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This paper develops a control co-design (CCD) framework to simultaneously optimize the

spacecraft’s trajectory and onboard system (rocket engine) and quantify its benefit. An open-
loop optimal control problem (two-finite burn Mars missions) is used as the benchmark, and
the engine design considers the combustion equilibrium and nozzle geometry. The objective
function is the fuel burn. The design variables are the trajectory control parameters (such as
burn times, burn directions, and time of flight), initial fuel mass, and engine design parameters
(such as throat area, mixture ratio, and chamber pressure). The constraints include final veloc-
ities and positions of spacecraft. Single-point optimizations are conducted for three departure
dates in May, July, and September 2020. A multi-point optimization is also performed to
balance the engine performance for these dates with 49 design variables and 20 constraints. It
is found that the CCD optimizations exhibit 22% to 28% more fuel burn reduction than the
trajectory-only optimization with fixed engine parameters and 16% to 20% more fuel burn
reduction than the decoupled trajectory-engine optimization. The proposed CCD optimization
framework can be extended to more spacecraft trajectory control parameters and onboard
systems and has the potential to design more efficient spacecraft missions.

Nomenclature

�4 = Nozzle exit area, m2

�C = Nozzle throat area, m2

U = Half angle, rad
3= = Thrust directions
� = Thrust magnitude, N
W = Specific heat ratio
�B? = Specific impulse, s
! = Nozzle length, m
_1 = Bell nozzle efficiency
_2 = Conical nozzle efficiency
"4 = Exit Mach number
"' = Mixture ratio
¤< = Mass flow rate, kg/s
<1 = Fuel burn, kg
<engine = Mass of engine, kg
<excess = Excess fuel, kg
<0 = Fuel mass before flight, kg
%2 = Chamber pressure, MPa
%4 = Exit pressure, MPa
%> = Atmospheric pressure, MPa
' = Universal gas constant, �

:6∗ 
'ex = Nozzle exit radius, m
'mag = Center of Mars to spacecraft, km
A = Nozzle throat radius, m
)1 = Thruster burn time, s
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)2 = Chamber temperature, K
)4 = Exit temperature, K
TOF = Time of flight, s
+x,y,z = Spacecraft relative velocity, km/s
E4 = Exhaust velocity, km/s
)"� = Trans-Mars injection
"$� = Mars orbit insertion
Superscripts
Earth = Variables for the Trans-Mars injection
Mars = Variables for the Mars orbit insertion
May = Variables for the May departure date
Jul = Variables for the July departure date
Sep = Variables for the September departure date

I. Introduction
As we continue to advance our understanding of the universe, a scheme to optimize large-scale spacecraft missions

efficiently is of growing importance. Cost is the most crucial factor when designing a spacecraft mission. Optimizing a
spacecraft’s trajectory and onboard systems helps minimize this cost, making space missions more feasible. Therefore,
increasing research interests in spacecraft optimization have led to an increase in mission efficiency.

On-board system design aims to increase the efficiency of a specific onboard system. Various studies have been
conducted to optimize spacecraft systems, such as the thermal design, as Galski et al. [1] did. His team developed
a generalized external optimization algorithm similar to an evolutionary algorithm to find optimal radiator areas for
a Brazilian multi-mission platform thermal control system. The stochastic algorithm considered two critical cases:
operational hot and cold. Solutions to both cases resulted in new and more efficient design solutions. Frank et al. [2]
used the rocket propulsion analysis (RPA) tool to rapidly evaluate chemical rocket engines’ performance, weight, and
size at a conceptual level. A surrogate model was trained from RPA solutions and used within their framework to
develop a tool that can evaluate the performance of chemical rocket engines with an accuracy of 3%. The surrogate
model also reduces the computational time by a factor of 105 compared with current physics-based models. There have
also been studies that optimized two coupled systems (attitude and thermal control). Varatharajoo et al. [3] coupled the
attitude control system with the thermal control system by utilizing an electrically conductive fluid that circulates in a
closed loop to simultaneously serve as a heat conductor and momentum generator. A five-year mission was simulated
with a circular orbit around Earth to test their system. They found the coupled system they created outperformed
conventional uncoupled systems from the system volume point of view for spacecraft ranging from 100 to 500 kg.
Hwang et al. [4] optimized a CubeSat’s full spacecraft system to increase the data downloaded. Using the open-source
multidisciplinary analysis design and optimization (OpenMDAO [5]) toolbox, the authors coupled energy generation,
communications, attitude dynamics, and thermal control for a 3U CubeSat. With this implementation, they achieved a
40% improvement in the downloaded data.

Trajectory optimization, on the other hand, uses optimal control to minimize the spacecraft’s energy consumption
(often quantified as velocity change; Δ+) or flight time for a mission sequence. Flyby maneuvers or specific launch
windows can reduce these objective functions. Genetic algorithm (GA) is a popular approach to optimize spacecraft
trajectory and has been used in many studies [6–9]. The standard GA assumes the design variables of a solution as
genes in a fixed-length chromosome. By applying the evolutionary operations of selection, mutation, and crossover,
the population of these chromosomes converges to the global optimal solution [10]. Differential evolution is another
heuristic method that aims to solve the trajectory optimization problem like genetic algorithms. Labroquère et al.
[11] utilized a differential evolution technique and implemented four constraint-handling techniques to optimize a
multi-gravity assist interplanetary mission to Jupiter. Three of the four techniques could find feasible solutions within a
respectable time. Gradient-based optimization algorithms have also been applied to orbit trajectory problems. Ellithy
et al. [12] derived analytical expressions for the gradients needed in optimizing N-impulse orbit transfers for two-body
transfers. They used several test cases using different initial conditions to test their analytical gradients against typical
finite difference methods. They found that the mission cost for both approaches gave the same values, but the analytical
gradients were always better regarding function counts, reducing the computational cost.

Each of the above studies considered the spacecraft trajectory control and system design separately or in a decoupled
manner. Optimizing one component while fixing the other component(s) limits the design freedom of the mission.
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Control co-design (CCD) is a promising method to break the above limitation by simultaneously optimizing the control
and physical systems (see Garcia-Sanz [13] for a detailed review). Recent studies have used CCD for optimizing
aircraft [14–16], wind turbines [17–19], suspension systems [20], and hydro turbines [21], to list a few. CCD has also
been used in space missions. For example, Chilan et al. [22] developed a CCD framework to optimize the spacecraft
solar array structure and control for precision pointing and jitter reduction. Angeletti et al. [23] used the CCD approach
to simultaneously optimize the spacecraft’s structure and dynamics to minimize its mass and maximize its agility.
Ceccherini et al. [24] conducted a combined system-trajectory optimization for geostationary equatorial orbit transfer.
Ricciardi et al. [25] performed a multi-objective (mass and downrange) co-design optimization considering re-entry
trajectory and spacecraft mass models. Kluever and Pierson [26] solved a coupled electric spacecraft trajectory and sizing
parameters for lunar missions. Koppel [27] found that “medium-high" specific impulse electric thrusters performed
better than “very-high" thrusters when taking the spacecraft trajectory into consideration. Arya et al. [28] conducted a
joint optimization of spacecraft trajectory and electric propulsion systems to maximize the payload. The propulsion
system model was adopted from Petukhov and Wook [29]. Recently, Shimane et al. [30] carried out a multi-objective
(mass and time of flight) co-design optimization for low-thrust trajectory and propulsion sizing with fly-bys. Isaji et al.
[31] developed a multidisciplinary design optimization framework to couple space mission planning and vehicle design.

