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SUMMARY

Calibration weighting has been widely used to correct selection biases in nonprobability
sampling, missing data and causal inference. The main idea is to calibrate the biased sample
to the benchmark by adjusting the subject weights. However, hard calibration can produce
enormous weights when an exact calibration is enforced on a large set of extraneous covari-
ates. This article proposes a soft calibration scheme, where the outcome and the selection
indicator follow mixed-effect models. The scheme imposes an exact calibration on the fixed
effects and an approximate calibration on the random effects. On the one hand, our soft cali-
bration has an intrinsic connection with best linear unbiased prediction, which results in a
more efficient estimation compared to hard calibration. On the other hand, soft calibration
weighting estimation can be envisioned as penalized propensity score weight estimation,
with the penalty term motivated by the mixed-effect structure. The asymptotic distribution
and a valid variance estimator are derived for soft calibration. We demonstrate the supe-
riority of the proposed estimator over other competitors in simulation studies and using a
real-world data application on the effect of BMI screening on childhood obesity.

Some key words: Inverse propensity score weighting; Latent ignorability; Penalized optimization; Restricted
maximum likelihood estimation.

1. Introduction

Calibration weighting, or benchmark weighting, is popular in survey sampling, where
probability sampling weights are adjusted to match the known population totals of the
auxiliary variables for a possible efficiency gain (Deville & Särndal, 1992). The idea of
calibration is related to the generalized regression estimator, a model-assisted estimator in
survey sampling (Cassel et al., 1976; Särndal et al., 1992), which has since been extended
to the functional model-assisted estimator (Cardot & Josserand, 2011), optimal model cali-
bration (Wu & Sitter, 2001), calibration weighting using instrumental variables (Estevao &
Särndal, 2000), empirical likelihood calibration (Wu & Rao, 2006) and multisource data
calibration (Yang & Ding, 2019).
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898 C. Gao, S. Yang AND J. K. Kim

In addition to gaining precision, calibration weighting has been widely used to cor-
rect selection bias in various contexts, including finite-population inferences using non-
probability samples, missing data and causal inference. Lundström & Särndal (1999),
Skinner (1999), Deville (2000), Kott (2006) and Lee & Valliant (2009) employed calibra-
tion weighting to adjust for selection bias in nonprobability samples by enforcing covariate
similarity between the nonprobability sample and a probability sample; see Yang & Kim
(2020) for a comprehensive review. For missing-at-random data, inverse propensity score
weighting creates a weighted sample that resembles the complete version of the original
sample. Instead of directly inverting the propensity score, calibration weighting imposes
conditions to emulate complete data and gains robustness against model misspecification
(Han&Wang, 2013; Chen&Haziza, 2017; Lee et al., 2021, 2022). Similarly, for causal infer-
ence under the ignorability of treatment assignment, the purpose of calibration weighting
is to achieve the covariate balance between treatment groups, thus mitigating confounding
biases (Hainmueller, 2012; Anastasiade & Tillé, 2017). For example, the covariate balance
propensity score introduced by Imai & Ratkovic (2014) uses a balancing measure as an
objective function to estimate the propensity score.

Most existing works aim to calibrate all available auxiliary variables to known finite-
population totals, a process known as hard calibration. However, hard calibration may not
be necessary when there are many covariates, especially if some covariates are not predictive
of the outcome. Overcalibration, or improper application of calibration weighting on too
many variables, can lead to variance inflations (Kang& Schafer, 2007). To address this prob-
lem, subsequent research has sought to use penalization (Guggemos & Tillé, 2010; Athey
et al., 2018; Ning et al., 2020) or regularization (Zubizarreta, 2015; Wong & Chan, 2018;
Wang et al., 2022) to ease the calibration constraints on a subset of covariates, which we
refer to as regularized calibration. Chattopadhyay et al. (2020) proposed minimal disper-
sion approximately balancing weights by optimizing some user-specified function. Other
attempts have been made to reduce the range of calibration weights directly by trimming,
smoothing or stabilizing (Lazzeroni & Little, 1998; Yang & Ding, 2018). Many of these
methods adoptmixed-effects modelling, which is particularly useful in small area estimation
(Torabi & Rao, 2008), longitudinal data inference (Verbeke, 2000; Weiss, 2005), handling
clustered data with cluster-specific nonignorable missingness (Kim et al., 2016) and causal
inference with unmeasured cluster-level confounders (Yang, 2018).

In this article, we focus on the settings with the shared parameter/random-effect models
of the outcome and the selection indicator (Follmann & Wu, 1995). The sample inclusion
indicator in survey sampling, the response indicator in the missing data context and the
treatment assignment in causal inference are all examples of the selection indicator. As a
result, our framework applies to a wide range of problems. The selection indicator in the
shared parameter models is latently ignorable in the sense that the selection indicator and
outcome are conditionally independent, given the observed covariates and the unobserved
random effects, entailing nonignorable selection. Under the linear mixed-effects model, we
propose a soft calibration algorithm that enforces an exact calibration on fixed effects, see
(5), and an approximate calibration on random effects, see (6). Our soft calibration exploits
the correlation structure of random effects to construct the regularized constraints, which
is different from typical regularized calibration methods that leverage sparsity or smooth-
ness conditions (Ning et al., 2020; Tan, 2020). The soft calibration constraints are seemingly
intricate, but arise naturally from two paths towards constructing the best linear unbiased
predictor θ̂blup, a minimization problem in (3) and a prediction approach in (4). Thus, the
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Soft calibration for selection bias problems 899

