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Thermal radiation emission poses a challenge for using most existing ceramics for thermal environmental
barrier coatings of gas-turbine engines operating at temperatures approaching 1500 °C and beyond. This
study presents a strategy for photon transport mitigation in fully dense ceramic composites by increasing the
refractive index mismatch between the matrix and particle oxides. We investigate this strategy by analyzing
radiative properties in 118 different rare-earth pyrosilicate-pyrochlore ceramic composites. We use density
functional theory to predict the optical properties of homogeneous oxides and Lorentz—Mie theory to model
scattering at the interfaces of the composite. Our findings demonstrate that increasing the refractive mismatch
between the matrix and oxide phases can significantly reduce radiative heat flux. Furthermore, we show
that additional thermal radiation suppression can be achieved by increasing the particle size. Our theoretical
investigation has the potential to aid in the discovery of new coating ceramic composites and guide their

microstructural design.

1. Introduction

Gas-turbine (GT) engines with ceramic-matrix composite (CMC) hot
section components are expected to operate at gas-inlet temperatures
approaching 1700 °C [1-4]. At temperatures above 1700 °C, ceramics
start to emit thermal radiation in the visible and near-infrared regions
of the electromagnetic spectrum. However, the current coating mate-
rials are partially transparent to visible and near infrared radiation at
these temperatures. This makes the radiative heat flux (which scales
with T*#) the major bottleneck for their use, even though they have
low thermal conductivities [1,5-14]. The push for increased operating
temperatures has limited the choice of current materials of use for
thermal barrier coatings to a few high-temperature ceramics [3,15].
There is a clear need to identify and optimize coating materials that
can reduce radiative heat fluxes. In general, radiative heat transfer
was not considered explicitly in many of the heat transfer studies in
thermal barrier coatings (TBCs). More recent studies have analyzed
heat transfer in ceramic coatings considering the radiative flux [16-22],
knowing that the operation temperature of next-generation coatings are
expected to approach 1500 °C and above.

For porous coating materials, like porous zirconia and alumina
produced by plasma-spraying technology, radiation scattering tends to
dominate over absorption [17]. Generally, the effect of pores in phonon
and photon scattering is significant and has been well studied [2,18,23—
31]. Thereby, tailoring porosity, both in magnitude and distribution, is
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the main strategy for radiation and conduction mitigation for porous
coatings. Flamant and Clark have recently outlined some guidelines
for radiative heat mitigation in ceramic coatings through a combi-
nation of atomic level doping and scattering [32]. Another group of
coating materials that has recently attracted interest are fully dense
ceramics for multifunctional thermal environmental barrier coatings
(TEBCs) [20,21,33,34]. In the absence of porosities to scatter photons
in fully dense ceramics, alternative strategies for photon scattering
have been investigated [20,21]. For example, J. Yang et al. found that
addition of LaPO, as a second phase in the La,Zr,O, matrix led to
a percolating interconnected network inside the material, resulting in
a remarkable reduction of infrared radiation [20]. In a more recent
study, H. Aziz et al. observed high-temperature photon suppression in a
ceramic composite consisting of 8 wt% yttria-stabilized zirconia (8YSZ,
matrix) and corundum (second component) due to a smaller refractive
index of the second phase for a controlled particle size [35].
Experimental measurements of radiative properties and thermal
radiation can be challenging and time consuming due to difficulties
in accurate temperature control, isolating the radiation from back-
ground radiation, and measurement accuracy. Due to these difficulties,
studies that explicitly report the radiative heat transfer and measure
radiative properties are few. These difficulties pose a barrier for a high-
throughput investigation of new ceramics with enhanced heat radiation
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mitigation. In this study, we perform a high-throughput ab initio inves-
tigation of the explicit radiative properties of rare-earth pyrosilicate—
pyrochlore composite ceramics. Rare-earth pyrosilicate ceramics have
shown promise as a new class of coating materials for thermal envi-
ronmental barrier coatings on CMCs [33,34,36]. We investigate photon
transport (or radiation) in fully dense ceramics, examining it at both
the fundamental level of electronic excitations (using density functional
theory) and the microstructural level (using Lorentz-Mie theory). Our
results show that thermal radiation is mitigated by increasing the opti-
cal mismatch between phases in multi-phase ceramic composites. Our
results also indicate that additional thermal radiation suppression can
be achieved by increasing the particle size, noting that our theoretical
analysis is limited by an upper bound for the particle size and density —
a 1 pm particle size per cubic micron of matrix — where the independent
scatter assumption is valid . Our results provide guidance for the design
of radiative heat transfer in TEBCs and lay the foundation for further
studies on radiative heat transfer in these materials.

