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Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA 02215, USA
*zhangxc@bu.edu, †mpopovic@bu.edu

Abstract: We use a general theory to show a new class of bandpass filter shapes for coupled-
resonator filters that provides the lowest insertion loss and the narrowest bandwidth achievable
for a given intrinsic Q and bandwidth. © 2023 The Author(s)

Bandpass filters are among the most widely used components in integrated photonics across many applications [1–3].
Passband synthesis in higher-order filters provides certain optimum properties such as fastest rolloff rate with given
passband restrictions (leading to Butterworth or Chebyshev designs). Such passband synthesis techniques generally
assume lossless resonators. In real implementations, finite loss Qs of resonators lead to insertion loss, and also a
change in the passband shape from the synthesized response. While Butterworth or Chebyshev passband shape can
be recovered by adjusting couplings to compensate for cavity loss Q, the insertion loss increases. This suggests that a
rounder passband results in lower insertion loss for a given fixed 3 dB bandwidth filter. A question to ask is whether
rounder passband shapes than Butterworth provide a significant insertion loss advantage without significant downsides.

In this paper, we use a second-order filter case study to investigate the insertion loss and narrowest achievable
bandwidth and their dependence on the passband shape. While some of the qualitative findings apply more generally
to higher orders, a second-order filter has sufficient selectivity yet low enough complexity to be a widely relevant
example. These results may benefit loss-sensitive filtering applications such as quantum-correlated photon pair sources
and RF-photonic integrated circuits.

To design a second-order filter, we start with a target resonance wavelength and given resonator loss Q. Fig. 1
summarizes the studied device geometry, including the passband shape of proposed filter. The passband spectrum of
the filter is fully determined by ring-bus in/out coupling rates re and rd , and ring-ring coupling rate µ with temoral
coupled mode theory (CMT). It has been shown that a single-ring filter has maximum drop port transmission not
under the well known critical coupling condition but when the ring-bus couplings are symmetric, that is re = rd [5].
This does not necessarily translate to second-order. To provide a straightforward description of the passband and device
geometry we introduce three new parameters that fully specify the filter passband: a shape parameter S (real number,
−∞ < S < +∞), the 3-dB bandwidth ∆ω3dB, and “impedance match”, defined as M = (re − rd)/(re + rd + 2ro) with
−1 < M < 1. M = 0 corresponds to a symmetric device geometry shown in Fig. 1(a). M < 0 (re < rd) corresponds
to the asymmetric structure in Fig. 1(b). With the possible pole configurations shown by Figs. 1(d),(e) we uniquely
characterize the passband shape by shape parameter S ≡ tan2 θ = X2/Y 2(S >−1). For θ = 45o, the pole in Fig. 1(d)
makes the filter Butterworth, and θ > 45o (closer to the real axis) are Chebyshev filters with different ripple factors. For
θ < 45o (purple area) we see the rounder “sub-Butterworth” passbands. As S decreases from 1 to 0 (sub-Butterworth
Type I), the pole path is shown in Fig. 1(e) by the black arrowed curves and the poles coalesce for S = 0. When we
select S < 0 (Type II), X becomes imaginary and the poles split vertically and move in opposite directions along the
imaginary axis, as illustrated by the straight arrowed lines in Fig. 1(e).
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Fig. 1: Continuum of passband shapes supported by 2nd-order resonant system: The three design parameters (re, rd , µ) in a
synchronous filter are recast in terms of bandwidth ∆ω3dB, passband shape S, and impedance matching (a) M = 0 (symmetric), or
(b) M < 0 (asymmetric, re < rd). (c) Passband spectra showing different shapes S with fixed 3-dB bandwidth ∆ω3dB. (d) One of
two symmetric poles of the transmission function, defining shape parameter S. (e) Locus of poles for different passband shapes S.
The poles split around an “exceptional point” at S = 0.
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Fig. 2: Normalized optimum passband design plots and discussions: Contours of constant peak transmission vs. M and S,
for a range of normalized 3 dB bandwidths ∆ω3dB/2ro (red/gray areas mean non-physical coupling rates). (a) 3 dB bandwidth
∆ω3dB/2ro = 3. (b) Vertical and (c) horizontal slices of (a), showing the peak transmission (b) versus matching M given fixed shape
S, and (c) versus shape S given fixed matching M. (d,e) Filters with the narrowest achievable bandwidth have S = 0. (f) Bandwidths
above which S = −1 and (g) S = 1 are accessible (all have optimum design at point B). (h) Bandwidth at which global maximum
transmission is equal for all three designs A± and B; and (i) at which optimum is at S = −1,M = ±1 (A±). (j) Optimized peak
transmission vs. bandwidth. (k) Bode plots of drop spectra. Re-scaled peak transmission versus shape with (l) sufficiently large
bandwidth for different out-of-band rejection level, and (j) ultra-narrow and large 30 dB out-of-band rejection.

The peak transmission from drop port (noted by D) is calculated as a function of S, M under target ∆ω3dB and the
results are shown in Fig. 2. There are two sets of (S,M) values, A± and B corresponding to local maxima of peak
transmissions. As compared in Fig. 2 (e-i), when the normalized bandwdith ∆ω3dB/2ro <= 1.6435, point B is the
optimized design for lowest insertion loss. Points A± provide lowest insertion loss with asymmetric ring-bus coupling
(M =±1). When ∆ω3dB/2ro = 1.6435 points A± and B provide equal local maxima of transmission.

The narrowest achievable 3 dB bandwidth depends on the opening between gray/red shaded areas. As shown in
Fig. 2(e) and (d), the shaded area start to open around S = 0 when ∆ω3dB/2ro = 0.6436. Thus, this is the narrowest
achievable bandwidth for a 2nd order filter. The narrowest bandwidth for S = −1 [Fig. 2(f)] and S = 1 [Fig. 2(g)] are
∆ω3dB/2ro = 1, and

√
2; respectively. These results are also shown in Fig. 2(j) as the vertical lines corresponding to

the horizontal intercepts when peak transmission D (in dB) goes to negative infinity for a given shape.
Finally we discuss the roll-off rate of sub-Butterworth filter and generalize the results to N dB out-of-band rejection.

As shown in Fig. 1(e), when S approches -1, one of the transfer function pole goes to infinity and this leads to a 1st-
order out-of-band roll-off behavior shown in Fig. 2(k). For fixed 3 dB bandwidth, when ∆ω3dB/2ro is sufficiently large
point B converges to Butterworth passband shape S = 1. This can be generalized into fixed N dB bandwidth. For N < 7,
passband shape S =−1 provides the lowest insertion loss. Butterworth filter S = 1 provides lowest insertion loss when
rejection level is higher than 7 dB. However, the red-shaded boundary shown in Fig 2 is independent on bandwidth.
That means for any out-of-band rejection level, the filter passband shape with narrowest bandwidth is always around
S = 0. An example is shown in Fig. 2(m). For fixed 30 dB rejection, the lowest insertion loss of filter with extremely
narrow bandwidth (∆ω30dB/2ro = 6 or 15) is achieved by sub-Butterworth passband shape S < 1.

In conclusion, we theoretically demonstrate that a filter with “rounder” passband provides lowest insertion loss.
These rounder passband filter also provide narrowest achievable linewidth for abitrary level of signal rejection.
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