Table 1. Summary of the notation
Notation Definition

yi, xi, x1i, x2i Individuals of the study variable and covariate for unit i, xi = (xT1i, x
T
2i)

T

YU,YS Vectors of the study variable, YU = (y1, . . . , yN)T, YS = {yi : i ∈ S}
XU,X1,U,X2,U Matrices of the covariate for finite population U, XU = (X1,U,X2,U) ∈ R

N×(p+q)
XS,X1,S,X2,S Matrices of the covariate for selected sample S, XS = (X1,S,X2,S) ∈ R

n×(p+q)
Eδ(·),Eζ (·),E(·) Expectations with respect to the selection δ, the model ζ and both
varδ(·), varζ (·), var(·) Variances with respect to the selection δ, the model ζ , and both
o(·) an = o(bn) implies that an/bn → 0 when n → ∞
O(·) an = O(bn) implies that an/bn → C0 when n → ∞ for some constant C0

oP(·),OP(·) Small and big order terms with respect to both the selection δ and model ζ

produced estimator has an intrinsic connection to θ̂blup and can be more efficient than
the hard-calibration estimator, especially when random effects weakly affect the outcome.
Furthermore, the dual problem (7) of soft calibration also establishes a link between soft cal-
ibration and penalized propensity score weight estimation, leading to a ridge-type regression
(Guggemos & Tillé, 2010).

The calibration weights are well known to be obtained by optimizing the user-specified
loss function, which is related to the modelling of the propensity scores. Because the con-
strained optimization formulation (5) and (6) separates the loss function from the calibration
conditions, we can impose relaxed calibration conditions while forcefully bounding the
range of weights by changing the loss function. Next, we can show that the soft-calibration
estimator is consistent if either the outcome follows a linear mixed-effects model or the
propensity score model is correctly specified. The asymptotic distribution and a valid
variance estimator for the soft-calibration estimators are then established. Furthermore,
augmentations with flexible outcome modelling can be used in conjunction with soft cali-
bration to correct the remaining bias, if any. Finally, a data-adaptive approach aided by cross
fitting is proposed to select the optimal tuning parameter that minimizes the finite-sample
mean squared error. Proofs of all results are provided in the Supplementary Material.

2. Basic set-up

2.1. Notation, ignorability and hard calibration

To fix ideas, we consider estimating the population mean of a study variable based on a
non-probability sample, and extend it to clustered missing data analysis in § 3.3. Suppose
that we have a finite population FN = {(xi, yi) : i ∈ U} with population size N and index
set U = {1,…,N}, independently and identically following a superpopulation model ζ . We
assume that xi is available in the finite population, but the study variable yi is observed only
in the sample. Let S ⊂ U be the index set of the sample of size n. Define the selection
indicator δi as δi = 1 if i ∈ S and 0 otherwise. The propensity score for unit i being selected
in the sample is πi = pr(δi = 1 | xi), which is unknown for the nonprobability sample. For
ease of presentation, we summarize all notation in Table 1 for reference.

The goal is to estimate θN = N−1 ∑
i∈U yi, and we consider a weighted estimator given

by

θ̂w = 1
N

∑
i∈S

wiyi.
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900 C. Gao, S. Yang AND J. K. Kim

If yi follows the linear regression model yi = xT
i β + ei with Eζ (ei | xi) = 0 and varζ (ei |

xi) = σ 2
e , we may impose the following condition on the weights:

∑
i∈S

wixi =
∑
i∈U

xi. (1)

This is a sufficient condition for model calibration (Wu & Sitter, 2001) in the sense that∑
i∈S wiŷi = ∑

i∈U ŷi, where ŷi is a prediction based on the linear model. If the sampling
mechanism is ignorable with δi ⊥⊥ yi | xi, condition (1) is sufficient for the unbiasedness of
θ̂w. To find the optimal calibration estimator that minimizes the mean squared error of θ̂w
while satisfying (1) under the linear regression model, it suffices to minimize

Eζ {(θ̂w − θN)2 | XU, S} = 1
N2 varζ

{∑
i∈U

(δiwi − 1)ei

∣∣∣∣ XU, S
}

= σ 2
e

N2

∑
i∈S

(wi − 1)2 + const.,

where const. represents a constant that does not depend on w = {wi : i ∈ S}. Thus, we can
formulate the hard calibration weighting problem as finding the minimizer of the square
loss function

∑
i∈S(wi − 1)2 subject to condition (1).

2.2. Mixed-effects models and latent ignorability

We now partition xi into two vectors x1i, including an intercept, and x2i with dim(x1i) =
p and dim(x2i) = q, related to fixed effects and random effects, respectively. This set-up
is particularly relevant in small area estimation, where x1i is a low-dimensional vector of
feature variables and x2i is a possibly high-dimensional vector of small area indicators.

