
Journal of Artificial Intelligence Research 78 (2023) 1201-1219 Submitted 07/2023; published 12/2023

Competitive Equilibria with a Constant Number of Chores

Jugal Garg jugal@illinois.edu
Peter McGlaughlin mcglghl2@illinois.edu
University of Illinois, Urbana-Champaign, IL, USA

Martin Hoefer mhoefer@em.uni-frankfurt.de

Marco Schmalhofer schmalhofer@em.uni-frankfurt.de

Goethe University, Frankfurt am Main, Hessen, Germany

Abstract

We study markets with mixed manna, where m divisible goods and chores shall be
divided among n agents to obtain a competitive equilibrium. Equilibrium allocations are
known to satisfy many fairness and efficiency conditions. While a lot of recent work in fair
division is restricted to linear utilities and chores, we focus on a substantial generalization to
separable piecewise-linear and concave (SPLC) utilities and mixed manna. We first derive
polynomial-time algorithms for markets with a constant number of items or a constant
number of agents. Our main result is a polynomial-time algorithm for instances with a
constant number of chores (as well as any number of goods and agents) under the condition
that chores dominate the utility of the agents. Interestingly, this stands in contrast to the
case when the goods dominate the agents utility in equilibrium, where the problem is known
to be PPAD-hard even without chores.

1. Introduction

The allocation of a set of divisible items to a set of agents in a fair and efficient man-
ner is the main challenge in fair division, a prominent field in economics with a variety of
well-established concepts and techniques (Moulin, 2003). Algorithms for fair division have
recently prompted a large amount of research interest in AI, due to many important ap-
plications arising from computer-aided decision making in various parts of society (Brandt,
Conitzer, Endriss, Lang, & Procaccia, 2016, Part II). Standard criteria for fair and efficient
allocation in markets include envy-freeness (EF; no agent prefers the bundle of goods from
another agent), proportionality (PROP; every agent gets a bundle that has at least her “av-
erage” value), and Pareto-optimality (PO; no allocation gives an agent strictly more utility
without decreasing another agent’s utility). Interestingly, all these criteria are achieved in a
competitive equilibrium from equal incomes (CEEI), an equilibrium allocation in a market
where every agent has $1 of (fake) money.

For more than two decades, the computation of competitive equilibria (with and with-
out equal incomes) has been one of the main lines of research in fair division, and, more
broadly, at the intersection of economics and computer science (Nisan, Roughgarden, Tar-
dos, & Vazirani, 2007, Chapters 5+6). An intriguing recent development in this area is
the consideration of chores and, more generally, mixed manna. In an allocation problem
with mixed manna there are goods and chores. Goods are desired by at least one of the
agents (e.g., cake), while chores are undesirable for all agents (e.g., job shifts, cleaning
tasks). In particular, chores are not disposable. The goal again is to satisfy fairness criteria

©2023 The Authors. Published by AI Access Foundation under Creative Commons Attribution License CC BY 4.0.

Garg, Hoefer, McGlaughlin, & Schmalhofer

such as EF, PROP, and/or PO. The consideration of mixed manna substantially generalizes
our understanding of fair division and represents an intriguing challenge for algorithms to
computing such allocations when they exist.

In a seminal contribution (Bogomolnaia, Moulin, Sandomirskiy, & Yanovskaia, 2017) the
existence of competitive equilibria under general conditions for instances with mixed manna
was established. Moreover, even for mixed manna, CEEI retain their attractive fairness
properties. Clearly, this raises a natural question from a computational perspective, which
we study in this paper: Under which conditions can competitive equilibria be computed in
polynomial time for markets with mixed manna?

The answers depend on whether we consider instances with only goods, only chores
or, more generally, true mixed manna. For only goods, markets with linear utilities allow
even strongly polynomial-time algorithms (Orlin, 2010; Garg & Végh, 2019). For additively
separable piecewise-linear concave (SPLC) utilities, the problem is PPAD-hard for both
goods (Chen & Teng, 2009) and chores (Chaudhury, Garg, McGlaughlin, & Mehta, 2021).

1.1 Contribution and Outline

In this paper, we provide polynomial-time algorithms for computing competitive equilibria
in Fisher markets with mixed manna. The introduction of the formal model and preliminary
results are given in Section 2. As a first set of results, we show a polynomial-time1 algorithm
to compute equilibria in markets with SPLC utilities when the number of agents or items
(i.e., goods and bads) is constant. SPLC utilities are quite general and applicable as they
model natural properties like decreasing marginals while maintaining (piecewise) linearity;
see, e.g., (Garg, Mehta, Sohoni, & Vazirani, 2015). The discussion of these results is given in
Section 3. We note that this is the first polynomial-time algorithm to compute a competitive
equilibrium of mixed manna with linear or SPLC utilities under any assumptions. Our main
result is then presented in Section 4 – an efficient algorithm for computing competitive
equilibria in negative instances with arbitrary many agents, goods, and a constant number
of chores. The agents can have SPLC utilities for goods, but we assume linear utilities for
chores. Negativity is a condition that implies that chores dominate the utility of the agents
(for a formal definition, see Section 2). This is a notable contrast to positive instances with
SPLC utilities for goods, where computation of an equilibrium is PPAD-hard, even without
chores (Chen & Teng, 2009). Interestingly, our result also applies to the symmetric case,
i.e., in positive instances, when there is a constant number of linear valued goods and an
arbitrary number of SPLC valued bads.

Extended abstracts of this work have appeared in the proceedings of AAMAS 2020 (Garg
& McGlaughlin, 2020) and SAGT 2021 (Garg, Hoefer, McGlaughlin, & Schmalhofer, 2021).

1.2 Further Related Work

The literature on fair division with only goods is vast, and a complete review is beyond
the scope of this paper. Instead, we refer the reader to the books (Brams & Taylor, 1996;
Robertson & Webb, 1998; Moulin, 2003), and focus on the case of mixed manna.

1. Polynomial w.r.t. instance size and number of segments.

1202

Competitive Equilibria with a Constant Number of Chores

M
an

n
a

T
y
p
e

V
al

u
at

io
n
s

R
es

tr
ic

ti
on

s

C
om

p
le

x
it
y

S
ou

rc
e

goods linear – strongly poly. (Orlin, 2010; Garg & Végh, 2019)

goods SPLC – PPAD-hard (Chen & Teng, 2009)

bads SPLC – PPAD-hard (Chaudhury et al., 2021)

bads linear m or n const poly.-time
(Branzei & Sandomirskiy, 2019;
Chaudhury et al., 2021)

mixed linear ε-approx. CE Õ(n4m2/ε)
(Chaudhury, Garg, McGlaughlin,
& Mehta, 2022)

mixed SPLC m or n const poly.-time Theorem 2

mixed

SPLC goods,
linear bads

#bads=const,
neg. instance poly.-time Theorem 3

linear goods,
SPLC bads

#goods=const,
pos. instance

Table 1: Related work on the complexity of competitive equilibria computation in Fisher
markets and our results.