Despite the above research progress, existing CCD studies commonly used simple, empirical formulations to
correlate system properties or performance with a handful of design parameters. For example, Shimane et al. [30] used
a polynomial function to compute the thrust based on the input power for electric propulsion systems. The simplified
system design may limit the CCD freedom because the detailed system parameters (e.g., engine nozzle geometry)
and key physical processes (e.g., combustion) are not explicitly considered in the optimization. One challenge in
physics-based system modeling within a CCD framework is the computational cost; one may need to solve the system’s
governing equations in an iterative manner. In addition, as we consider more detailed system design parameters, the
proper coupling (data transfer) between the system and trajectory designs requires special considerations. In a recent
preliminary study [32], we built an optimization framework that can couple spacecraft trajectory and system design
using NASA’s OpenMDAO framework [5]. This paper is a further step in this direction.

This paper’s objective is to outline a CCD framework that can simultaneously optimize spacecraft trajectory control
and physics-based system design and quantify the benefit of coupled optimization. We will use an open-loop optimal
control problem (two-finite burn Mars mission) as the benchmark, and the onboard system we consider is a rocket engine.
Instead of using an empirical formulation to link the engine thrust with �sp, we use an analytical engine model that
considers the combustion equilibrium and nozzle geometry. This engine model allows computing engine thrust and �sp
based on design variables such as throat area, chamber pressure, and mixture ratio. To alleviate the high computational
cost, we train a surrogate model to avoid solving combustion equilibrium equations in the optimization loop. The most
original contribution of this paper is adopting physics-based system modeling instead of empirical formulations in the
CCD framework. This salient feature is achieved by using gradient-based optimization algorithms for both trajectory
and system components, such that we can use a large number of design variables to represent complex systems. This
paper will elaborate on special numerical treatments (e.g., coupling variable formulations, explicit and implicit analysis
conversion, surrogate modeling) that make the coupled trajectory and physics-based system design computationally
efficient. To quantify the benefit of coupled optimization, we will compare its performance against trajectory-only
optimization with a fixed system and a decoupled trajectory and system optimization. We will also perform a multi-point
optimization to balance the engine performance for different departure dates.

The rest of the paper is organized as follows. The Method Section elaborates on the coupled spacecraft trajectory
and engine optimization framework. The optimization results are presented in the Results and Discussion Section.
Finally, we summarize our findings in the Conclusion Section.

II. Method
Our proposed CCD optimization framework is called the spacecraft mission optimization toolbox (SMOT). SMOT

currently supports two components: interplanetary trajectory computation (control system) and rocket engine model
(physical system). These two components are then coupled using OpenMDAO [5] to enable the simultaneous optimization
of a spacecraft’s trajectory and system. In this section, we elaborate on our SMOT framework and its components.
Following a similar approach, SMOT can be extended to other control parameters and onboard systems.
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Table 1 Inputs and outputs of the trajectory computation component.

Function/Variable Description Quantity

Inputs �Earth Thrust magnitude (N) - TMI 1
3Earth= Thrust directions - TMI 3
)Earth
1

Burn time (s) - TMI 1
�Earthsp Specific Impulse (s) - TMI 1
�Mars Thrust magnitude (N) - MOI 1
3Mars
= Thrust directions - MOI 3
)Mars
1

Burn time (s) - MOI 1
�Mars
sp Specific Impulse (s) - MOI 1
TOF Time of flight (day) 1
<0 Fuel mass before flight (kg) 1

<engine Mass of engine (kg) 1
Total Inputs 15

Outputs 'mag Center of Mars to spacecraft (km) 1
|+x,y,z | ≤ 0.01 Spacecraft relative velocity (km/s) 3

<excess Excess fuel (kg) 1
<1 Fuel burn (kg) 1

Total Outputs 6

A. Spacecraft Trajectory Computation and Control Using General Mission Analysis Tool (GMAT)
NASA’s General Mission Analysis Tool (GMAT) [33] is an open-source mission design package. GMAT allows

users to easily create spacecraft with a wide range of force models and uses various solvers to efficiently propagate
the spacecraft. Users can then seamlessly add specific hardware components, such as fuel tanks and thrusters, to the
spacecraft. Once the resources are configured, they are used in the mission sequence to simulate the spacecraft’s motion.

A user can interact with GMAT in two ways: using a graphical user interface (GUI) or a scripting language such as
Python and MATLAB. In this paper, we develop a Python interface in SMOT to interact with GMAT. This allows users
to edit the GMAT scripting language directly through Python commands during optimization.

A fixed mission sequence must be created using the GUI or scripting language for the above Python API. This
consists of creating spacecraft, propagators, hardware components, and a mission sequence. The mission sequence
could be a Hohmann transfer orbit from LEO to GEO or an interplanetary mission from Earth to Mars. These sequences
are "fixed" because the Python API cannot change the sequence itself but rather alter values within the sequence to
change the result. Once the fixed mission sequence is created, a user can use the Python API to read the GMAT script
file and change variable values in the script before running it. Changing the GMAT script through the Python API is
how OpenMDAO couples with GMAT to run optimization. In this study, we use a two-finite burn interplanetary mission
to Mars, so a GMAT script was created to perform such a mission. The inputs for this trajectory component include the
control parameters for the two finite burns, i.e., thrust magnitude (�), thrust direction (3=), burn time ()1), and time
of flight (TOF), and the spacecraft parameters such as engine mass (<engine) and initial fuel mass (<0). The outputs
include the position ('mag) and velocity (+n) of the spacecraft relative to Mars and fuel burn (<1) for the mission. All
inputs and outputs of this mission can be seen in Table 1.

Note that our trajectory problem can also be computed by using a Lambert solver with impulsive burns. Lambert
solvers are much faster than finite-burn solvers for computing trajectory problems. In addition, they can be coupled
with an engine component by using one extra component to link the Lambert component’s output Δ+ and the engine
component’s output �sp. However, we use a finite-burn propagation method instead because it can be easily extended for
continuous low-thrust trajectory problems using electric propulsion systems, while solving continuous thrust problems
using Lambert solvers is not straightforward. Nevertheless, we expect the finite-burn (propagation) and impulsive-burn
(Lambert) methods will compute similar trajectories given the same design parameters, as will be verified in Sec. III.A.
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Table 2 The inputs and outputs for the spacecraft propulsion system (engine) component.

Function/Variable Description Quantity

Inputs "' Mixture ratio 1
%2 Chamber pressure (MPa) 1
�C Nozzle throat area (m2) 1
"4 Exit Mach number 1

Total Inputs 4

Outputs � Thrust magnitude (N) 1
�sp Specific Impulse (s) 1
�4 Nozzle exit area (m2) 1

<engine Mass of engine (kg) 1
Total Outputs 4

In the future, we will add the Lambert solver as an option for impulsive burn problems in our framework.