In these settings, selection ignorability can be restrictive because it excludes area-specific
effects that affect both yi and δi. To overcome this issue, we consider a linear mixed-effect
superpopulation model

yi = xT
1iβ + xT

2iu+ ei, u ∼ N(0,Dqσ
2
u ), ei ∼ N(0, q−1

i σ 2
e ), u⊥⊥ ei | xi, (2)

where u is a q-dimensional vector of random effects with a positive-definite covariance
matrixDq, ei is the heteroscedastic random error with known q−1

i , and σ 2
e and σ 2

u character-
ize the variances of individual errors and random effects, respectively. Typically, we consider
qi = 1 for i ∈ S, but unequal qi are also desired in some situations; see Remark 5 of Devaud
& Tillé (2019). Next, we make the following assumptions for the sampling mechanism.

Assumption 1 (Latent ignorability). The sampling mechanism is ignorable given (xi, u):
δi ⊥⊥ yi | (xi, u) for all i ∈ U.

Assumption 2 (Positivity). We have 0 < d < Nn−1pr(δi = 1 | xi, u) < d < 1 for all xi
and u.

Assumption 1 leads to shared parameter/random-effectmodels of δi and yi. In themissing
data context with clustered data, it is called cluster-specific nonignorable missingness (Yuan
& Little, 2007). In the context of causal inference, it is called cluster-specific nonignorable

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/110/4/897/7067736 by Iow
a State U

niversity Library user on 21 February 2024



Soft calibration for selection bias problems 901

treatment assignment (Yang, 2018). Assumption 1 relaxes the ignorability assumption by
allowing unobserved random effects to affect both yi and δi. Assumption 2 implies that the
sample support {xi : i ∈ S} coincides with the support of xi in the population.

2.3. Soft calibration for the best linear unbiased predictor

Under model (2) and Assumptions 1–2, we wish to develop the optimal calibration esti-
mator θ̂w by minimizing the mean squared error. Following the minimax imbalance strategy
of Hirshberg et al. (2021), we minimize

sup
β∈M

Eζ {(θ̂w − θN)2 | XU, S}

= sup
β∈M

1
N2 (wTX1,S − 1TNX1,U)ββT(wTX1,S − 1T

NX1,U)T

+ σ 2
e

N2

{∑
i∈S

q−1
i (wi − 1)2 + γ −1(wTX2,S − 1T

NX2,U)Dq(wTX2,S − 1NX2,U)T
}

(3)

with respect tow, whereM is a convex subset of Rp that contains the true β. SinceMmay be
unbounded without prior knowledge, the minimax problem results in an exact calibration
condition wTX1,S = 1TNX1,U to diminish the first term of the above equation. The remaining
objective function (3) leads to a generalized ridge regression problem (Bardsley & Cham-
bers, 1984) augmented with a data-dependent penalty, where γ −1 = σ 2

u /σ 2
e determines the

level of calibration for X2,S: if γ is close to zero, the calibration for X2,S is nearly exact; and
if γ is large, the calibration for X2,S is greatly relaxed.

In addition, the minimum of (3) should coincide with θ̂blup = N−1 ∑
i∈U(xT

1iβ̂ + xT
2iû),

where (β̂, û) is the solution to the following score equations for the linearmixed-effectmodel:

(∑
i∈S qix1ixT

1i
∑

i∈S qix1ixT
2i∑

i∈S qix2ixT
1i

∑
i∈S qix2ixT

2i + γD−1
q

) (
β

u

)
=

(∑
i∈S qix1iyi∑
i∈S qix2iyi

)
. (4)

By rewriting θ̂blup as a weighted estimator wTYS, the weights satisfy

wTXS = 1TNXU

{ ∑
i∈S

qixixT
i + γdiag(0,D−1

q )

}−1 ∑
i∈S

qixixT
i

= 1TNXU

[
Ip+q − γ

{ ∑
i∈S

qixixT
i + γdiag(0,D−1

q )

}−1

diag(0,D−1
q )

]
,

where the second equality is derived by repeatedly applying the Woodbury matrix identity.
Therefore, minimizing (3) can be reformulated as a constrained optimization with exact
calibration on x1i and approximate calibration on x2i:

min
w

∑
i∈U

δiQ(wi) =
∑
i∈S

q−1
i (wi − 1)2

such that
∑
i∈S

wix1i =
∑
i∈U

x1i, (5)
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902 C. Gao, S. Yang AND J. K. Kim∑
i∈S

wix2i =
∑
i∈U

x2i +
∑
i∈U

MT
S
x1i +

∑
i∈U

RT
S
x2i, (6)

with MS = −γD12D−1
q , RS = −γD22D−1

q and {∑i∈S qixixT
i + γdiag(0,D−1

q )}−1 =
[D11,D12 | D21,D22]. The solution is denoted by ŵ(SQ) = {ŵ(SQ)

i : i ∈ S}, giving rise to
θ̂

(SQ)
w = N−1 ∑

i∈S ŵ
(SQ)

i yi, where the superscript sq reflects the use of the square loss.
Proposition 1 below reveals the intrinsic connection between soft calibration based on

square loss and θ̂blup under the mixed-effects model (2).

PROPOSITION 1. Under Assumptions 1 and 2 and model (2), we have θ̂
(SQ)
w = θ̂blup for fixed

γ = σ 2
e /σ 2

u .

Through the lens of θ̂blup derived from (3) or (4), the soft-calibration estimator is opti-
mal under model (2) and consistent under any sampling design that satisfies the latent
ignorability by Proposition 1.