While most of the work in fair division focuses on goods, there are a few works for the case
of bads, e.g., (Azrieli & Shmaya, 2014; Brams & Taylor, 1996; Robertson & Webb, 1998; Su,
1999). The study of competitive division with a mixed manna was initiated by Bogomolnaia
et al. (2017). They establish equilibrium existence and show further properties, e.g., that
multiple, disconnected equilibria may exist, and polynomial-time computation is possible if
there are either two agents or two items with linear utility functions (Bogomolnaia, Moulin,
Sandomirskiy, & Yanovskaia, 2019).

On the algorithmic side, an algorithm to compute a competitive allocation of goods
under linear utilities was given by Orlin (2010), and Garg and Végh (2019). Both algorithms
have strongly polynomial runtime. For SPLC utilities, the problem was shown to be PPAD-
hard for goods by Chen and Teng (2009) and for bads by Chaudhury et al. (2021). An
algorithm to compute a competitive allocation in only-bads instances with linear utility
functions was given by Branzei and Sandomirskiy (2019). Their algorithm runs in strongly
polynomial time if either the number of agents or bads is constant. We generalize this
to mixed manna with SPLC utilities without achieving strongly polynomial running time.
The key idea in Branzei and Sandomirskiy (2019) is to characterize allocation graphs of
equilibrium allocations, and to use the obtained properties for reducing the exponentially
large set of possible allocation graphs to a set of polynomial size if the number of agents
or items is constant. The reduced set of graphs is then enumerated. We instead, in the
constant number of agents case, introduce a threshold value for every agent, which can be
directly derived from the optimal bundles condition using Karush-Kuhn-Tucker conditions.

1203

Garg, Hoefer, McGlaughlin, & Schmalhofer

xij

fij(xij)

`ij1

uij1`ij1

`ij2

uij2`ij2

`ij3

uij3`ij3

xij

fij(xij)

`ij1

uij1`ij1

`ij2

uij2`ij2

Figure 1: Piecewise linear concave utility fij(xij) of agent i for an xij-fraction of good j
(left), and bad j (right).

Then, we use a cell decomposition on these threshold values to enumerate all meaningful
allocation graphs. In the constant number of items case, decomposing the space of prices
of items allows us to enumerate all meaningful allocation graphs.

Chaudhury et al. (2022) provided an algorithm to compute approximate competitive
equilibria in mixed manna instances with linear utilities. Their algorithm achieves ε accu-
racy in time Õ(n4m2/ε). For SPLC utilities and mixed manna, a simplex-like algorithm was
given by Chaudhury et al. (2021). Table 1 summarizes related results and our contribution.

Another related line of research considers matching markets, initiated by the seminal
work of Hylland and Zeckhauser (1979). In such a market, the goal is to fractionally allocate
each agent exactly one unit of items. Alaei, Khalilabadi, and Tardos (2017) provided a
polynomial-time algorithm to compute equilibria for matching markets when the number
of agents is constant.

2. Preliminaries

2.1 Fair Division with Mixed Manna

We consider fair division of mixed manna, in which there is a set N = [n] of n agents and a
set M = [m] of m divisible items. We strive to divide the items among the agents. Without
loss of generality, we may assume that there is a unit amount of each item. A fractional
allocation x = {x1, . . . , xn} assigns each agent i ∈ N a bundle of items xi = (xi1, . . . , xim),
where xij ∈ [0, 1] is the amount of item j agent i receives. An allocation is feasible if all
items are fully assigned, i.e., ∀j ∈ M ,

∑
i∈N xij = 1. For the rest of the paper, we assume

all allocations are feasible and use X to denote the set of feasible allocations.

Each agent i ∈ N has a utility function ui that maps the received bundle to a numerical
value. In this work, we assume all utility functions are additively separable over items,
piecewise linear, and concave (SPLC). Formally, agent i’s utility for receiving xij amount
of item j ∈ M is given by the piecewise linear and concave function fij(xij), and the
total utility for the bundle xi is given by the sum of all utilities on single items, i.e.,
ui(xi) =

∑
j∈M fij(xij). Further, we assume normalized utilities, that is, fij(0) = 0. For a

1204

Competitive Equilibria with a Constant Number of Chores

function fij , we denote its number of linear segments by |fij |, and write (i, j, k) to refer to
its k-th segment with slope uijk and length `ijk (see Fig. 1).

In contrast to the familiar case of disposable goods where fij ≥ 0, a mixed manna allows
fij ∈ R, i.e., an agent may get positive or negative utility for an item. We assume each
agent labels each item either an (individual) good or bad. If item j is a good for agent i
(like in Fig. 1, left), then fij ≥ 0 and uij1 > uij2 > · · · > uijs ≥ 0, s = |fij |, which implies
concavity and captures the classical property of decreasing marginal utilities. Otherwise, if
j is a bad for agent i, then fij ≤ 0 and 0 ≥ uij1 > uij2 > · · · > uijs (like in Fig. 1, right).
Note that two agents i, i′ might disagree on the label of a given item j, e.g., j can be a good
for i and a bad for i′. However, we call an item good if it is a good for at least one agent,
and bad otherwise. The global set of goods is denoted by M+ = {j ∈M : ∃i ∈ N uij1 > 0},
and the global set of bads is M− = M \M+. For simplicity of the technical exposition,
we further assume that uijk 6= 0 for all segments.2 This is a reasonable assumption, since
in real world scenarios it seems rather rare that an agent does not care (entirely) about
getting an item or doing some work.

Instance Types. In (Bogomolnaia et al., 2017), the authors show that every fair division
instance with mixed manna falls into one of three types : positive, negative, or null. The
type roughly indicates whether there is a ‘surplus’ of goods or bads.

More formally, let N+ = {i ∈ N : maxj∈M uij1 > 0} be the set of attracted agents, i.e.,
agents that each have at least one good, whereas N− = N \N+ is the set of repulsed agents
that have only bads. We use U for the set of agent utilities over all feasible allocations, i.e., if
u ∈ U , then u = (u1(x1), . . . , un(xn)) for some x ∈ X . Next, we define Γ+ = RN+

+ ×{0}N− .

Note that in Γ+ attracted agents benefit (the RN+

+ portion), without harming any repulsed

agents (the {0}N− portion). Also, let Γ++ = RN+

++ × {0}N
−

be the relative interior of Γ+.

Definition 1. A fair division instance is called

� positive if U ∩ Γ++ 6= ∅,
� negative if U ∩ Γ+ = ∅,
� null if U ∩ Γ+ = {0}.

In a positive instance, we can ensure all attracted agents receive strictly positive utility
without harming any repulsed agents (who dislike all items). Conversely, in a negative in-
stance, no feasible allocation gives all attracted agents non-negative utility without harming
any repulsed agents. Finally, in null instances, the only feasible allocations which give all
agents non-negative utility satisfy ui(xi) = 0, ∀i ∈ N .

2. While we conjecture that conceptually all our ideas can be applied also when uijk = 0 is allowed, the
analysis of such segments generates a lot of technicalities, which we chose to avoid to aid the readability.