This study consists of three main parts: (1) First-principles cal-
culations of optical properties of homogeneous media of rare earth
pyrochlores (A,B,0,) and pyrosilicates (A,Si;O0,). Based on ab initio
electronic structure calculations, we predict the spectral distribution of
the optical properties (absorption, reflectivity, and refraction index) for
several rare-earth (RE) pyrochlores and pyrosilicates, and we identify
ceramics with large attenuation coefficients. The effect of different RE
elements on the attenuation coefficient is shown. These results provide
new insights into combination of rare-earth elements that can widen the
absorption in the visible and infrared spectrum. (2) We study several
ZrO, and HfO, based pyrochlore oxides for the second phase in ceramic
composites with RE pyrosilicate matrices. We show that by contrasting
the refractive indices of the matrix ceramic and the second-phase
oxide, enhanced radiation scattering is achieved, rendering the ceramic
composite opaque. Accordingly, optimized two-phase microstructures
for large internal reflections (or scattering) are identified. The relative
refraction index between various pairs of oxide phases is predicted from
ab initio while the radiative reflections for the composite is analyti-
cally modeled using the Lorentz—Mie theory. We predict the effective
radiation conductivity using the diffusion approximation of radiation.
These methods are detailed in Section 2. (3) We investigate radiation
scattering in different composites of different particle sizes. We modify
the size of embedded particles in different composites and use Mie
theory predictions to study the change in scattering and attenuation
characteristics within the composite. We predict the effective radiation
conductivity for different sizes of particles in the composites.

Our ab initio calculations show that significant thermal radiation
resistance is achieved in two-phase ceramic composites by both in-
creasing radiation scattering in individual phases and by enhancing
internal radiation reflection at the two-phase interfaces. The funda-
mental insights and predictions from our theoretical studies will be
instrumental in discovery of new coating ceramic composites and guid-
ing their experimental design. Considering the huge design space for
novel ceramics, this study presents a systematic approach to identify
entirely new optically thick ceramics with enhanced thermal radiation
trapping.

2. Methods
2.1. First-principles calculations of optical properties

The intrinsic optical properties of homogeneous oxides are derived
from the fundamental dielectric function. The dielectric function is
the linear electronic response function, which describes the electron
displacement generated by an incident electric field. The spectral di-
electric function is obtained through electronic structure calculations
within density functional theory (DFT) [37], as detailed below. The
dielectric function, denoted as &(v) = ¢,(v) +i¢;(v), is a unitless complex
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function with real and imaginary parts, represented by ¢, and ¢;, respec-
tively. It depends on the radiation frequency (or wavelength), denoted
by v (or A). The dielectric function is directly related to the spectral
optical properties of individual (homogeneous) oxides, including the
complex refractive index denoted as i = n — ik, through the Maxwell
equations:

e Ve, + €] o V—€. + €|
V2 V2

Here, n and « are the real and imaginary parts of the complex refractive

index, respectively, and |é| depicts the magnitude of the complex

dielectric function. The absorption of the electromagnetic wave (or
radiation) is obtained from the imaginary part of the complex refractive

(€8]

>

index according to a = 4LK The absorption coefficient has a unit of
inverse length. The reflectivity R describes the interaction of radiation
wave with the oxide boundary, which is related to the components of
the complex refractive index by Snell’s law. The reflectivity of the oxide
(n—1)* + k2

The DFT calculation of the dielectric function, €, is performed
using the Vienna Ab-initio Simulation Package (VASP) [38-40]. We
employ the projector-augmented-wave (PAW) method [41,42] and the
generalized gradient approximation (GGA) with the Perdew-Burke-
Ernzerhof (PBE) exchange—correlation [43]. A self-consistent ground-
state electronic structure calculation is performed, followed by the
dielectric function calculation. To calculate the spectral dielectric func-
tion, we employ the independent-particle approximation as imple-
mented in VASP [44]. The energy threshold is set to 5 x 1075 eV
per atom for the electronic self-consistent loop. The energy cutoff is
set to 520 eV. The k-point density is set to 100 and 400 per inverse
V3 of reciprocal cell for the ground-state and dielectric calculations,
respectively. All calculations include spin polarization of electrons but
spin—orbit coupling is not considered.

