T ∈ Rn+1. Thus, using the parametric form in (17), the optimiza-

tion problem can be expressed as a dual form

Q̂0(φ) =
1

n0

n∑
i=1

(1− δi) log{g(xi;φ)} − 1

n1

n∑
i=1

δig(xi;φ),

to formulate a legitimate estimation of g(·). Further, define h(x;φs) = log{g(x;φ)} − φ0,

where φs = (φ1, . . . , φn)T. In our problem, to ensure the Representer theorem, we wish to

find h that minimizes

− Q̂0(g;φ) + τ ‖h‖2H (18)

over φ.

Hence, the solution to (18) can be obtained as

min
φs∈Rn

{
1

n1

n∑
i=1

δig(xi;φ)− 1

n0

n∑
i=1

(1− δi) log{g(xi;φ)}+ τφTKφ

}
(19)

and φ0 is a normalizing constant satisfying

n1 =
n∑
i=1

δi exp{φ0 +
n∑
j=1

φ̂jK(xi,xj)}. (20)
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Thus, we use

ĝ(x) = exp{φ̂0 +
n∑
j=1

φ̂jK(x,xj)}

as the maximum entropy estimator of the density ratio function g(x) using kernel method.

Also,

ω̂(x) = 1 +
n0

n1

ĝ(x)

is the maximum entropy estimator of ω(x) = {π(x)}−1. The estimator of ω(x) satisfies the

calibration property by construction. That is, for any function f(x) ∈ H, we have

n−1
n∑
i=1

δiω̂(xi)f(xi) = n−1
n∑
i=1

f(xi).

The tuning parameter τ is chosen to minimize

D(τ) =

∥∥∥∥∥ 1

n

n∑
i=1

δi

{
1 +

n0

n1

· ĝτ (xi)
}
m̂(xi)−

1

n

n∑
i=1

m̂(xi)

∥∥∥∥∥ , (21)

where m̂(x) is determined by kernel ridge regression estimation. Thus, we can use the

following two-step procedure to determine the tuning parameter τ .

[Step 1] Use the kernel ridge regression to obtain m̂(x).

[Step 2] Given m̂(x), find τ̂ that minimizes D(τ) in (21).

Further, we can also obtain the propensity score estimator based the above procedure,

i.e.,

θ̂PS =
1

n

n∑
i=1

δiω̂(xi)yi. (22)

We now establish the root-n consistency of the propensity score estimator in the following

theorem.

16



Theorem 2 Under regularity conditions stated in the supplementary material, we have

n1/2
(
θ̂PS − θ

)
→ N(0, σ2), (23)

where σ2 = Var(η) and

η = m(x) + δ
1

π(x)
{y −m(x)}.

Theorem 2 implies that the propensity score estimator in (22) using the above proce-

dure is asymptotically equivalent to the KRR imputation estimator and achieves the same

asymptotic variance as the KRR imputation estimator. The regularity conditions and a

sketched proof of Theorem 2 are presented in the supplementary material. We can use a

linearized variance estimator to get a valid variance estimate based on Theorem 2, similar

to Theorem 1.

Remark 3 As the objective function in (19) is convex, we apply the limited-memory

Broyden-Fletcher-Goldfarb-Shanno algorithm to solve the optimization problem with the

following first order partial derivatives:

∂U

∂φ0

=
1

n1

n∑
i=1

δi exp

(
φ0 +

n∑
j=1

φjK(xi,xj)

)
− 1,

∂U

∂φk
=

1

n1

n∑
i=1

δiK(xi,xk) exp

(
φ0 +

n∑
j=1

φjK(xi,xj)

)
− 1

n0

n∑
i=1

(1− δi)K(xi,xk)

+ 2τ
n∑
i=1

K(xi,xk)φi, k = 1, . . . , n,

where U is the objective function in (19).
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5 Simulation Study

To compare with the existing methods and to evaluate the finite-sample performance of the

proposed imputation method and its variance estimator, we conduct a limited simulation

study. In this simulation, we consider the continuous study variable with three different

data generating models. In the three models, we keep the response rate around 60% and