1205

Garg, Hoefer, McGlaughlin, & Schmalhofer

Determining the Instance Type. We can determine the type of a given instance with
SPLC utilities in polynomial time by solving the following linear program (LP).

max t

s.t.
∑
j,k

uijkxijk ≥ t, ∀i ∈ N+

∑
i∈N+,k

xijk = 1, ∀j ∈M

0 ≤ xijk ≤ `ijk, ∀i ∈ N+, j ∈M, k ≤ |fij |

(1)

For an interpretation of this LP, one can imagine that single segments of the utility functions
fij are allocated to agents. Variable xijk represents the amount of the k-th segment of the
utility function fij allocated to agent i (see also Fig. 1). The solution t gives a lower bound
on any attracted agent’s utilities by the first set of constraints. The second set of constraints
simply requires that all items are fully allocated among attracted agents, and the third set
of constraints ensures that segments aren’t over allocated. Note that by concavity of the
utility functions fij and optimality of t, one can assume w.l.o.g. that the segments of each
utility function are allocated in a consecutive way, i.e., if xijk > 0 then xijk′ = `ijk′ for all
k′ < k.

Proposition 1. Let (t∗, x∗) be an optimal solution to (1). The sign of t∗ determines the
instance type:

� If t∗ > 0, then the instance is positive.
� If t∗ = 0, then the instance is null.
� If t∗ < 0, then the instance is negative.

Proof. First suppose that t∗ > 0. Then in x∗ all attracted agents receive strictly posi-
tive utility, while repulsed agents receive no allocation. Hence the instance is positive by
Definition 1.

Next, suppose that t∗ = 0. We want to show that the only feasible allocations x which
give all agents non-negative utility satisfy ui(xi) = 0, ∀i ∈ N . For contradiction, suppose
not. Then at least one agent i ∈ N+ receives strictly positive utility ui(xi) > 0 and some
other agent i′ ∈ N+ receives a total utility of ui′(xi′) = 0. We now construct an alternate
allocation y so that ui(yi) > 0, ∀i ∈ N+, contradicting the optimality of t∗ = 0.

First, observe that for any j ∈ M+, there is i ∈ N+ such that uij1 > 0. Therefore, we
may assume that no agent i′ ∈ N+ with ui′j1 < 0 receives any part xi′j > 0 of j. This is
valid since reallocating xi′j to i, i.e., yij = xij + xi′j and yi′j = 0 improves both agents’
utilities.

Next, consider any agent i ∈ N+ with a non-zero allocation, i.e., xi 6= 0, such that
ui(xi) = 0. Since xi 6= 0, we must have xij , xij′ > 0, for some j ∈ M+ and j′ ∈ M−. If
ui′(xi′) = ε > 0 for some i′ ∈ N+, then we can transfer a fraction δ > 0 of bad j′ from
agent i to agent i′ to make both agents’ utilities strictly positive. Let k be the first segment

of fi′j′ not fully allocated, i.e., xi′j′k < `i′j′k. Define δ = min
{
xij′ , `i′j′k − xi′j′k, ε

2|ui′j′k|

}
.

Note that δ > 0 is the maximum fraction of item j′ which can be shifted from agent i to
agent i′ without leaving the current segments for both agents. Shift fraction δ of item j′

1206

Competitive Equilibria with a Constant Number of Chores

from i to i′, i.e., define a new allocation y where yij′ = xij′ − δ and yi′j′ = xi′j′ + δ (and
y = x anywhere else). Then ui′(yi′) ≥ ε/2 > 0, and ui(yi) > 0. We repeat this step for all
agents with xi 6= 0 and ui(xi) = 0.

After the steps above, for all i ∈ N+, either ui(xi) > 0 or xi = 0. If ui(xi) > 0 for all
i ∈ N+, then we reach a contradiction to that t∗ = 0 is optimal. Therefore, assume that
xi = 0 for some i ∈ N+. By definition of N+, there is j ∈M+ such that uij1 > 0. Further,
all items are fully allocated in x, so there is i′ ∈ N+ with xi′j > 0, and ui′(xi′) = ε > 0.
Let k be the last segment with xi′jk > 0. Suppose we reallocate a portion of xi′j to agent i,

i.e., yij = δ and yi′j = xi′j − δ, where δ = min
(
xi′jk,

ε
2|ui′jk|

)
. Then ui′(yi′) ≥ ε/2 > 0 and

ui(yi) > 0. Repeating this step for all i ∈ N+ with xi = 0 ensures that ui(xi) > 0 for all
i ∈ N+, which contradicts that t∗ = 0 maximizes (1).

The above argument shows that if t∗ = 0, then any feasible allocation x must satisfy
ui(xi) = 0, ∀i ∈ N+, so the instance is null. Finally, repeating the above arguments in case
t∗ < 0 shows that the instance must be negative.

2.2 Competitive Equilibrium

We are interested in computing competitive equilibria (CE). To define this notion, we turn
a fair division instance into a market. We endow each agent i ∈ N with a budget ei of
(virtual) currency. The signs of agents’ budgets have to correspond to the instance type
to ensure CE existence (see Theorem 1 below). In positive instances, we assume strictly
positive budgets ei > 0 for attracted agents i ∈ N+ and ei = 0 for repulsed agents i ∈ N−.
In negative instances, all budgets need to be strictly negative, and in null instances there
is no money (i.e., ei = 0 for all i ∈ N), and computing a CE is easy.3 Hence, for the rest of
the paper, we concentrate on positive and negative instances.

A competitive equilibrium consists of an allocation x and a vector of prices p = (p1, . . . , pm)
for the items. In markets with mixed manna, the price of an item can be positive or negative.
A price pj > 0 represents a payment to receive a fraction of an item an agent enjoys, while
pj < 0 means that agents are paid to receive a fraction of an item they dislike. Nevertheless,
we say i buys item j whenever xij > 0.

Definition 2 (Competitive Equilibrium). A pair (x∗, p∗) of allocation and prices is a com-
petitive equilibrium iff:

1.) Items are fully allocated:
∑

i∈N x
∗
ij = 1, ∀j ∈M .

2.) Budgets are fully spent:
∑

j∈M x∗ijp
∗
j = ei, ∀i ∈ N .

3.) Each agent i ∈ N buys a utility-maximizing bundle:

x∗i ∈ arg max
xi∈Rm

+

ui(xi), s.t.
∑
j∈M

xijp
∗
j ≤ ei, xij ≥ 0 (2)

Our algorithms for computing CE apply even to scenarios with different budgets, where
agents have different entitlements to the items (e.g., when dissolving a business partnership

3. Any feasible allocation that gives all agents non-negative utility can be seen as CE. We can compute
such an allocation when solving the LP (1) to determine the instance type.

1207

Garg, Hoefer, McGlaughlin, & Schmalhofer

where one partner is more senior than another). The prominent special case of equal
budgets, i.e., |ei| = e for all i ∈ N with ei 6= 0, is called competitive equilibrium from equal
incomes (CEEI).

Bogomolnaia et al. (2017) showed that CE exist under very general conditions and
satisfy a number of fairness criteria. The following theorem summarizes the result in our
context.

Theorem 1 (follows from Bogomolnaia et al., 2017). Suppose agents’ utility functions are
SPLC and budgets are chosen such that

� in positive instances, ei > 0 ∀i ∈ N+ and ei = 0 ∀i ∈ N−;

� in negative instances, ei < 0 ∀i ∈ N ;

� in null instances, ei = 0 ∀i ∈ N .