2.4. Soft calibration for penalized propensity score weight estimation

In the proof of Proposition 1, we show that the square loss function is equivalent to
assuming a linear regression model for the calibration weight. However, it is possible to
obtain negative values that may not be acceptable to practitioners. One advantage of casting
the soft-calibration estimator as a solution to the constrained optimization problem (5) is
that it directly leads to a mixed-effects model for the calibration weight through the link
function w(·), which allows flexible estimation by adopting other loss functions Q(·). In
particular, we consider the dual problem of (5) and (6) for optimization purposes, which is
to minimize a penalized convex function:

G(c) = −
∑
i∈U

δiQ{w(cTxi)} +
{ ∑

i∈S
w(cTxi)xT

i − (1TNX1,U, 1T
NX2,U +NTr)

}
c (7)

=
∑
i∈U

δig(cTxi) − (1T
NX1,U)c1 − (1TNX2,U +NTr)c2. (8)

Here g(·) is the convex conjugate function of Q(·), Tr = N−1 ∑
i∈U(xT

1iMS + xT
2iRS) is the

adjustment for soft calibration and c = (cT1, c
T
2)

T is a vector of Lagrange multipliers with
c2 = Dδu for a suitable invertible matrix Dδ, featuring a shared random-effect model with
the outcome (Gao, 2004). Table 2 provides some examples of loss functions Q(·) and their
associated g(·) andw(·). These loss functions belong to a general class of empiricalminimum
discrepancy measures (Read & Cressie, 2012), which can be considered as measuring the
aggregate distance between the weights w and an n vector of uniform weights 1n.

PROPOSITION 2. If ĉ is the minimizer of (8), the calibration weights w(ĉTxi) attain the soft
calibration conditions (5) and (6).

Proposition 2 is justified since (8) gives a dual optimization for solving the constrained
optimization in (5) and (6). Furthermore, the penalized estimation in (7) is closely related
to the L2 penalized propensity score weight estimator, which is, however, not optimal as
its penalty term does not account for the correlation structure of the mixed effects; see
the Supplementary Material for numerical details. In view of the Lagrangian function (7),
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Soft calibration for selection bias problems 903

Table 2. Correspondence of loss functions Q(wi), the convex conjugate functions g(zi) and the
weight models w(zi) when weights are adjusted to satisfy the calibration constraints for the first

moments of xi
Q(wi) g(zi) w(zi)

Squared loss q−1
i (wi − 1)2/2 zi + qiz2i /2 1 + qizi

Entropy divergence q−1
i {wi log(wi) − wi + 1} q−1

i {exp(qizi) − 1} exp(qizi)
Empirical likelihood q−1

i {− log(wi) − 1 + wi} −q−1
i log(1 − qizi) (1 − qizi)−1

Maximum entropy q−1
i (wi − 1){log(wi − 1) − 1} zi + q−1

i exp(qizi) 1 + exp(qizi)

the soft-calibration estimator enforces an exact calibration on x1i while penalizing a large
discrepancy of imbalances between

∑
i∈S wix2i and

∑
i∈U x2i, thus avoiding posing overly

stringent constraints.

Remark 1. Let A = {w : wTXS = 1T
NXU + (0Tp,NTr)} be a set of solutions to the soft

calibration conditions. Assume that Q(w) is strictly convex and smooth, defined in W that
includes 1. Assume thatW is either a compact set or an open set with limw→∂W |Q(w)| = ∞,
where ∂W denotes the boundary of setW; (7) has a unique optimumwith probability 1 when
A ∩ W |= ∅.

In finite samples, a unique optimum of (7) may not exist due to conflicting condi-
tions imposed for calibration. For example, calibration weights are restricted to an overly
bounded supportW to reduce the impact of outliers; see the SupplementaryMaterial, which
might render A∩W empty. One remedy for this issue is to adopt a Moore–Penrose general-
ized inverse (Devaud & Tillé, 2019) for the Newton-type method to achieve a solution even
when A ∩ W = ∅.

3. Main theory

3.1. Bias correction and asymptotic properties

In this section, we establish the asymptotic properties of θ̂w under the general loss func-
tion Q(w) and adopt the joint randomization framework for inference, which considers
both the superpopulation mixed-effects model ζ and the sampling mechanism δ (Isaki &
Fuller, 1982). Before delving into the technical details, we assume the following regularity
conditions.

Assumption 3 (Regularity conditions). (a) The matrices n−1XT
S
XS = 
n for any sample S

and N−1XT
U
XU = 
N are positive definite.

(b) There exists some constant C such that ‖xi‖2 < qC for all i ∈ U.

(c) The finite population is a random sample of a superpopulation model (2) satisfying
N−1 ∑

i∈U y
2+α
i < ∞ for some α > 0 with N → ∞.

Assumption 3(a) and (b) are standard regularity conditions related to the auxiliary vari-
ables (Portnoy, 1984; Dai et al., 2018; Chauvet & Goga, 2022). Assumption 3(c) requires
the moment conditions to employ the central limit theorem. In contrast to hard calibration,

D
ow

nloaded from
 https://academ

ic.oup.com
/biom

et/article/110/4/897/7067736 by Iow
a State U

niversity Library user on 21 February 2024



904 C. Gao, S. Yang AND J. K. Kim

the inexact calibration scheme for x2i involves a correction term on the right-hand side of
(6), incurring an additional term in θ̂w − θN :

θ̂w − θN = N−1γn(1TNX1,UD12 + 1T
NX2,UD22)D−1

q u+N−1
∑
i∈U

(δiwi − 1)ei (9)

with γn considered as a finite-sample tuning parameter for γ . In § 3.2 below, we propose a
data-adaptive approach to select γn that minimizes the estimated mean squared error of the
soft-calibration estimator.