Rare earth pyrochlores have the cubic Fd3m space group (number
227) with the reduced formula of (RE),(Hf,Zr),0,. The generated
pyrochlores have a 22-atom supercell with a full formula of A;B;014.
The A site contains a rare-earth element where the B site is occupied
by either Hf or Zr. Rare earth pyrosilicates have the monoclinic crystal
structure with the reduced formula of (RE),(Si),0,. The pyrosilicates
in this study have space groups P2,/c, C2/m, or P2,/m with corre-
sponding supercell sizes of 22 (or 44), 11, and 22 atoms, respectively.
Supplemental Table S1 provides comprehensive information on the
supercell configurations of rare-earth pyrochlores and pyrosilicates
examined in this study.

The dielectric function arises from potential excitations within a
solid material when subjected to an external electric field. These po-
tential excitations manifest differently based on the energy range of
the incident radiation. Notably, visible light and near-infrared radiation
are situated within the lower-energy segment of the spectral range
(hv < 3 eV). In the lower range, excitations such as magnetic inter-
actions, lattice vibrations, free carrier absorption, and polarization of
valence electrons significantly shape the dielectric function [45]. In
contrast, in the higher energy spectrum (where Av > 5 eV), the primary
excitations shift to include excitons, absorption across the band gap,
inter-band transitions, transitions to higher bands, and transitions from
core levels. Our focus here is on investigating the optical properties
of ceramic oxides within the visible and near-infrared range. Conse-
quently, inter-band transitions and excitons across the band gap have
reduced significance. Therefore, the level of DFT theory employed in
this study adequately accounts for the predominant excitations within
the visible light and near-infrared energy range.

To demonstrate the reliability of the DFT level used in this study,
Supplemental Figure S1 compares the calculated spectral dielectric
function for Er,Si,0,, Ho,Zr,0,, and Dy,Hf,0, with higher-level DFT
calculations that include spin-orbit coupling or the random phase
approximation (RPA) [46,47]. For this comparison, a 4 x 4 x 4 k-point

in vacuum is calculated as R = and is unitless.
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mesh is used to reduce the computational cost. As shown in Supplemen-
tal Figure S1, the IPA demonstrates reasonable accuracy in predicting
the dielectric function and resulting optical properties, particularly
within the visible light and near-infrared radiation range (hv < 3 eV) —
a range pertinent to thermal coating applications targeted in this study.
We should note that the accuracy of DFT calculations can be furthered
increased, albeit with a higher computational cost, by utilizing hybrid
functionals [48] instead of the generalized gradient approximations
(GGA) functionals [49]. Considering the high-throughput nature of
this study, we choose the less computation-intensive, yet reasonably
accurate GGA functionals with IPA for the DFT calculation of the
dielectric function.

2.2. Lorentz—mie model for radiation scattering in ceramic composites

To study radiation in two-phase oxide composites, the effect of
microstructure heterogeneities, including surfaces and interphase in-
terfaces, must be included. Specifically, internal radiative reflections
at two-phase interfaces (i.e., scattering) can become significant and
render the composite more opaque compared to homogeneous oxides.
We investigate the effect of an increased refractive index mismatch
between the matrix and particle oxides on radiation scattering in the
ceramic composite. We employ the Lorenz-Mie theory (LMT) [50,51],
as implemented in the miepython package [52], to predict radiation
scattering at the interphase interfaces of the matrix and particle ox-
ides. LMT provides an analytical solution of the electromagnetic-wave
interaction (or scattering) with spherical particles, i.e., it is assumed
that the second phase particles are spherical with specular surfaces.
Additionally, LMT assumes that the scattering medium (or the matrix
oxide in this case) is isotropic and its refractive index remains constant
throughout the scattering process and across the medium. Here, we
study fully dense ceramic composites with no porosity. Thereby, the
scattering medium is the matrix oxide phase and the second-phase
spherical oxide particles are embedded within the matrix oxide. The
LMT solutions give us the so-called spectral absorption and scattering
cross sections, C, and C;, which refer to an effective particle area (with
units of area) that removes the electromagnetic wave energy from the
path of the incident radiation. The unit-less efficiency factors, Q, or Q;,
are obtained by dividing the absorption and scattering cross sections
with the actual geometric cross section of the particle (see Eq. 15.32 in
Ref. [51]).