B. Spacecraft Propulsion System Design Using a Rocket Engine Model
As mentioned above, the spacecraft system considered in this paper is a chemical rocket engine. We implement a

rocket engine model in Python to enable the interaction between the rocket engine and spacecraft trajectory.
To be more specific, the inputs of the engine model are the mixture ratio ("'), combustion chamber pressure (%2),

nozzle throat area (�C ), and exit Mach number ("4). The outputs are the engine thrust (�), specific impulse (�sp),
engine mass (<engine), and exit area (�4). All inputs and outputs of the engine component can be seen in Table 2. Note
that our engine model uses the exit Mach number as an input rather than the exit area. This setting allows the engine
model to be completely explicit. In other words, we can directly compute the engine outputs based on the inputs without
any iteration needed. The drawback of this choice is that we cannot directly control the throat area of the engine during
optimization. Instead, we control the exit Mach number and compute the exit area as the output. Therefore, in the
optimization, we impose a constraint to equate the exit areas between both burns, as elaborated in the Results section.

To compute the component outputs, we first built a surrogate model to compute chamber temperature )2 , specific
heat ratio W, and the universal gas constant ' based on %2 and "'. We use the radial basis function surrogate from the
surrogate model toolbox (SMT) [34]. We generated 500 sample points for %2 ∈ [0.5 : 10.0] MPa and "' ∈ [1.0 : 10.0].
Then, for each %2 and "' in the sample, we ran the Rocket Propulsion Analysis tool (RPA version 1.2.9 lite) [35] to
compute the corresponding outputs: )2 , W, and '. The radial basis function surrogate model was trained with these
outputs. We assume the fuel and oxidizer are liquid hydrogen and oxygen, respectively. The RPA tool solves the
theoretical combustion equilibrium equation to compute the outputs.

Once the surrogate model is trained, we assume constant composition in the nozzle and use the following formulation
to compute the final outputs of the engine component:

¤< =
�C%2√
)2

√
W

'

(
W + 1

2

) −W−1
2W−2

(1)

�4

�C
=

(
W + 1

2

) −W−1
2W−2

(
1 + W − 1

2
"2
4

) W+1
2W−2

"−1
4 (2)

)4

)2
=

(
1 + W − 1

2
"2
4

)−1
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√
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� = ¤<_1E4 + (%4 − %>)�4 (6)

To account for frictional losses, we define a nozzle efficiency (_1) for a bell nozzle in Eq. 6, following [36]. Initially,
the half angle (U) for a conical nozzle with the same throat radius (A), length (!), and exit radius ('ex) is computed
using Eq. 7. The efficiency for a conical nozzle (_2) is then calculated with Eq. 8 and converted to a bell nozzle using
Eq. 9. The coefficient used to convert the conical nozzle efficiency into a bell nozzle efficiency in Eq. 9 is found using
the thrust efficiency plot at 100% fractional nozzle length from Figure 4−12 in reference [36].

tan(U) = 'ex − A
!

(7)

_2 =
1
2
(1 + cosU) (8)

_1 = (
0.992
0.983

)_2 (9)

The engine’s mass is computed using a formulation developed by Zandbergen [37], valid for chemical rocket engines
with thrusts ranging from 15 kN to 8 MN. Since this paper focuses on a two-finite burn mission, two different masses
could be computed. However, the same engine is used for both burns, so the burn with the larger thurst magnitude (Earth
burn) will be used to calculate the engine mass. Note that the thrust magnitude of the Earth burn is within the above
valid range (see Tables 5 to 7). This mass will be fed into the trajectory component to change the spacecraft’s dry mass.

<engine = 1.866 × 10−10�2 + 0.00130� + 77.4 (10)

As a test, we ran our engine component with the inputs: %2 = 5.0 MPa, "' = 5.0, and "4 = 3.0 to compute
the specific impulse �B? = 413.17 s. Then, we ran the RPA tool with the same inputs and the RPA’s specific impulse
�B? = 412.48 s. This reasonably good agreement verifies our engine model implementation.

In addition to the above verification at a single point, we evaluated the surrogate’s accuracy for a wide range of %2
and "'. To do this, we generated another 500 random points for %2 ∈ [0.2 : 8] MPa and "' ∈ [2 : 6]. The RPA and
our surrogate models were then run separately with the generated inputs to compute )2 , W, and '. We plot the contours
of )2 , ', and W computed by the RPA model and our surrogate model, as shown in Fig. 1. We observe reasonably good
agreement between the contour plots. Moreover, the L2 errors for )2 , W, and ' are 1.595, 0.0006058, and 0.6559,
respectively. These results justify our surrogate model’s accuracy for a wide range of working conditions.

In terms of runtime, the RPA model takes 0.16 s to run one prediction (i.e., compute )2 , ', and W based on "' and
%2 ), while the surrogate model takes only 0.015 s. The surrogate model achieves a speed-up factor of ten, which further
justifies the benefit of using the surrogate model.

C. Open-source Multidisciplinary Analysis Design And Optimization Tool: OpenMDAO
NASA’s OpenMDAO [5] is an open-source computing platform for systems analysis and multidisciplinary

optimization written in Python. OpenMDAO allows users to decompose large-scale optimization problems into small
components. Each component contains basic computation, making them easier to build and maintain. The benefit
of OpenMDAO is its focus on gradient-based optimization with analytical derivatives, allowing one to explore large
design spaces with thousands of design variables. This salient feature is achieved using the modular analysis and unified
derivatives (MAUD) architecture proposed by Hwang and Martins [38].

As previously stated, OpenMDAO can decompose complex models into smaller disciplines or components. Each
component is defined by its specific inputs and outputs. In a component, one must implement how to compute the outputs
based on the inputs. This can be done with an analytical expression, as was done for the rocket engine model, or by
external software such as GMAT. Lastly, one needs to define how the derivatives of the outputs with respect to the inputs
will be calculated for each component. This, again, can be done with analytical expressions or by using finite differences.
This study uses the finite-difference method to compute all the partial derivatives because it is easier to implement
(analytical derivatives are not available in GMAT). Once all the individual components are set, one can link variables
(i.e., inputs and outputs) across components to achieve a coupled model. Then, one can select any of the variables in the
coupled model as the objective function, design variables (input variables only), and constraints. This feature greatly
increases the flexibility of large-scale optimization. For example, we can easily add more complex constraints to the
trajectory problem, such as the path constraint [39, 40]. Imagine one needs to ensure the spacecraft position is greater
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Fig. 1 Comparison of )2 , W, and ' contours between the RPA (left column) and surrogate (right column)
models.

than 3safe from a planet to avoid a collision. The only required change is to compute the minimal distance 3min between
the spacecraft and the planet and add it as an output for the trajectory component. Then, OpenMDAO could select 3min
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Fig. 2 OpenMDAO N2 diagram to illustrate the interaction between the trajectory and engine components
during a CCD optimization.

as a constraint and enforce 3min > 3safe during optimization.
Figure 2 shows an example of the proposed spacecraft system and trajectory coupling through OpenMDAO’s N2

diagram. The light blue blocks are the components, the dark green items denote the inputs of a component, and the light
green represents the outputs. The off-diagonal grey blocks represent the data transfer between the components’ input and
output variables. The "fuel_const" and "area_const" components are for the excess fuel and nozzle exit area constraints
(see Table 4 for details). As shown, in a coupled optimization, the design variables are the control and physical system
parameters such as the direction of the burns, burn time, time of flight, mixture ratio, chamber pressure, throat area, and
exit Mach number. The engine component will compute the thrust and �B?; both are then used in the GMAT component
to compute the trajectory, subject to certain constraints. The objective function of the mission is the total fuel burn.