Then a competitive equilibrium (x∗, p∗) always exists. The allocation x∗ is Pareto-optimal,
and in case of equal budgets also envy-free and proportional.

Remark: Bogomolnaia et al. (2017) do not require budgets to be fully spent in their
definition of CE. However, one can see that by choosing budgets according to the instance
type as in the above theorem, the optimal bundles condition implies that budgets are fully
spent4.

Prices of Goods and Bads. It is easy to see that in any CE (x∗, p∗), each good j ∈M+

has a strictly positive price p∗j > 0, while each bad j ∈ M− has a strictly negative price
p∗j < 0. Assume p∗j ≤ 0 for a good j ∈ M+. Then any agent i ∈ N for which j is a good
has infinite demand for j in (2) regardless of her budget ei. On the other hand, assume
p∗j ≥ 0 for a bad j ∈ M−. Then no agent chooses to purchase j in (2) and hence item j is
not allocated at all.

2.3 Optimal Bundles

Let us analyze the structure of an agent’s optimal bundle in a CE. Note that for SPLC
utilities, the optimization problem in (2) is an LP. We use variables xijk as agent i’s allo-
cation on the k-th segment of item j. Since the segment (i, j, k) has length `ijk, we have
0 ≤ xijk ≤ `ijk. Given a vector of prices p, agent i then solves the LP

max
xi

∑
j,k
uijkxijk s.t.

∑
j,k
xijkpj ≤ ei, 0 ≤ xijk ≤ `ijk.

Like in LP (1), due to concavity of the functions fij , any optimal solution xi of the LP
allocates the segments (i, j, k) of each utility function fij in a consecutive way.

Bang and Pain Per Buck. Given prices p, we define agent i’s bang per buck for the k-th
segment of good j ∈ M+ as bpbijk = uijk/pj , and the pain per buck for the k-th segment

4. Assume otherwise, and consider an agent not spending her budget. Recall that we assume uijk 6= 0, so
purchasing any fraction of an item must either strictly increase or strictly decrease an agent’s utility.
Thus, the agent not spending her budget could strictly increase her utility by either purchasing a larger
amount of a good or a smaller amount of a bad.

1208

Competitive Equilibria with a Constant Number of Chores

of bad j ∈ M− as ppbijk = uijk/pj . Note that bpb (ppb) gives the utility (disutility) per
unit spending on a good (bad). By applying Karush-Kuhn-Tucker (KKT) conditions to the
above LP, the following useful characterization can be obtained.

Proposition 2. For any agent i ∈ N , a bundle xi is optimal under prices p iff there exists
a threshold value αi ≥ 0, such that for each segment (i, j, k), the following hold:

(g1) If j ∈M+ and
uijk
pj

< αi, then xijk = 0.

(g2) If j ∈M+ and
uijk
pj

> αi, then xijk = `ijk.

(b1) If j ∈M− and
uijk
pj

> αi, then xijk = 0.

(b2) If j ∈M− and
uijk
pj

< αi, then xijk = `ijk.

We define αi as the smallest possible threshold value for agent i. Note that for each
agent there always exists at least one segment (i, j, k) with

uijk
pj

= αi.

Forced and Flexible Segments. Given a CE (x, p) and the corresponding αi for each
i ∈ N , we call a segment (i, j, k) flexible if

uijk
pj

= αi, and denote the set of flexible segments

with F̂ . If for a good j ∈ M+ it holds
uijk
pj

> αi, then we call the segment (i, j, k) forced.

Similarly, we call the segment (i, j, k) forced for a bad j ∈ M− if
uijk
pj

< αi. Note that due

to Proposition 2 forced segments need to be fully allocated, i.e., xijk = `ijk, while flexible
segments can be allocated arbitrarily without violating the optimal bundles condition, i.e.,
0 ≤ xijk ≤ `ijk. Note also that an item j might not have a flexible segment (i, j, k). Instead,
every agent i has at least one flexible segment (i, j, k) (due to our definition of αi).

3. Constant Number of Agents or Items

In this section, we discuss a polynomial time algorithm for computing CE in instances with
SPLC utilities when there is a constant number of agents or a constant number of items.
Our algorithm computes all CE in the following sense: For every possible CE (x, p), the
algorithm returns at least one CE (x′, p′), in which every agent achieves the same utility as
in (x, p). It is worth noting that for an arbitrary number of agents or items there cannot
exist such an algorithm since the number of different utility profiles corresponding to CE
can be exponential in min{m,n} (Bogomolnaia et al., 2019). As an immediate corollary of
our algorithm, we also get a polynomial bound on this number when m or n is constant.
Being able to compute all CE also has the additional benefit of further optimization, e.g.,
one could select a CE that maximizes the minimum utility of an agent.

Theorem 2. Suppose agents have SPLC utilities and there is a constant number of agents
or items. Then we can compute all CE in polynomial time, i.e., for every CE our algorithm
returns one with the same utility profile.

To obtain the result, the treatment of SPLC utilities creates a number of technical
challenges in the correct handling of forced and flexible segments.

1209

Garg, Hoefer, McGlaughlin, & Schmalhofer

We assume that the input is a market with agents, items, utilities, and budgets5 (in
accordance with the instance type). Our algorithm is based on the cell decomposition
technique first used in the context of market equilibria by Devanur and Kannan (2008). It
rests on the fact that k hyperplanes separate Rd into O(kd) non-empty regions or cells. If d
is constant, then this creates only polynomially many cells, which can also be enumerated
in polynomial time (see e.g. Avis & Fukuda, 1996). We choose hyperplanes in Rn or Rm
(depending on which of both has constant dimension) so that each cell corresponds to a
unique set of forced and a unique set of flexible segments for each agent. We call such a
pair of sets a utility-per-buck (UPB) configuration. Then, for each such UPB configuration
it remains to check whether there actually is a CE consistent with it.

3.1 Finding UPB Configurations

We present a cell decomposition to determine all meaningful UPB configurations, and show
that if the number of agents or items is constant, we thereby obtain only polynomially many
cells. Using polynomial-time algorithms for checking equilibria existence from Section 3.2,
we get a polynomial-time algorithm to compute all CE.

Constant Number of Items. Let m = |M | be a constant. Consider Rm with coordinates
p1, . . . , pm. For each tuple (i, j, j′, k, k′) where i ∈ N , j 6= j′ ∈ M , k ≤ |fij | and k′ ≤ |fij′ |,
we create a hyperplane uijkpj′ − uij′k′pj = 0. Each hyperplane divides Rm into regions
with signs >, =, or <, where the sign determines whether i prefers the segment (i, j, k)
or (i, j′, k′), e.g., if j, j′ ∈ M+ then uijk/pj > uij′k′/pj′ in the > region. A cell is the
intersection of these half-spaces. One may think of a cell being represented by a tuple from
{>,=, <}H , where H is the set of all pairs of segments of the same agent. Thus a cell
gives a partial ordering of the segments (i, j, k) of agent i according to bpbijk and ppbijk
(partial in the sense that there might be multiple segments with the same bpbijk (ppbijk)
value). Sort the segments (i, j, k) of goods in decreasing order of bpb for agent i and create
the equivalence classes Gi1, . . . , G

i
g with the same bpb. Similarly, create equivalence classes

Bi
1, . . . , B

i
b of segments of bads with the same ppb, sorted in increasing order. Let ppbl be

the ppb of Bi
l , and bpbl be the bpb of Gil.