To make the predictions of scattering behavior of the composite
oxide valid within the Lorentz-Mie theory, the particles should be
single scatterers, where the scattered light is assumed to undergo only
one scattering event. Therefore, the arrangement of particle oxides
within the matrix oxide is assumed to be monodispersed with a large
enough distance between particles. For spherical particles, scattering is
found to be independent if the following criterion is met, ¢+0.1D > %Am
(see Eq. 15.57 of Ref. [51]). Here, ¢ is the clearance distance between
particles, D is the particle diameter, and 4,, is the wavelength in the
medium (= 1/nyedium)-

For a cloud of monodispersed oxide particles embedded into the
matrix oxide, the spectral absorption and scattering coefficients ¢, , and
0, are calculated from the efficiency factors by

2 2
O‘A,a = NQA,a”DT ) GA,S = NQA,S”DT (2)
where D is the particle diameter and N denotes the number of particles
per unit volume, expressed in units of reciprocal volume. The attenu-
ation of radiation due to absorption and scattering can be effectively
described by the extinction or attenuation coefficient, §;, = 6, , + 0,
which sums the absorption and scattering coefficients. These coeffi-
cients have units of reciprocal length. f, can be interpreted as the
inverse of the mean penetration distance of radiation or the so-called
mean free path of radiation /;, = 1/8,. To satisfy the independent (or
single) scatterer assumption, we adopt a sufficiently small N value for
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the mean distance between the particles to be larger than the incident
wave length in the visible and near-infrared range. Accordingly, we
study a ceramic composite that contains one particle of diameter D per
cubic micron of the matrix oxide (i.e., N =1 pm™).

In addition to the absorption and scattering coefficients, we obtain
the scattering phase function, @, which gives the probability that an
incident light on a particle at a given direction being scattered into
another direction. The scattering angle is a solid angle of unit steradian
and is defined as the angle between the incident and scattered direc-
tions. For the study of composites, we assume that azimuthal symmetry
exists; therefore the phase function is expressed only in terms of the
polar angle @(6).

2.3. Diffusion method for thermal radiation

Radiation of heat is viewed as the propagation of quanta of elec-
tromagnetic waves or photons in the matter [53,54]. Photons interact
with absorbents and scatterers, e.g., particles, molecules, impurities,
voids, or any inhomogeneities, in the form of absorption, re-emission,
and multiple internal reflections (a.k.a. scattering) from internal bound-
aries, interfaces, and surfaces. The net effect of these absorptions
and scatterings is radiation resistance or radiation intensity reduction
within the ceramic [54]. The concept of mean free path for both
phonons and photons has been employed to conveniently quantify
thermal conduction and radiation in ceramics [53,54]. By analogy with
the kinetic theory of gases, phonon thermal conductivity in ceramics
is given by the general equation of k, = %C 410,18 where C; is the heat
capacity, v, is the phonon velocity and l’; is the phonon mean free path.
A similar analogy between the kinetic theory of heat conduction and
photon radiation can also be derived, which is outlined below.

In coating applications, ceramics are usually assumed to be optically
thick or opaque, where radiation only travels a short distance before
being scattered or absorbed. In other words, it is assumed that the mean
free path of photons is relatively small. For such optically thick media,
radiative transfer is similar to heat conduction with a temperature-
dependent thermal conductivity and can be readily combined with heat
conduction. This is called the diffusion approximation for radiation,
under which the complex integral form of radiative transfer equation
(RTE) is transformed into a diffusion-like relation (see Eq. 12.30 of
Ref. [51]), where the total radiative flux g, is given by

4,(x) = —[%%Tﬁj—z =& ©)
where o, is the Stefan-Boltzmann constant, g, is the mean radiation
attenuation coefficient, and the term in the bracket is the effective
radiation conductivity, k,, in the diffusion approximation for radiation.
The main assumptions in the diffusion approximation for radiation are
isotropic scattering, or isotropic radiation intensity in general, and sim-
plifying the 3D nature of heat radiation to unidirectional transport. Ad-
ditionally, heat radiation in ceramic coatings is described by averaging
the wavelength or spectral dependence of absorption, scattering, and
attenuation coefficients, i.e., using average wavelength-independent o,
and o,, and g [51]. We use the local Rosseland mean attenuation
coefficient, f,, as the average radiation attenuation coefficient, defined
as (see Eq. 12.34 of Ref. [51])

1 by 1 aE,lb)
1. L di 4
Br /x:o <ﬂ/1> < 0E, @

where g, is the spectral attenuation coefficient and E,, and E, are
the spectral and total hemispherical emissive power of the blackbody
radiation in vacuum, respectively.