The following theorem characterizes the asymptotic properties of θ̂w.

THEOREM 1. Suppose that Assumptions 1–3 and the conditions for Q(w) in Remark 1
hold, γn = o(n1/2q−1/2), and that the soft-calibration estimator θ̂w satisfies θ̂w − θN =
N−1 ∑

i∈U ψi(c∗) − θN + oP(n−1/2), where c∗ is the solution to E{∂G(c)/∂c | XU, u} = 0,

ψi(c∗) = B(c∗)xi,SC + δiw(c∗Txi)ηi(c∗), ηi(c∗) = yi − B(c∗)xi,

B(c∗) = {∑i∈U δiw′(c∗Txi)xiyi}{∑i∈U δiw′(c∗Txi)xixT
i }−1 and xi,SC = {xT

1i, x
T
1iMS + xT

2i(Iq +
RS)}T. As a result, if either the outcome yi follows a linear mixed-effects model or Q(w) entails
a correct propensity score model, we have n1/2(θ̂w − θN) → N(0,V1 + V2) as n → ∞, where

V1 = lim
n→∞

n
N2Eζ

[
varδ

{∑
i∈U

δiw(c∗Txi)ηi(c∗)
∣∣∣∣ XU, u,YS

} ∣∣∣∣ XU

]

and

V2 = lim
n→∞

n
N2 varζ

[
Eδ

{∑
i∈U

ψi(c∗)
∣∣∣∣ XU, u,YS

} ∣∣∣∣ XU

]
.

Theorem 1 states that θ̂w is doubly robust as its consistency requires the outcome follow-
ing a linear mixed-effects model or the propensity score being correctly specified. We now
estimate V1 and V2 by V̂1 and V̂2, respectively, in Theorem 2.

THEOREM2. Under the assumptions in Theorem 1, we have V̂1 = nN−2 ∑
i∈S w(ĉTxi)2ηi(ĉ)2

→ V1 and V̂2 = nN−2 ∑
i∈S w(ĉTxi)(yi − xT

1iβ̂)2 → V2 in probability, where β̂ =
D11

∑
i∈S qix1iyi +D12

∑
i∈S qix2iyi.

Theorem 2 estimatesV1 andV2 by applying the standard variance estimator formula with
c∗ replaced by ĉ. As Shao & Steel (1999) showed that the order of V2/V1 is O(n/N), if the
sampling fraction n/N is negligible, we only need to estimate V1.

Remark 2. In Theorem 1, we need γn = o(n1/2q−1/2) to make the bias term (9) negligible.
If the bias term does not dwindle away, one can use a bias-corrected estimator θ̂bc to correct
the remaining bias after soft calibration weighting. Define θ̂bc = θ̂w−N−1 ∑

i∈U{δiw(ĉTxi)−
1}μ̂i, which combines soft calibration with the fitted outcomes μ̂i by flexible modelling,
similar to Avagyan & Vansteelandt (2021) and Ben-Michael et al. (2021).

As an example, if we combine the soft-calibration estimator with best linear unbiased
prediction μ̂i = xT

1iβ̂ +xT
2iû, γn is allowed to grow faster with n than requested in Theorem 1

under the linear mixed-effects model, implying that θ̂bc is more robust than θ̂w against the
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Soft calibration for selection bias problems 905

rate requirement for γn. Other choices for outcome models can also effectively reduce the
left-over bias as long as they can approximate the true outcome Eζ (yi | xi) well enough. A
detailed discussion of its asymptotic properties is deferred to the Supplementary Material.

3.2. Data-adaptive tuning parameter selection

To properly choose the tuning parameter γn, we propose a data-adaptive cross-fitting
strategy that targets minimizing the mean squared error of the soft-calibration estimator
θ̂w. Specifically, we divide the data into B disjoint groups Ib, b = 1,…,B. Let ĉ−k and β̂−k
denote the estimators of c∗ and β computed using the observations from all the folds, except
the kth fold based on the soft conditions with the tuning parameter γn. The estimated mean
squared error will be

mse(θ̂w; γn) = 1
B

B∑
k=1

[{B
N

∑
i∈Ik

δiw(ĉT−kxi)yi
}

− θN

]2

+ 1
B

B∑
k=1

B2

N2

[ ∑
i∈Ik

δiw(ĉT−kxi)
2{yi − B(ĉ−k)xi}2

+
∑
i∈Ik

δiw(ĉT−kxi)(yi − xT
1iβ̂−k)2

]
,

where the unknown parameter θN is approximated by the hard-calibration estimator θ̂hc as
a proxy. Given this cross-fitting scheme, mse(θ̂w; γn) is able to approximate the true mean
squared error with negligible bias. A similar strategy has been used by Xiao et al. (2013) for
tuning parameter selection in other contexts.We select γn byminimizing the estimatedmean
squared error of θ̂w over a discrete grid {γ ∗

n ×10j : j = −5,…, 5}, where γ ∗
n is a user-provided

value. Our tuning strategy involves specifying γ ∗
n and one candidate can be σ̂ 2

e /σ̂ 2
u , where σ̂ 2

e
and σ̂ 2

u are the restricted maximum likelihood estimators of σ 2
e and σ 2

u , respectively (Golub
et al., 1979).