Note that a cell uniquely determines the Bi
l ’s and Gil’s. Further, agent i must purchase

the classes Gil in increasing order, i.e., higher bpb first, and also earn from the classes Bi
l in

increasing order, i.e., lower ppb first (due to Proposition 2). Thus, i’s flexible segments are
one or both of the final equivalence classes Bi

r and Gis that she purchases in a cell (both iff
ppbr = bpbs). Let Bi

<l = ∪l−1
z=1B

i
z and define Gi<l similarly. Also let Bi

<1 = Gi<1 = ∅. If i
buys a strictly positive fraction of Bi

r, then Bi
<r are forced segments. The same holds for

goods. Thus, each choice of flexible segments Bi
r and/or Gis for each agent yields a unique

UPB configuration.

We want to determine the forced and flexible segments. Therefore, in the rest of this
section, we concentrate on negative instances where ei < 0 for all i ∈ N . One can adapt the
arguments for positive instances by swapping the roles of goods and bads. We partition each
cell into sub-cells by adding two types of hyperplanes. First, we add

∑
(i,j,k)∈Bi

<r
`ijkpj −

5. Alternatively, if the goal is to compute CEEIs for a fair division instance, we can determine the instance
type in polynomial time by solving the LP (1) and then assign appropriate budgets.

1210

Competitive Equilibria with a Constant Number of Chores

ei = 0, for each agent i ∈ N and equivalence class r ≤ b. Next, for each Bi
r and Gis,

we add the hyperplanes
∑

(i,j,k)∈Bi
≤r∪G

i
≤s
`ijkpj − ei = 0. Note that these hyperplanes

relate agent i’s budget and total spending after fully purchasing all of the segments in
Bi
≤r ∪Gi≤s. In a negative instance it holds ei < 0, so that in the positive half-space >, i.e.,∑
(i,j,k)∈Bi

≤r∪G
i
≤s
`ijkpj > ei, agent i has not earned her entire budget, and hence she must

purchase more bads. Similarly, in the negative half-space <, i earns more than her budget,
i.e., she purchased too many bads and needs to spend more on goods.

We can use a simple greedy algorithm based on the signs of the hyperplanes within a
sub-cell to determine agent i’s flexible segments. We discuss an overview, c.f. Algorithm 1
for a formal description.

In a negative instance, all agents must purchase some bads, so we start by purchasing
Bi
l ’s in increasing order, i.e., lowest ppb first, until agent i earns her budget ei. Suppose

i earns her budget by fully purchasing Bi
<r and some strict fraction or none of Bi

r. Now
we want to check if agent i might purchase some goods. Any spending on goods must be
offset by earning on bads. Clearly, i spends on the segments Gil if bpbl > ppbr, i.e., utility
gained per unit spending is on Gil strictly greater than utility lost per unit earning on Bi

r.
We define

Σ(r, s) =
∑

(i,j,k)∈Bi
≤r∪G

i
≤s

`ijkpj .

We now start purchasing segments greedily. Let Bi
r and Gis be the current segments i

purchases of bads and goods respectively. That is, i either purchases none of Bi
r or a strict

fraction of Bi
r, and similarly for Gis. As long as bpbs > ppbr, i.e., i’s utility gained per unit

spending on the current goods Gis is strictly larger than her utility lost per unit earning on
the current bads Bi

r, she wants to buy as much as possible from Gis by earning from Bi
r.

This is limited when either (or both) of Gis and Bi
r are fully consumed. We can check this

based on the signs of the hyperplanes in the current sub-cell.

If Σ(r, s) < ei, then i can fully purchase Gis with earnings from Bi
r, thereby not fully

consuming Bi
r. Hence Gis gets fully allocated to i and Bi

r partly, and we proceed with the
next class of goods Gis+1. Since the segments Gis are fully allocated, and Bi

r partly, we set
Gis forced and Bi

r flexible.

If Σ(r, s) > ei, then i cannot fully purchase Gis with earnings from Bi
r. Hence Bi

r gets
fully allocated to i and Gis partly, and we proceed with the next class of bads Bi

r+1. Since
the segments Bi

r are fully allocated, and Gis partly, we set Bi
r forced and Gis flexible.

Finally, if Σ(r, s) = ei, then i can fully purchase Gis with earnings from exactly Bi
r.

Hence both Gis and Bi
r get fully allocated to i, and we proceed with the next classes of bads

and goods Bi
r+1 and Gis+1. Since the segments Bi

r as well as Gis are fully allocated, we set
both forced.

We repeat this procedure until we either reach classes Bi
r and Gis with bpbs ≤ ppbr or

run out of Bi
r’s or Gis’s. If for the last classes Bi

r and Gis we have bpbs = ppbr, then i can
still trade Gis against Bi

r, but her utility does not change. Hence in this case we set both
Bi
r and Gis flexible.

For analyzing the running time of this greedy procedure, observe that in each iteration
of the while-loop there is at least one segment of i added to the set of forced segments.

1211

Garg, Hoefer, McGlaughlin, & Schmalhofer

Algorithm 1: Forced and flexible segments F and F̂ of agent i in a sub-cell

Find the smallest r s.t.
∑

(i,j,k)∈Bi
≤r
`ijkpj < ei ;

Set s = 1, F = Bi
<r, F̂ =

{
∅ if

∑
(i,j,k)∈Bi

<r
`ijkpj = ei ,

Bi
r otherwise.

while bpbs > ppbr do // while worth to buy as much as possible from Gis
if Σ(r, s) < ei then // Gis can be fully bought with earnings from inside Bi

r

F ← F ∪Gis, F̂ ← Bi
r, s← s+ 1;

else if Σ(r, s) > ei then // Gis cannot be fully bought with earnings from Bi
r

F ← F ∪Bi
r, F̂ ← Gis, r ← r + 1;

else // Gis can be fully bought with earnings from exactly Bi
r

F ← F ∪Gis ∪Bi
r, F̂ = ∅, s← s+ 1, r ← r + 1;

end

end
if bpbs = ppbr then // Gis can be traded against Bi

r with no change in utility

F̂ ← Gis ∪Bi
r ;

end

return F, F̂ ;

Hence the algorithm runs for at most mS rounds, where S is the maximum number of
segments in any utility function of agent i. We obtain the following result.

Proposition 3. Algorithm 1 finds an agent’s forced and flexible segments within a sub-cell
in polynomial time.

Finally, we count the number of cells in both cell-decompositions. Let S be the maximum
number of segments of any utility function. We created a hyperplane uijkpj′ − uij′k′pj = 0,
for each tuple (i, j, j′, k, k′), i ∈ N , j 6= j′ ∈M , k ≤ |fij | and k′ ≤ |fij′ |, and hence at most

n
(
mS
2

)
= O(nm2S2) in total. These divide Rm into at most O((nm2S2)m) many cells (note

that m is constant). Now observe that the number of equivalence classes of segments in
any cell is bounded by mS for each agent i ∈ N . Hence the total number of hyperplanes
of the form

∑
(i,j,k)∈Bi

≤r∪G
i
≤s
`ijkpj − ei = 0 is O(nm2S2) in any cell, and they divide Rm

into O((nm2S2)m) sub-cells. Hence the total number of sub-cells is O((nm2S2)2m), which
is polynomial for constant m.