Var(Y ) ≈ 10. Also, xi = (xi1, xi2, xi3, xi4)
T are generated independently element-wise

from the uniform distribution on the support (1, 3). In the first model A, we use a linear

regression model yi = 3+2.5xi1 +2.75xi2 +2.5xi3 +2.25xi4 +σεi to obtain yi, where {εi}ni=1

are generated from standard normal distribution and σ = 31/2. In the model B, we use

yi = 3 + (1/35)x2i1x
3
i2xi3 + 0.1xi4 + σεi to generate data with a nonlinear structure. The

model C for generating the study variable is yi = 3 + (1/180)x2i1x
3
i2xi3x

2
i4 + σεi.

In addition to {(xi, yi), i = 1, . . . , n}, we consider two response mechanisms. The re-

sponse indicator variable δ’s for each mechanism are independently generated from different

Bernoulli distributions. In the first response mechanism, the probability for the Bernoulli

distribution is logit(xT
i β+2.5), where β = (−1.1, 0.5,−0.25,−0.1)T and logit(p) = log{p/(1−

p)}. In the second response mechanism, the probability for the Bernoulli distribution is

logit(−0.3 + 0.7x21− 0.5x2− 0.25x3− 0.25x4). We considered two sample sizes n = 500 and

n = 1, 000.

The reproducing kernel Hilbert space we employed in the simulation study is the

second-order Sobolev space. In particular, we used tensor product RKHS to extend a

one-dimensional Sobolev space to the multidimensional space. From each sample, we con-

sider four imputation methods: imputation and propensity score methods related to kernel

ridge regression and the others are B-spline and linear regression. For the B-spline method,

we employ the generalized additive model by R package ‘mgcv’. Specifically, we used cubic
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spine with 15 knots for each coordinate with restricted maximum likelihood estimation

method. We used B = 1, 000 Monte Carlo samples in the simulation study.

The simulation results of the four point estimators for the first response mechanism and

for the second response mechanism are summarized in Figure 1 and Figure 2, respectively.

The simulation results in Figure 1 and Figure 2 show that four methods show similar

results under the linear model (model A), but both kernel ridge regression imputation

estimators and propensity score estimators show robust performance under the nonlinear

models (models B and C). All kernel ridge regression related methods provide negligible

biases in all scenarios.

In addition, we have computed the proposed variance estimators under kernel ridge

regression imputation with the corresponding kernel. In Table 1, the relative biases (in

percentage) of the proposed variance estimator and the coverage rates of two interval esti-

mators under 90% and 95% nominal coverage rates are presented. The relative bias of the

variance estimator are relatively low, which confirms the validity of the proposed variance

estimator. Furthermore, the interval estimators show good performances in terms of the

coverage rates.

6 Application

We applied the kernel ridge regression with the kernel of second-order Sobolev space to

study the PM2.5(µg/m
3) concentration measured in Beijing, China (Liang et al., 2015).

Hourly weather conditions: temperature, air pressure, cumulative wind speed, cumulative

hours of snow and cumulative hours of rain are available from 2011 to 2015. Meanwhile,

the averaged sensor response is subject to missingness. In December 2012, the missing rate
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Figure 1: Boxplots with four estimators for model A ((a) for n = 500 and (b) for n = 1000),

model B ((c) for n = 500 and (d) for n = 1000) and model C ((e) for n = 500 and (f)

for n = 1000) under first response mechanism with true values (dashes). KRR IM, kernel

ridge regression imputation estimator; KRR PS, kernel ridge regression propensity score

estimator.
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Figure 2: Boxplots with four estimators for model A ((a) for n = 500 and (b) for n = 1000),

model B ((c) for n = 500 and (d) for n = 1000) and model C ((e) for n = 500 and (f) for

n = 1000) under second response mechanism with true values (dashes). KRR IM, kernel

ridge regression imputation estimator; KRR PS, kernel ridge regression propensity score

estimator.
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Table 1: Relative biases (R.B.) of the proposed variance estimator, coverage rates (C.R.)