D. Control co-Design Optimization Using Spacecraft Mission Optimization Tool: SMOT
Space mission optimization tool (SMOT) is a Python interface we developed to combine GMAT, engine model, and

OpenMDAO for control-code design optimization of spacecraft trajectory and system. OpenMDAO acts as the top-level
driver and is where all the various components of the mission will be defined (e.g., spacecraft trajectory and rocket
engine models). GMAT is used as the trajectory analysis tool, and the engine model is implemented as an OpenMDAO
component.

A basic overview of the coupled model can be seen in Fig. 3. The diagonal blocks are the components, and the
off-diagonal blocks denote the data transfer between components. A component receives the inputs from the vertical
direction and outputs data in the horizontal direction. The gray blocks in Fig. 3 denote the data transfer between the
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Fig. 3 CCD optimization of spacecraft trajectory and engine design for the two-burnMars mission, illustrated
using the extended design structure matrix (XDSM) diagram [41].

engine and trajectory components. To be more specific, the engine components (Earth and Mars burns) use the engine
parameters (e.g., chamber pressures, mixture ratios, throat area) as inputs and output the thrusts, �sp, and engine mass to
the trajectory component. The trajectory component then uses them, along with trajectory control parameters (e.g.,
burn directions, burn magnitudes, and time of flight), as the inputs and output fuel burn, final positions and velocities,
etc. There is no feedback from the trajectory to the engine component; the trajectory-engine components are one-way
coupled.

Currently, only a two-finite burn interplanetary mission to Mars is set up in SMOT for optimization. The trajectory
component will change entirely based on the optimized mission type. For example, the trajectory component for an
interplanetary mission to Mars will look different from that of an interplanetary mission to Jupiter. This is because
each mission has a fixed GMAT mission sequence assigned to it. In the future, we plan to have a variety of trajectory
components defined in SMOT to optimize a wide range of missions. The beauty of SMOT is that we can neglect
components we do not wish to use.

A Python run script is how a user will interact with SMOT. Users will decide which type of mission they want to
optimize in the run script. This run script will tell SMOT which specific trajectory component to use and which GMAT
script to read. In the future, we also plan to let the user choose which spacecraft systems components they want to be
included in the optimization. The run script allows the user to set up the initial conditions and modify constraints to
tailor the mission type to their requirements.

As previously stated, there is only one trajectory component in SMOT, a two-finite burn interplanetary mission to
Mars. The mission can either be optimized by itself (e.g., trajectory only) or coupled with the engine component. More
on this mission will be under the results section of this paper. In the future, we also plan to add more spacecraft system
formulations, such as a solar electric propulsion engine model and a power generation model utilizing solar panel design.

E. Scalability of the SMOT Framework
This section discusses how the optimization computation cost scales when the framework is built upon further.

We first discuss how additional design variables and constraints will impact the optimization speed. As mentioned
in Section II.C, we use the finite-difference method to compute all the partial derivatives within OpenMDAO. Using
the finite-difference method causes the computational time to scale linearly with each addition of the design variable.
Therefore, as the framework is built up by adding design variables, the optimization computational time will increase
linearly. To further improve the scalability, we will implement the adjoint method [42–44] to efficiently compute
gradients with a large number of design variables. Note that the finite-difference computational cost is independent of
the number of constraints (or competing objective functions), while the adjoint cost scales linearly with the number of
constraints.

Next is how the optimization scales when more complicated spacecraft systems are added. As mentioned above,
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OpenMDAO allows us to couple any number of components in a flexible way. However, as more subsystems are added to
the framework, we expect the number of design variables will also increase. In addition, computing the system’s output
becomes more expensive because we need to solve/compute more components. Overall, we expect the optimization
computation cost to increase linearly as more components are added.

This last paragraph will address the extension of the proposed framework to discrete optimization. Our current
engine design method uses a continuous design space and may have practical challenges. Specifically, an optimized
engine implies developing and fabricating a unique engine that works best for a specific mission. However, the industry
might not deem the "best engine" because the cost and schedule additions of development and testing of a new engine
potentially outweigh the delivered mass benefits of the customized engine. Instead, implementing discrete optimization,
e.g., having a few distinct engines one could choose between instead of a continuous space of possible engine parameters,
would appeal to industry standards. Even though the discrete optimization space might seem more practical from an
industry perspective, we aimed to show the benefit of a fully coupled optimization for academic purposes. In the future,
we will couple OpenMDAO with genetic algorithms, allowing us to consider more complex missions with discrete
design variables, such as planet fly-by sequences, departure dates, and discrete engine parameters.

III. Results and Discussion
This section demonstrates the CCD optimization results for the interplanetary mission to Mars. Only two finite

burns are allowed for these optimizations, and no fly-bys are being considered. Also, this mission is done with the Sun
being the only gravitational body; forces from Earth and Mars are neglected. Three departure dates are used: May 27Cℎ ,
July 27Cℎ , and September 8Cℎ , 2020. We chose all of these departure dates using a pork chop plot from Conte et al.[45].
The objective is to compare the performance of a CCD trajectory-engine optimization to a trajectory-only optimization
with fixed-engine parameters and a decoupled trajectory-engine optimization.

A. Comparison between CCD and trajectory-only optimizations
We first consider single-point optimization, i.e., optimization for a specific departure date. We compare optimization

results from five different configurations, as shown in Table 3. The first configuration was trajectory-only optimization
and used a fixed engine performance, namely �sp [46]. As will be shown later, the trajectory-only and decoupled
optimization results depend on the choice of engine �sp. To make the optimization relevant to practical cases, we
chose the RL-10A-4-2 engine based on NASA’s MAVEN mission and used its parameters (e.g., throat area, chamber
pressure, and mixture ratio) as initial guesses for all optimization cases. The second configuration was a trajectory
optimization with fixed engine geometry (FEG). It used the geometry specifications of the RL-10A-4-2 engine but
allowed the chamber pressure and mixture ratio to change to achieve the desired thrust. The mixture ratios between the
two burns are the same. The third configuration was similar to the last but allowed different mixture ratios between
the two burns. The last two configurations were CCD optimization that simultaneously changed the trajectory control
parameters (e.g., burn magnitude, burn direction, and time of flight) and engine parameters (e.g., geometry, chamber
pressure, and mixture ratio). The first CCD configuration required the mixture ratio of both burns to equal each other,
while the second CCD configuration (CCD MR) allowed both mixture ratios to vary.

The optimization formulation for the most complicated CCD-MR configuration can be seen in Table 4. The
optimization executes two finite burns: one to leave Earth and the second to rendezvous with Mars. Both burns use a
constant thrust direction determined by the optimizer. The initial position and velocity of the spacecraft are the same as
Earth’s at the departure date. Essentially, the spacecraft is inside Earth at the start of the optimization. This is done to
simplify the optimization, as is done for the development of most pork chop plots.

The optimizations aim to have the spacecraft reach the center of Mars within a 3000 km sphere. To complete
the rendezvous, the spacecraft must have relative velocities within 10 m/s of Mars. We added the forced excess fuel
constraint to ensure some future utility from the spacecraft. Finally, the exit area constraint ensures that both burns
have the same nozzle geometry. The nozzle geometry must be the same because both burns use the same engine. All
optimizations were run using the Sparse Nonlinear OPTimizer (SNOPT) package [47]. On average, the optimization
converged in about 10 minutes on a Dell workstation.

Optimization convergence plots of the May 27Cℎ CCD configuration can be seen in Fig. 4. The optimization
converged in 145 iterations with a significant reduction in the fuel burn (Fig. 4a). The time of flight increased in the
optimized design (Fig. 4b), which corresponds to a decreased Earth and Mars thrust magnitude (Fig. 4c). Along with
the thrust magnitudes, the engine throat area (Fig. 4d) decreased throughout the optimization.