Constant Number of Agents. Let n = |N | be a constant, and define λi = 1/αi for
i ∈ N . Consider Rn with coordinates λ1, . . . , λn. For each tuple (j, i, i′, k, k′) where j ∈M ,
i, i′ ∈ N , k ≤ |fij | and k′ ≤ |fi′j |, we create a hyperplane uijkλi − ui′jk′λi′ = 0. Each
hyperplane divides Rn into regions with signs >, =, or <. From the sign we can determine
which of the two segments (i, j, k) and (i′, j, k′) of item j has to be sold first. To see this,
assume we are in the > half-space for a good j ∈ M+, i.e., uijkλi > ui′jk′λi′ . Now if
agent i′ buys a positive fraction xi′jk′ > 0 of segment (i′, j, k′), then ui′jk′/pj ≥ αi′ due
to Proposition 2, or equivalently ui′jk′λi′ ≥ pj . From being in the > half-space it follows
uijkλi > ui′jk′λi′ ≥ pj and hence uijk/pj > 1/λi = αi, i.e., the segment (i, j, k) is forced. A

1212

Competitive Equilibria with a Constant Number of Chores

similar argument shows that if we are in the < half-space for a bad j ∈ M− and agent i′

buys a positive fraction of (i′, j, k′), then (i, j, k) is also forced.
A cell is the intersection of these half-spaces. One may think of a cell being represented

by a tuple from {>,=, <}H , where H is the set of all pairs of segments of the same item.
The >,=, < relations inside a cell give a partial ordering on the uijkλi’s for each item j. We
sort the segments of good j ∈M+ in the decreasing order of uijkλi, and partition them into

equivalence classes Gj1, . . . , G
j
g with the same uijkλi value. Similarly, we create equivalence

classes Bj
1, . . . , B

j
b for bad j ∈ M− by sorting the uijkλi in increasing order. By the above

discussion, if any part of Gjt is sold, then all segments in Gjt′ with t′ < t are forced. The

same holds for Bj
1, . . . , B

j
b . Let Gj<t = ∪t−1

l=1G
j
l and define Bj

<t similarly. Now since good j

must be fully sold, the last class Gjt of good j which is fully or partly sold is determined by
the largest integer t such that

∑
(i,j,k)∈Gj

<t
`ijk < 1. The same holds for bads. The segments

in Gj<t are anyway forced, while the segments of Gjt are either forced or flexible depending

on whether Gjt is fully sold or not. In particular, if
∑

(i,j,k)∈Gj
≤t
`ijk > 1, then Gjt is not

fully sold and hence the segments in Gjt are flexible due to Proposition 2. Otherwise, i.e.,
if
∑

(i,j,k)∈Gj
≤t
`ijk = 1, then Gjt is fully sold and hence some of the segments in Gjt might

be forced and some flexible depending on the agents’ allocations of other items. Anyway,
all these segments need to be fully allocated and hence we can treat them as forced. The
above discussion shows that in each cell we obtain a unique UPB configuration.

Finally, we count the number of cells in the decomposition. Let S = maxi,j |fij |. Observe
that the total number of hyperplanes created is at most m

(
nS
2

)
= O(mn2S2), and they divide

Rn into at most O((mn2S2)n) many cells, which is polynomial for constant n.

3.2 Checking Cells for Existence of Competitive Equilibria

In this section we show how to check if a cell admits a CE given the corresponding UPB
configuration, i.e., the set of forced and flexible segments in the cell.

Proposition 4. Given the set of forced and flexible segments F and F̂ in a cell, it can be
checked in polynomial time if there exists a CE (x, p) in the cell. If the cell contains at least
one CE, then one of them can be computed in polynomial time.

Proof. We set up a linear feasibility problem where any solution corresponds to a CE. Since
forced segments are fully allocated and budgets are fully spent, the amount êi of money
agent i spends on flexible segments is given by

êi = ei −
∑

(i,j,k)∈F (i)

`ijkpj . (3)

Analogously, since all items are fully allocated, the fraction ŝj of item j allocated on flexible
segments is given by

ŝj = 1−
∑

(i,j,k)∈F (j)

`ijk. (4)

Now let G = (N,M,E) be a bipartite graph, where there exists an edge (i, j) ∈ E
between agent i and item j whenever i has a flexible segment on j, i.e., there exists a

1213

Garg, Hoefer, McGlaughlin, & Schmalhofer

number k∗ such that (i, j, k∗) is flexible for i. We define E+ = {(i, j) ∈ E : j ∈ M+} and
E− = E \ E+ for the set of edges of goods and bads, respectively.

For each edge (i, j) ∈ E, denote with fij the money which i spends/earns (depending
on the sign) on the flexible segment (i, j, k∗). By money conservation, we have

êi =
∑

j | (i,j)∈E

fij , ∀i ∈ N (5)

as well as

ŝjpj =
∑

i | (i,j)∈E

fij , ∀j ∈M. (6)

Moreover, segments cannot be oversold, so it must hold

0 ≤ fij ≤ `ijk∗pj , ∀(i, j) ∈ E+ (7)

as well as

0 ≥ fij ≥ `ijk∗pj , ∀(i, j) ∈ E−. (8)

Furthermore, Proposition 2 induces constraints on forced and flexible segments, i.e.,

uijkλi = pj , ∀(i, j, k) ∈ F̂ (9)

and

uijkλi ≥ pj , ∀(i, j, k) ∈ F. (10)

Now, (3) to (10) together with the constraints of the cell6 yield a linear feasibility
problem (P) in the variables (fij)(i,j)∈E , (pj)j∈M , and (λi)i∈N . This can be solved in
polynomial time regardless of the number of agents, items, or bads.

Finally, observe that if (P) has a feasible solution, then the actual part xijk∗ of the
flexible segment (i, j, k∗) allocated to agent i in the CE can be derived from xijk∗ = fij/pj ,
while forced segments (i, j, k) ∈ F (i) are always fully allocated to i, i.e., xijk = `ijk.

Although for a given cell, there might be a continuum of solutions that satisfy the
conditions of a CE, we show that all these CE must yield the same vector of utilities for
the agents.

Proposition 5. If there is a CE (x∗, p∗) in a cell, then the utility ui(xi) of an agent i ∈ N
is the same in every CE (x, p) inside the cell.

Proof. Consider an arbitrary agent i ∈ N . The utility gained by i from forced segments is

uforced
i =

∑
(i,j,k)∈F (i)

uijk`ijk,

6. Recall that the cell might involve some strict inequalities. The feasibility of a system of (strict and weak)
linear inequalities can be decided using an LP: Introduce one slack variable ε, and insert it to every strict
inequality, thereby making all of them weak. Then solve the LP with objective to maximize ε. If ε > 0,
the result is a feasible solution for the original system of inequalities; otherwise it is infeasible.

1214

Competitive Equilibria with a Constant Number of Chores

and hence constant within a cell. Thus it suffices to show that the utility

uflex
i =

∑
j | (i,j)∈E

fij
uijk∗

pj
= êi/λi

gained by i on flexible segments is also constant within a cell (recall that êi is the variable
representing i’s spending on flexible segments).