of the 90% and 95% confidence intervals for imputed estimators and propensity score esti-

mators under kernel ridge regression with second-order Sobolev kernel and Gaussian kernel

for continuous responses (KRR IM, kernel ridge regression imputation estimator; KRR PS,

kernel ridge regression propensity score estimator)

First Missing Mechanism Second Missing Mechanism

KRR IM KRR PS KRR IM KRR PSModel Criteria

n=500 n=1000 n=500 n=1000 n=500 n=1000 n=500 n=1000

R.B(%) 0.09 -2.80 0.15 -3.14 3.40 2.74 -1.68 -1.90

A C.R.(90%) 90.30 89.95 90.30 89.75 90.25 90.60 89.15 89.85

C.R.(95%) 95.50 94.95 95.70 95.00 95.20 95.45 94.65 94.80

R.B(%) -2.77 -5.42 -5.77 -6.60 -6.07 -3.42 -11.25 -6.23

B C.R.(90%) 89.55 89.70 89.20 89.20 88.05 90.05 87.75 89.30

C.R.(95%) 94.25 94.55 93.85 94.10 94.15 94.70 93.35 94.10

R.B(%) -7.43 -3.97 -12.24 -6.22 -9.38 -2.29 -13.62 -4.34

C C.R.(90%) 87.95 88.70 86.70 88.75 88.80 89.50 87.50 89.75

C.R.(95%) 93.35 94.20 92.35 93.70 93.95 95.15 93.25 94.70

22



of PM2.5 is relatively high with missing rate 17.47%. We are interested in estimating the

mean PM2.5 in December with both imputed and propensity score kernel ridge regression

estimates. The point estimates and their 95% confidence intervals are presented in the

Table 2. As a benchmark, the confidence interval computed from complete cases and

confidence intervals for the imputed estimator under linear model (Kim and Rao, 2009) are

also presented there.

Table 2: Point estimates (P.E.), standard error (S.E.) and 95% confidence intervals (C.I.)

for imputed mean PM2.5 in December, 2012 under kernel ridge regression (KRR IM, kernel

ridge regression imputation estimator; KRR PS, kernel ridge regression propensity score

estimator.)

Estimator P.E. S.E. 95% C.I.

Complete 109.20 3.91 (101.53, 116.87)

Linear 99.61 3.68 (92.39, 106.83)

KRR IM 101.92 3.50 (95.06, 108.79)

KRR PS 102.25 3.50 (95.39, 109.12)

As we can see, the performances of kernel ridge regression imputation estimators are

similar and created narrower 95% confidence intervals. Furthermore, the imputed PM2.5

concentration during the missing period is relatively lower than the fully observed weather

conditions on average. Therefore, if we only utilize the complete cases to estimate the mean

of PM2.5, the severeness of air pollution would be over-estimated.
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7 Concluding Remarks

We consider kernel ridge regression as a tool for nonparametric imputation and propensity

score weighting. The proposed kernel ridge regression imputation can be used as a general

tool for nonparametric imputation. By choosing different kernel functions, different non-

parametric imputation methods can be developed. Asymptotic properties of the propensity

score estimator are also established. The unified theory developed in this paper enables

us to make valid nonparametric statistical inferences about the population means under

missing data.

There are several possible extensions of the research. First, the theory can be ex-

tended to other nonparametric imputation methods, such as smoothing splines (Claeskens

et al., 2009), thin plate spline (Wahba, 1990), Gaussian process regression (Rasmussen

and Williams, 2005), or deep kernel learning (Bohn et al., 2019). The theoretical results

in this paper can be used as building-blocks for establishing the statistical properties of

these sophisticated nonparametric imputation methods. Second, instead of using ridge-

type penalty term, one can also consider other penalty functions such as the smoothly

clipped absolute deviation penalty (Fan and Li, 2001) or adaptive lasso (Zou, 2006). Such

penalty functions can be potentially useful for handling high dimensional covariate prob-

lems. Also, the proposed method can be used for causal inference, including estimation of

average treatment effect from observational studies (Morgan and Winship, 2014; Yang and

Ding, 2020). Developing tools for causal inference using the kernel ridge regression-based

propensity score method will be an important extension of this research.
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