3.3. Cluster-specific nonignorable missingness

We now consider one important extension of latent ignorability to cluster-specific non-
ignorable missingness, and another extension to causal inference in the presence of unmea-
sured cluster-level confounders is presented in the Supplementary Material. Following the
conventional notation for clustered data, consider the finite population FN = {(xij, yij, δij) :
i = 1,…,K, j = 1,…,Ni}, where i indexes the cluster and j indexes the unit within each
cluster, yij is the outcome of interest for the jth unit in cluster i, which is subject to missing-
ness, xij ∈ R

p is the vector of observed covariates, δij is the response indicator with value one
if yij is observed and zero otherwise andN = ∑K

i=1Ni is the population size. The parameter
of interest is θN = N−1 ∑K

i=1
∑Ni

j=1 yij. We consider the two-stage cluster sampling: in the
first stage, k clusters are selected fromK clusters with cluster sampling weights di, and in the
second stage, a random sample of ni units is selected from each sampled cluster i with unit
sampling weights Ni/ni. The sample size is n = ∑k

i=1 ni. Assume that the outcome follows
the linear mixed-effects model

yij = xT
ijβ + ai + eij = xT

ijβ + zTija+ eij (i = 1,…, k, j = 1,…, ni),
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906 C. Gao, S. Yang AND J. K. Kim

where a = (a1,…, ak)T are the latent cluster-specific random effects and zij = si with si
being the canonical coordinate basis for Rk as the cluster indicator. Here, xij, zij and a are
the counterparts of x1i, x2i and u in § 2.

In the presence of missing data, the sample average of the observed yij even adjusted for
sampling design weights may be biased for θN due to the selection bias associated with the
respondents. To correct such selection bias, the calibrated propensity scoremethod proposed
by Kim et al. (2016) imposes the following hard calibration constraints for both fixed effects
and cluster effects:

k∑
i=1

ni∑
j=1

dijδijwijxij =
k∑
i=1

ni∑
j=1

dijxij (10)

and
∑ni

j=1 dijδijwij = ∑ni
j=1 dij for i = 1,…, k with dij = diNin

−1
i . The calibration constraints

for the cluster effects may be stringent when the clusters weakly affect the outcome and,
under soft calibration, may be relaxed to

k∑
i=1

ni∑
j=1

dijδijwij =
k∑
i=1

ni∑
j=1

dij, (11)

k∑
i=1

ni∑
j=1

dijδijwijzij =
k∑
i=1

ni∑
j=1

dijzij +
k∑
i=1

ni∑
j=1

dijMT
S
xij +

ni∑
j=1

dijRT
S
zij, (12)

where (11) is still an exact constraint forcing the weighted estimator of the population size
to be the same as the design-weighted estimator, and (12) is an approximate calibration
for cluster effects. The adjustment in (12) relaxes the requirement of an exact calibration
of cluster effects, which can be beneficial when the outcome has relatively homogeneous
cluster-specific effects, that is, the ratio σ 2

e /σ 2
u is large. Thus, our soft-calibration estimator

of θN is θ̂w = N−1 ∑k
i=1

∑ni
j=1 dijδijw(ĉTxij)yij, where w(ĉTxij) is obtained by minimizing a

given loss function subject to the soft calibration constraints (10), (11) and (12).

COROLLARY 1. Under Assumptions 1(a), 3, other regularity conditions in Assumption
S3 of the Supplementary Material, and γn = o(n1/2q−1/2), if either the outcome yij fol-
lows a linear mixed-effects model or Q(w) entails a correct propensity score model, we
have n1/2(θ̂w − θN) → N(0,V1) as n → ∞ and n/N → f ∈ [0, 1), where V1 =
limn→∞ nN−2varp{∑k

i=1 diψi(c∗) | FN},

ψi(c∗) = Ni

ni

ni∑
j=1

{B(c∗)xij,SC + δijw(c∗T0 xij + c∗T1 zij)ηij(c
∗)}, c∗ = (c∗T0 , c∗T1 )T,

and ηij(c∗) = yij −B(c∗)(xT
ij, z

T
ij)

T with varp(·) being the variance under the clustered sampling
design and {B(c∗), xij,SC} defined in §A.5 of the Supplementary Material.