We say that a utility value u ∈ R is competitive for i, if u = ui(xi) for some competitive
equilibrium (x, p) consistent with the cell. Assume for contradiction that i has two different

competitive utility values u
(1)
i < u

(2)
i inside the cell. Then it must hold

u
(1)
i = ê

(1)
i /λ

(1)
i < ê

(2)
i /λ

(2)
i = u

(2)
i ,

where (e
(1)
i , λ

(1)
i) and (e

(2)
i , λ

(2)
i) are both part of feasible solutions to (P). Now, due to

convexity of the solution space of (P), also all pairs

(1− γ)

(
e

(1)
i

λ
(1)
i

)
+ γ

(
e

(2)
i

λ
(2)
i

)

for γ ∈ [0, 1] are part of feasible solutions to (P). This implies that all utility values in the
set

U =

{
(1− γ)ê

(1)
i + γê

(2)
i

(1− γ)λ
(1)
i + γλ

(2)
i

: γ ∈ [0, 1]

}
are also competitive for i. It is easy to see that U is a continuum. However, in (Bogomolnaia
et al., 2017) it was shown that there is only a finite number of competitive utility profiles
in every instance – a contradiction. Therefore, if a cell admits a CE, then the utility of an
agent i is the same in all CE inside the cell.

Since there is a unique utility profile for all CE in a given cell, we can also upper bound
the number of distinct utility profiles of all CE. The next result extends Proposition 1 of
Bogomolnaia et al., 2017 (see also Branzei & Sandomirskiy, 2019, Corollary 12).

Corollary 1. If agents’ utilities are SPLC and the number of agents or items is constant,
then the number of distinct utility profiles of all CE is polynomial in the input size.

4. Constant Number of Bads

In this section, we consider negative instances in which agents have linear utility functions
for bads and SPLC utilities for goods. In this case, we can relax the requirement for
a constant number of items. Instead, our result applies even when we have a constant
number of bads (as well as any number of goods).

The same result can be obtained for the symmetric case, i.e., the instance is positive,
agents have linear utilities for goods, SPLC utilities for bads, and there is a constant number
of goods. The adjustment to our subsequent discussion is straightforward by changing the
roles of goods and bads.

1215

Garg, Hoefer, McGlaughlin, & Schmalhofer

First, note that a linear utility function is SPLC with a single segment, i.e., fij(xij) =
uijxij . Next, observe that if an agent i buys any fraction xij > 0 of bad j ∈M−, then also
xij < `ij = ∞, and hence uij/pj = αi due to Proposition 2. Therefore, any bad j ∈ M−
agent i spends on has a ppb of exactly αi, and this is minimum. We call these minimum pain
per buck bads, denoted mpbi = arg minj∈M− uij/pj . In a negative instance where all agents
must purchase some bads, this allows us to express the αi’s of the agents through the prices
of purchased bads. In particular, for each agent i, we pick a representative bad b(i) ∈ M−
and substitute αi = ui,b(i)/pb(i). Using this substitution one can decompose according to
prices of bads instead of λi’s where λi = 1/αi for all i ∈ N .

Finding UPB Configurations. The algorithm has the same basic structure as in
Section 3.1: we use a cell decomposition to enumerate UPB configurations, and then check
each cell for equilibrium existence. The difference lies in the cell decomposition. It can be
seen as a hybrid of the techniques used in the two scenarios in Section 3.1.

In a negative instance, agents have negative budgets and must earn on some bads. First,
we determine the mpbi bads for each agent in a cell using a similar approach as for a constant
number of items. This determines the set of bads each agent might purchase and the value
of αi = minj∈M− uij/pj . For a constant number of agents, we used the variables λi = 1/αi
to determine mbbi goods and mpbi bads for each agent. Now we adapt the approach using
the variables pj for each bad j ∈ mpbi, where pj/uij = 1/αi = λi.

Theorem 3. Suppose the instance is negative and that agents have linear utility functions
for bads and SPLC utility functions for goods. If the number of bads is constant, then we
can compute all CE in polynomial time, i.e., for each CE we obtain one with the same
utility profile.

Proof. Let d = |M−| be a constant. Consider Rd with coordinates p1, . . . , pd. For each agent
i ∈ N and each pair of bads j 6= j′ ∈ M− we introduce the hyperplane uijpj′ − uij′pj = 0,
which partitions Rd into regions with signs >, =, or <. The sign determines whether i
prefers bad j over j′, e.g., uij/pj < uij′/pj′ in the < region. A cell is the intersection of
these half-spaces. In each cell, we sort the bads j of agent i in increasing order of uij/pj and
create the equivalence classes Bi

1, . . . , B
i
b. Now obviously Bi

1 are the mpbi bads of agent i in
the cell. It remains to determine the forced and flexible segments of goods. Until now, we
used

(
d
2

)
hyperplanes for each agent, giving O(nd2) in total. Therefore, there are at most

O(nd) cells.
Recall that we used the variables λi = 1/αi in a cell-decomposition to determine the

forced and flexible segments when the number of agents is constant. Now we follow a similar
approach by expressing λi through prices of bads in mpbi. In particular, for every agent i
pick a representative bad b(i) ∈ mpbi, and substitute λi = 1/αi = pb(i)/ui,b(i). Note that
mpbi 6= ∅ for every agent i since the instance is negative and thus every agent must buy
some bads.

We now determine the forced and flexible segments of goods for each agent in a given
cell. For each tuple (j, i, i′, k, k′) where j ∈ M+, i, i′ ∈ N , k ≤ |fij | and k′ ≤ |fi′j |, we

create a hyperplane
uijk
ui,b(i)

pb(i) −
ui′jk′
ui′,b(i′)

pb(i′) = 0. This further divides a cell into sub-cells.

Again, the sign of the half-space determines which of the two segments (i, j, k) and (i′, j, k′)
of good j is sold first. Assume we are in the > half space, i.e.,

uijk
ui,b(i)

pb(i) >
ui′jk′
ui′,b(i′)

pb(i′),

1216

Competitive Equilibria with a Constant Number of Chores

or equivalently uijk/αi > ui′jk′/αi′ . Now if agent i′ buys a positive fraction xi′jk′ > 0 of
segment (i′, j, k′), then ui′jk′/pj ≥ αi′ due to Proposition 2, or equivalently ui′jk′/αi′ ≥ pj .
Since we are in the > half-space, it follows uijk/αi > pj , and thus (i, j, k) is forced. For

each good j ∈ M+, define Gj1, . . . , G
j
g as the equivalence classes with the same

uijk
ui,b(i)

pb(i)

value, sorted in decreasing order. By the above discussion, if any part of Gjt is sold, then
all segments in Gjt′ with t′ < t must be forced. Since each good must be fully sold, let t
be the largest integer such that

∑
(i,j,k)∈Gj

<t
`ijk < 1, i.e., j becomes fully sold once agents

purchase a strictly positive fraction of Gjt . Now the segments in Gj<t are anyway forced,

while the segments of Gjt are either forced or flexible depending on whether Gjt is fully sold
or not. If

∑
(i,j,k)∈Gj

≤t
`ijk > 1, then Gjt is not fully sold and hence the segments in Gjt are

flexible. Otherwise, i.e., if
∑

(i,j,k)∈Gj
≤t
`ijk = 1, then Gjt is fully sold and hence the segments

in Gjt are also forced. Therefore, we determined unique forced and flexible segments in each
sub-cell.