All three departure dates were run using all five configurations, and their results can be seen in Tables 5, 6, and 7.
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Table 3 Description of five optimization configurations

Configuration Description

Trajectory Trajectory-only optimization with fixed engine �sp. It used a fixed RL-10A-4-2 engine performance,
namely �sp, and all other engine performance parameters were neglected.

FEG Trajectory optimization with fixed engine geometry (FEG). It used the geometry specifications of
RL-10A-4-2 but allowed the chamber pressure and mixture ratio to change for the desired thrust.
The mixture ratios between the two burns are the same.

FEG-MR Same as FEG except that we allowed different mixture ratios between the two burns.

CCD Control co-design (CCD) optimization that simultaneously changes the trajectory control parameters
(e.g., burn magnitude, burn direction, and time of flight) and engine parameters (e.g., engine
geometry, chamber pressure, and mixture ratio). The mixture ratios between the two burns are the
same.

CCD-MR Same as CCD except that we allowed different mixture ratios between the two burns.

Table 4 Optimization formulation for the most complicated configuration (control co-design with variable
mixture ratio; CCD-MR).

Function/Variable Description Quantity

Minimize <1 Total fuel burned (kg) 1

w.r.t "Earth
'

Mixture ratio - TMI 1
"Mars
'

Mixture ratio - MOI 1
%Earth
2 Chamber pressure (MPa) - TMI 1
%Mars
2 Chamber pressure (MPa) - MOI 1
�C Throat area (m2) 1

"Earth
4 Exit Mach number - TMI 1

"Mars
4 Exit Mach number - MOI 1

3Earth= Thrust directions - TMI 3
)Earth
1

Burn time (s) - TMI 1
3Mars
= Thrust directions - MOI 3
)Mars
1

Burn time (s) - MOI 1
TOF Time of flight (day) 1
<0 Fuel mass before flight (kg) 1

Total Design Variables 17

Subject to 'mag ≤ 3000 Center of Mars to spacecraft (km) 1
|+x,y,z | ≤ 0.01 Spacecraft relative velocity (km/s) 3
<excess ≥ 200 Forced excess fuel (kg) 1
�Earth
4 = �Mars

4 Earth-Mars exit areas equal 1
Total Constraints 6

The general trend of the data is that the fuel burn reduction increases as we go from left to right columns, as expected.
More design freedom results in better performance, with the CCD-MR optimizations having the best results. The
CCD-MR optimizations obtain 22% to 28% more fuel burn reduction than the trajectory-only optimization with fixed
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Fig. 4 Optimization convergence plots of various variables for the May 27Cℎ CCD configuration.

engine parameters. This reduction arises because the CCD optimizations can fully tailor the engine to the specific
mission, changing the engine’s geometry and weight to maximize �sp.

A direct comparison of this reduction can be seen in Figure 5, which shows how the spacecraft’s wet mass changes
over the trajectory for the trajectory-only and CCD-MR optimizations during the May 27Cℎ departure date. The
trajectory-only optimization starts and ends with a wet mass of 6160 kg and 1010 kg, respectively, while the CCD-MR
optimization starts and ends with 4935 kg and 921 kg, respectively. Note that the trajectory-only optimization starts and
ends with a higher wet mass than the CCD-MR optimization. This is caused by the trajectory-only optimization using a
larger engine, the default RL-10A-4-2, compared with the optimized CCD-MR engine. A larger engine equates to a
heavier dry mass and, in turn, requires larger amounts of fuel to propel the spacecraft.

In addition to a smaller engine, a higher �sp will enable a more efficient mission. Figure 6 shows how the baseline
(RL-10A-4-2) and optimized CCD-MR engines’ �sp will vary depending on the desired thrust. The engines for the May
27Cℎ departure date are shown, but all others follow the same pattern. In coupled optimization cases, the optimizer
maximizes the engine’s �sp for the specific desired thrust and not a range of possible thrusts. By only looking at a specific
thrust, the coupled optimization creates the best engine for a specific mission. This is why the CCD-MR engine has a
larger �sp than the baseline engine at the operating thrusts presented in Table 5. However, even though the optimizer
only considers a single thrust, the CCD-MR engine is still more efficient for a much larger range of desired operating
thrusts than the baseline engine.

One thing to point out is that the FEG single mixture ratio optimization is worse than the trajectory-only optimization.
The reason for this is that the RL-10A-4-2’s engine �sp of 445.7 is at the desired operating thrust of about 100 kN, and
the trajectory-only optimization assumes the engine maintains this �sp at all thrust levels. The FEG single mixture
ratio optimization uses the same engine but manually changes the chamber pressure to achieve the desired thrust. The
RL-10A-4-2 engine is designed for much higher thrust values, so the actual �sp will be less when operating at lower
thrust values, as is shown in the FEG cases. The FEG-MR case does not suffer this problem because the mixture ratio
can also be changed to maximize �sp.

Another thing to point out is that the CCD optimization is only slightly worse than the CCD-MR optimization. Many
design variables between the two are similar, some are even identical such as the Earth’s burn duration, which meets the
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Table 5 Comparison of May 27, 2020 optimization results among five configurations. CCD-MR is 24.8%more
fuel efficient than trajectory-only.

Function/Variable Trajectory FEG FEG-MR CCD CCD-MR

Objective <1 (kg) 5150 5250 4819 4071 4014

Constraints 'mag (km) 3004 3025 3000 2807 2856
|+x,y,z | (km/s) <0.01 <0.01 <0.01 <0.01 <0.01
<excess (kg) 200 200 200 200 200
|�Earth
4 − �Mars

4 | < 10−8 < 10−8 < 10−8 < 10−8 < 10−8

Variables �Earth (N) 51200 38580 36540 31800 31520
�Mars (N) 15730 38580 6974 7644 6399
�sp (s) 445.7 441.8 460.0 477.5 480.6
�4/�C 61 61 61 126.9 153.4

<engine (kg) 206 206 206 118.9 118.6
"Earth
'

NA 5.5 4.066 4.086 4.266
"Mars
'

NA 5.5 3.578 4.086 3.976
%Earth
2 (MPa) NA 1.570 1.501 4.081 5.0
%Mars
2 (MPa) NA 1.570 0.2864 0.9732 1.012
�C (m2) NA 0.013 0.013 0.004018 0.003222
"Earth
4 NA 4.31 4.31 4.945 5.046

"Mars
4 NA 4.31 4.31 4.854 5.009

31
Earth 0.5819 0.5819 0.5820 0.5820 0.5819
32
Earth −0.3229 −0.3223 −0.3228 −0.3207 −0.3221
33
Earth −0.7464 −0.7466 −0.7463 −0.7473 −0.7467

)Earth
1

(s) 370.9 498.1 499.0 500.0 500.0
31
Mars 0.9734 0.9735 0.9734 0.9739 0.9735
32
Mars −0.2288 −0.2280 −0.2287 −0.2258 −0.2279
33
Mars 0.0151 0.0172 0.0151 0.0235 0.0179

)Mars
1

(s) 224.0 91.59 500.0 411.9 490.9
TOF (d) 258.4 258.6 258.4 259.0 258.6
<0 (kg) 5350 5450 5019 4271 4214

optimizer’s upper bound of 500 seconds. There is only one extra design variable in the CCD-MR optimization, i.e., the
varied mixture ratio, and it does not greatly impact the optimization result. One reason for this could be that during the
CCD optimization, the engine already has a great deal of design freedom. The new design variable adds only marginal
extra design freedom, but without it, the current engine design variables of the CCD formulation can still find a similar
solution. Additionally, each optimization was very sensitive to specific design variables, namely the burn directions. If
all other design variables were kept constant, small changes in the burn direction would result in large variations in the
'<06. That is why the burn directions look almost equal between optimization configurations.