More sophisticated approximations have been employed to de-
scribed radiation heat fluxes in coating materials [55], such as the
two-flux [56,57] and four-flux methods [16,58,59]. These methods
are approximations to a more general class of multi-flux methods
for solving the RTE, with the main assumption of isotropic radiation
intensity [51], among other methodologies [22,31]. In most studies in
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Fig. 1. (a) The average penetration length and reflectivity of pyrochlores RE,Zr,0, and RE,Hf,0, and pyrosilicates (RE,Si,0,) in the visible light and infrared range. (b) The

magnitude of the refractive index mismatch between pairs of pyrochlores and pyrosilicates.

the literature, the common approach for quantifying radiation and con-
duction heat in coatings is mostly empirical. For example, absorption
and scattering coefficients for ceramics coatings are determined from
the experimentally measured hemispherical-directional reflectance and
transmittance values [59].

3. Results and discussion
3.1. Optical properties of homogeneous oxides

The spectral dielectric function is calculated for the target oxides,
the pyrochlores and pyrosilocates listed in Supplemental Table S1,
using DFT as detailed in Section 2. The optical properties of the homo-
geneous medium of these oxides are then calculated from the spectral
dielectric function, as explained in Section 2. These optical properties

include the complex refractive index 7, the absorption coefficient a, and
reflectivity R. Supplemental Figure S2 shows the calculated dielectric
function and complex refractive index for the pyrochlores and pyrosilo-
cates of this study. The calculated refractive indices for Gd,Zr,0,
La,Zr,0,, and Y,Hf, O, exhibit good agreement with experimental data
from the literature [21,60,61], as illustrated in Supplemental Figure
S3. The DFT results slightly overestimate the real part of the refractive
index in all three pyrochlore oxides. Nevertheless, DFT successfully
replicates the relative spectral dependence across the three oxides. Sup-
plemental Figure S4 shows the absorption coefficient a and reflectivity
R for individual homogeneous oxide phases. To better compare the
optical properties of different pyrochlores and pyrosilocates, Fig. 1(a)
illustrates the penetration length, which is the inverse of the absorp-
tion coefficient «, and the reflectivity of radiation in homogeneous
oxides, averaged over the visible light and infrared spectrum, with
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Two-phase Composite TEBC

Matrix phase

AT

Fig. 2. A schematic illustration of a fully dense two-phase oxide composite for thermal
environmental barrier coating (TEBC) application on ceramic-matrix composite (CMC)
hot sections of gas-turbine engines. The particles are mono-dispersed in the matrix
oxide phase. In this study, the RE pyrosilicates and pyrochlores constitute the matrix
phase and particles, respectively.

wavelengths rangi?§ from 0.4 to 3.3 um. The average is calculated ac-

cording to (f) = 2-‘;{3 for both absorption coefficient and reflectivity.

Rare-earth pyrochlores exhibit smaller penetration lengths (or higher
absorption of radiation) and greater reflectivity when compared to
pyrosilicates. Among the rare-earth pyrochlores, rare-earth zirconates
are more opaque compared to rare-earth hafnates because they exhibit
smaller penetration length and larger reflectivity.

The distinctive absorption and reflectivity behaviors observed in
pyrosilicates and pyrochlores render them excellent candidates for the
matrix phase and particle constituents within a composite ceramic
(as detailed in Section 3.2). Fig. 1(b) shows the difference in the
magnitude of the complex refractive index, |a|, among various pairs
of rare-earth pyrochlores and rare-earth pyrosilicates. The disparity
in refractive indices between pyrochlores and pyrosilicates is notably
greater than that observed among oxides within these respective
groups (see Supplemental Figure S5). The most substantial refractive
index mismatches are found in the following pairs, listed in order of
magnitude: Gd,Zr,0,-Lu,Si,0,, GdyZry0,-Tm,Si,0,, GdyZryO,—
Er,Si,0;,, GdyZr,0,-Y,Si,0;, TmyZr,0,-Lu,Siy0;, PryZr,O,—
Lu,Si, 0,, HoyZr,0,-Lu,Si, 05, and LayZryO,-Lu,Sis O5.