The results in Corollary 1 are similar to that of Theorem 1, except that V2 under two-
stage cluster sampling is negligible compared to V1, even though n/N or some cluster
sampling fractions ni/Ni are not negligible (Shao & Steel, 1999) and are thus omitted.
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Table 3. Bias (×10−2), variance (×10−3), mean squared error (×10−3) and coverage prob-
ability (%) of the estimators under cluster-specific nonignorable missingness based on 500

simulated datasets
θ̂sim θ̂fix θ̂rand θ̂hc θ̂

(SQ)
w θ̂ (ME)

w θ̂bc θ̂cbps θ̂rcal

Linear mixed-effects model with (λ1, λ2) = (0.01, 1)
Bias 21.2 0.02 0.29 0.10 0.16 0.13 0.09 0.17 0.35
var 0.23 1.53 1.40 0.78 0.61 0.73 0.74 0.78 0.75
mse 45.1 1.53 1.41 0.78 0.61 0.73 0.74 0.78 0.76
CP 0.0 94.6 94.2 92.6 93.8 93.0 93.2 – –
Linear mixed-effects model with (λ1, λ2) = (0.01, 10)
Bias 5.02 0.28 0.01 0.73 0.29 0.27 0.18 0.43 7.44
var 0.35 26.4 22.3 4.57 1.49 1.69 2.16 5.88 0.69
mse 2.88 26.4 22.3 4.62 1.49 1.70 2.16 5.89 6.23
CP 23.8 88.6 87.8 94.2 94.4 92.4 92.2 – –
Linear mixed-effects model with (λ1, λ2) = (0.5, 1)
Bias 30.3 0.49 1.61 0.64 1.26 1.28 0.63 0.82 2.03
var 2.74 10.7 10.2 9.23 9.64 9.84 9.21 10.2 9.79
mse 94.4 10.7 10.4 9.27 9.80 10.0 9.25 10.3 10.2
CP 0.0 95.0 93.4 94.2 94.0 93.6 94.0 – –
Nonlinear mixed-effects model with (λ1, λ2) = (0.01, 1)
Bias 31.6 0.10 0.38 0.92 8.75 0.03 0.11 0.09 0.59
var 1.50 2.42 2.24 1.96 1.72 1.69 1.71 1.71 1.86
mse 102 2.42 2.25 2.05 9.37 1.69 1.71 1.71 1.89
CP 0.0 94.0 94.0 92.6 0.0 94.4 96.6 – –

var, variance; mse, mean squared error; CP, coverage probability. We omit calculating the variance estimators
for θ̂cbps and θ̂rcal because they are unavailable for the clustered data in their R packages.

For variance estimation, the variance of θ̂w can be consistently estimated as V̂1 =
nN−2 ∑k

i=1
∑k

j=1 �i,jψi(ĉ)ψj(ĉ), where �i,j depends on the cluster sampling scheme at the
first stage, ψi(ĉ) is referred as the pseudovalues with c∗ replaced by ĉ, and the consistency
of V̂1 can be verified by standard arguments in Kim & Rao (2009).

4. Simulation study

We now conduct a simulation study to evaluate the finite-sample performance of our
proposed soft-calibration estimator, and assess the robustness of its bias-corrected version
in the case of cluster-specific nonignorable missingness. First, we generate samples from
finite populations using the two-stage cluster sampling mechanism, in which k = 30 clusters
with cluster sizes ni = 200 are selected from K = 2000 clusters.

We consider two generating models for yij. One is the linear mixed-effects model yij =
xT
ijβ + λ1ai + eij with xij = (1, x1ij, x2ij)T, where β = (0, 1, 1)T, x1ij ∼ U[−0.75, 0.75], x2ij ∼
N(0, 1), ai ∼ N(0, 1) and eij ∼ N(0, 1). The other one is a nonlinear mixed-effects model

yij = xT
ijβ +x21ij +x22ij +0.1x†3ij +0.1x†4ij +λ1ai + eij, where x

†
3ij and x

†
4ij are the standardized

versions of x3ij = exp(x1ij) and x4ij = exp(x2ij). We consider a logistic propensity score
to generate δij: δij ∼ Ber(pij), where logit(pij) = xT

ijα + λ2zi and α = (−0.25, 1, 1)T with
logit(·) being the logit link. For illustration, we present a set of (λ1, λ2) in Table 3 gauging
the between-cluster variation of yij and δij; additional simulation studies are deferred to the
Supplementary Material.
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From § 2.4, the loss function dictates the propensity score model. For assessing the double
robustness of the soft-calibration estimator, we consider two loss functions: the maximum
entropy balancing function, i.e., a logistic mixed-effects model for the propensity score, and
the square loss function, i.e., a linear mixed-effects model for the inverse of the propen-
sity score. Next, we compute nine estimators for θN : (i) θ̂sim, the simple average of the
observed yij; (ii),(iii) θ̂fix and θ̂rand, where pij is estimatedwith fixed or random effects for clus-
ters; (iv)–(vi) θ̂hc, θ̂

(SQ)
w and θ̂

(ME)
w , where wij achieves the hard calibration conditions under

the maximum entropy loss function, the soft calibration conditions under the square loss
function or under the maximum entropy loss function; (vii) θ̂bc, bias corrected θ̂

(ME)
w with

μ̂ij = xT
1ijβ̂ + xT

2ij û; (viii) θ̂cbps, the high-dimensional covariate propensity score balancing

method of Ning et al. (2020); and (ix) θ̂rcal, the high-dimensional regularized calibration
method of Tan (2020).