Each departure date requires a larger thrust when leaving Earth compared with rendezvousing with Mars. That is
why the chamber pressure for the Earth burn is always larger than the Mars burn. Both burns utilize the same engine
geometry, so larger thrust magnitudes require larger chamber pressures. Engine sizing also depends on the thrust
magnitudes required. The CCD formulations show that the lower the needed thrust, the smaller the throat area and the
larger the expansion ratio. This allows �sp to be maximized efficiently. The July departure date has the lowest thrust
magnitudes and, thus: the lowest engine weight, smallest throat area, highest expansion ratio, and largest �sp value.
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Table 6 Comparison of July 27, 2020 optimization results among five configurations. CCD-MR is 27.8%more
fuel efficient than trajectory-only.

Function/Variable Trajectory FEG FEG MR CCD CCD-MR

Objective <1 (kg) 3258 3348 3076 2474 2462

Constraints 'mag (km) 3200 3234 3120 3000 2940
|+x,y,z | (km/s) <0.01 <0.01 <0.01 <0.01 <0.01
<excess (kg) 200 200 200 200 200
|�Earth
4 − �Mars

4 | < 10−8 < 10−8 < 10−8 < 10−8 < 10−8

Variables �Earth (N) 29860 23040 21750 17500 17450
�Mars (N) 15180 23040 38390 7014 7320
�sp (s) 445.7 439.4 459.6 487.3 488.6
�4/�C 61 61 61 212.9 237.1

<engine (kg) 206 206 206 100.2 100.1
"Earth
'

NA 5.5 3.859 4.211 4.298
"Mars
'

NA 5.5 4.014 4.211 4.118
%Earth
2 (MPa) NA 0.9374 0.8942 4.562 5.0
%Mars
2 (MPa) NA 0.9374 1.578 1.819 2.095
�C (m2) NA 0.013 0.013 0.001932 0.001752
"Earth
4 NA 4.31 4.31 5.280 5.339

"Mars
4 NA 4.31 4.31 5.215 5.323

31
Earth 0.9242 0.9251 0.9250 0.9250 0.9250
32
Earth 0.3079 0.3046 0.3051 0.3050 0.3051
33
Earth 0.2259 0.2266 0.2265 0.2265 0.2265

)Earth
1

(s) 358.9 472.3 476.9 500.0 500.0
31
Mars 0.7778 0.7760 0.7762 0.7762 0.7782
32
Mars 0.4725 0.4692 0.4697 0.4697 0.4657
33
Mars −0.4144 −0.4215 −0.4206 −0.4205 −0.4213

)Mars
1

(s) 232.4 154.1 91.15 438.4 419.7
TOF (d) 205.2 204.7 204.8 204.8 204.8
<0 (kg) 3458 3548 3276 2674 2662

While the September departure date has the largest thrust magnitudes and, thus: the highest engine weight, largest throat
area, smallest expansion ratio, and smallest �sp value. From the data, it is clear that the July departure date is the best
day to launch.

The comparison of spacecraft trajectory between the initial conditions and CCD optimizations for the May 27Cℎ case
is shown in Figure 7. All optimization cases follow a similar trend, so only one is shown here. The initial conditions are
feasible trajectories computed using GMAT, and the same initial conditions are used for each optimization framework
within a departure date.The purpose of the reference initial conditions is to allow accurate comparisons between methods.
Therefore, we did not include the initial conditions in Tables 5 to 7. For each departure date, the main difference that
can be seen is the increase in flight time. This increase in TOF is one way the optimizer decreases the fuel burned.
While all optimizations within the same departure date have different solutions, the variations cannot fully be seen in the
plots due to the magnitude of the distances. The plots were plotted in Sun ecliptic X-Y coordinates because the orbital
inclination change between Earth and Mars is minimal.

As mentioned above, we use the finite-burn propagation method to compute the spacecraft trajectory instead of the
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Table 7 Comparison of September 8, 2020 optimization results among five configurations. CCD-MR is 21.8%
more fuel efficient than trajectory-only.

Function/Variable Trajectory FEG FEG MR CCD CCD-MR

Objective <1 (kg) 7103 7192 6626 5739 5705

Constraints 'mag (km) 3000 3024 3003 2439 3000
|+x,y,z | (km/s) <0.01 <0.01 <0.01 <0.01 <0.01
<excess (kg) 200 200 200 200 200
|�Earth
4 − �Mars

4 | < 10−8 < 10−8 < 10−8 < 10−8 < 10−8

Variables �Earth (N) 55240 55980 53880 45630 45450
�Mars (N) 13200 55980 56210 9083 7670
�sp (s) 445.7 443.4 459.0 473.9 475.3
�4/�C 61 61 61 112.1 112.5

<engine (kg) 206 206 206 137.1 136.9
"Earth
'

NA 5.5 3.995 4.137 4.232
"Mars
'

NA 5.5 4.005 4.137 3.892
%Earth
2 (MPa) NA 2.279 2.220 4.715 5.0
%Mars
2 (MPa) NA 2.279 2.316 0.9302 0.8413
�C (m2) NA 0.013 0.013 0.005025 0.004701
"Earth
4 NA 4.31 4.31 4.856 4.841

"Mars
4 NA 4.31 4.31 4.761 4.808

31
Earth 0.5331 0.5330 0.5321 0.5338 0.5338
32
Earth 0.2554 0.2553 0.2531 0.2571 0.2571
33
Earth 0.8066 0.8067 0.8080 0.8056 0.8056

)Earth
1

(s) 486.0 483.4 476.7 500.0 500
31
Mars 0.8055 0.8059 0.8087 0.8033 0.8034
32
Mars 0.3367 0.3364 0.3349 0.3378 0.3378
33
Mars 0.4877 0.4871 0.4836 0.4905 0.4903

)Mars
1

(s) 319.0 75.34 73.93 422.9 500
TOF (d) 242.2 242.1 241.4 242.7 242.6
<0 (kg) 7303 7392 6826 5939 5905

impulsive burn method with a Lambert solver. We expect that these two methods will compute similar trajectories for
our case. To verify this point, we use the optimized design from the CCD-MR case as the benchmark and compute
its trajectory using the finite-burn and impulsive-burn methods. The fuel burns computed from these two methods
are summarized in Table. 8. We used the universal variable algorithm to solve the Lambert problem. The change in
fuel mass for the Lambert approach was calculated using the rocket equation with the �sp given from the CCD-MR
optimization case. The fuel burns computed from these two methods are similar for all the departure dates, indicating
that they compute similar trajectories for our case.

B. Comparison between CCD and trajectory-engine decoupled optimizations
To further quantify the benefit of coupled optimization, we compare the performance between the CCD and

trajectory-engine decoupled optimizations in this subsection. The decoupled configuration ran the trajectory and
engine optimizations separately. To be more specific, we first ran the trajectory-only optimization with one of the
three departure dates. These trajectory-only optimizations are the same as presented in Tables 5, 6, and 7. The
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Table 8 Fuel burn (kg) comparison between the finite-burn (propagation) and impulsive-burn (Lambert)
trajectory computation methods for each departure date.