3.2. Radiation in two-phase ceramic composites

In this section, we illustrate the radiation scattering behavior of
ceramic composites, consisting of RE pyrosilicates as the matrix phase
and RE pyrochlores as embedded particles. The spectral absorption,
scattering, and attenuation coefficients as well as the scattering phase
functions are calculated using the Lorentz—Mie theory as detailed in
Section 2. Fig. 2 illustrates a schematic profile of the ceramic com-
posite, where each cubic micron of the partially absorbing matrix
oxide is embedded with N particles of diameter D. The spectral ab-
sorption, scattering, and attenuation (or extinction) efficiency factors
(010045050 = Q,, + Q;) and coefficients (o, ,, 0, ;, ;) for all the
ceramic composites are shown in Supplemental Figure S6. To compare
the scattering behavior for different composite oxides, Fig. 3 illustrates
the penetration length, which is the inverse of the extinction coefficient
B, and the extinction efficiency factor O, = Q, + Q, for different
combinations of matrix oxide (RE,Si,0,) and particles (RE,Zr,0, and
RE,Hf,0,). The average is calculated over the visible light and infrared
spectrur% with wavelengths ranging from 0.4 to 3.3 pm, according to

Joi rda

=357

By comparing Figs. 1(b) to 3, we note that ceramic composites
with the largest mismatch between the refractive indices of the ma-
trix and particle phases show the highest extinction efficiency factor
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and the lowest penetration length. The penetration length of ceramic
composites also dramatically decreases compared to the homogeneous
media of individual pyrosilicate and pyrochlore phases, as shown in
Fig. 4. This decrease is attributed to the significant contribution of
interphase scattering between the medium oxide and the particle oxide,
resulting from the introduced micro-structural inhomogeneities, which
are absent in a homogeneous medium of oxides. We note that this
observation is not general and depends on the size of the embedded
particles in the composite (see more details in Section 3.3 and Sup-
plemental Figures S10 and S11). To further illustrate the significant
contribution of interphase interface scattering to the optical thickness
of ceramic composites, Fig. 5 shows the single scattering albedo for
different oxide composites. Single scattering albedo is defined as the
ratio of scattering efficiency factor to the extinction efficiency factor,
0,/(Q, + 0,) and characterizes extinction by scattering relative to
total extinction. For a purely scattering medium, the single scattering
albedo is equal to 1. As shown in Fig. 5, the scattering albedo for
all the studied composites are above 80% with the majority around
90%. Supplemental Figure S7 shows the contribution of absorption and
scattering to the attenuation coefficient for different oxide composites.
Tm,Si,0,-Gd,Zr,0, and Gd,Si,0,-Dy,Hf,0, exhibit the largest and
smallest attenuation coefficients averaged over the visible and infrared
range.

To fully understand the scattering behavior, we calculate the scatter-
ing phase function, @(0), for different composites. The scattering phase
function profile shows the distribution of scattered radiation intensity
as a function of scattering angle. The scattering phase function profile
for each composite varies with the incident wavelength due to the
changes in the interaction of the electromagnetic wave and the particle.
Fig. 6 displays the scattering phase function for Tm,Si,0,-Gd,Zr,0,
and Gd,Si,0,-Dy,Hf,0,, which exhibit the largest and smallest atten-
uation coefficients among the studied composites, respectively (refer to
Supplemental Figure S7), at two different wavelengths of radiation. For
a given composite, the angular distribution of scattered radiation varies
significantly with the incident wavelength, as evident by comparing
Fig. 6(a) and (b) or (c) and (d). However, the scattering patterns for
Tm,Si,0,-Gd,Zr,0, and Gd,Si,0,-Dy,Hf,0, are similar despite the
large difference in their total attenuation coefficients.

To better understand the angular distribution of scattered radiation
at each wavelength, we calculate the anisotropy factor. The scattering
profile asymmetry (or anisotropy factor) quantifies the average cosine
of the scattering angle and provides information about the average
direction of scattering at each wavelength. If asymmetry is close to 0,
the scattering is isotropic or equal in all directions, while a positive
scattering asymmetry indicates that more scattering happens in the
same direction as the incident radiation (a negative value shows that
scattering is biased towards the opposite direction). Fig. 7 illustrates the
spectral scattering asymmetry over the visible and infrared range for
Tm,Si,0,-Gd,Zr,0, and Gd,Si,0,-Dy,Hf,0,. The scattering pattern
in terms of the wavelength for these two composites are very similar.