Table 3 reports the simulation results based on 500 Monte Carlo samples. The perfor-
mance of estimators is evaluated on the basis of biases, variances, mean squared errors and
coverage probabilities. Among all estimators, the simple average estimator θ̂sim shows large
biases across all different scenarios. When the cluster factor is included as fixed or random
effects, the biases of θ̂fix and θ̂rand are substantially reduced, while their variances remain
large. The large variances could be attributed to their overly abundant parameters associated
with the cluster indicators. When the random effects weakly affect outcomes, i.e., λ1 = 0.01,
all soft-calibration estimators outperform θ̂hc, indicating their ability to address the issue of
overcalibration. In particular, θ̂ (SQ)

w performs better than θ̂
(ME)
w under the linear mixed-effects

model, which agrees with the connection between θ̂
(SQ)
w and θ̂blup established in Proposition 1.

However, θ̂ (SQ)
w is subject to significant bias when the outcome model is misspecified, leading

to an unsatisfactory coverage probability, while θ̂
(ME)
w still exhibits a desirable finite-sample

coverage probability, which aligns with our claim of double robustness in Theorem 1 when
the propensity score is correctly specified. Although the bias-corrected estimator θ̂bc has a
slightly larger mean squared error than θ̂

(ME)
w when λ1 = 0.01, it performs better when the

data present a larger between-cluster variation of yij, i.e., λ1 = 0.5, which provides empirical
support for the robustness of θ̂bc with respect to the rate requirement for γn. As expected,
both regularized calibration estimators θ̂cbps and θ̂rcal have larger mean squared errors under
the linear mixed-effects model since our soft calibration conditions are motivated by linear
mixed effects.

Overall, our proposed estimators tend to produce smallermean squared errors while deal-
ingwith cluster-specificmissingness, irrespective of possiblemodelmisspecification of either
outcome or propensity score.

5. Application: effect of BMI screening on childhood obesity

The epidemic of childhood obesity has been widely publicized (Peyer et al., 2015). Many
school districts have implemented coordinated school-based body mass index, BMI, screen-
ing programs to help increase parental awareness of children’s body status and promote
preventive strategies to reduce the risk of obesity. We use a dataset collected by the Pennsyl-
vania Department of Health to evaluate the effect of the program on the annual prevalence
of overweight and obese children in elementary schools across Pennsylvania in 2007. The
primary goal is to investigate the causal effect of implementing the program on reducing
childhood obesity. Because the implementation of the policy was not randomized, it is
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Table 4.The estimated average treatment effects of school-based BMI screening on the annual
prevalence of overweight and obese children in elementary schools across Pennsylvania

θ̂sim θ̂fix θ̂rand θ̂hc θ̂ (ME)
w θ̂bc θ̂cbps θ̂rcal

ATE 8.71 0.41 0.43 0.55 0.53 0.54 0.28 0.51
VE 2258.8 467.8 474.5 448.5 445.7 446.0
CIs (5.77, 11.66) (−0.93, 1.75) (−0.92, 1.78) (−0.77, 1.86) (−0.78, 1.84) (−0.77, 1.85) – –

BMI, body mass index; ATE, average treatment effects; VE, variance estimation (×10−3); CIs, confidence
intervals.

essential to control pretreatment covariates for causal analysis of the effect of the policy.
Furthermore, school districts are clustered by geographic and demographic factors. Thus,
soft calibration can be used to estimate the causal effect by correcting for cluster-specific
confounding bias.

The dataset contains information on 493 elementary schools, which are clustered accord-
ing to the type of community (rural, suburban and urban) and the population density
(low, moderate and high). There are six clusters of sample sizes n1 = 65, n2 = 96, n3 =
89, n4 = 29, n5 = 104 and n6 = 4. For each school, the data consist of the treat-
ment status Aij, where Aij = 1 if the school has implemented the policy and 0 otherwise,
the outcome variable yij, indicating the annual prevalence of obesity in each school, and
two covariates x1ij and x2ij, the baseline prevalence of overweight children and the per-
centages of reduced and free lunches, respectively. For estimation, we consider the linear
mixed-effects model and the maximum entropy loss function, including covariates x1ij, x2ij
and the cluster intercept to model the outcome and weights for Aij = 0 and Aij = 1,
respectively.

Table 4 reports the estimated average treatment effects on the annual prevalence of obesity
along with the estimated variances and 95% confidence intervals. Without any adjustment,
θ̂sim shows that the policy has a significant effect in reducing the prevalence of overweight
and obese children in schools, which may be subject to confounder bias. After adjusting
for confounders through propensity weighting or calibration, all other estimators show that
the policy may mildly reduce the prevalence of overweight children. Also, θ̂hc, θ̂

(ME)
w and

θ̂bc provide similar estimates, but the soft-calibration estimators yield a slightly smaller
variance, which can be attributed to the approximate calibration condition on the clus-
ter indicator. As discussed in the Supplementary Material, the cross-fitting strategy selects
two small tuning parameters as γn,A=0 = 0.052 and γn,A=1 = 0.068. It implies that the
correction term on the right-hand side of (6) is fairly small and a nearly exact calibra-
tion should be adopted, as demonstrated by the similarities in the calibration weights in
Fig. S5 in the Supplementary Material. Estimators θ̂cbps and θ̂rcal might not be credible
when the sparsity condition is not met, as we have shown in the simulation studies. Based
on our analysis, the policy can reduce the average prevalence of overweight and obese
children in elementary schools in Pennsylvania, although the statistical evidence is not
significant.
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Supplementary material

The Supplementary Material includes all technical proofs, additional simulation results
and other implementation details.
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