Trajectory computation method May Jul. Sep.
Finite burn (propagation) 4014 2462 5705
Impulsive burn (Lambert) 4029 2473 5700

trajectory-only optimization then outputted the required thrust magnitudes to the engine-only optimization. The
engine-only optimization formulation can be seen in Table 9. The objective function is the average �sp between two
burns. The design variables are the engine parameters, such as chamber pressures, throat area, and mixture ratios.
In terms of constraints, the thrust magnitudes are fixed to the values computed from the trajectory-only cases. We
also require the exit areas to be equal between the Earth and Mars burns. The decoupled configuration ran the above
trajectory-only and engine-only optimizations only once; there is no iteration between them.

The total fuel burn of the engine optimization was calculated using the mass flow rate for each burn using Eq. 11.
The mass flow rate (see Eq. 1) was an intermediate value found during the engine optimization. The mass flow rate was
then multiplied by the respective burn time, which was found during the trajectory-only optimization. Note that the burn
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(right column) for the May 27Cℎ case.

Table 9 Engine-only optimization formulation. Wemaximize �sp while fixing the thrust magnitudes (computed
by the trajectory-only optimization).

Function/Variable Description Quantity

Maximize �sp Average Specific Impulse (s) 1

w.r.t "Earth
'

Mixture ratio - TMI 1
"Mars
'

Mixture ratio - MOI 1
%Earth
2 Chamber pressure (MPa) - TMI 1
%Mars
2 Chamber pressure (MPa) - MOI 1
�C Throat area (m2) 1

"Earth
4 Exit Mach number - TMI 1

"Mars
4 Exit Mach number - MOI 1

Total Design Variables 7

Subject to �Earth = �
trajectory
Earth Thrust magnitude (N) - TMI 1

�Mars = �
trajectory
Mars Thrust magnitude (N) - MOI 1

�Earth
4 = �Mars

4 TMI-MOI exit areas equal 1
Total Constraints 3

Table 10 Comparison between the trajectory-and-engine decoupled and CCD optimization results. The CCD
configuration outperforms the decoupled one.

Date Decoupled (kg) CCD-MR (kg) Percent difference

May 27Cℎ 4855 4014 19.0
July 27Cℎ 3020 2462 20.4

September 8Cℎ 6715 5705 16.3
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Table 11 Engine-only optimization results for the three departure dates.

Function/Variable May 27Cℎ July 27Cℎ September 8Cℎ

Objective �sp (s) 473.1 481.0 472.0

Constraints �Earth (N) 51200 29860 55240
�Mars (N) 15730 15180 13200

|�Earth
4 − �Mars

4 | < 10−8 < 10−8 < 10−8

Variables "Earth
'

4.225 4.267 4.219
"Mars
'

3.986 4.114 3.941
%Earth
2 (MPa) 5.0 5.0 5.0
%Mars
2 (MPa) 1.534 2.540 1.192
�C (m2) 0.005318 0.003046 0.005752
"Earth
4 4.787 5.057 4.745

"Mars
4 4.770 5.049 4.727

<0 (kg) 5055 3230 6915
�4/�C 103.6 156.0 98.0
¤<Earth (kg/s) 11.05 6.334 11.95
¤<Mars (kg/s) 3.385 3.215 2.846

times were fixed in the engine-only optimization.

<1 (:6) = ¤<Earth)
Earth
1 + ¤<Mars)

Mars
1 (11)

The results of the decoupled optimizations can be seen in Table 10. The decoupled optimization results are better
than the FEG case but slightly worse than the FEG-MR results previously shown for each date (see Tables 5, 6, and 7).
Even though the FEG-MR case is not a full engine optimization, the coupling of the two components is more valuable
than running the trajectory- and engine-only optimizations separately. As for the FEG cases, only the chamber pressures
can be changed in the optimization, and more coupling is needed to overcome the two decoupled optimizations. Both
CCD optimizations are far superior compared with decoupled optimizations. The final CCD-MR results are also shown
in the table for comparison. The CCD-MR configuration is fully coupled and clearly benefits from the decoupled
optimizations. Between the three dates, there is a fuel reduction between 16% to 20% by coupling the optimization
using the CCD approach.

The main goal of this paper is to quantify the benefit of coupling the spacecraft trajectory control and onboard
system design within the same optimization (i.e., CCD), and the results from Table 10 do this best. Before, the CCD
optimizations were compared to a trajectory-only optimization that completely neglected the engine’s design. The
separate optimizations give a direct comparison because the design variables and constraints are the same between the
CCD-MR and decoupled optimizations. The only difference is that the CCD configuration considers both trajectory
and engine in the optimization, which leads to a clear benefit. In the decoupled optimization, the trajectory-only
configuration did not know the required thrusts and engine size before the optimization started and had to use an
oversized engine (RL-10A-4-2) with a relatively low �sp. Although the engine parameters were then optimized in the
engine-only configuration, the required thrusts and the corresponding engine fuel burns were much higher than the ones
optimized by the CCD configuration. This is the main reason that the CCD configuration outperforms the decoupled one.
To improve the performance of decoupled configuration, one could start the trajectory-only optimization by choosing
a proper engine size with intuition or previous design experience. Alternatively, one would need to manually iterate
between the trajectory- and engine-only optimizations. Both options are much more time-consuming than the automated
CCD configuration.
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Table 12 Control co-design multi-point optimization formulation.

Function/Variable Description Quantity

Minimize (<May
1
+ <Jul

1
+ <Sep

1
)/3 Averaged fuel burned (kg) for the 1

May, Jul, & Sep simulations

w.r.t. "Earth
'

Mixture ratio - TMI 3
"Mars
'

Mixture ratio - MOI 3
%Earth
2 Chamber pressure (MPa) - TMI 3
%Mars
2 Chamber pressure (MPa) - MOI 3
�C Throat area (m2) 1

"Earth
4 Exit Mach number - TMI 3

"Mars
4 Exit Mach number - MOI 3

3Earth= Thrust directions - TMI 9
)Earth
1

Burn time (s) - TMI 3
3Mars
= Thrust directions - MOI 9
)Mars
1

Burn time (s) - MOI 3
TOF Time of flight (day) 3
<0 Fuel mass before flight (kg) 3

Total Design Variables 49

Subject to 'mag ≤ 3000 Center of Mars to spacecraft (km) 3
|+x,y,z | ≤ 0.01 Spacecraft relative velocity (km/s) 9
<excess ≥ 200 Forced excess fuel (kg) 3
�Earth
4 = �Mars

4 TMI-MOI exit areas equal 3
�Earth
4 (May) = �Earth

4 (Jul) May-Jul exit areas equal 1
�Earth
4 (May) = �Earth

4 (Sep) May-Sep exit areas equal 1
Total Constraints 20

C. Control co-Design Multi-point Optimization
Each engine was optimized for a specific departure date in the previous optimizations. The optimized engine works

well for the one departure date but may perform poorly for other dates. To alleviate this issue, we perform a multi-point
optimization that combines the performance for all three departure dates. The goal is to create an engine that works well
for various conditions.