Our investigation reveals a consistent scattering profile pattern
across various composite combinations, despite significant variations
in the scattering efficiency factor for different matrix and particle oxide
combinations (refer to Fig. 3). This similarity in the scattering pattern
is further evidenced by the consistent scattering asymmetry observed
in different composites, as illustrated in Supplemental Figure S8. In
general, the scattering profile tends to approach a value close to one
within the shorter wavelengths (i.e., the visible light range), gradually
becoming more isotropic as the wavelength extends into the infrared
range. The shift toward a more isotropic behavior is characterized by
the asymmetry values approaching zero, with a value of zero indicating
a fully spherical profile.

As shown earlier in Fig. 3, ceramic composites with the largest
mismatch between the refractive indices of the matrix and particle
phases show the highest extinction efficiency factor and the lowest
penetration length averaged over the visible light and infrared range.
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To better understand the determining factor in increasing the attenu-
ation coefficient in ceramic composite, we investigate the relationship
between radiation attenuation and refractive index mismatch between
the two oxide phases in the composite. Fig. 8 shows the average
penetration length and the average attenuation efficiency factor for
different composites in terms of the refractive index mismatch of their
constituent particles and matrix oxide phases. There is a clear correla-
tion between the refractive index mismatch and radiation attenuation
in the composite, where by increasing the mismatch, the attenuation
become more significant (or the ceramic composite becomes more
opaque).

To gain insights into the radiative flux behavior within various
composites, we compute the Rosseland mean attenuation coefficient

(Br) and the radiative conductivity (k,) as functions of temperature
for different composite materials as shown in Supplemental Figure S9.
For example, we examine the radiative conductivities for Tm,Si,0,—
Gd,Zr,0, and Gd,Si,0,-Dy,Hf,0,, which exhibit the largest and
smallest attenuation coefficients over the visible and infrared range, as
shown earlier in Supplemental Figure S7. The effective radiative con-
ductivity at 1782 K (slightly above 1500 °C) for Tm,Si,0,-Gd,Zr,0,
and Gd,Si,0,-Dy,Hf,0; is calculated as 0.07 W m~! K~! and 0.35
W m™! K71, respectively. The calculated &, for Tm,Si,0,~GdyZr,0;
is approximately five times smaller than that for Gd,Si,0,-Dy,Hf,0,
as expected due to the larger attenuation coefficient of the former.
Fig. 9 illustrates g and k, for all the calculated composites at 1782 K.
We also investigate the impact of refractive index mismatch between
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the constituent particle and matrix oxides on both the local Rosseland
mean attenuation coefficient and the effective radiative conductivity of
these composites. Fig. 10 illustrates a strong correlation between the
Rosseland mean attenuation coefficient (and, similarly, the radiative
conductivity) and the refractive index mismatch of the constituent par-
ticle and matrix phase. By increasing the refractive mismatch between
the particle and matrix oxides, the ceramic composite becomes more
opaque, showing larger attenuation coefficient and smaller effective
radiative conductivity.

3.3. Effect of particle size on radiation of composites

We also investigate the impact of particle size on the radiation
behavior of the pyrosilicate—pyrochlore composites. Modifying the size
of embedded particles significantly alters the scattering and attenuation
characteristics within the composite. As shown in Fig. 11, the attenua-
tion efficiency factor Q, largely increases by increasing the embedded
particle diameter. This behavior is expected because increasing the
particle size increases the size parameter of the scatterer. The size
parameter is defined as the ratio of the perimeter of a spherical particle
(or scatterer) with diameter D to the wavelength of incident radiation
inside the medium, 4,,. The extinction efficiency approaches 2 for very
large size parameters in the geometric optics regime, a phenomenon
known as the extinction paradox [62]. The range of size parameters
in this study remains within the transition regime, where the particle
size and the wavelength of incident radiation are in the same order.
As shown in Fig. 11(a), the extinction efficiency factor exceeds values

of 1 for particle diameters greater than 0.8 pm, indicating that the
particle can attenuate more energy than its actual physical size because
of energy diffraction around the particle. As shown in Section 3.2, the
variation of Q, among composites with the same particle size is largely
determined by the refractive index mismatch between the particle and
the matrix oxide.