Finally, let us analyze the overall number of cells. Let S be the maximum number of
segments of any agents’ utility function. We formed sub-cells by adding hyperplanes for
each tuple (j, i, i′, k, k′) where j ∈ M+, i, i′ ∈ N , k ≤ |fij |, k′ ≤ |fi′j |. Hence we created

at most |M+|
(
nS
2

)
= O(mn2S2) overall in any given cell, which partitions the cell into at

most O(md(nS)2d) sub-cells. As previously calculated, there are O(nd) cells. Hence the
total number of sub-cells is O(mdn3dS2d), which is poly(n,m, S) for constant d.

Remark: If both goods and (constantly many) bads have SPLC utilities, we need to find
agent i’s flexible segments of bads Bi

r. When applying cell decomposition on prices, flexible
segments are determined by ensuring an agent spends her entire budget, which obviously
depends on both goods and bads. Thus, we cannot consider goods and bads separately as
we have done in this proof. This applies even when the valuations for bads are SPLC with
only two segments. Finding a polynomial-time algorithm in this case is an interesting open
problem.

As mentioned at the beginning of this section, by switching roles of goods and bads we
can also solve the symmetric case, i.e., computing CE in positive instances when there is a
constant number of linear valued goods and an arbitrary number of SPLC valued bads.

Corollary 2. Suppose the instance is positive and that agents have linear utility functions
for goods and SPLC utility functions for bads. If the number of goods is constant, then we
can compute all CE in polynomial time.

5. Summary and Discussion

Our results refine the current understanding on the complexity of competitive equilibria
computation in mixed manna fair division. We provide polynomial-time algorithms for
mixed manna instances with SPLC valuations when the number of items m or the number
of agents n is constant, while the problem is known to be PPAD-hard for arbitrary m and n,
even for only-goods instances. Moreover, we identify conditions under which the problem
becomes tractable for arbitrary m and n. In particular, we show that for arbitrary m and

1217

Garg, Hoefer, McGlaughlin, & Schmalhofer

n, polynomial-time computation is possible as long as the instance is negative (positive)
and there is only a constant number of linear valued bads (goods).

Additionally to being polynomial, our algorithms are able to compute all CE in the given
instance. Under this requirement, the result is also tight in the sense that one cannot hope
for such an algorithm in instances with arbitrary m and n, not even with linear valuations
(since there can be exponentially many CE).

As mentioned in Section 4, one of the main open problems is to relax the requirement of
linear valued bads in Theorem 3 towards SPLC valued ones. Also remaining is the question
whether polynomial time CE-computation is possible for an arbitrary number of chores with
linear utilities. Another interesting question is whether there exist strongly polynomial-time
algorithms for computing (all) CE in the types of instances we consider.

Acknowledgments

Jugal Garg and Peter McGlaughlin were supported by NSF grant CCF-1942321 (CAREER).
Martin Hoefer was supported by DFG grant Ho 3831/5-1, and grants Ho 3831/6-1 and 7-1
within DFG research unit ADYN. We thank anonymous reviewers for helpful and construc-
tive feedback on an earlier draft of this paper that led to significant improvements.

References

Alaei, S., Khalilabadi, P. J., & Tardos, É. (2017). Computing equilibrium in matching
markets. In Proceedings of the 2017 ACM Conference on Economics and Computation,
EC 2017, pp. 245–261.

Avis, D., & Fukuda, K. (1996). Reverse search for enumeration. Discrete Applied Mathe-
matics, 65 (1-3), 21–46.

Azrieli, Y., & Shmaya, E. (2014). Rental harmony with roommates. Journal of Economic
Theory, 153, 128–137.

Bogomolnaia, A., Moulin, H., Sandomirskiy, F., & Yanovskaia, E. (2017). Competitive
division of a mixed manna. Econometrica, 85 (6), 1847–1871.

Bogomolnaia, A., Moulin, H., Sandomirskiy, F., & Yanovskaia, E. (2019). Dividing bads
under additive utilities. Social Choice and Welfare, 52 (3), 395–417.

Brams, S. J., & Taylor, A. D. (1996). Fair division - from cake-cutting to dispute resolution.
Cambridge University Press.

Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A. D. (2016). Handbook of
Computational Social Choice. Cambridge University Press.

Branzei, S., & Sandomirskiy, F. (2019). Algorithms for competitive division of chores.
arXiv:1907.01766.

Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2021). Competitive allocation
of a mixed manna. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2021, pp. 1405–1424.

1218

Competitive Equilibria with a Constant Number of Chores

Chaudhury, B. R., Garg, J., McGlaughlin, P., & Mehta, R. (2022). Competitive equilibrium
with chores: Combinatorial algorithm and hardness. In Proceedings of the 2022 ACM
Conference on Economics and Computation, EC 2022, pp. 1106–1107.

Chen, X., & Teng, S. (2009). Spending is not easier than trading: On the computational
equivalence of Fisher and Arrow-Debreu equilibria. In Algorithms and Computation,
20th International Symposium, ISAAC 2009, pp. 647–656.

Devanur, N. R., & Kannan, R. (2008). Market equilibria in polynomial time for fixed number
of goods or agents. In 49th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2008, pp. 45–53.

Garg, J., Hoefer, M., McGlaughlin, P., & Schmalhofer, M. (2021). When dividing mixed
manna is easier than dividing goods: Competitive equilibria with a constant number
of chores. In Algorithmic Game Theory - 14th International Symposium, SAGT 2021,
pp. 329–344.

Garg, J., & McGlaughlin, P. (2020). Computing competitive equilibria with mixed manna.
In Proceedings of the 19th International Conference on Autonomous Agents and Mul-
tiagent Systems, AAMAS 2020, pp. 420–428.

Garg, J., Mehta, R., Sohoni, M. A., & Vazirani, V. V. (2015). A complementary pivot
algorithm for market equilibrium under separable, piecewise-linear concave utilities.
SIAM Journal on Computing, 44 (6), 1820–1847.

Garg, J., & Végh, L. A. (2019). A strongly polynomial algorithm for linear exchange
markets. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2019, pp. 54–65.

Hylland, A., & Zeckhauser, R. (1979). The efficient allocation of individuals to positions.
Journal of Political Economy, 87 (2), 293–314.

Moulin, H. (2003). Fair division and collective welfare. MIT Press.

Nisan, N., Roughgarden, T., Tardos, É., & Vazirani, V. V. (2007). Algorithmic Game
Theory. Cambridge University Press.

Orlin, J. B. (2010). Improved algorithms for computing Fisher’s market clearing prices. In
Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp.
291–300.

Robertson, J., & Webb, W. (1998). Cake-Cutting Algorithms: Be Fair If You Can. AK
Peters, MA.

Su, F. E. (1999). Rental harmony: Sperner’s lemma in fair division. The American Mathe-
matical Monthly, 106 (10), 930–942.

1219