The CCD multi-point optimization configuration is summarized in Table 12. There are many ways to formulate the
multi-point optimization problem. We can use the average fuel burn from the May, July, and September flights as the
objective function, letting the optimizer simultaneously minimize the fuel burn for all three departure dates. We can
also use the maximal fuel burn among the three departure dates as the objective function, focusing on minimizing the
maximal fuel burn and accommodating all possible departure dates. Note that the fuel burns from the three departure
dates are significantly different, and September always has the largest fuel burn. Therefore, using the second option
is equivalent to the single-point optimization (September). For this reason, we use the first option in this study. The
design variables in Table 12 are similar to the CCD-MR configuration used in the single-point optimization cases (see
Table 4), but each departure date now has its own set of design variables, e.g., mixtures ratios and chamber pressures. In
other words, the design variables for the May case are independent of the ones for the July case. The exception is the
engine throat area. All three departure dates share the same throat area because they will use the same engine geometry
parameters. Like the design variables, all three departure dates must satisfy their constraints. To ensure that the exit
areas are the same, we impose two additional exit area constraints to link the exit area between the May, July, and
September cases. In addition, we use the engine mass computed from the September case’s Earth burn as the engine
mass for all three departure dates. We do this because the engine mass computed by the above burn is the largest. In
total, we have 49 design variables and 20 constraints.
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Table 13 Control co-design multi-point optimization results. The multi-point optimization creates an engine
that balances the performance for the three departure dates.

Function/Variable May July September

Objective <1 (kg) 4190 2692 5707

Constraints 'mag (km) 3009 2873 3047
|+x,y,z | (km/s) <0.01 <0.01 <0.01
<excess (kg) 200.0 200.0 200.0
|�Earth
4 − �Mars

4 | < 10−8 < 10−8 < 10−8

Variables �Earth (N) 35610 26602 45450
�Mars (N) 12071 9518 9563
�sp (s) 475.2 475.4 475.1
�4/�C 113.8 113.8 113.8

<engine (kg) 136.9 136.9 136.9
"Earth
'

4.186 4.109 4.268
"Mars
'

3.972 3.931 3.932
%Earth
2 (MPa) 3.919 2.927 5.000
%Mars
2 (MPa) 1.326 1.045 1.050
�C (m2) 0.004698 0.004698 0.004698
"Earth
4 4.844 4.844 4.841

"Mars
4 4.827 4.821 4.821

31
Earth 0.5819 0.9242 0.5346
32
Earth −0.3243 0.3081 0.2591
33
Earth −0.7458 0.2258 0.8044

)Earth
1

(s) 457.8 350.8 500.0
31
Mars 0.9730 0.7779 0.8007
32
Mars −0.2308 0.4727 0.3393
33
Mars 0.0093 −0.4139 0.4937

)Mars
1

(s) 266.4 338.1 401.9
TOF (d) 258.0 205.2 243.3
<0 (kg) 4390 2892 5907

The CCD multi-point optimization results are shown in Table 13. As expected, the results from the multi-point case
are worse than the CCD-MR single-point optimizations for each date (please refer to the single-point fuel burn data in
Tables 5, 6, and 7). Even though the results are worse when looking at a specific date, the overall engine performance is
better. To justify this point, we perform one last optimization to evaluate the benefit of running multi-point optimization.
As previously mentioned, the engine design for one departure date may perform poorly for another. This new verification
optimization answers the problem by using the engine geometry optimized by one departure date and using it in the
optimization of another date. For example, Table 5 shows the optimized engine throat area (�C ) and exit Mach numbers
("Planet

4 ) for the May CCD-MR optimization. These three values were then fixed and used in a CCD optimization for
the July and September departure dates. All other optimization setups are the same as the single-point optimization. We
repeated the above for all departure date engine parameters.

The results from the multi-point verification optimizations can be seen in Table 14. The diagonal entries in the
table are the CCD-MR fuel burns for the respective date. These entries are the most efficient because the engine was
optimized specifically for that date. As previously discussed, every other entry used a fixed engine geometry from
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Table 14 Multi-point verification optimization results for various engine designs. The single-point optimization
engine designs may be infeasible for other departure dates.

Engine Design Used in May 27Cℎ Used in July 27Cℎ Used in September 8Cℎ

May 27Cℎ 4014 2588 NA
July 27Cℎ NA 2462 NA

September 8Cℎ 4208 2702 5734

another departure date. The main thing to point out is the NA terms in the table. These optimizations gave unfeasible
solutions due to design variable limits being violated. The design variables being violated were the upper limit of the
chamber pressures, namely %Earth

2 because the first burn in all optimizations tended to be larger than the second (%Mars
2 ),

requiring a higher chamber pressure. The upper limit of the chamber pressure was 5 (MPa) for each optimization. This
value was chosen based on the design of the RL-10A-4-2 and other similar engines.

These high chamber pressures arise from the engine sizing. For example, only the September engine design was
feasible using the September departure date. This is because the September departure date requires the largest thrust
values out of any of the departure dates, and thus the single-point CCD-MR case created a relatively large engine. On
the other end, the July departure date requires the smallest thrust values; thus, the single-point CCD-MR case created
a relatively small engine. In order for the July engine to produce the thrust magnitudes required by the September
departure date, the chamber pressures must be larger than allowed.

In essence, the single-point optimization made engines big enough for the specific date at hand and no bigger
without violating design variable limits. That is why the September departure date could not use the smaller July or
May optimized engines. The May departure date could use the bigger September engine but not the smaller July engine.
Lastly, the July departure date could use every engine because the May and September engines were bigger than needed.
These results show the need for multi-point optimization. Not only did some single-point optimized engines perform
poorly for other dates, but some did not work at all. The multi-point optimization instead uses all three cases to balance
the engine performance.

IV. Conclusion
This paper presents a control co-design (CCD) framework that simultaneously optimizes the spacecraft trajectory

control and system design parameters for interplanetary missions. The CCD framework consists of an open-loop control
component (interplanetary trajectory computation based on GMAT) and a physical system component (a rocket engine
model). We then use OpenMDAO to couple the control and physical components for CCD optimization. The rocket
engine component uses engine parameters, such as mixture ratio, chamber pressure, and throat area, as the inputs and
computes the outputs, such as thrust and �sp. These outputs are passed to the trajectory control component for the
coupled optimization.

To quantify the benefit of the coupled optimization framework, we compare the results among trajectory-only,
fixed engine geometry, decoupled, and CCD-coupled optimizations. We find that the coupled engine and trajectory
(CCD) optimizations exhibit 22% to 28% more fuel burn reduction than the trajectory-only optimization with fixed
engine parameters. We also observe that the CCD optimizations obtain 16% to 20% more fuel burn reduction than the
traditional decoupled trajectory-engine optimizations. A multi-point optimization was also run to solve the potential
drawbacks of single-point optimizations by creating an engine that balances the performance for multiple departure
dates. Our results suggest that simultaneously optimizing the spacecraft engine and trajectory (CCD) has extra benefits,
compared with fixed-engine and decoupled optimizations. This is because the CCD optimization can automatically find
the best engine (minimal weight and maximal �sp) tailored for the trajectory; no need to manually run trajectory and
engine optimization multiple times.

In the future, we will further improve the CCD framework by including more spacecraft onboard systems. In
addition, we will incorporate a global optimization algorithm into the CCD framework. This new feature will allow us
to use discrete design variables (e.g., departure dates, fly-bys, and deep space maneuvers) and have a better chance of
finding the global optimal solution.
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