As shown in Fig. 11(a), the attenuation efficiency factor for particle
sizes of 0.2 pm are relatively small, with most composites reaching
values close to zero. This implies that these particles are in effect
not contributing to attenuation of radiation. This leads to attenua-
tion coefficients of the composite to become smaller than individual
homogeneous media of the matrix and particle oxides. As shown in
Fig. 4, for particles of diameter 0.6 pm, the penetration length of
ceramic composites decreases compared to the homogeneous media of
individual matrix and particle phases. However, for smaller particle
sizes of 0.2 and 0.4 pm, the penetration length of ceramic composites
is larger than the individual homogeneous media of oxides because of
fractional attenuation efficiency factor (see Supplemental Figure S10),
indicating that embedding particles of these sizes has a detrimental
effect on radiation mitigation.

Aside from the expected increase of the attenuation efficiency factor
of the particle as its size increases, we observe that the scattering albedo
largely decreases for smaller particles. In other words, by increasing
the particle size, the contribution of scattering to the total attenuation
of radiation increases. As shown in Fig. 11(b), the scattering albedo
approaches to values above 90% for particles with a diameter larger
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than 0.8 pm. Supplemental Figure S11 shows the contribution of absorp-
tion and scattering to the attenuation coefficient for different particle
sizes.

As shown in Fig. 12(a), the Rosseland mean attenuation coefficient
increases significantly with increasing the particle diameter. This is
a direct result of the increase in the attenuation efficiency factor.
Consequently, the effective radiative conductivity decreases by increas-
ing the particle size, as shown in Fig. 12(b). Fig. 13 illustrates the
strong dependence of the extinction efficiency, Rosseland attenuation
coefficient, and the effective radiative conductivity on both the size
of the particles in the composite and the refractive index mismatch
between the matrix and particle oxides.

We note that as the particle size becomes larger, the range of
incident wavelength for which the independent scatterer assumption
remains valid become smaller. According to ¢+0.1D > %Am, for particles
of size 0.2, 0.4, 0.6, 0.8, 1 pm, the wavelengths for which indepen-
dent scatterer assumption remains valid are those smaller than 5.02,
4.19, 3.52, 2.57, 1.64 pm, respectively. Note that as the particle size
increases, the clearance distance ¢ decreases. Given that the relevant
operating temperature for thermal coatings reaches above 1500 °C,
the blackbody emissivity derivative in Eq. (4) becomes negligible for
wavelength values in the infrared range (see Supplemental Figure S12).
Therefore, the calculated Rosseland mean attenuation and radiative
conductivity based on the independent scatterer assumption are valid.

4. Discussion

We conduct a high-throughput investigation of radiative properties
in rare-earth pyrosilicate-pyrochlore composites, with the pyrochlore
serving as the particle phase and the pyrosilicate as the matrix. By
studying 118 different composites with varying particle sizes, we
demonstrate that thermal radiation can be significantly suppressed by
increasing the optical mismatch between the matrix and particle oxides.
Furthermore, increasing the size of embedded particles in the matrix
contributes to additional thermal radiation mitigation.

Our theoretical investigation has its limitations. First and fore-
most, this study solely focuses on exploring the impact of refractive
index mismatch between phases on radiation scattering within the
composite. Hence, other influential factors such as grain boundaries,
particle shape irregularities, impurities, or other microstructural de-
fects, which can considerably affect radiation, have not been taken
into account. Additionally, the level of theory employed in this study
has inherent limitations. For instance, the underlying assumption of
independent scatterers in our theoretical framework restricts our in-
vestigation to particle sizes smaller than 1 pm per cubic micron of
the matrix. For a more comprehensive modeling of arbitrary shapes
of second-phase particles or irregular-shaped grains in the microstruc-
ture, more sophisticated numerical models such as the T-matrix ap-
proach [63], the discrete dipole approximation (DDA) [64], or Monte
Carlo simulations [65,66] should be considered.
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Fig. 12. (a) Rosseland mean attenuation coefficient and (b) effective radiative conductivity k, at 7 = 1782 K (1500 °C) versus particle diameter in the composite. The legend
indicates the matrix and particle combination with their corresponding Materials Project identification numbers. Each cubic micron of the matrix phase contains one particle.
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